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Abstract

The ability to build maps of indoor environments
is extremely important for autonomous mobile ro-
bots. In this paper we introduce Voronoi random
fields (VRFs), a novel technique for mapping the
topological structure of indoor environments. Our
maps describe environments in terms of their spa-
tial layout along with information about the differ-
ent places and their connectivity. To build these
maps, we extract a Voronoi graph from an occu-
pancy grid map generated with a laser range-finder,
and then represent each point on the Voronoi graph
as a node of a conditional random field, which is a
discriminatively trained graphical model. The re-
sulting VRF estimates the label of each node, inte-
grating features from both the map and the Voronoi
topology. The labels provide a segmentation of
an environment, with the different segments corre-
sponding to rooms, hallways, or doorways. Experi-
ments using different maps show that our technique
is able to label unknown environments based on pa-
rameters learned from other environments.

1 Introduction

Building semantically meaningful representations of indoor
environments is a fundamental goal of robot mapping. Over
the last few years, the SLAM (simultaneous localization and
mapping) community has made tremendous progress in the
development of efficient and highly accurate map-building
techniques. Most of these techniques focus on accurately cap-
turing the metric layout and/or topological structure of an en-
vironment. While raw metric maps have the advantage of be-
ing well suited for robot navigation tasks, they are typically
unstructured and contain no information about the different
types of places or objects in an environment. Topological
approaches are more compact and expressive in that they de-
scribe locally distinctive places, but these distinctive places
are often defined in a robot’s perceptual space and are not
necessarily related to indoor areas such as rooms or hallways.

Other researchers, for instance [Beeson et al., 2005], fo-
cused on detecting places such as rooms, hallways, and door-
ways. However, most of these techniques detect only very

specific structures and rely on hand-tuned rules to do so. Re-
cently, [Mozos et al., 2005] introduced a technique that uses
AdaBoost to learn place classifiers based on various features
extracted from laser range-scans and cameras. While they
achieve good results in classifying individual points in an en-
vironment, their approach does not take the connectivity of
these points into account, and so does not generate a topolog-
ical, spatially consistent representation of an environment.

The goal of our research is to generate semantically mean-
ingful, topological-metric descriptions of indoor environ-
ments. We aim to label every location in a metric map of
an environment with the type of place it belongs to. These
labels provide an intrinsic segmentation of the map, one that
represents the topological structure of an environment. Such
a structure will enable robots to better communicate with hu-
mans about places, goals, and trajectories.

To achieve this goal, we introduce Voronoi random fields
(VRFs), a novel method for generating semantically mean-
ingful descriptions of indoor environments. Our approach
uses a state-of-the-art SLAM technique to generate a metric
occupancy grid map of an environment [Fox et al., 2006]. It
then extracts the Voronoi graph of this map [Latombe, 1991],
which provides a compact representation of the free space
and the connectivity structure of the environment. For each
point on the Voronoi graph, VRFs then estimate the type of
place it belongs to. This is done by generating a conditional
random field with hidden nodes corresponding to the points
on the Voronoi graph. Conditional random fields are discrim-
inatively trained graphical models that have been shown to
outperform generative approaches in areas such as natural
language processing [Lafferty et al., 2001] and computer vi-
sion [Kumar and Hebert, 2003]. The place labels estimated
by our Voronoi random field provide a segmentation of an
environment, with the different segments corresponding to
rooms, hallways, junctions, or doorways. Since a robot’s
place labels should be consistent with how humans perceive
the structure of environments, we use human-labeled training
data to learn the parameters of our VRFs.

The paper is organized as follows. After describing related
work in Section 2, we introduce Voronoi random fields, our
application of conditional random fields to labeling Voronoi
graphs, and also show how to perform inference and learn-
ing in this model. Experiments are described in Section 4,
followed by conclusions and a discussion of future work.
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2 Related Work

Voronoi graphs are an extremely useful topological repre-
sentation of indoor environments [Latombe, 1991]. [Thrun,
1998] constructs topological representations of environments
by segmenting and pruning a Voronoi graph extracted from
an occupancy grid map. This approach does not distinguish
between different types of places and is rather brittle since
it makes deterministic modeling decisions based on manually
tuned, local features. In order to learn a topological map of an
environment, [Kuipers and Beeson, 2002] generate distinc-
tive views by unsupervised clustering of raw laser range-data
and associate these views with distinctive states. [Tomatis et
al., 2003] represent places in a hybrid topological-metric map
as corners and openings detected with a laser range-finder.
Their focus is on place recognition for SLAM, and the topo-
logical nodes are not classified into types of places.

[Beeson et al., 2005] detect topological places based on
gateways and pathways in a reduced extended Voronoi graph,
which they extract from occupancy grid maps. Their tech-
nique relies on various hand-tuned rules to detect places and
the authors do not show how it generalizes to complex sce-
narios in unseen environments.

Our work focuses on place classification. We do not intend
to detect individual, distinctive places, but rather aim at label-
ing any location in an environment. Furthermore, we do not
try to solve the place recognition, or data association, prob-
lem, which aims at detecting when a robot has returned to a
previously visited place [Tomatis et al., 2003]. We build on
the fact that this problem is solved sufficiently well by state-
of-the-art SLAM techniques, which generate accurate laser
range-maps of indoor environments [Fox et al., 2006].

In a similar vein as our research, [Stachniss et al., 2005]

use AdaBoost to learn place classifiers based on features ex-
tracted from laser range-scans and camera images. They
show how to connect the classifier outputs to a hidden Markov
model, which then performs HMM filtering on the trajectory
followed by a robot. While this technique performs very well,
it still has several limitations compared to our approach. The
HMM only operates on the given trajectory, so the classifica-
tion of places in an environment depends on the actual path
followed by a robot. Furthermore, the approach is not able
to make use of the connectivity of an environment when la-
beling places. In contrast to HMM filtering, we show how to
perform collective labeling on a Voronoi graph of an environ-
ment. Our model thus takes both local features and connec-
tivity information into account. Additionally, it is able to gen-
erate a topological, semantically labeled graph description of
an environment.

3 Voronoi Random Fields

3.1 Conditional Random Fields

Conditional random fields (CRFs) are undirected graphical
models that were developed for labeling sequence data [Laf-
ferty et al., 2001]. Unlike HMMs and Markov random fields,
which assume that observations are independent given the
hidden state, CRFs make no assumptions about the depen-
dency structure between different parts of the data. CRFs are

thus especially suitable for classification tasks that rely on
complex and overlapping data and features.

The nodes in a CRF represent hidden states, denoted y =
〈y1,y2, . . . ,yn〉, and data, denoted x. Note that while indi-
vidual observations xi are often connected to the correspond-
ing hidden states yi, our data x consists of a complete map of
an environment, and we connect all hidden states to this sin-
gle map. The nodes yi, along with the connectivity structure
represented by the undirected edges between them, define the
conditional distribution p(y|x) over the hidden states y. Let
C be the set of cliques in the graph of a CRF. Then, a CRF fac-
torizes the conditional distribution into a product of clique po-
tentials φc(x,yc), where every c ∈ C is a clique in the graph
and x and yc are the observed data and the hidden nodes in
the clique c, respectively. Clique potentials are functions that
map variable configurations to non-negative numbers. Intu-
itively, a potential captures the “compatibility” among the
variables in the clique: the larger the potential value, the more
likely the configuration. Using clique potentials, the condi-
tional distribution over the hidden states is written as

p(y | x) =
1

Z(x)

∏
c∈C

φc(x,yc), (1)

where Z(x) =
∑

y

∏
c∈C

φc(x,yc) is the normalizing par-

tition function. The computation of this partition function is
exponential in the size of y since it requires summation over
all possible configurations of hidden states y. Hence, exact
inference is possible for a limited class of CRF models only.

Potentials φc(x,yc) are described by log-linear combina-
tions of feature functions fc(), i.e.,

φc(x,yc) = exp
(
wT

c · fc(x,yc)
)
, (2)

where wT
c is the transpose of a weight vector wc, and

fc(x,yc) is a function that extracts a vector of features from
the variable values. Using feature functions, we rewrite the
conditional distribution (1) as

p(y | x) =
1

Z(x)
exp

{∑
c∈C

w
T

c · fc(x,yc)

}
(3)

Before we describe how to perform efficient inference and
learning in CRFs, we will show how CRFs can be used for
labeling places in an environment.

3.2 Voronoi Random Fields for Place Labeling

To label the different places in an environment, we estimate
the place types at the points of a discrete Voronoi graph of
the environment. Such a graph is defined via the points that
are equidistant to the closest two or more obstacles in an en-
vironment [Latombe, 1991]. The left panel in Figure 1 shows
an occupancy grid map generated by our laser mapping ap-
proach along with the corresponding Voronoi graph (after
pruning). As can be seen, the Voronoi graph nicely repre-
sents the connectivity structure of the environment. Hallway
intersections and their entries into rooms are typically repre-
sented by points that have three or more neighbors. Note that
any point in the environment can be associated with a point
on the Voronoi graph. Thus, by estimating place labels on the
Voronoi graph, we can determine the place type of any point
in the environment.
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We label the points on a Voronoi graph by converting
the graph into a conditional random field, which we call a
Voronoi random field (VRF). A VRF is constructed from a
Voronoi graph by representing the points vi on the Voronoi
graph as the hidden nodes yi of the VRF. The state of the
hidden nodes ranges over the different place types: room,
doorway, hallway, junction, and other. The neigh-
boring points in the Voronoi graph are also connected in the
VRF, thereby allowing the VRF to take the labels of neigh-
boring points into account and thus probabilistically model
connectivity constraints. The observed data x is extracted
from the Voronoi graph and the local map area visible from
each Voronoi point. We use two types of features extracted
from the data:
Spatial features describe the layout of the local area around a

Voronoi point. Most of of our spatial features are inspired
by those used by [Stachniss et al., 2005] for laser-based
place detection. These features are extracted from the oc-
cupancy grid map; they include distance to the closest ob-
stacle and shape information about the area visible from
the Voronoi point.

Connectivity features make use of the connectivity informa-
tion encoded by the Voronoi graph. These features include
place types of the neighboring nodes, number of neigh-
bors in the Voronoi graph, and shape information about the
graph, such as curvature. Additionally, we use a feature
that describes the size of the minimal loop going through a
node in the Voronoi graph. This feature is extremely use-
ful for tasks such as distinguishing doorways from narrow
passages in rooms. While doorways are typically not part
of a small loop, small loops with narrow passages are often
caused by furniture such as tables (see Figure 1).

Our VRFs contain three types of cliques. First, each node in
the VRF is a single node clique, the potential of which is a
weighted function of the spatial and connectivity features ex-
tracted at that node. The second type of clique contains pairs
of VRF nodes that are connected in the Voronoi graph. The
potential of these cliques measures the spatial compatibility
between place types. A third type of clique is generated for
each node that has three neighbors. While such “junction”
nodes often correspond to intersections in hallways, they also
occur frequently in rooms. This final clique type contains
four nodes and measures the compatibility between the labels
of all nodes connected at such a junction in the Voronoi graph
(more than three neighbors could be handled if necessary).

3.3 Inference

Inference in CRFs can estimate either the marginal distribu-
tion of each hidden variable yi or the most likely configura-
tion of all hidden variables y (i.e., MAP estimation), as de-
fined in (3). Both tasks can be solved using belief propagation
(BP), which works by sending local messages through the
graph structure of the model. Each node sends messages to
its neighbors based on messages it receives and the clique po-
tentials, which are defined via the observations and the neigh-
borhood relation in the CRF. For instance, the “observation”
potential of a node is computed by first extracting the features
described in Section 3.2 at the map location corresponding to

the node, and then feeding them through the log-linear func-
tion (2) (we actually use derived features, see Section 3.4).

BP generates provably correct results in graphs with no
loops, such as trees or polytrees. However, since virtually
all VRFs contain loops, we apply loopy belief propagation,
an approximate inference algorithm that is not guaranteed to
converge to the correct probability distribution [Murphy et
al., 1999]. In our experiments, we compute the MAP labeling
of an environment using max-product loopy BP. Fortunately,
even when the algorithm failed to converge, our experiments
showed reasonable results.

3.4 Learning

CRF Parameter Learning

The goal of CRF parameter learning is to determine the
weights of the feature functions used in the conditional likeli-
hood (3). CRFs learn these weights discriminatively by max-
imizing the conditional likelihood of labeled training data.
While there is no closed-form solution for optimizing (3), it
can be shown that (3) is convex relative to the weights w.
Thus, the global optimum of (3) can be found using a nu-
merical gradient algorithm. Unfortunately, this optimization
runs an inference procedure at each iteration, which can be
intractably inefficient when using loopy BP in large VRFs.

We therefore resort to maximizing the pseudo-likelihood
of the training data, which is given by the sum of local likeli-
hoods p(yi | MB(yi)), where MB(yi) is the Markov blanket
of variable yi: the set of the immediate neighbors of yi in
the CRF graph [Besag, 1975]. Optimization of this pseudo-
likelihood is done by minimizing the negative of its log, re-
sulting in the following objective function:

L(w) = −

n∑
i=1

log p(yi | MB(yi),w) +
(w−w̃)T (w−w̃)

2σ2
(4)

Here, the terms in the summation correspond to the neg-
ative pseudo log-likelihood and the right term represents a
Gaussian shrinkage prior with mean w̃ and variance σ2.
Without additional information, the prior mean is typically set
to zero. In our approach, we use unconstrained L-BFGS [Liu
and Nocedal, 1989], an efficient gradient descent method,
to optimize (4). The key advantage of maximizing pseudo-
likelihood rather than the likelihood (3) is that the gradient of
(4) can be computed extremely efficiently, without running
an inference algorithm. Learning by maximizing pseudo-
likelihood has been shown to perform very well in different
domains; see [Richardson and Domingos, 2006] or [Kumar
and Hebert, 2003] for an example.

AdaBoost for Feature Induction

While the features described in Section 3.2 could be used di-
rectly as continuous observations in CRFs, we found that this
approach did not yield very good results. This is due to the
fact that the log-linear representation underlying CRFs corre-
sponds to a unimodal Gaussian likelihood for each continu-
ous feature, which is not flexible enough to capture the com-
plex relationships between place types and feature values.

We overcome this limitation by extracting suitable features
from our continuous feature values using AdaBoost [Fre-
und and Schapire, 1996], which has been applied success-
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fully by [Mozos et al., 2005] in the context of place recog-
nition. Specifically, we learn a binary AdaBoost classifier
for each place type by using maps of labeled indoor environ-
ments to generate training data for every class c in the form of
Dc = {〈x1, y1〉, 〈x2, y2〉, . . . , 〈xn, yn〉}, where each xi con-
tains the features extracted for a specific Voronoi point, and
yi ∈ {−1, +1} specifies whether or not this point belongs
to the class c. As weak classifiers we use binary decision
stumps applied to the features. In this case, AdaBoost se-
quentially learns a weighted set of T decision stumps, each
defined by a feature f c

t and a threshold θc
t . Note that the same

feature can be used multiple times with different thresholds.
The weighted combination of these decision stumps gives the
classification of whether or not a feature vector x belongs to
place type c,

Hc(x) = sign

(
T∑

t=1

αc
t hc

t(x)

)
(5)

Here hc
t(x) = sign(xfc

t
− θc

t ) is the output of the t-th deci-
sion stump, and αc

t is the learned weight associated with it.
Essentially, AdaBoost automatically determines which of the
continuous features (and thresholds applied to them) are most
useful in supporting good classification results.

We investigated two ways of combining AdaBoost and
CRFs. The first, which we call V RFD , takes all the Ada-
Boost decision stumps hc

t(x) learned for all the classes c
and uses them as binary features in a CRF. The CRF then
learns the weights for those stumps and for the neighbor-
hood potentials using pseudo-likelihood maximization as de-
scribed above. The second approach, called V RFM , uses
the weighted sum, or margin [Niculescu-Mizil and Caru-
ana, 2005], of each AdaBoost classifier as a continuous fea-
ture (the sum inside the sign in (5)). For C place types,
V RFDuses CT binary features, T for each of the C place
types, and V RFM uses the C continuous features that are
generated by weighted summation of the decision stumps.

3.5 Summary

Our approach learns the parameters of VRFs from labeled
maps of training environments. To do so, it first learns a bi-
nary AdaBoost classifier for each place type from manually
labeled maps. For each map, we generate the corresponding
Voronoi random field using the features learned by AdaBoost.
The parameters of these VRFs are then learned by maximiz-
ing the pseudo-likelihood (4) of the training data, using para-
meter sharing. The resulting parameters are the weights of the
different types of cliques occurring in a VRF. After learning,
a novel environment is labeled as follows:

1. Generate occupancy grid map using mobile robot laser-
range SLAM techniques [Fox et al., 2006].

2. Extract Voronoi graph from the map.

3. Generate Voronoi random field with nodes and edges
corresponding to the Voronoi graph.

4. Extract spatial and connectivity features from the map
and generate the learned AdaBoost decision stumps to
be used as observations in the VRF.

5. Run max-product loopy BP inference to estimate the
MAP labeling of the nodes in the VRF.

4 Experimental Results

We evaluated our approach on maps of four indoor environ-
ments, acquired as laser range-data from the Radish robot
data repository [Howard and Roy, 2003]. For each data set,
we generated an occupancy grid map and extracted a Voronoi
graph from that map. We then manually labeled each point
on each graph as either room, doorway, hallway, or
junction, where a junction can be an intersection be-
tween hallways or an entry area into a room. The training set
contained approximately 1,250 Voronoi points. We extracted
53 different features at each point and used AdaBoost to gen-
erate 25 decision stumps for each of the four classes, resulting
in a total of 100 binary features used in our VRFs. AdaBoost
learning took about a minute; learning the parameters of a
VRF took an additional minute on a standard desktop PC.
Loopy-BP MAP inference generally took less than a minute
per test map when it converged. However, we allowed for
a generous time-out based on the graph diameter, such that
those that did not converge would run for up to 5 minutes.

To assess the contributions of the different aspects of our
VRF framework, we compared the following four approaches
using leave one out cross-validation on the maps. The first,
denoted ABS , uses AdaBoost along with the spatial features
to classify each point on the Voronoi graphs. The second,
ABSC , additionally uses connectivity features extracted from
the Voronoi graphs. These features include information such
as number of neighbors in the graph, size of the smallest
loop containing a node, and the distance to the closest ob-
stacle. The third approach, V RFD, is a VRF that uses the
AdaBoost decision stumps as binary features. The final ap-
proach, V RFM , uses the weighted sum, or margin, of each
AdaBoost classifier as features. For learning, we set the prior
mean of all weights w̃ to zero (compare (4)).

ABld. Allen Frbg. Intel Avg.

ABS 87.0 90.8 82.0 81.1 85.2 ± 4.4
ABSC 88.6 92.1 86.6 83.7 87.8 ± 3.5
V RFD 93.6 93.3 91.5 86.4 91.2 ± 3.3
V RFM 94.2 93.1 91.3 88.2 91.7 ± 2.6

Table 1: Accuracy of leave one out place labeling.

Table 1 summarizes the accuracy of the different tech-
niques in terms of the percentages of correct labels for the
four test environments. Not surprisingly, the accuracy of
AdaBoost increases consistently when adding connectivity
features (for an average increase from 85.2% to 87.8%). The
lower two rows display the accuracy of using AdaBoost for
feature induction in VRFs. Both VRF approaches perform
significantly better than AdaBoost, though the difference be-
tween them is not significant. Note that the test maps are
very diverse, so the cross-validation demonstrates good gen-
eralization to new environments for all techniques.

While these numbers indicate an improvement of VRFs
over AdaBoost, they do not adequately reflect the true per-
formance gain achieved by our VRF technique. To get an
additional assessment of the techniques, we considered the
following scenario. A mobile robot is placed at a random
location in the map and takes the shortest path to another
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Figure 1: Intel test map: (left) Occupancy grid map built via SLAM along with Voronoi graph. (middle) The labeled Voronoi graph defines
a place type for each point on the map. Hallways are colored gray (red), rooms light gray (green), doorways dark grey (blue), and junctions
are indicated by black circles. (right) Topological-metric map given by the segmentation of the labeled Voronoi graph. The spatial layout of
rooms and hallway sections is provided along with a connectivity structure indicated by lines and dots (doorways are dark gray (blue) dots).

randomly chosen location. Along its path, the robot records
the sequence of rooms, hallway sections, junctions, and door-
ways it passes through. We used edit distance to compare
sequences recorded on maps labeled using our algorithms to
those recorded on ground truth maps. Edit distance deter-
mines the minimum number of operations (insertions, dele-
tions) needed to make the inferred path match the ground
truth path. Our resulting measure, called topological edit dis-
tance (TED), reports the ratio of edit distance to path length;
a lower TED ratio means better performance. The final re-
ported statistic is the average of 100 randomly selected paths
in the map. The random paths taken on the correspond-
ing maps in different tests were chosen consistently to al-
low a straightforward comparison. The TED scores of the
aforementioned experiments are summarized in Table 4. The
V RFDmethod offers clear improvements significant at the
p<0.06 level over ABSC . The V RFMmethod appears bet-
ter, but the overall improvement is insignificant due to poor
performance on the Allen map. One explanation for this is
that V RFM failed to correctly label several junctions between
hallways, which many paths will pass through.

ABld. Allen Frbg. Intel Avg.

ABS 79.4 60.5 76.6 62.6 69.8 ± 9.4
ABSC 35.7 30.9 74.2 59.8 50.1 ± 20.0
V RFD 18.2 22.1 23.7 25.7 22.4 ± 3.1
V RFM 14.3 50.6 21.0 22.2 27.0 ± 15.8

Table 2: Topological Edit Distance of leave-one-out place labeling.

Figure 1 shows the performance of our technique on one
of our test maps (shown for V RFD , V RFM is very similar).
The coloring of the middle map is given by labeling all points
with the label of the nearest point in the VRF. The right panel
shows the exploded topological-metric map resulting from
grouping contiguous room and hallway regions of the same
label into topological nodes. As can be seen, the topological-
metric map generated automatically by our VRF nicely rep-
resents the environment’s connectivity structure (indicated by
lines and doorway and hallway nodes) and the spatial layout

of individual rooms and hallway sections. Figure 2 provides
a visual comparison of V RFDwith ABSC(AdaBoost using
spatial and connectivity features). In agreement with the re-
sults given in Table 2, our approach generates significantly
more consistent segmentations of the environments. For in-
stance, AdaBoost generates a large number of false-positive
doorways and hallways, especially in the cluttered rooms of
the Freiburg map. Our labelings are also more consistent than
those reported by [Stachniss et al., 2005].

5 Conclusions

We presented Voronoi random fields, a novel approach to
generating semantically meaningful topological-metric de-
scriptions of indoor environments. VRFs apply discrimina-
tively trained conditional random fields to label the points of
Voronoi graphs extracted from occupancy grid maps. The
hidden states of our VRFs range over different types of
places, such as rooms, hallways, doorways, and junctions. By
performing inference in the graph structure, our model is able
to take the connectivity of environments into account. We
use AdaBoost to learn useful binary features from the contin-
uous features extracted from Voronoi graphs and occupancy
maps. The parameters of our model are trained efficiently
using pseudo-likelihood. Experiments show that our tech-
nique enables robots to label unseen environments based on
parameters learned in other environments, and that the spatial
reasoning supported by VRFs results in substantial improve-
ments over a local AdaBoost technique.

We consider these results extremely encouraging; they pro-
vide mobile robots with the ability to reason about their en-
vironments in terms more similar to human perception. As a
next step, we will add high-level contextual information such
as the length of hallways and the shape of rooms to our model.
Each segmentation will then correspond to a two-level CRF,
with the upper level representing the features of these places
(similarly to [Liao et al., 2006]). To avoid summing over
all possible CRF structures, we will replace MAP estimation
with a sampling or k-best technique.

An obvious shortcoming of our current approach is the re-
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Figure 2: Abuilding (left) and Freiburg (right) test maps labeled by AdaBoost (upper row) and our VRF technique (lower row). The VRF
technique is far more accurate in detecting junctions and its segmentations are spatially more consistent than those done by AdaBoost.

striction to laser range data. As in the work of [Stachniss et
al., 2005; Torralba et al., 2004], we intend to add visual fea-
tures in order to improve place recognition.

Finally, the longterm goal of this research is to generate
maps that represent environments symbolically in terms of
places and objects. To achieve this goal, we will combine our
VRF technique with approaches to object detection, such as
the one proposed by [Limketkai et al., 2005]. In this appli-
cation, the place labeling performed by the VRF will provide
context information for the object labeling performed jointly
at the lower levels of a hierarchical CRF model.
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