
Abstract
Different methodologies have been employed to 
solve the multi-sensor multi-target detection prob-
lem in a variety of scenarios. In this paper, we de-
vise a time-step optimal algorithm for this problem 
when all but a few parameters of the sensor/target 
system are unknown.  Using the concept of cover-
ing graph, we find an optimum solution for a single 
sensor, which is extended to multiple sensors by a 
tagging operation. Both covering graph and tagging 
are novel concepts, developed in the context of the 
detection problem for the first time, and bring a 
mathematical elegance to its solution. Furthermore, 
an implementation of the resulting algorithm is 
found to perform better than other notable ap-
proaches. The strong theoretical foundation, com-
bined with the practical efficacy of the algorithm, 
makes it a very attractive solution to the problem. 

1. Introduction 
The problem of multi-sensor target tracking has attracted 

a significant amount of interest over the past few years. The 
papers [Jung and Sukhatme, 2002] and Parker[2002] are 
especially relevant in the context of this paper as representa-
tive algorithms; we appraise these in specific scenarios in a 
subsequent section. Other pertinent approaches include a 
scheme for delegating and withdrawing robots to and from 
targets through the ALLIANCE architecture [Parker 1999], 
a strategy for maximizing coverage with mobile sensors 
[Sameera and Sukhatme 2004] and a method for sensor 
management in a distributed tracking setup [Horling et. al, 
2003]. There is also a large volume of work in the context of 
using a network of static sensors to guide robots pursuing 
invaders [Schenato et. al 2005]. A more detailed citation of 
literature is avoided here due to strict page limits.  

Our first objective in this paper is to analyze performance 
of existing solutions, and reformulate target detection as an 
optimization problem. Subsequently, we introduce the no-
tion of covering graph to optimize the detections of a single 

sensor. Extending this technique to multiple sensors is in 
general nontrivial, involving searching over a discrete 
search space, which is accomplished by a tagging operation.  
These ideas are crucial in transforming a continuous search 
space into a discrete one, enabling us to find an optimal 
solution from among several disparate ones. In contrast al-
most all existing solutions employ some heuristic to deter-
mine a good solution in an uncountable search space. Fi-
nally, we test our algorithm against two others whose pa-
rameters are tweaked by hand to perform optimally. None-
theless, our results show that our algorithm is able to per-
form better than compared approaches across a number of 
test cases. 

2. Analysis of Existing Algorithms 
In this section we examine the performance of two exist-

ing representative algorithms, those of [Parker 2002] and 
[Sukhatme 2002].  

 2.1 Parker’s Algorithm 
Fig.1 shows a set of targets, depicted by small un-

shaded squares, moving counter clockwise about a circle. 
The shaded squares represent sensors; one sensor, closest to 
the circle, is repelled away by the sensor-target repulsive 
force referred to in [Parker 2002]. Also, every target is out-
side the sensing range of every other sensor. It is evident 
that optimal detection will occur if instead of getting re-
pelled away, the former sensor is attracted to the inside of 
the circle.

2.2 Sukhatme-Jung Algorithm 
Fig 2 shows an environment partitioned into five re-

gions by landmarks represented by the diagonal black lines. 
A sensor S  is initially stationed in region 1. Targets are 
located along each edge of the dotted square ABCD . They 
move in the direction indicated by the arrows cyclically 
with uniform velocity. The dotted circle is the FOV (field of 
vision) region of a nonexistent sensor placed at its center 
O ; it is meant to touch the sides of the square, but  offset 
for clarity. It is clear that optimal detection takes place at 
O . Due to the uniform velocity of sensor motion the ur-
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gency of all regions will be the same, causing the sensor to 
either remain in region 1 or switch continually from one 
region to an adjacent one.  Hence the algorithm is unable to 
find the optimal position O .

Both these algorithms perform very well in many scenar-
ios, (such as the ones cited in their sources); the pathological 
runs shown above are exceptions to the rule.  Parker’s algo-
rithm fails when target-sensor and sensor-sensor forces give 
conflicting results, and Sukhatme-Jung’s becomes subopti-
mal due to the artificial division of the environment area 
into regions. The presence of these exceptions leads us to 
ask the question: Can the  performance be improved further? 
     

     

3. Problem Statement  
We introduce the following definitions: 

1. E  is a bounded region in the plane, called the environ-
ment over which sensors and targets move. The precise 
shape of E  is of little significance in what follows, hence 
will be assumed to be an AA  square.

2. )}()..,(
2

),(
1

{)( t
n

StStStS is the snapshot of the set of 

sensors,  at time instant   . Each sensor has FOV Af .
3. )}()..,(),({)( 21 tTtTtTtT m is likewise the snapshot of the 

set of targets at time instant t .
Given )0(S as a set of points within E , and )0(T  as a set 

of points on the edges of E . At every time instant 
..3,2,1t , every target moves with a maximum speed of 

maxv in an unknown direction. A sensor has a maximal 

speed of maxs . Determine positions of )(tS over time in 
such a way that the number of targets detected by at least
one sensor is maximized. If there are several possible opti-
mal solutions, we prefer those which maximize the number 
of detections by precisely one sensor. This last requirement 
minimizes redundant detections. 

3.1 Preliminaries  
If P  is a point on the plane and 0r , define )(PCr

(resp. )(PDr ) as the circle (resp. closed disk) of radius 

r centered at P ; also, define )(PDr  as the exterior 

of )(PDr . Define )( iSC  as the circle of radius maxs cen-
tered at iS (called the sensor circle of iS ) and )( jTC a cir-

cle of radius maxv  centered at jT (called the target circle of 

jT ).  Define )( iSD and )( jTD  correspondingly as sensor 

and target disks. Note that )( iSD f  is the FOV disk of iS .

Given a set P of points on the plane, define )(PHull as the 
vertex set of the convex hull of P .

We call the ordered pair ))(),(( 00 tTtS the configuration

of the sensor-target system at time instant 0t , and any set of 
consecutive configurations a configuration sequence. De-
fine a configuration sequence to be feasible if the following 
condition holds: For every pair of consecutive time instants  

1',' tt  in the sequence, max|)'()1'(| stStS ii for every 
sensor and max|)'()1'(| vtTtT jj  for every target; we 
will be interested only in feasible sequences hereafter. We 
define the number of k detections (resp. k detections)   of 
the configuration as the number of targets detected by pre-
cisely (resp. at least) k sensors, and call k  the order of de-
tection.  With these definitions, the problem seeks to maxi-
mize 1+ detections, preferring maximal 1-detections. 

Fig. 1 A pathological run of Parker’s algorithm. The shaded 
squares are the sensors, the unshaded ones are the targets moving 
in a circle. Note the repulsion of the sensor closest to the circle 

Fig. 2 Pathological run of Sukhatme-Jung algorithm. The 
black lines are landmarks, the dark circle S is the sensor, 
and the dotted lines indicate target motion paths. 
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3.2 Solving a set of Quadratic Constraints 
This section develops a technique to be used later in Sec-

tion 4.2 to assign sensor positions in a multi-sensor system. 
Given two disjoint sets of targets, },..,,{ 21 kinc TTTT and

},..{ 2,1 lkkexc TTTT , we are asked to determine whether 

we can place a sensor that covers all targets in incT and none 

of those in excT . The problem reduces to determining if 
there exists a sensor position P for which 

incii TTfTP ,||||             [3.2a] 

excii TTfTP ,||||                    [3.2b] 
has a solution . [3.2] has a solution if and only if the inter-

section
excTiT iTD

incTiT iTDI ff )()( is non-null; in 

this case, every point in I is a solution. Further, suppose 
that [3.2a] has a solution, but with the additional constraint 
that fTP k |||| 1 , it does not. This means that every cir-
cle of radius f which covers incT also covers 1kT . In such 
a case, 1kT is said to be dependent on incT ; in particular, if 

1kT  falls within )( incTHull , it is always dependent on 

incT .

4 Methodology 

4.1Single Sensor System 

Covering Graph 
Consider the configuration ))(),(( 001 tTtS  . We say that a 

point )( 1SDP is a covering point with respect to 1S , of a 

set TT ' of targets, currently within )1(SD f , iff no target 

in T can escape out of )(PC f in one time step.  Observe 

that if P is a covering point of target 'TiT , then 

)( iTDP d , where maxvfd .  In the same scenario we 
say that every pair of targets in 'T is simultaneously cover-
able. Note that two targets are simultaneously coverable iff 
the (Euclidean) distance between them is at most d2 . De-
fine the covering graph ))(),(( tTtSCG of the configuration 
as a graph whose nodes are covered targets, and whose 
edges connect a pair of simultaneously coverable targets. 
From above, targets in 'T will form a clique in the covering 
graph. Further define a maximal clique in ))(),(( tTtSCG as
one with the maximal number of vertices, noting that this 
could be non-unique. 

 It is easy to see that moving to a covering point of a 
maximal clique ensures that a maximum number of targets 
will be detected at the next time instant. We formalize this 

idea as follows: Define the covering function
NSDCF )1(: which takes a point in )1(SD  to the 

number of targets that a sensor at that point will definitely 
cover in the next time step. The maximal values of the cov-
ering function will be attained at the points of intersection 
of )()(

j
TfC

i
TfC , where )1(, SfDjiT , giving us 

an algorithm to move 1S  to  a covering center of a maximal 

clique. 1S  visits each of the points of intersection of the 
form above, and moves to that which gives maximal detec-
tions; should there be no intersections, it moves to a cover-
ing point of any target it detects. This ensures a maximal 
number of detections in the next time step, and the algo-
rithm runs in )( 2mO time where m  is the number of targets. 

Number of Cliques 
In this section we estimate the maximal number of 

cliques that can exist in )( 1SD f . A clique in 

))(),(( 11 tTtSCG has all its targets lying within a circle of 

radius maxvfd as a result, the separation between 
two cliques is at least d . Consequently, the number of 
cliques in )( 1SD f is at most the size of maximum set of 

points M  that can be chosen in )( 1SD f such that the dis-
tance between any every point in M , with its nearest 
neighbors in M ,  is d . Such an M  can be constructed as 
follows. Choose a point ))(( 10 tSDP f ; draw the circle 

)(' 0PCC d , and mark off the vertices of a regular hexagon 
inscribed in it .  Repeat the construction at every 

61, iPi until no more points within )( 1SD f can be 

found. This leads to tiling of )( 1SD f by regular hexagons of 

side d , leading to ))(( 2
d
fO hexagons and clique centers. 

4.2 Multi-sensor System 
In this section we use ideas from previous sections to 

obtain an optimal solution to tracking with n sensors. The 
sensors share knowledge of the targets they see at every 
time instant, enabling each to build the global covering 
graph..   

Taglists and Taglist types 
To optimize 1+ detections is a nontrivial problem in gen-

eral. We assume for the purpose that every target iT  is 
tagged with a list of sensors, taglistTi . . Also, de-

fine
TiT

taglistiTitaglistT )}.,{(. . The point of introduc-

ing taglists- as claimed in Section 1- is to convert  a con-
tinuous search space into a discrete one. When we say iT is
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tagged with a list SS ' , we try to see if iT can be covered 
by the sensors in 'S ; if this is feasible, then sensor positions 
can be assigned to sensors in 'S by the algorithm in Section 
3.2, or else deemed impossible by the same. We formalize 
this in the following definitions. 

Given  )( 0tS , an instance of taglisttT ).1( 0  is said to be 
feasible iff for every sensor the intersection 

),.(
)(

),.(
)()(

i
StaglistTCover

j
T j

T
f

D

i
StaglistTCover

j
T j

T
f

D
i

SD
i

R

is nonempty. Here ),.( iStaglistTCover is the set of all tar-

gets covered by iS .  We say that a point )(
i

SDP is a

covering point with respect to iS , of a set TT ' of targets, 
currently detected by at least one sensor in the system, iff no 
target in T can escape out of )(PC f in one time step.  The 
covering graph and covering function of a sensor are de-
fined correspondingly. 

For a single sensor, optimality of detection hinged on the 
assurance that a certain number of targets would be seen the 
next time step. This assurance is  formalized by the idea of a 
proper taglist in a multi-sensor system. A feasible instance 
of taglisttT ).1( 0 is said to be proper iff for every sensor 

)(tSi , targets in ),.( iStaglistTCover  are vertices of a clique 
in ))(),(( 00 tTtSCG i . It is difficult to construct proper 
taglists directly ; it is easier to take a shortcut through 
taglists which satisfy  the hull property, defined next. 

An instance of  taglisttT ).1( 0 is said to satisfy the hull 
property if and only if the following criterion holds for 
every subset 'T of targets in it. If every target in 'T is tagged 
with sensor iS , then every target located within  )'(THull is
also tagged with iS . Note that if an instance of 

taglisttT ).1( 0 is proper, it also satisfies the hull property; 
the converse need not be true. We will use this property to 
generate proper taglists and later to compute the complexity 
of the multi-sensor system.  

Finding the Optimal Solution 
The Findopt routine finds the sensor assignment that 

guarantees maximal 1+ detections in the next time step. 
))(),(( 00 tTtSFindopt

1. Generate an initial proper taglist, Current
for )( 0tT . Compute )(1 CurrentN  and 

)(1 CurrentN , which denote the number of 1+ and 
1 detections in Current respectively.

2. For each proper taglist Next  remaining do 
a. If )()( 11 CurrentNNextN or 

( )()( 11 CurrentNNextN and
)()( 11 CurrentNNextN ) then 

NextCurrent

3. Assign sensor positions corresponding to 
Current using the method in Section 3.2. 

Finding all proper taglists 
It remains to specify how we find proper taglists. Note 

that only sensors with overlapping FOV regions pose a dif-
ficulty, for otherwise we run the single-sensor algorithm on 
each sensor. The brute force approach would be to generate 
all possible taglists, check whether each is proper, and pass 

it to Findopt , at the expense of having an  1),2( kkmO
algorithm. This is too expensive a solution in time. Instead, 
we generate all taglists satisfying the convex hull property, 
which in general takes time sub-exponential in m , and 
check whether each is proper. This is formalized below. 

If ))()( jSfDiSfD , for every pair of distinct 

sensors, the only proper taglist we generate corresponds to 
maximal clique detections by each sensor.  If the sensors 
move in such a way that their FOV overlaps, we degenerate 
to the weakly overlapping case covered below. 

We call )()}(),..,(),({)(' 0002010 tStStStStS k

strongly overlapping iff 
'

))(( 0SiS
tSD if  . Suppose 

that )(' 0tT is the set of targets detected by 'S , and further 
that )(')('' 00 tTtT  is detected by more than one sensor.  
Suppose that )( 0tQi is the set of cliques of 

kitTtSCG i 1)),('),(( 00 .
We generate the space of proper taglist instances for  
)(' 0tT  as follows. Construct an iterator 1I  that traverses the 

space )(..)()( 00201 tQtQtQ k . At every point of the 
traversal of 1I , do the following. Tag every target that ap-
pears in one or more cliques with all sensors in whose FOV 
it falls. Suppose that '''T  is that subset of ''T which is cur-
rently detected by more than one sensor in 'S  . Construct 
iterator 2I which goes over all possible combinations of 
sensor assignments to targets in )'''(THull . Each of these 
satisfies the hull property.  Output the resulting taglist if and 
only if it is proper. 

We call )(' 0tS weakly overlapping iff for every  

'SSi  there exists at least one ijSjS :' such that 

)()( jSfDiSfD .  Following the same notation as 

in the previous case, we generate the space of proper taglist 
instances as follows. 1I  has the same meaning as before. It 
is then possible to write 0' tS  as 

)('..)(')(')(' 002010 tStStStS r , where sensors in 

each )0(' tiS are strongly overlapping. Correspondingly 

'''T  is expressible as a union 
r

i
tiT

1
)(''' 0 . Construct itera-
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tor 2I which goes over all possible sensor assignments to 

targets in 
r

i
tiTHull

1
))('''( 0 , the Cartesian product of 

hulls; output the resulting taglist iff it is proper. 

Complexity Analysis
A typical worst case scenario is one in which )(tS is 

weakly overlapping.  In this case 1I   runs over 

))(( 2n
d
fO clique combinations, so the algorithm is exponen-

tial in the number of overlapping sensors. Suppose that there 
are nkk 1: hulls for 2I  to consider, and that the i -th 
hull encloses, or has on its boundary, im targets in all, and 

im'  vertices. Suppose further that all m targets are currently 

detected. Then 2I  takes )( 'imnO iterations to traverse its 
space, and each iteration takes polynomial time in m  in for 
computing the hulls, verifying hull points, and so on. Note 
that )()(' momom ii  except in rare cases, so that the 
run-time is sub-exponential, typically polynomial, in the 
number of detected targets. 

In essence while the algorithm is exponential in number 
of overlapping sensors it is typically polynomial in the 
number of targets due to tags for only the targets that form 
the convex hull for a set of targets that constitute a clique. In 
steady state when sensors have diverged to maximize detec-
tions, the number of overlapping sensors is generally small, 
and this is specifically so when the area of E, is considerably 
greater than the total area covered by the sensors. Indeed 
when the total area covered by sensors is greater than or 
equal to area of E maximizing detections is trivially 
achieved. 

5. Simulation and Results 

5.1 Implementation Specifics 
The optimal algorithm above, hereafter called OPT, as 

well as the representative algorithms of Parker and Suk-
hatme-Jung,  have been implemented on an Intel P4 ma-
chine running Fedora Core 4 using the g++ compiler and Qt 
for graphical simulation. The specifics of each implementa-
tion are given below. 

OPT Algorithm 
This is essentially the same as the multi-sensor version 

presented in Section 4.2 with the restriction that, when OPT 
runs for 1 second, it terminates and outputs the most optimal 
solution generated thus far.  This restriction ensures that 
OPT takes nearly the same time to output its solution as its 
adversaries.  

Parker Algorithm 
We implemented the A-COMMT version of the Parker 

algorithm. We set the sensing range of every sensor to the 

FOV of OPT sensors during comparison; predictive tracking 
and communication ranges do not matter for simulation. In 
addition, we tweaked the values of idr and ido , correspond-
ing to cut-off points for sensor-sensor and sensor-target 
forces,  until they gave optimal performance. Specifically, 
we changed 1do and 1dr  from one test case to another, ob-
serving that 121 5.12.1 dododo  and 

131 7.20.2 dododo  gave best results; likewise did 

121 4.28.1 drdrdr  . Furthermore, we scaled the weighted 
force vectors to an equal degree for all sensors. 

Sukhatme-Jung Algorithm 
We partitioned the square environment into a cross-

shaped  topological map. We tweaked the urgency and 
availability thresholds from one test case to the next; in par-
ticular, 104 tyavailabili  and 84 urgency  give 
maximal detections.  The control parameter d was varied 
likewise across test cases till maximal detections were ob-
tained; specifically, when the FOV or the number of sensors 
was decreased,  we gave a small value to d ,  between 0.5 
and 0.6,  and large otherwise, between 1.5 and 1.8.  

5.2 Tabulated Results 
The environment is the square ]500,0[]500,0[ . Five 

sensors, each of FOV 50, are randomly placed in E , each 
with 50maxs . Targets emanate from five sources placed 
randomly on the edges of E every time instant. The speed 
of each target is uniformly distributed in ]5,0[  and angle 
uniformly distributed on ]2,0[ . In Tables 1-3, the rows 
indicate the order of the detection as a percentage rounded 
to the nearest integer, and the columns indicate the algo-
rithm whose performance is noted. Tables 2 and 3 show 
readings of the form A|B, to be interpreted as follows. In 
table 2, A corresponds to the case of 7 sensors, and B to that 
of 3 sensors, as indicated in its caption. Table 3 is read simi-
larly.

5.3  Performance Graphs 
Fig. 3a (resp. 3b)  shows how the number of 1+ detec-

tions varies with FOV(resp. number of sensors) for each 
algorithm. The performance gain of OPT over the earlier 
ones is evident for various sensor and FOV combinations as 
it gives consistently higher 1+ detections, despite the man-
ual tweaking of its adversaries to achieve optimal perform-
ance.

Detection OPT Parker Sukhatme-
Jung 

0 50 60 55 
1 49 37 45 
2 1 3 0 

3+ 0 0 0 
Table 1: Table of base case 
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Detection OPT Parker Sukhatme-
Jung 

0 20|87 13|80 19|85 
1 75|14 83|20 76|15 
2 2|0 5|0 5|0 

3+ 1|0 0|0 0|0 
Table 2: For cases: number of sensors increased to 7 | decreased to 
3

Detection OPT Parker Sukhatme-
Jung 

0 17|84 33|88 31|90 
1 75|16 64|11 60|10 
2 6|0 3|1 8|0 

3+ 2|0 0|0 1|0 
Table 3: For cases: Increasing FOV to 75|Decreasing to 25

6. Conclusions
A novel algorithm for multi-sensor based multi target 

detection has been formulated and analyzed in terms of its 
computational complexity. Comparison with other ap-
proaches in literature verifies its efficacy across diverse 
scenarios. Such a multi-sensor algorithm finds applications 
in border patrol, guarding of secured areas, search and res-
cue and warehouse surveillance. 
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