
Abstract
Different methodologies have been employed to
solve the multi-sensor multi-target detection prob-
lem in a variety of scenarios. In this paper, we de-
vise a time-step optimal algorithm for this problem
when all but a few parameters of the sensor/target
system are unknown. Using the concept of cover-
ing graph, we find an optimum solution for a single
sensor, which is extended to multiple sensors by a
tagging operation. Both covering graph and tagging
are novel concepts, developed in the context of the
detection problem for the first time, and bring a
mathematical elegance to its solution. Furthermore,
an implementation of the resulting algorithm is
found to perform better than other notable ap-
proaches. The strong theoretical foundation, com-
bined with the practical efficacy of the algorithm,
makes it a very attractive solution to the problem.

1. Introduction
The problem of multi-sensor target tracking has attracted

a significant amount of interest over the past few years. The
papers [Jung and Sukhatme, 2002] and Parker[2002] are
especially relevant in the context of this paper as representa-
tive algorithms; we appraise these in specific scenarios in a
subsequent section. Other pertinent approaches include a
scheme for delegating and withdrawing robots to and from
targets through the ALLIANCE architecture [Parker 1999],
a strategy for maximizing coverage with mobile sensors
[Sameera and Sukhatme 2004] and a method for sensor
management in a distributed tracking setup [Horling et. al,
2003]. There is also a large volume of work in the context of
using a network of static sensors to guide robots pursuing
invaders [Schenato et. al 2005]. A more detailed citation of
literature is avoided here due to strict page limits.

Our first objective in this paper is to analyze performance
of existing solutions, and reformulate target detection as an
optimization problem. Subsequently, we introduce the no-
tion of covering graph to optimize the detections of a single

sensor. Extending this technique to multiple sensors is in
general nontrivial, involving searching over a discrete
search space, which is accomplished by a tagging operation.
These ideas are crucial in transforming a continuous search
space into a discrete one, enabling us to find an optimal
solution from among several disparate ones. In contrast al-
most all existing solutions employ some heuristic to deter-
mine a good solution in an uncountable search space. Fi-
nally, we test our algorithm against two others whose pa-
rameters are tweaked by hand to perform optimally. None-
theless, our results show that our algorithm is able to per-
form better than compared approaches across a number of
test cases.

2. Analysis of Existing Algorithms
In this section we examine the performance of two exist-

ing representative algorithms, those of [Parker 2002] and
[Sukhatme 2002].

 2.1 Parker’s Algorithm
Fig.1 shows a set of targets, depicted by small un-

shaded squares, moving counter clockwise about a circle.
The shaded squares represent sensors; one sensor, closest to
the circle, is repelled away by the sensor-target repulsive
force referred to in [Parker 2002]. Also, every target is out-
side the sensing range of every other sensor. It is evident
that optimal detection will occur if instead of getting re-
pelled away, the former sensor is attracted to the inside of
the circle.

2.2 Sukhatme-Jung Algorithm
Fig 2 shows an environment partitioned into five re-

gions by landmarks represented by the diagonal black lines.
A sensor S is initially stationed in region 1. Targets are
located along each edge of the dotted square ABCD . They
move in the direction indicated by the arrows cyclically
with uniform velocity. The dotted circle is the FOV (field of
vision) region of a nonexistent sensor placed at its center
O ; it is meant to touch the sides of the square, but offset
for clarity. It is clear that optimal detection takes place at
O . Due to the uniform velocity of sensor motion the ur-

Optimal Multi-Sensor based Multi Target Detection by
Moving Sensors to the Maximal Clique in a Covering Graph

Ganesh P Kumar and K Madhava Krishna
International Institute of Information Technology

Robotics Research Center
Gachibowli, Hyderabad, India 500 032.

ganesh@students.iiit.ac.in, mkrishna@iiit.ac.in

IJCAI-07
2135

gency of all regions will be the same, causing the sensor to
either remain in region 1 or switch continually from one
region to an adjacent one. Hence the algorithm is unable to
find the optimal position O .

Both these algorithms perform very well in many scenar-
ios, (such as the ones cited in their sources); the pathological
runs shown above are exceptions to the rule. Parker’s algo-
rithm fails when target-sensor and sensor-sensor forces give
conflicting results, and Sukhatme-Jung’s becomes subopti-
mal due to the artificial division of the environment area
into regions. The presence of these exceptions leads us to
ask the question: Can the performance be improved further?

3. Problem Statement
We introduce the following definitions:

1. E is a bounded region in the plane, called the environ-
ment over which sensors and targets move. The precise
shape of E is of little significance in what follows, hence
will be assumed to be an AA square.

2.)}()..,(
2

),(
1

{)(t
n

StStStS is the snapshot of the set of

sensors, at time instant . Each sensor has FOV Af .
3.)}()..,(),({)(21 tTtTtTtT m is likewise the snapshot of the

set of targets at time instant t .
Given)0(S as a set of points within E , and)0(T as a set

of points on the edges of E . At every time instant
..3,2,1t , every target moves with a maximum speed of

maxv in an unknown direction. A sensor has a maximal

speed of maxs . Determine positions of)(tS over time in
such a way that the number of targets detected by at least
one sensor is maximized. If there are several possible opti-
mal solutions, we prefer those which maximize the number
of detections by precisely one sensor. This last requirement
minimizes redundant detections.

3.1 Preliminaries
If P is a point on the plane and 0r , define)(PCr

(resp.)(PDr) as the circle (resp. closed disk) of radius

r centered at P ; also, define)(PDr as the exterior

of)(PDr . Define)(iSC as the circle of radius maxs cen-
tered at iS (called the sensor circle of iS) and)(jTC a cir-

cle of radius maxv centered at jT (called the target circle of

jT). Define)(iSD and)(jTD correspondingly as sensor

and target disks. Note that)(iSD f is the FOV disk of iS .

Given a set P of points on the plane, define)(PHull as the
vertex set of the convex hull of P .

We call the ordered pair))(),((00 tTtS the configuration

of the sensor-target system at time instant 0t , and any set of
consecutive configurations a configuration sequence. De-
fine a configuration sequence to be feasible if the following
condition holds: For every pair of consecutive time instants

1',' tt in the sequence, max|)'()1'(| stStS ii for every
sensor and max|)'()1'(| vtTtT jj for every target; we
will be interested only in feasible sequences hereafter. We
define the number of k detections (resp. k detections) of
the configuration as the number of targets detected by pre-
cisely (resp. at least) k sensors, and call k the order of de-
tection. With these definitions, the problem seeks to maxi-
mize 1+ detections, preferring maximal 1-detections.

Fig. 1 A pathological run of Parker’s algorithm. The shaded
squares are the sensors, the unshaded ones are the targets moving
in a circle. Note the repulsion of the sensor closest to the circle

Fig. 2 Pathological run of Sukhatme-Jung algorithm. The
black lines are landmarks, the dark circle S is the sensor,
and the dotted lines indicate target motion paths.

 1 2 3
 A B

 O

 D C
 5 4

S

IJCAI-07
2136

3.2 Solving a set of Quadratic Constraints
This section develops a technique to be used later in Sec-

tion 4.2 to assign sensor positions in a multi-sensor system.
Given two disjoint sets of targets, },..,,{ 21 kinc TTTT and

},..{ 2,1 lkkexc TTTT , we are asked to determine whether

we can place a sensor that covers all targets in incT and none

of those in excT . The problem reduces to determining if
there exists a sensor position P for which

incii TTfTP ,|||| [3.2a]

excii TTfTP ,|||| [3.2b]
has a solution . [3.2] has a solution if and only if the inter-

section
excTiT iTD

incTiT iTDI ff)()(is non-null; in

this case, every point in I is a solution. Further, suppose
that [3.2a] has a solution, but with the additional constraint
that fTP k |||| 1 , it does not. This means that every cir-
cle of radius f which covers incT also covers 1kT . In such
a case, 1kT is said to be dependent on incT ; in particular, if

1kT falls within)(incTHull , it is always dependent on

incT .

4 Methodology

4.1Single Sensor System

Covering Graph
Consider the configuration))(),((001 tTtS . We say that a

point)(1SDP is a covering point with respect to 1S , of a

set TT ' of targets, currently within)1(SD f , iff no target

in T can escape out of)(PC f in one time step. Observe

that if P is a covering point of target 'TiT , then

)(iTDP d , where maxvfd . In the same scenario we
say that every pair of targets in 'T is simultaneously cover-
able. Note that two targets are simultaneously coverable iff
the (Euclidean) distance between them is at most d2 . De-
fine the covering graph))(),((tTtSCG of the configuration
as a graph whose nodes are covered targets, and whose
edges connect a pair of simultaneously coverable targets.
From above, targets in 'T will form a clique in the covering
graph. Further define a maximal clique in))(),((tTtSCG as
one with the maximal number of vertices, noting that this
could be non-unique.

 It is easy to see that moving to a covering point of a
maximal clique ensures that a maximum number of targets
will be detected at the next time instant. We formalize this

idea as follows: Define the covering function
NSDCF)1(: which takes a point in)1(SD to the

number of targets that a sensor at that point will definitely
cover in the next time step. The maximal values of the cov-
ering function will be attained at the points of intersection
of)()(

j
TfC

i
TfC , where)1(, SfDjiT , giving us

an algorithm to move 1S to a covering center of a maximal

clique. 1S visits each of the points of intersection of the
form above, and moves to that which gives maximal detec-
tions; should there be no intersections, it moves to a cover-
ing point of any target it detects. This ensures a maximal
number of detections in the next time step, and the algo-
rithm runs in)(2mO time where m is the number of targets.

Number of Cliques
In this section we estimate the maximal number of

cliques that can exist in)(1SD f . A clique in

))(),((11 tTtSCG has all its targets lying within a circle of

radius maxvfd as a result, the separation between
two cliques is at least d . Consequently, the number of
cliques in)(1SD f is at most the size of maximum set of

points M that can be chosen in)(1SD f such that the dis-
tance between any every point in M , with its nearest
neighbors in M , is d . Such an M can be constructed as
follows. Choose a point))((10 tSDP f ; draw the circle

)(' 0PCC d , and mark off the vertices of a regular hexagon
inscribed in it . Repeat the construction at every

61, iPi until no more points within)(1SD f can be

found. This leads to tiling of)(1SD f by regular hexagons of

side d , leading to))((2
d
fO hexagons and clique centers.

4.2 Multi-sensor System
In this section we use ideas from previous sections to

obtain an optimal solution to tracking with n sensors. The
sensors share knowledge of the targets they see at every
time instant, enabling each to build the global covering
graph..

Taglists and Taglist types
To optimize 1+ detections is a nontrivial problem in gen-

eral. We assume for the purpose that every target iT is
tagged with a list of sensors, taglistTi . . Also, de-

fine
TiT

taglistiTitaglistT)}.,{(. . The point of introduc-

ing taglists- as claimed in Section 1- is to convert a con-
tinuous search space into a discrete one. When we say iT is

IJCAI-07
2137

tagged with a list SS ' , we try to see if iT can be covered
by the sensors in 'S ; if this is feasible, then sensor positions
can be assigned to sensors in 'S by the algorithm in Section
3.2, or else deemed impossible by the same. We formalize
this in the following definitions.

Given)(0tS , an instance of taglisttT).1(0 is said to be
feasible iff for every sensor the intersection

),.(
)(

),.(
)()(

i
StaglistTCover

j
T j

T
f

D

i
StaglistTCover

j
T j

T
f

D
i

SD
i

R

is nonempty. Here),.(iStaglistTCover is the set of all tar-

gets covered by iS . We say that a point)(
i

SDP is a

covering point with respect to iS , of a set TT ' of targets,
currently detected by at least one sensor in the system, iff no
target in T can escape out of)(PC f in one time step. The
covering graph and covering function of a sensor are de-
fined correspondingly.

For a single sensor, optimality of detection hinged on the
assurance that a certain number of targets would be seen the
next time step. This assurance is formalized by the idea of a
proper taglist in a multi-sensor system. A feasible instance
of taglisttT).1(0 is said to be proper iff for every sensor

)(tSi , targets in),.(iStaglistTCover are vertices of a clique
in))(),((00 tTtSCG i . It is difficult to construct proper
taglists directly ; it is easier to take a shortcut through
taglists which satisfy the hull property, defined next.

An instance of taglisttT).1(0 is said to satisfy the hull
property if and only if the following criterion holds for
every subset 'T of targets in it. If every target in 'T is tagged
with sensor iS , then every target located within)'(THull is
also tagged with iS . Note that if an instance of

taglisttT).1(0 is proper, it also satisfies the hull property;
the converse need not be true. We will use this property to
generate proper taglists and later to compute the complexity
of the multi-sensor system.

Finding the Optimal Solution
The Findopt routine finds the sensor assignment that

guarantees maximal 1+ detections in the next time step.
))(),((00 tTtSFindopt

1. Generate an initial proper taglist, Current
for)(0tT . Compute)(1 CurrentN and

)(1 CurrentN , which denote the number of 1+ and
1 detections in Current respectively.

2. For each proper taglist Next remaining do
a. If)()(11 CurrentNNextN or

()()(11 CurrentNNextN and
)()(11 CurrentNNextN) then

NextCurrent

3. Assign sensor positions corresponding to
Current using the method in Section 3.2.

Finding all proper taglists
It remains to specify how we find proper taglists. Note

that only sensors with overlapping FOV regions pose a dif-
ficulty, for otherwise we run the single-sensor algorithm on
each sensor. The brute force approach would be to generate
all possible taglists, check whether each is proper, and pass

it to Findopt , at the expense of having an 1),2(kkmO
algorithm. This is too expensive a solution in time. Instead,
we generate all taglists satisfying the convex hull property,
which in general takes time sub-exponential in m , and
check whether each is proper. This is formalized below.

If))()(jSfDiSfD , for every pair of distinct

sensors, the only proper taglist we generate corresponds to
maximal clique detections by each sensor. If the sensors
move in such a way that their FOV overlaps, we degenerate
to the weakly overlapping case covered below.

We call)()}(),..,(),({)(' 0002010 tStStStStS k

strongly overlapping iff
'

))((0SiS
tSD if . Suppose

that)(' 0tT is the set of targets detected by 'S , and further
that)(')('' 00 tTtT is detected by more than one sensor.
Suppose that)(0tQi is the set of cliques of

kitTtSCG i 1)),('),((00 .
We generate the space of proper taglist instances for
)(' 0tT as follows. Construct an iterator 1I that traverses the

space)(..)()(00201 tQtQtQ k . At every point of the
traversal of 1I , do the following. Tag every target that ap-
pears in one or more cliques with all sensors in whose FOV
it falls. Suppose that '''T is that subset of ''T which is cur-
rently detected by more than one sensor in 'S . Construct
iterator 2I which goes over all possible combinations of
sensor assignments to targets in)'''(THull . Each of these
satisfies the hull property. Output the resulting taglist if and
only if it is proper.

We call)(' 0tS weakly overlapping iff for every

'SSi there exists at least one ijSjS :' such that

)()(jSfDiSfD . Following the same notation as

in the previous case, we generate the space of proper taglist
instances as follows. 1I has the same meaning as before. It
is then possible to write 0' tS as

)('..)(')(')(' 002010 tStStStS r , where sensors in

each)0(' tiS are strongly overlapping. Correspondingly

'''T is expressible as a union
r

i
tiT

1
)(''' 0 . Construct itera-

IJCAI-07
2138

tor 2I which goes over all possible sensor assignments to

targets in
r

i
tiTHull

1
))('''(0 , the Cartesian product of

hulls; output the resulting taglist iff it is proper.

Complexity Analysis
A typical worst case scenario is one in which)(tS is

weakly overlapping. In this case 1I runs over

))((2n
d
fO clique combinations, so the algorithm is exponen-

tial in the number of overlapping sensors. Suppose that there
are nkk 1: hulls for 2I to consider, and that the i -th
hull encloses, or has on its boundary, im targets in all, and

im' vertices. Suppose further that all m targets are currently

detected. Then 2I takes)('imnO iterations to traverse its
space, and each iteration takes polynomial time in m in for
computing the hulls, verifying hull points, and so on. Note
that)()(' momom ii except in rare cases, so that the
run-time is sub-exponential, typically polynomial, in the
number of detected targets.

In essence while the algorithm is exponential in number
of overlapping sensors it is typically polynomial in the
number of targets due to tags for only the targets that form
the convex hull for a set of targets that constitute a clique. In
steady state when sensors have diverged to maximize detec-
tions, the number of overlapping sensors is generally small,
and this is specifically so when the area of E, is considerably
greater than the total area covered by the sensors. Indeed
when the total area covered by sensors is greater than or
equal to area of E maximizing detections is trivially
achieved.

5. Simulation and Results

5.1 Implementation Specifics
The optimal algorithm above, hereafter called OPT, as

well as the representative algorithms of Parker and Suk-
hatme-Jung, have been implemented on an Intel P4 ma-
chine running Fedora Core 4 using the g++ compiler and Qt
for graphical simulation. The specifics of each implementa-
tion are given below.

OPT Algorithm
This is essentially the same as the multi-sensor version

presented in Section 4.2 with the restriction that, when OPT
runs for 1 second, it terminates and outputs the most optimal
solution generated thus far. This restriction ensures that
OPT takes nearly the same time to output its solution as its
adversaries.

Parker Algorithm
We implemented the A-COMMT version of the Parker

algorithm. We set the sensing range of every sensor to the

FOV of OPT sensors during comparison; predictive tracking
and communication ranges do not matter for simulation. In
addition, we tweaked the values of idr and ido , correspond-
ing to cut-off points for sensor-sensor and sensor-target
forces, until they gave optimal performance. Specifically,
we changed 1do and 1dr from one test case to another, ob-
serving that 121 5.12.1 dododo and

131 7.20.2 dododo gave best results; likewise did

121 4.28.1 drdrdr . Furthermore, we scaled the weighted
force vectors to an equal degree for all sensors.

Sukhatme-Jung Algorithm
We partitioned the square environment into a cross-

shaped topological map. We tweaked the urgency and
availability thresholds from one test case to the next; in par-
ticular, 104 tyavailabili and 84 urgency give
maximal detections. The control parameter d was varied
likewise across test cases till maximal detections were ob-
tained; specifically, when the FOV or the number of sensors
was decreased, we gave a small value to d , between 0.5
and 0.6, and large otherwise, between 1.5 and 1.8.

5.2 Tabulated Results
The environment is the square]500,0[]500,0[. Five

sensors, each of FOV 50, are randomly placed in E , each
with 50maxs . Targets emanate from five sources placed
randomly on the edges of E every time instant. The speed
of each target is uniformly distributed in]5,0[and angle
uniformly distributed on]2,0[. In Tables 1-3, the rows
indicate the order of the detection as a percentage rounded
to the nearest integer, and the columns indicate the algo-
rithm whose performance is noted. Tables 2 and 3 show
readings of the form A|B, to be interpreted as follows. In
table 2, A corresponds to the case of 7 sensors, and B to that
of 3 sensors, as indicated in its caption. Table 3 is read simi-
larly.

5.3 Performance Graphs
Fig. 3a (resp. 3b) shows how the number of 1+ detec-

tions varies with FOV(resp. number of sensors) for each
algorithm. The performance gain of OPT over the earlier
ones is evident for various sensor and FOV combinations as
it gives consistently higher 1+ detections, despite the man-
ual tweaking of its adversaries to achieve optimal perform-
ance.

Detection OPT Parker Sukhatme-
Jung

0 50 60 55
1 49 37 45
2 1 3 0

3+ 0 0 0
Table 1: Table of base case

IJCAI-07
2139

Detection OPT Parker Sukhatme-
Jung

0 20|87 13|80 19|85
1 75|14 83|20 76|15
2 2|0 5|0 5|0

3+ 1|0 0|0 0|0
Table 2: For cases: number of sensors increased to 7 | decreased to
3

Detection OPT Parker Sukhatme-
Jung

0 17|84 33|88 31|90
1 75|16 64|11 60|10
2 6|0 3|1 8|0

3+ 2|0 0|0 1|0
Table 3: For cases: Increasing FOV to 75|Decreasing to 25

6. Conclusions
A novel algorithm for multi-sensor based multi target

detection has been formulated and analyzed in terms of its
computational complexity. Comparison with other ap-
proaches in literature verifies its efficacy across diverse
scenarios. Such a multi-sensor algorithm finds applications
in border patrol, guarding of secured areas, search and res-
cue and warehouse surveillance.

References
[Horling et. al, 2003] B Horling, R Miller, M Sims, and V

Lesser, “Using and Maintaining Organization in a Large-
Scale Distributed Sensor Network”, In Proceedings of
the Workshop on Autonomy, Delegation, and Control,
(AAMAS 2003).

[Jung and Sukhatme 2002] B Jung and G.S. Sukhatme, “A
Region-based approach for Cooperative Multi-Target
Tracking in a Structured Environment”, Proc., Proceed-
ings of International Conference on Intelligent Robots
and Systems, 2002

[Parker1999] L Parker, “Cooperative robotics for multi-
target observation”, Intelligent Automation and Soft
Computing, 5[1]:5-19, 1999

[Parker 2002] L Parker, “Distributed algorithms for multi-
robot observation of multiple moving targets”, Autono-
mous Robots, 12, 3 (2002)

 [Poduri and Sukhatme 2004] S Poduri and G S Sukhatme,
“Constrained Coverage for mobile sensor networks”,
IEEE ICRA, 165-171, 2004

[Schenato et. al, 2005] L Schenato, S Oh, S Sastry and P
Bose, “Swarm Coordination for Pursuit Evasion Games
using Sensor Networks”, IEEE ICRA, 2005

Fig. 3a (above) and 3b(below): Variation of performance with
(a)FOV and (b)Number of Sensors. S-J = Sukhatme-Jung.

IJCAI-07
2140

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 1
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

