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Abstract

This work presents an iterative anytime heuris-
tic search algorithm called Anytime Window A*
(AWA*) where node expansion is localized within
a sliding window comprising of levels of the search
tree/graph. The search starts in depth-first mode
and gradually proceeds towards A* by increment-
ing the window size. An analysis on a uniform tree
model provides some very useful properties of this
algorithm. A modification of AWA* is presented
to guarantee bounded optimal solutions at each it-
eration. Experimental results on the 0/1 Knapsack
problem and TSP demonstrate the efficacy of the
proposed techniques over some existing anytime
search methods.

1 Introduction

Development of optimization methods that can work within
time limitations is a major need for modern practitioners fac-
ing large-sized problems that are NP-hard in nature. This re-
quirement has spawned research in the direction of designing
anytime algorithms [Dean and Boddy, 1988], i.e., the algo-
rithms which can work under any time limitations. Anytime
algorithms are expected to regularly produce solutions of im-
proved quality and when suddenly terminated, return the best
solution produced so far as the result.

Among heuristic search techniques, the depth-first branch
and bound (DFBB) approach and its variants [Sarkar et
al., 1991; Zhang, 1998] are by default anytime algorithms,
as they produce a stream of gradually improving solu-
tions. However, in general, the depth-first techniques suf-
fer from excessive node expansions before they actually
reach the optimal solution.The best-first anytime search algo-
rithms can be broadly classified into two categories, namely,
weighted heuristic search [Pohl, 1970; Hansen et al., 1997;
Zhou and Hansen, 2002; Likhachev et al., 2004] and beam
search [Zhou and Hansen, 2005; Furcy, 2006].

In weighted heuristic search, the heuristic estimate is mul-
tiplied by a weight, w (w ≥ 1), to yield f(n) = g(n) +
w ∗ h(n). In the anytime variants of weighted A*, a series of
solutions are produced either by iterating with the same cho-
sen weight [Hansen et al., 1997; Zhou and Hansen, 2002] or

by gradually decrementing the weight using a chosen Δ af-
ter each iteration [Likhachev et al., 2004]. Another algorithm
was proposed to modify the weighted A* technique with se-
lective commitments [Kitamura et al., 1998]. One of the ma-
jor disadvantages of using the weighted A* based techniques
is that weighing the heuristic introduces non-admissibility.
As the basic characteristics of A* change substantially with
non-admissible heuristics [Pearl, 1984], it becomes very dif-
ficult to establish a relation between node expansions and the
weighing factors (w,Δ). Therefore, to use a weighted A*
technique, lengthy simulations are required to find appropri-
ate parameter settings. Also, there are applications where
no specific heuristic for the remaining path is available, the
search may be guided only by the g(n) information [Pearl,
1984] or a lower bound f(n)-value may be used without dis-
tinct g(n) and h(n) components [Kumar et al., 1995]. In such
cases, the weighted A* techniques are not directly applicable.

On the other hand, in beam search, a chosen number of
most promising nodes at each level of the search tree/graph
are selected for further expansion, and the remaining nodes
are pruned. Several anytime variants of the basic beam
search technique [Zhang, 1998; Zhou and Hansen, 2005;
Furcy, 2006] have been applied for different problems with
reasonably good results. However, the lack of models, which
can provide the user an apriori estimate about the quality-time
trade-off, remains a problem for these algorithms as well.

In this work, we present an alternative anytime heuristic
search algorithm Anytime Window A* (AWA*), which local-
izes the global competition performed by A* within a fixed-
size window comprising of levels of the search tree/graph.
The nodes which lie outside the active window are not con-
sidered for expansion at that point. The window is slid down-
wards to provide a depth-first component to the best-first
search that occurs within a window. The window size is set
to 0 to start with (depth-first mode) and is then increased iter-
atively proceeding towards pure best-first search algorithms
like A*. The solution quality is expected to improve for it-
erations with a larger window size. While in AWA*, we use
the basic anytime principles of depth guided pruning and it-
erative relaxation, the algorithm retains the admissibility of
the heuristic estimate while it continues to search in best-first
mode within the given window. It may be noted that AWA*
does not need explicit decomposition of the evaluation func-
tion (f(n)) into g and h components. We analyze the char-
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acteristics of the presented algorithm using a uniform search
tree model. This reveals some very interesting properties of
the algorithm in terms of heuristic accuracy versus solution
quality and related search complexity.

We also present a bounded optimal version of the AWA*
algorithm, called Bounded Quality Anytime Window A*
(BQAWA*), which is guaranteed to produce solutions within
a pre-specified sub-optimality bound, at each iteration. In
BQAWA*, the search backtracks and dynamically adjusts the
window size within an iteration, such that the bound restric-
tion is adhered to.

We demonstrate the efficacy of the presented strategies on
two optimization problems, namely, the traveling salesman
problem (TSP) and the 0/1 knapsack problem. Compara-
tive results with the existing anytime techniques (like DFBB,
ARA*, Beam-stack search) show considerable improvement
in performance.

2 Anytime Window A* Algorithm

The algorithm A* considers each node to be equivalent in
terms of information content and performs a global compe-
tition among all the partially explored paths to select a new
node. In practice, the heuristic errors are usually distance de-
pendent [Pearl, 1984]. Therefore, the nodes lying in the same
locality are expected to have comparable errors, where as the
error may vary substantially for nodes which are distant to
each other. Thus, if the global competition performed by A*
is localized within some boundaries, tighter pruning can be
obtained. Also, as better nodes at a level are generally very
competitive even within small localities, we can expect good
quality solutions with localized expansions. This observation
forms the basis of AWA*, where we localize the node expan-
sions using a sliding window. The AWA* algorithm works in
two phases, in the inner loop it uses the Window A* (Algo. 1)
routine with a fixed window size and computes the solution
under the current restriction. In the outer loop (Algo. 2) the
window restrictions are gradually relaxed to obtain iteratively
improving solutions.

The Window A* routine works with a pre-specified win-
dow size. This window size is used to restrict the active queue
of the A* algorithm. For a given window size ω, the ex-
pansions are localized in the following way. When the first
node of any level (say l) is expanded, all nodes in the open
list which are from level (l − ω) or less will be suspended
for this iteration. The window slides in a depth-first man-
ner when deeper nodes are explored. Window A* terminates
when the first goal node is expanded (A* like termination)
or if the open list does not contain any node having estimated
cost less than the cost of the best solution obtained in previous
iterations.

The AWA* algorithm calls the Window A* routine multi-
ple times with gradual relaxation of the window bounds. At
the start, window size is set to 0 (depth-first mode). Once
the Window A* routine terminates, AWA* checks whether
there are any nodes suspended in the previous iteration. If the
suspended list is empty, the algorithm is terminated return-
ing the optimal solution. Otherwise, the open list is emptied
and the suspended list is moved to the open list. The window

Algorithm 1 Procedure Window A*

1: CurLevel← −1;

2: if OpenList is empty then

3: Return BestSol;

4: end if

5: Select node n which has the least f(n)-value node from OpenList;

6: Insert n into ClosedList;

7: if f(n) ≥ BestSol then

8: Return BestSol;

9: else if Level(n) ≤ CurLevel−WindowSize then

10: Remove n from ClosedList; Insert n into SuspendList;

11: goto line 2

12: else if Level(n) > CurLevel then

13: CurLevel← Level(n)
14: end if

15: if IsGoal(n) then

16: BestSol ← f(n); Goal← n;

17: Return BestSol;

18: end if

19: for Each successor node n′ of n do

20: Calculate f(n′);

21: if n′ is not in OpenList or ClosedList or SuspendList then

22: Parent(n′)← n; Level(n′)← Level(n) + 1;

23: Insert n′ to OpenList;

24: else if n′ is in OpenList or SuspendList then

25: if f(n′) < previously calculated path estimation then

26: Parent(n′)← n; Update f(n′), Level(n′);

27: end if

28: else if n′ is in ClosedList then

29: if f(n′) < previously calculated path estimation then

30: Parent(n′)← n; Update f(n′), Level(n′);

31: Insert n′ to OpenList;

32: end if

33: end if

34: end for

35: goto line 2

size is increased in a pre-decided manner (we have used grad-
ual increment by 1), and Window A* is called again. If the
algorithm is terminated through external interrupts, the best
solution obtained thus far is returned.

Algorithm 2 Anytime Window A* (AWA*)

1: INPUT :: A search tree/graph and a start node s.

2: ClosedList ← φ; SuspendList ← φ; WindowSize ← 0; Calculate

f(s); Level(s) ← 0; Insert s to OpenList; BestSol ←∞;

3: BestSol ←Window A*(); {Call Window A*}
4: if SuspendList is empty then

5: Terminate with BestSol as the Optimal Solution;

6: else

7: Add OpenList to ClosedList; Move SuspendList to OpenList;

WindowSize← WindowSize + 1;

8: goto line 3

9: end if

For an anytime algorithm, there are two desirable proper-
ties, namely, interruptibility and progress. The first property
ensures the anytime nature, i.e., the algorithm should pro-
vide a solution at pre-mature terminations. The second one
states that the solution quality should improve with time, and
if enough time is allocated the algorithm should eventually
return the optimal solution. For finite search spaces, AWA*
adheres to both the properties mentioned. It starts in a depth-
first mode (with no back-tracking) trying to obtain fast (possi-
bly sub-optimal) solutions, and then iteratively increases the
window size to produce better quality solutions. Eventually,
when the window size becomes such, that all the ’optimal-
path’ nodes lie within the active window, the optimal solution
is returned.

While iterative algorithms provide opportunities to attain
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different trade-offs through anytime terminations, the search
efforts can increase substantially if re-expansions are not con-
trolled. For AWA* with a consistent heuristic, a node is ex-
panded at most once within the Window A* routine, and it
can only be re-expanded in a later iteration if its g-value is
lowered. Thus AWA* requires minimal re-expansion.

It may be noted, that in the generalized case AWA* does
not guarantee a solution at each iteration (Window A* loop).
If this property is a requirement; an easy way to attain this
is through back-tracking (i.e., by moving the suspended list
to open list at line 2 of Algo. 1), when no solution is found.
However, we propose a better method for this in BQAWA*
(Sec. 4), which not only provides a solution but guarantees a
bounded quality solution, at each iteration.

3 Analyzing AWA* using a Search Tree Model

In this section, we analyze the quality-time response of Win-
dow A* algorithm in terms of a uniform cost tree model (as
suggested in [Pearl, 1984]). We model the search space as a
uniform m-ary tree T , with a unique start state s. The leaf
nodes are grouped into two parts. There is a unique optimal
goal node g, situated at a distance N from s, and all other
nodes at level N are sub-optimal terminal nodes. Window
A* terminates when either the optimal goal node or a sub-
optimal terminal node is reached. The optimal solution path
is given as (s, ng,1..ng,i..ng,N−1, g) where ng,i denotes the
solution path node at level i. The trees T1...Ti...TN are ’off-
course’ sub-trees of T , one level removed from the solution
path. An ’off-course’ node is labeled as ni,j , where j denotes
the level of that node and i denotes the root level of the ’off-
course’ sub-tree (Ti) to which the node belongs. Using this
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Figure 1: Uniform binary tree (model)

model (Fig. 1), we try to quantify the expected node expan-
sions and the probability of reaching the optimal goal node,
for a specific window restriction. First we present few termi-
nologies,

Definition 1. qi,j,ω : qi,j,ω denotes the expansion probability
of an ’off-course’ node ni,j when it is in the open list and the
window size is ω,

qi,j,ω = P (f(ni,j) ≤ Min(Γ)) , Γ = min(l + ω, N)
and, Min(l) = min(f(n)), ∀n such that n ∈ open list
and level(n) = l.

(1)

Definition 2. rg,j,ω : rg,j,ω denotes the expansion probability
of a ’on-path’ node ng,j when it is already in the open list and

the window size is ω,

rg,j,ω = P (f(ng,j) ≤ Min(Γ)), Γ = min(l + ω, N)
(2)

Next, we use the search tree model to obtain the ex-
pressions for the expected node expansions and convergence
probability for a given ω. The expected node expansions and
convergence probabilities (for a given window size) are pre-
sented in the following lemmas,

Lemma 1. Expected number of node expansions EN(ω)
(window size = ω) for a m-ary uniform cost search tree T
(with depth N ) is given as,

EN(ω) =
∑l=N

l=0 Pg(g, l, ω) + (m − 1)Σi=l
i=1m

l−i ∗ Pn(i, l, ω)

Where, Pg(g, l, ω) = Πj=l
j=0rg,j,ω, and,

Pn(i, l, ω) = Πj=l
j=iqi,j,ω ∗ Πk=i−1

k=0 rg,k,ω

(3)

Lemma 2. Expected probability of reaching the optimal goal
node Ps(ω) (window size = ω) for a m-ary uniform cost
search tree T (with depth N ) is given as,

Ps(ω) = Πj=N
j=0 rg,j,ω (4)

We try to estimate the expansion probability values
(qi,j,ω, rg,j,ω) from the heuristic information available. We
assume that the relative estimation errors (Eqn. 5), are inde-
pendent random variables Y (n) within (0, e) bound (0 ≤ e ≤
1) with an arbitrary distribution function.

Y (n) = [h∗(n) − h(n)]/h∗(n) (5)

Now, for a node ni,j at depth j and belonging to ’off-course’
sub-tree Ti (Figure. 1), we have

g(ni,j) = j,
h∗(ni,j) = N + j + 2(1 − i)

(6)

Similarly, for an ’on-path’ node ng,j , we have

g(ng,j) = j,
h∗(ng,j) = N − j

(7)

Thus, with the chosen error model (Eqn. 5),

f(ni,j) = N + 2(j − i + 1) − Y (n)(N + j + 2(1 − i))
f(ng,j) = N − Y (g)(N − j)

(8)
Where Y (n), Y (g) are identically distributed random vari-
ables within (0, e) bounds. Combining Eqn. 8 with the earlier
definitions, we obtain

qi,j,ω = 1 − P (Y (n) ≤ (j + α − Min(Γ))/α)
where, α = N + j + 2(1 − i) and, Γ = min(l + ω, N)

(9)
and,

rg,j,ω = 1 − P (Y (n) ≤ (N − Min(Γ))/(N − j)) (10)

From Eqns. 1 and 2, we observe that apart from the f(n)
value, the node expansion probability also depends on the
Min(l + ω) value. Now, the Min(l) value at a given level is
bounded by the minimum and maximum possible f -values
for that level. Also, for a consistent heuristic the Min(l)
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function should be non-decreasing with l. Thus, we obtain
the following properties for Min(l).

N − e(N − l) ≤ Min(l) ≤ 2l + N
Min(l) ≥ Min(l − 1)

(11)

With these observations, we represent the Min(l) function as
follows,

Min(l) = max(Min(l − 1),
N(1 − e(1 − s(l)) + l(e + (2 − e)s(l))))
where, s(l) is a function of l, 0 ≤ s(l) ≤ 1.

(12)

The Min(l) function denotes the minimum value of a set of
numbers. From statistics, we know that with the increase of
the set cardinality the probability of the minimum converging
to the lower limit increases exponentially. The implication
suggests that with increase in l, the probability of Min(l)
converging to the lower limit increases exponentially. Thus,
s(l) can be approximated using a decreasing function with l,
and most probably the decrease will be exponential.

Using the above presented results, we can estimate the ex-
pected node expansion and the optimal convergence proba-
bilities for a chosen error distribution and s(l) function. We
assume a simple linear distribution for Y (n) and approximate
s(l) as an exponential function of l, i.e., we assume,

P (Y (n) ≤ x) =

{
0 if (x < 0)
x/e if (0 ≤ x ≤ e)
1 otherwise

(13)

and,

s(l) = cl, 0 ≤ c ≤ 1 (14)

Substituting the variables in Eqns. 3 and 4, we obtain the

 10

 15

 20

 25

 30

 35

 0  2  4  6  8  10

 E
xp

ec
te

d 
no

de
 e

xp
an

si
on

s 

 Window Size 

(1)

(2)

(3)

(4)
1.  e = 0.5, c = 0.1
2.  e = 0.5, c = 0.5
3.  e = 1.0, c = 0.1
4.  e = 1.0, c = 0.5

Figure 2: Expected node expansions versus window size, for
a uniform binary tree of height 10 for AWA*

expected values for node expansions as well as convergence
probabilities for different window constraints. In Figures 2
and 3, we present the curves for expected node expansions
and convergence probabilities with different window size, for
a uniform binary tree of height 10. The expected values are
computed using two error boundaries (e = 0.5 and e = 1.0),
and two chosen constants (c = 0.1 and c = 0.5). From the
curves, we observe that the node expansions and convergence
probabilities obtained are almost independent of the choice
of c. This can be explained by the exponential nature of
chosen s(l) function, which rapidly converges to the lower
limit. Investigating the trends with different heuristic errors,
we observe that the convergence probability versus window
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Figure 4: Average node expansions versus window size, 0/1
Knapsack problem

size curves (Fig. 3) do not show much variability with dif-
ferent errors. While the convergence probability for a given
window size increases with heuristic accuracy, the improve-
ment is marginal. However, the expected node expansions
for a given window increases substantially with more error
(Fig. 2). This observation can be explained by the fact that
with more error, both the Min(l) and the f(n) values are
expected to decrease, causing relatively small changes in the
qi,j,ω and rg,j,ω probabilities. The difference is even less pro-
nounced for rg,j,ω as the f(n) values of the ’optimal-path’
nodes are expected to remain close to the Min(l) values. On
the other hand, the expected node expansions increase expo-
nentially with the increase in qi,j,ω values (Eqn. 3). Thus,
with increased error more ’off-course’ nodes are expanded,
causing appreciable variance in the node expansions.

We conclude this section by presenting the experimental
results for average node expansions and convergence prob-
abilities with changing window size, for the 0/1 Knapsack
problem using two different heuristics h1 (max. density) and
h2 (fitting based), such that h2 dominates h1 (Fig. 4 and 5).

 0

 0.2

 0.4

 0.6

 0.8

 1

 0  2  4  6  8  10

A
ve

rg
ae

 p
ro

ba
bi

lit
y 

of
 c

on
ve

rg
en

ce

 Window Size 

(2)
(1)

1. Max density heuristic
2. Fitting heuristic

Figure 5: Average optimal convergence versus window size,
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IJCAI-07
2253



The figures depict that the average node expansions and the
convergence probabilities with different heuristics show iden-
tical trends to that obtained from the analytical model.

4 BQAWA* - Anytime Window A* with

Provable Quality Bounds

In AWA*, we have an anytime algorithm which attempts to
produce a stream of gradually improving solutions. However,
no bound on the obtained solution is established. In this sec-
tion, we present a modified version of the AWA*, termed as
Bounded Quality Anytime Window A* (BQAWA*), where
each solution produced will be bounded within a pre-
specified factor (ε) of the optimal solution, the bound is itera-
tively tightened to produce an iteratively improving stream of
solutions.

Algorithm 3 Procedure Bounded Quality Window A*

1: CurLevel← −1; MinSus ←∞;

2: if OpenList is empty then

3: goto line21

4: end if

5: Select node n which has the least f(n)-value node from OpenList;

6: Insert n into ClosedList;

7: if f(n) ≥ BestSol or f(n) ≥ MinSus ∗ ε then

8: goto line 18 {Update window size and back-track}
9: else if Level(n) ≤ CurLevel−WindowSize then

10: Move n from ClosedList to SuspendList; Update MinSus;

11: goto line 2

12: else if Level(n) > CurLevel then

13: CurLevel← Level(n)
14: end if

15: GOAL EVALUATION {Same as Window A*}
16: EXPANSION {Same as Window A*.}
17: goto line 2

18: if f(n) < BestSol then

19: Move n from ClosedList to OpenList;

20: end if

21: Merge SuspendList with OpenList; Increment WindowSize;

22: if OpenList is empty then

23: Return BestSol;

24: end if

25: goto line 1

To achieve the pre-specified bounds at each iteration, we
modify the Window A* routine to obtain Bounded Quality
Window A* or BQWA* (Algo. 3). In BQWA* routine, at
any intermediate point, the minimum f -value among the sus-
pended nodes (min(fsus)) is noted. If the f -value of the
top node in the open list is greater than ε ∗ min(fsus) (for
minimization problems), the open list and the suspended list
are merged, and the search back-tracks after incrementing the
window size. The first solution produced by the algorithm is
published with ε bound guarantee. The BQAWA* algorithm

Algorithm 4 Bounded Quality Anytime Window A*

1: INPUT :: A search tree/graph, a start node s and an initial bound ε.

2: ClosedList ← φ; SuspendList ← φ; WindowSize ← 0; Calculate

f(s); Level(s) ← 0; Insert s to OpenList; BestSol ←∞;

3: BestSol ← Bounded Quality Window A*();

4: if SuspendList is empty then

5: Terminate with BestSol as the Optimal Solution;

6: else

7: Add OpenList to ClosedList; Move SuspendList to OpenList;

8: ε← ε−Δ;

9: goto line 3

10: end if

(Algo. 4) works with the same principle of ARA* technique,
i.e., the algorithm starts with a high initial bound (ε) and iter-
atively reduces the bound to get improved solutions. It uses
the BQWA* routine (Algo. 3) to obtain intermediate solutions
within the chosen sub-optimality bound. After each iteration,
the suspended list is moved to the open list, weight bound
is reduced and BQWA* is re-run to get improved solutions.
The algorithm terminates if the suspended list is empty after
an iteration.

5 Experimental Results

In this section, we present empirical results comparing the
performance of AWA* with some existing anytime tech-
niques (DFBB, ARA* and Beam-stack search). We per-
formed experiments with two optimization problems, namely
0/1 Knapsack and Euclidean Traveling Salesman (TSP) prob-
lem. Since time spent is usually proportional with the number
of nodes expanded, we present the results in terms of node ex-
pansions.
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Figure 6: Average cost versus node expansions - 0/1 Knap-
sack problem

For 0/1 Knapsack, we estimated the heuristic by fitting the
remaining objects in decreasing order of their cost-densities.
We performed experiments on a set of 100 random instances
of the 50-object 0/1 Knapsack problem. Weight and costs of
individual objects were generated randomly, while the con-
straint was chosen within 0.4− 0.6 of the sum of weights. In
Figure 6, we present the cost versus nodes expansion results
obtained for DFBB, ARA*, Beam-stack search and AWA*.
Figure 7 includes the percentage optimal convergence versus
node expansion curves. For ARA*, the weight limits were
initialized to 2.0, and decreased by 0.1 per iteration.

For Euclidean TSP, we used the minimum spanning tree
(MST) heuristic. We performed the experiments on a ran-
domly generated set of 100 25-city problem instances. The
intermediate tour length and percentage optimality results
comparing AWA* with DFBB, ARA* and Beam-stack search
are included in Figures 8 and 9, respectively.

From the results obtained for both 0/1 Knapsack and TSP,
we observe that the performance of AWA*, is superior to all,
DFBB, ARA* and Beam-stack search, both in terms of in-
termediate solution qualities as well as percentage optimal
convergences.

In Table 1, we present the average node expansions for
ARA* and BQAWA* applied to 0/1 Knapsack and TSP, with
different sub-optimality bounds. The results shows for all the
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bounds, average node expansions required by BQAWA* is
less than that required by ARA*, reiterating the superiority
of the window based restrictions.

From the results presented, we can conclude that the AWA*
algorithm provides considerably better quality-time trade-off
than DFBB, ARA* or Beam-stack search. Intermediate so-
lution qualities are better and faster optimal convergence is
achieved.

6 Conclusions

In this paper, we proposed an anytime algorithm AWA*,
which localizes the global competition performed by A* us-
ing a sliding window. Experiments performed with 0/1 Knap-
sack and TSP demonstrate the efficacy of AWA* over some
existing anytime techniques. It may be noted, that AWA*, in
its current form, is not designed to work under memory re-
strictions. It would be interesting to explore how the standard

Table 1: Average number of node expansions with different
sub-optimality bounds

Bounds Knapsack TSP

ARA* BQAWA* ARA* BQAWA*

2.0 62 60 61 25

1.9 73 65 65 37

1.8 85 68 74 52

1.7 98 72 80 67

1.6 110 77 92 81

1.5 127 87 106 91

1.4 152 99 141 111

1.3 178 104 211 135

1.2 222 133. 587 579

1.1 332 158 3650 3585

1.0 59717 58581 27952 27905

memory bounded techniques can be adopted in AWA*.
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