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Abstract

The ability to detect failures and to analyze their
causes is one of the preconditions of truly au-
tonomous mobile robots. Especially online fail-
ure detection is a complex task, since the effects
of failures are typically difficult to model and often
resemble the noisy system behavior in a fault-free
operational mode. The extremely low a priori like-
lihood of failures poses additional challenges for
detection algorithms. In this paper, we present an
approach that applies Gaussian process classifica-
tion and regression techniques for learning highly
effective proposal distributions of a particle filter
that is applied to track the state of the system. As a
result, the efficiency and robustness of the state es-
timation process is substantially improved. In prac-
tical experiments carried out with a real robot we
demonstrate that our system is capable of detecting
collisions with unseen obstacles while at the same
time estimating the changing point of contact with
the obstacle.

1 Introduction

The detection of and reaction to unforeseen failure events
is a fundamental ability for autonomous systems as an im-
proper treatment of such situations may cause loss of control
and can possibly harm the system or the environment. Con-
sider, for example, a mobile service robot that collides with a
low doorstep or a planetary rover that hits an unforseen small
rock. In such situations, the mobile robot should be able to (a)
detect the unexpected event quickly and (b) to infer the cause
of the event in order to react appropriately. Many successful
previous approaches to the online failure detection problem
are based on the sequential Monte-Carlo method. They typi-
cally track multiple system modes in parallel before they de-
cide on the most probable one. A crucial problem for such
sampling-based approaches especially in real-time scenarios,
however, lies in the high dimensionality of the state space
to be tracked and the low frequency and unpredictability of
failure events. To increase the efficiency of sample-based
representations, different techniques such as lookahead sam-
pling [de Freitas et al., 2003], risk sensitive sampling [Thrun
et al., 2001], and hierarchical sampling [Verma et al., 2003]
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have been proposed. In this paper, we propose an alterna-
tive approach, in which Gaussian processes (GP) are used to
learn proposal distributions that represent informed guesses
about the failure mode and its parameters. We demonstrate
how GP classification can be used to predict discrete failure
modes and how GP regression can be used to model continu-
ous failure parameters. Since Gaussian processes provide full
predictive distributions including the predictive uncertainties,
they can readily be used as proposal distributions in the parti-
cle filter implementation. By including the most recent sensor
measurements received by the robot, these proposals can be
seen as an approximation of the optimal proposals for the re-
spective state variables.

Our system does not require additional hardware such as
inertial sensors or bumper rings, which may be expensive
or otherwise unfavorable in certain domains, e.g., for aerial
blimps. The proposed algorithm has been implemented on
a real robot and can be executed in real-time. We discuss
results from several test runs in realistic scenarios in which
we compared the achievable detection rates and pose track-
ing quality of our system with an optimized standard particle
filter implementation without informed proposals.

This paper is organized as follows. After discussing related
work, we describe particle filters for sequential state estima-
tion and failure detection in Section 3. Our Gaussian process
proposals are introduced in Section 4, followed by the exper-
imental results.

2 Related Work

The close coupling between a mobile system and its environ-
ment makes it hard to detect abnormal behavior using instan-
taneous statistical tests only without tracking possible failure
modes over time [Dearden and Clancy, 2002]. For this rea-
son, probabilistic state tracking techniques have been applied
to this problem. Particle filters represent the belief about the
state of the system by a set of state samples [Thrun er al.,
2005]. In particle filter based approaches to fault diagnosis,
the system is typically modeled by a non-linear Markov jump
process [Driessen and Boers, 2004] or a dynamic mixture of
linear processes [de Freitas et al., 2003]. The look-ahead par-
ticle filter introduced in the latter work also approximates the
optimal proposal distribution by considering the most recent
sensor measurements, but in contrast to our work focuses on
the case of discrete failure modes without continuous failure
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Figure 1: Graphical model for the dynamic system in an ab-
stract view (left) and a more detailed form (right) where the
system states s; are split up to include the discrete failure
mode f;, the failure parameters o;, and the robot’s state x;.

parameters. Benanzera et al. [2004] combine consistency-
based approaches, i.e., the Livingstone system, with particle
filter based state estimation techniques. Verma et al. [2003]
introduce the variable resolution particle filter for failure de-
tection. Their approach is to build an abstraction hierarchy of
system models. The models of consideration build a partition
of the complete state space and the hierarchy is defined in
terms of behavioral similarity. A different kind of model ab-
straction hierarchy based on explicit model assumptions was
developed in [Plagemann et al., 2006] to detect failures on-
line. Other approaches that deal with the time efficiency of
particle filters include [Kwok et al., 2002] in which real-time
constraints are considered for single system models.

Gaussian processes have been widely studied in the Ma-
chine Learning community. Excellent introductions have
been given by [MacKay, 1998] and [Rasmussen, 1996]. [Gi-
rard et al., 2002] present a Gaussian process based model for
multiple step ahead prediction of time series. Classification
models are discussed in [Neal, 1997]. [Schwaighofer et al.,
2003] present an application of Gaussian processes to local-
ization using signals of a wireless phone network.

3 Sequential State Estimation

The temporal evolution of dynamic systems such as mobile
robots can be described using the graphical model depicted
in the left diagram of Figure 1. In this figure, s; denotes the
state of the system at time ¢, z; stands for received sensor
measurements, and u; is the issued control command. Given
the modeled independence assumptions, the state of the sys-
tem can be evaluated recursively using the Bayes Filter for-
malism [Thrun et al., 2005]

p(st | 20:t, u0:¢—1)

= nt p(zt | s¢) /P(St ['st—1,ur—1) P(st—1 | z0:t—1, wo:t—2) dsg—1(D)
——

observation model transition model recursive term

Particle filters are widely used as a sample based implemen-
tation of this recursive filter. They represent the state of the
system by a set of weighted samples X' = { (s}, w}")}. With
the sample-based representation, the integral in Equation 1
simplifies to a finite sum over the samples resulting from the
previous iteration. The transition model and the observation
model can be applied directly to predict and weight the indi-
vidual samples respectively.

3.1 Modeling Failure Events and Parameters

For dynamic systems under the influence of external or inter-
nal failure events, the state s; of the system can be split up

to include the discrete failure mode f;, the continuous failure
parameters o;, and the remaining part of the robot’s state x;.
We assume the commonly used constant failure rate model
(see [Ng er al., 2005]), where the failure event itself does not
depend on the rest of the system. The right diagram of Fig-
ure 1 shows the underlying graphical model. Since the ob-
servations are independent of the failure state (ft,0;) given
the state x; of the robot, the observation model simplifies to
p(2¢ | st) = p(z¢ | x¢). The transition model can be factor-
ized as

p(st | se—1,ue—1) = p(xt, fr,0t | Te_1, fr—1,06—1,up_1) 2

= p(ft | fe—1)-plot | ftoxs_1,0e_1) -p(xt | ot, x4 1,up_1) . 3)

failure event model failure parameter model robot motion model

The constant failure rate model states that failure events are
distributed exponentially depending on a failure rate parame-
ter \ by

plfe) =1—e M0, “)
where ¢ denotes the time of the last failure event. It can eas-
ily be shown that for such a model, the mean time between
failures becomes M T BF = % For realistic failure rates \,
this model results in extremely low failure probabilities per
filter iteration. Assume, for example, a mean time of 30 min-
utes between collisions of a service robot with unseen obsta-
cles. This implies A = m = 0.0005 and with a filter
frequency of 6t = 0.1 seconds yields a failure probability of
p(fi | =fi—1) =~ 0.000056 within one iteration. For such
a small value, just one of 20, 000 particles would jump to a
failure mode on average. Thus, one would either need an ex-
tremely large particle set or would risk that failures remain
undetected. This problem is amplified by the fact that not
only the discrete failure mode has to be sampled, but also
the unknown continuous failure parameters. Since in general,
there is no prior knowledge about the parameters of randomly
occurring failures, we assume a uniform distribution

p(os | fr,i-1,00-1) = U, 0man] (02) 5)
over a certain interval. Note that this model applies only to
the case where the system transitions into a failure state. The
evolution of failure parameters within a failure state is typi-
cally governed by a much more peaked distribution similar to
the motion model of the robot. In Section 5, we describe our
model for the evolution of collision parameters based on rigid
body dynamics. This model is able to track collisions suffi-
ciently accurate, if the initial collision parameters have been
estimated well enough. The main focus of this work therefore
is to improve the detection of failure events and to efficiently
estimate the initial parameters.

To address the problem of low sampling probabilities for
important parts of the state space, [Thrun et al., 2001] in-
troduced the risk sensitive particle filter that incorporates a
learned risk function to force the filter into less likely but
important states. While this approach ensures a reasonable
amount of samples in the important failure modes, it cannot
adapt to the specific situation the robot is in when the sam-
pling decision is made. We therefore propose to use learned
proposal distributions to be able to make informed guesses
about the discrete failure mode and the continuous failure pa-
rameters online.

I[JCAI-07
2186



3.2 Data-driven Proposal Distributions

In the sequential importance sampling scheme (see [Doucet,
1998]) an arbitrary proposal distribution can be used to di-
rectly sample the relevant areas of the state space as long
as (a) all possible states have a non-zero possibility of be-
ing chosen and (b) the importance weights of the particles
are adjusted appropriately. Proposal distributions that depend
on the most recent sensor measurements or on features ex-
tracted by separate algorithms are typically denoted as data-
driven proposals or detector-mediated proposals (see [Khan
et al., 2004]). Such proposals aim at approximating the opti-
mal proposal p(s; | $¢—1, z¢, us—1) which fully includes the
most current sensor measurement z;. With the process model
defined in Equations 1 and 3, the weight for particle ¢ at time
t becomes

w[i] . p(S[f]t | Zl:t) o p(Zt | 5[1i;]t72’1:t71) p(S[f]t | 21:t71)
t 4
p(t | z1e-1) m(shy | 210)
—————
=:1/n
[{y /il ] [i]
p(zt | St )p(st | 5%1) ) p(slztfl | Zl:tfl)
(s | st ooze)  w(sihoy | #1emn)

4]

Wi g
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(R mOl | TR

where 7 is the proposal distribution forto the transition model
defined in Equation 3 with the failure event model exchanged
for 7y and the failure parameter model exchanged for 7.
Here, 7y and 7, are the learned proposal distributions for the
discrete f; and the continuous o; respectively. The control
commands u; have been omitted for clarity, they are straight-
forward to include. The normalizing factor 7 is constant for
all particles ¢. Furthermore, I} denotes an arbitrary feature
vector extracted at time ¢. Any feature vector F; as well as
any functions 7 and 7, can be used for this task as long as
the assumptions

o my(f | Fi) # Oforall fwithp(f |s1.4,21:4-1) #0
o 7,(0| fr, Fy) # 0 forall o with p(o | $1.¢, 21.¢—1) # 0.

hold, which means that all possible failure states have to be
assigned a non-zero probability of being chosen. Visually
speaking, Equation 6 states that after each filter iteration, the
particle weights have to be multiplied with the current obser-

vation likelihood p(z; | sl[f]) and with two correction terms
for the two learned proposal distributions. To calculate these
correction terms for a specific sample s,[f] , we divide the prob-
abilities defined in Equations 4 and 5 by the likelihoods ac-

cording to which the state variables £ and o)’ have been
drawn from 7 and 7,. Another precondition for the learned
proposals therefore is the availability of likelihoods for sam-
pled values. As we will see in the next section, Gaussian pro-
cesses always ensure the non-zero probability assumptions,

can easily be sampled from, and provide the transition prob-
abilities needed for the weight correction described above.

4 Gaussian Processes Proposals for Discrete
and Continuous State Variables

Gaussian processes are a powerful tool for learning and rep-
resenting full predictive distributions for non-linear func-
tions [Rasmussen, 1996] and have also proven successful in
solving classification problems. Given a training set and pri-
ors on the function to be learned, the Gaussian process model
allows to predict function values at new input locations and
also supplies predictive uncertainties. We first introduce the
regression and classification models as well as their role in
the general failure detection setting described above. In Sec-
tion 4.3, we then describe a specific application in detail, the
detection and tracking of collision events for mobile robots.

4.1 Non-linear Regression

Assuming a non-linear functional dependency g between m-
dimensional input vectors yy, . .., y, and real-valued targets
t1...,t, such that t; = g¢(y;) + ¢ for independent error
terms ¢;, the task is to predict future targets ¢,4; at new
input locations y, ;. The idea of Gaussian processes is to
view all target values t1,...,%,; as jointly Gaussian dis-
tributed with an (n + j)-dimensional mean and a covariance
cou(t,t’) = k(y,y’) specified via a kernel distance function
k on the input vectors. Predictions for a new query point
Vn+1 can thus be performed by conditioning on the known
target values t1, ..., t,, see [Neal, 1997]. The mean u and
variance o2 of the Gaussian predictive distribution for #,,,1
turn out to be

) = kTC™lt (7)
) = v—kI'C7lk  (8)

with C' the n x n covariance matrix for the given targets, t
the n-dimensional vector of given target values, and k the
n-dimensional vector of covariances between the new target
value ¢,,+1 and the known targets t1, ..., t,.

In our failure detection setting, we can use this regression
model to predict the continuous parameters of new failure
events. We take extracted features F; as input vectors y and
failure parameters o, as targets ¢. Given a training set of such
quantities and a properly chosen covariance function k, we
can compute the predictive distribution 7,(0¢ | ft, F¥) :=
N (u, 0?) as detailed in Equations 7 and 8. This (normal) dis-
tribution naturally meets the requirements for proposal dis-
tributions named in the previous section. It can be sampled
from directly, it supplies the likelihoods of sampled values, it
has an infinite support, and it therefore only assigns non-zero
likelihoods.

An important aspect that has been left out so far is the
choice of covariance function and how its parameters can be
set. The covariance function plays an important role in the
Gaussian process framework as it represents the prior knowl-
edge about the underlying function g. By changing its form
and parameters, one can control the generalization behavior
and smoothness of the predictor. A common choice of covari-
ance function (see [MacKay, 1998]) that is also used in this

p=E(tp]|ty,...
o =V(tps1 | t1,...
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Figure 2: The collision event training set where two feature values are mapped to class instances (left), the learned class prob-
abilities 7 (F}) using Gaussian process classification (middle), and the learned regression model for the collision parameters
visualized by a cut through the 2-dimensional pdf that maps velocity deviations to contact points for a collision (right).

work is

1 m
k(y,y') := ao +vo - exp (‘5 > walya - y&)2>

d=1

with a constant component and a non-linear, stationary term,
which depends only on the distance between input points.
The parameters of the covariance function are called hyper-
parameters of the Gaussian process. They can either be fixed
by maximizing the likelihood of the given data points or,
for fully Bayesian treatment, can be integrated over using
parameter-specific prior distributions. For our experiments
reported in Section 5, we employed the latter strategy with
Gamma priors on the hyperparameters. We set these priors to
favor smooth regression functions to avoid overfitting to the
training data. The analytically intractable integration over the
hyperparameters is approximated using Markov Chain sam-
pling and the prediction results are cached on a fine-grained
grid.

4.2 Binary Classification

Binary classification problems can consistently be modeled
in this framework by including for every binary target ¢; a
real-valued latent variable [;, such that

1

TTvel ©

p(ti=1)
which is known as the logistic model that links class proba-
bilities to real values, see [Neal, 1997]. The latent variables
can now be given a Gaussian process prior as in the regression
setting and predictions of class probabilities can be performed
by predicting the corresponding latent variables and evaluat-
ing Equation 9. For the failure detection problem, we again
use feature vectors F} as inputs and binary failure labels f;
as targets. The predicted class probabilities for new features
then directly define the failure event proposal 7 (f; | F}).

4.3 Learning to Predict Collision Events and
Parameters

In this section, we apply the sequential failure detection ap-
proach described above to the hard problem of collision de-
tection for mobile robots under noisy sensor measurements

and without additional hardware like bumpers or inertial sen-
sors. For learning the collision event proposal and the pro-
posal for the contact point of the robot with the obstacle, we
achieve excellent results with simple features based on the
rotational and the translational velocity of the robot. Thus,
we use as input to the Gaussian process classifier the two-
dimensional feature vector I} = (Awvg, Av,.), where Av, is
the difference between the translational velocity estimated by
the particle filter and the one estimated by local laser scan
matching. Furthermore, Awv, is the difference of the rota-
tional velocities respectively. A training set of 500 automat-
ically labeled trajectories was generated by simulating ran-
dom collisions with different obstacles using the 3D simu-
lator Gazebo [Koenig and Howard, 2004]. Whereas the left
diagram of Figure 2 depicts the gathered data points, the mid-
dle diagram in the same figure shows the learned class prob-
abilities depending on the two velocity differences described
above. As can be seen from the left diagram, Awv, is negative
for nearly all “collision” data points, which corresponds to
the fact that the robot is slowed down when a collision occurs.
The data points for “no collision” are spread widely and do
not separate well from the “collision” data points due to noisy
sensor measurements and imperfect labeling of the collision
events. This makes the classification problem a hard one. It
should be stressed, that we use this classifier as a proposal
distribution for collisions rather than as a collision detector
directly, because the features are too ambiguous to allow for
perfect instantaneous classification. Experiments with a real
robot (see Section 5) showed that this yields high detection
rates with a low number of false alarms.

Given a collision event, the continuous collision parame-
ters o have to be estimated to simulate the effects on the sys-
tem and to continue the tracking process. Since the task is not
to fully track the pushed obstacle over time, a simple model
that abstracts from the obstacle’s geometry and exact pose
has proven sufficient to describe the effects on the robot. A
collision with an unseen obstacle is represented by the ob-
stacle mass m and the contact point ¢ on the front of the
robot. Therefore, the collision parameters are 0 = (m, ¢).
We learn the proposal distribution 7, (o¢| F;) for the parame-
ters o, using the same velocity-based features and simulated
training set as described above and the Gaussian process re-
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Figure 3 (a): Two correctly
detected collisions (triangles), the
estimated trajectory (solid line),
and the ground truth (dotted).

Figure 3 (b):

number of particles.

gression technique. The right diagram of Figure 2 depicts a
cut through the learned 2-dimensional distribution for the col-
lision parameter ¢, which is the contact point of the obstacle
on the front of the robot. The point of contact is measured
in meters from the center of the robot’s front to the right. It
can be seen from the diagram that unexpected clockwise ro-
tations (Av, < 0) of the robot are mapped to positive values
for the contact point, which corresponds to a collision on the
righthand side of the robot.

5 Experimental Results

Our system has been implemented on a real ActivMedia Pi-
oneer 3DX robot and has been extensively tested in an office
environment. Before presenting experimental results, we de-
scribe the motion model we implemented for our localization
system. Since this model is not the focus of this work, we
give only a brief overview here.

The most widely used motion model for mobile robots is
based on the wheel encoder measurements (see [Thrun ef al.,
20051). This information, rather than the the actual control
command, is taken as control input u;_1, which under nor-
mal circumstances results in accurate predictions of the per-
formed movement. Under the influence of failures like col-
lisions or wheel slip, however, the motion of the wheels is
not consistent with the whole robot’s motion any more. A
more appropriate model for such situations that still is effi-
cient enough to be evaluated online is based on simple rigid
body dynamics (see [Plagemann er al., 2006]). We model
the robot as a rigid body in the 2-dimensional plane, repre-
sented by a set of constant values and the variable state vector
xy = (posg, posy, posg, vely, vel,) which includes the trans-
lational velocity vel, and the rotational velocity vel,.. In each
filter iteration, the wheel thrusts are calculated from the actual
velocity command that was sent to the motors. From this, the
next state vector is computed by numerical simulation using
the physical relationships between forces, acceleration, and
speed. Due to space limitations, we refer to [Witkin and
Baraff, 1997] for details about rigid body physics. With this
model, collisions with another rigid object at a given point
of contact can be simulated using the same type of physi-
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Figure 3 (c):  Estimation details around a correctly detected
collision including the manually labeled true collision event.
One filter iteration corresponds to 0.1 seconds.

cal abstraction, namely computing the impulse, the resulting
forces, and ultimately the influence on the robot’s state vec-
tor. At the same time, this model describes how the point
of contact between the robot and the obstacle changes over
time and therefore defines the transition model for failure pa-
rameters of Equation 3. From our experience, this physical
model achieves the best balance between accuracy and effi-
ciency. Simpler models fail to handle important test cases
while more complex models have too many free parameters
to be evaluated in real time.

5.1 Quantitative Evaluation of Failure Detection
and Tracking Performance

To quantitatively evaluate the usefulness of our approach, we
compared it to a particle filter that implements the same pro-
cess model with the standard uninformed proposals described
in Section 3.1. The parameters of the standard filter were op-
timized for best tracking performance and failure detection
rates to ensure comparability. We recorded data by manu-
ally steering the robot through the environment and arranged
for two collisions, one with boxes of milk and the other one
with a box of lemonade bottles. Both obstacles were placed
at arbitrary positions and the obstacle heights were too low
for the laser sensor to detect them. Figure 3(a) depicts a typ-
ical test run, where our system successfully tracked the pose
of the robot and detected the two collisions. On the recorded
data set, we tested our improved particle filter with Gaussian
process proposals (GP-PF) as well as the standard particle fil-
ter (Std PF) for different parameter settings. Each filter was
executed 50 times for each parameter setting.

Table 1 gives the failure detection performance of the dif-
ferent filters. The detection rate is defined as the number
of correctly identified failures relative to the full number.
The false positives rate is the amount of false alarms rela-
tive to the number of detections. The ground truth collision
events were manually entered and a collision was counted as
correctly detected, when the marginal failure likelihood ex-
ceeded a threshold © after a maximum of six filter iterations
(0.6 seconds) after the true failure event. The threshold © was
optimized independently for each filter to allow an unbiased
comparison.
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Std PF | Std PF | GP-PF | GP-PF

150 particles | 950 p. 50p. | 300p.

Detection Rate 85 % 90 % 87 % 98 %
False Positives 76 % 72 % 38 % 14 %

Table 1: Detection results with the optimized standard parti-
cle filter (Std PF) and our approach that uses Gaussian Pro-
cess Proposals (GP-PF).

The diagram in Figure 3(b) gives the average deviation of
the tracked poses of the robot compared to the ground truth
trajectory. The ground truth trajectory was computed using
a scan matcher. The results visualized in this diagram show
that our system stays around ten centimeters closer to the true
trajectory and produces less variance in these estimates than
the standard approach. This is mainly due to the fact that the
failure parameter (here, the point of contact with the obstacle)
is estimated more accurately. To give an impression about the
accuracy with which our filter estimates the point of contact
and thereby the path of the robot, one failure event is depicted
in detail in the diagram of Figure 3(c). It can be seen, that
the estimated failure likelihood increases shortly after the la-
beled failure event and that the heading angle of the robot is
correctly estimated.

The detection rates as well as the tracking results show
that learned Gaussian process proposals can indeed increase
the reliability and efficiency of online state estimation ap-
proaches. The time requirements for the improved particle
filter are around 10% to 15% higher than for the standard
implementation without Gaussian process proposals. Never-
theless, the implemented system with 200 particles still pro-
cesses one minute of recorded data in less than 23 seconds on
a PC with a 2800 MHz CPU.

6 Conclusions

In this paper, we showed that efficient proposal distributions
for particle filters can be learned using Gaussian process mod-
els and that both discrete as well as continuous state variables
can be treated in a consistent manner. We applied the ap-
proach to the hard problem of online failure detection on mo-
bile robots and presented a system for detecting unforseen
collisions. Experiments with a real robot demonstrated, that
the developed system is able to track the state of the robot
more reliably through collision events than an optimized ver-
sion of the standard particle filter with uninformed proposals.
Our system does not require any additional hardware and can
be trained conveniently using a simulator.

While our current system only deals with binary failure
variables, we believe that the multi-class case, potentially
including different simultaneous failures, can be formulated
and solved using similar models. For a limited set of such
discrete failure modes, the combination of this system with
the look-ahead particle filter [de Freitas ef al., 2003] may be
beneficial. Moreover, in future work, we would like to extend
our approach to the more general problem domain of learning
sampling models for dynamic Bayesian networks.
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