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Abstract

Deciding what question to branch on at each node
is a key element of search algorithms. We introduce
the information-theoretic paradigm for branching
question selection. The idea is to drive the search
to reduce uncertainty (entropy) in the current sub-
problem. We present four families of methods that
fall within this paradigm. In the first, a variable
to branch on is selected based on lookahead. This
method performs comparably to strong branch-
ing on MIPLIB, and better than strong branching
on hard real-world procurement optimization in-
stances on which CPLEX’s default strong branch-
ing outperforms CPLEX’s default branching strat-
egy. The second family combines this idea with
strong branching. The third family does not use
lookahead, but instead exploits the tie between in-
dicator variables and the other variables they gov-
ern. This significantly outperforms the state-of-
the-art branching strategies. The fourth family is
about branching using carefully constructed linear
inequality constraints over sets of variables.

1 Introduction

Search is a fundamental technique for problem solving in AI
and operations research (OR). At a node of the search tree,
the search algorithm poses a question, and then tries out the
different answers (which correspond to the branches emanat-
ing from that node). Many different ways of deciding which
question to pose (branching strategies) have been studied.

We introduce a new paradigm for developing branching
strategies, employing information theory as the principle that
guides the development. The strategies aim to reduce the un-
certainty (entropy) in the current subtree. In the context of
solving integer programs, we develop four high-level fami-
lies of strategies that fall within this paradigm, and show that
some of them significantly improve speed over existing strate-
gies. The rest of this section covers the needed background.

1.1 Integer programming

One of the most important computational problems in CS and
OR is integer programming. Applications of integer program-

∗This was work was funded by, and conducted at, CombineNet,
Inc., Fifteen 27th St., Pittsburgh, PA 15222.

ming include scheduling, routing, VLSI circuit design, and
facility location [Nemhauser and Wolsey, 1999]. Integer pro-
gramming is the problem of optimizing a linear function sub-
ject to linear constraints and integrality constraints on some
of the variables. Formally:

Definition 1 (0-1 integer programming)
Given an n-tuple c of rationals, an m-tuple b of rationals,
and an m × n matrix A of rationals, the 0-1 integer pro-
gramming problem is to find the n-tuple x such that Ax ≤ b,
x ∈ {0, 1}n, and c · x is minimized.

If some variables are constrained to be integers (not neces-
sarily binary), then the problem is simply called integer pro-
gramming. If not all variables are constrained to be integral
(they can be real), then the problem is called mixed integer
programming (MIP). Otherwise, the problem is called pure
integer programming.

While (the decision version of) MIP is NP-complete
[Karp, 1972], there are many sophisticated techniques that
can solve very large instances in practice. We now review the
existing techniques upon which we build our methods.

Branch-and-bound

In branch-and-bound search, the best solution found so far
(the incumbent) is kept in memory. Once a node in the search
tree is generated, a lower bound (aka. an f -estimate) on the
solution value is computed by solving a relaxed version of
the problem, while honoring the commitments made on the
search path so far. The most common method for doing this
is to solve the problem while relaxing only the integrality con-
straints of all undecided variables; that linear program (LP)
can be solved fast in practice, for example using the simplex
algorithm (and in polynomial worst-case time using interior-
point methods). A path terminates when the lower bound is
at least the value of the incumbent. Once all paths have ter-
minated, the incumbent is a provably optimal solution.

There are several ways to decide which leaf node of the
search tree to expand next. For example, in depth-first
branch-and-bound, the most recent node is expanded next. In
A* search [Hart et al., 1968], the leaf with the lowest lower
bound is expanded next. A* is desirable in the sense that, for
any given branch question ordering, no tree search algorithm
that finds a provably optimal solution can guarantee expand-
ing fewer nodes [Dechter and Pearl, 1985]. (An almost iden-
tical node-selection strategy, best-bound search, is often used
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in MIP [Wolsey, 1998].1) Therefore, in the experiments we
will use best-bound search in all of the algorithms.

Branch-and-cut

A more modern algorithm for solving MIPs is branch-and-
cut, which first achieved success in solving large instances of
the traveling salesman problem [Padberg and Rinaldi, 1987;
1991], and is now the core of the fastest commercial general-
purpose integer programming packages. It is like branch-and-
bound, except that in addition, the algorithm may generate
cutting planes [Nemhauser and Wolsey, 1999]. They are con-
straints that, when added to the problem at a search node,
result in a tighter LP polytope (while not cutting off the op-
timal integer solution) and thus a higher lower bound. The
higher lower bound in turn can cause earlier termination of
the search path, and thus yields smaller search trees.

CPLEX [ILOG Inc, 2005] is the leading commercial soft-
ware product for solving MIPs. It uses branch-and-cut. It
can be configured to support many different branching algo-
rithms, and it makes available low-level interfaces for control-
ling the search. We developed our branching methods in the
framework of CPLEX, allowing us to take advantage of the
many components already in CPLEX (such as the presolver,
the cutting plane engine, the LP solver, etc.) while allow-
ing us flexibility in developing our own methods. (We used
CPLEX version 9.1, i.e., the newest version at the time of the
experiments.) We configured the search order to best-bound,
and we vary the branching strategies as we will discuss.

Selecting a question to branch on

At every node of a tree search, the search algorithm has to
decide what question to branch on (and thus what the children
of the node will be). The bulk of research has focused on
branching on individual variables because that is intuitive, has
a relatively small set of branching candidates, and tends to
keep the LP sparse and thus relatively fast to solve. In other
words, the question is: “What should the value of this variable
be?”. The children correspond to different answers to this
question.

One commonly used method in OR is to branch on the most
fractional variable, i.e., variable whose LP value is furthest
from being integral [Wolsey, 1998]. Finding the branching
variable under this rule is fast and this method yields small
search trees on many problem instances.

A more sophisticated approach, which is better suited for
certain hard problem instances, is strong branching [Apple-
gate et al., 1994]. The algorithm performs a one-step looka-
head for each variable that is non-integral in the LP at the
node. The one-step lookahead computations solve the LP re-
laxation for each of the children.2

1The difference is that in A* the children are evaluated when
they are generated, while in best-bound search the children are
queued for expansion based on their parents’ values and the LP of
each child is only solved if the child comes up for expansion from
the queue. Thus best-bound search needs to continue until each node
on the queue has value no better than the incumbent. Best-bound
search generates more nodes, but may require fewer (or more) LPs
to be solved.

2Often in practice, the lookahead is done only for some heuristi-
cally selected ones of those variables in order to reduce the number

Algorithm 1 Strong Branching (SB)

1. candidates← {i | xi fractional}
2. For each i ∈ candidates:

(a) xf ← xi − �xi�
(b) Let zl be solution of current LP with xl

i ≤ �xi�.
(c) Let zu be solution of current LP with xu

i ≥ 	xi
.
(d) score(xi)← 10 ·min{zl, zu}+ max{zl, zu}

3. i∗ ← argmaxi∈candidates score(xi)
4. Return i∗

There are many different ways that step 2.d could be per-
formed in Algorithm 1. The above method is from [Applegate
et al., 1994]. We experimented with the following variations
in addition to the method above:

1. score(xi)← min{zl, zu}+ 10 ·max{zl, zu}
2. score(xi)← zl + zu

3. score(xi)← max{zl, zu}
4. score(xi)← min{zl, zu}
5. score(xi)← (1 − xi)z

l + xiz
u

In our preliminary experiments, there was no variation that
dominated any of the others. We therefore decided to go with
the variation in Algorithm 1, which has been shown to per-
form well in practice [Applegate et al., 1994].

2 The information-theoretic paradigm to

branching in search

The simple key observation behind our paradigm is that in
the beginning of a search, the nodes on the frontier of the
search tree have large amounts of uncertainty about the vari-
ables’ values, while at the end of a search there is none (a
path ends once there is no uncertainty left in a node’s variable
assignments)3. Motivated by this observation, our paradigm
is to guide the search so as to remove uncertainty from the
nodes on the frontier of the search tree. In this paper we ap-
ply this paradigm to decide what question should be branched
on at each search node. While there has been much work
on search (and specifically on developing branching heuris-
tics), to our knowledge this is the first work that takes an
information-theoretic approach to guiding the search process.
Another view to this paradigm is that we use information-
theoretic measures to quantify how much propagation a can-
didate branching question would cause—not only counting
how many of the unassigned variables would be affected, but
also by how much.

Specifically in the context of MIP, the idea behind
our paradigm is to treat the fractional portion of integer-
constrained variables in the LP solution as probabilities, indi-
cating the probability with which we expect the variable to be
greater than its current value in the optimal solution. Clearly,
interpreting LP variable values as independent probabilities

of LPs that need to be solved. Similarly, the child LPs are not solved
to optimality; the amount of work (such as the number of simplex
pivots) to perform on each child is a parameter. We will vary both
of these parameters in our experiments.

3In addition to all variables getting fixed value assignments, a
path can end by infeasibility (the assignments so far implying a con-
tradiction) or by pruning by bound (the optimistic value of the node
being no better than the value of the incumbent).
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is an enormous inaccurate assumption, and it is one that we
approach with caution. Due to the constraints in the problem,
the variables are indeed interdependent. However, because
we are not attempting to derive theoretical results related to
this assumption, and because we use the assumption only in
deciding how to branch within a search framework (and thus
we still guarantee optimality), this assumption does not neg-
atively interfere with any of our results. As we demonstrate
later in our experiments, this assumption works well in prac-
tice, so it is not without merit. (Interpreting LP variables as
probabilities is also used successfully in randomized approx-
imation algorithms [Vazirani, 2001].)

Before we describe any specific families of branch ques-
tion selection techniques under this paradigm, it will be useful
to define how we can quantify the “uncertainty” of a partial
solution. For this, we borrow some definitions from informa-
tion theory, from which the primary contribution is the notion
of entropy [Shannon, 1948], which measures the amount of
uncertainty in a random event. Given an event with two out-
comes (say 0 or 1), we can compute the entropy of the event
from the probability of each outcome occurring.

Definition 2 (Entropy of a binary variable)
Consider an event with two outcomes, 0 and 1. Let x be the
probability of outcome 1 occurring. Then 1− x is the proba-
bility of outcome 0 occurring and we can compute the entropy
of x as follows:

e(x) =

{
−x log

2
x− (1− x) log

2
(1− x) : 0 < x < 1

0 : x ∈ {0, 1}.

It is possible to use other functions to measure the uncer-
tainty in a binary variable. For example, e(x) = 1

2
−

∣∣1

2
− x

∣∣
and e(x) = x − x2 could alternatively be used. In the con-
text of the first family of branching question selection tech-
niques (discussed below), we experimented using these other
functions but found no major improvement compared to us-
ing e(x) as in Definition 2. Thus, throughout the rest of the
paper, we will use this standard way of calculating entropy.

Entropy is additive for independent variables so we com-
pute the entropy of a group of variables as follows:

Definition 3 (Entropy of a group of binary variables)
Given a set X of probabilities corresponding to independent
binary events, we can compute the entropy of the set as:

entropy (X ) =
∑
x∈X

e(x)

where e(x) is as in Definition 2.

While it is possible for there to be multiple optimal solu-
tions to an optimization problem, all optimal solutions will
have zero uncertainty according to this measure. We are now
ready to present our four families of branching question selec-
tion techniques. They all fall under the information-theoretic
paradigm for branching.

3 Family 1: Entropic lookahead for variable

selection

In the first family, we determine the variable to branch on us-
ing one-step lookahead as in strong branching. The difference

is that instead of examining the objective values of potential
child nodes, we examine the remaining uncertainty (entropy)
in potential child nodes, choosing a variable to branch on that
yields children with the least uncertainty.

Algorithm 2 Entropic Branching (EB)

1. candidates← {i | xi fractional}
2. For each i ∈ candidates:

(a) xf ← xi − �xi�
(b) Let x̂l be solution vector of LP with x̂l

i ≤ �xi�.
(c) Let x̂u be solution vector of LP with x̂u

i ≥ 	xi
.
(d) entropy(xi)←

∑n

j=1
(1− xf )e

(
x̂l

j

)
+ xf e

(
x̂u

j

)
3. i∗ ← argmini∈candidates entropy(xi)
4. Return i∗

EB is usable on any MIP since it does not make any as-
sumptions about the underlying model for the problem on
which it is used.

EB can be modified to perform more than one-step looka-
head in the obvious way. This would likely lead to smaller
search trees but more time would be spent per node. One
way of mitigating this tradeoff would be to conduct deeper
lookaheads only on candidates that look promising based on
shallower lookaheads. One could even curtail the candidate
set based on heuristics before any lookahead is conducted.

For illustrative purposes, there is an interesting (though not
exact) analogy between our entropic lookahead method for
question selection at search nodes and algorithms for deci-
sion tree induction [Quinlan, 1986]. In most recursive de-
cision tree induction algorithms, a question is inserted at a
leaf that results in the greatest information gain. Similarly, in
search, by choosing questions whose children have the least
entropy, we are creating children that in a sense also result in
the greatest information gain.

4 Family 2: Hybridizing SB and EB

As can be observed from the pseudocode given in Algo-
rithms 1 and 2, SB and EB are computed quite similarly. A
natural question arises: can we develop a hybrid approach
combining the strengths of both without using significantly
more computational resources? In this section we answer this
question in the affirmative by introducing a second family of
variable selection strategies. In this family, SB and EB are
hybridized in different ways. Each of these methods requires
only a small amount of additional computation compared to
performing only SB or EB (because the same lookahead with
the same child LP solves is used). We classify our hybrid
approaches into two categories: tie-breaking and combina-
tional.

4.1 Tie-breaking methods

In this approach, we first perform the SB computations as in
Algorithm 1, but instead of simply branching on the variable
with best score, we break ties using an entropy computation.
Since we have already computed the LP relaxations for each
branch, computing the entropy is a negligible computational
cost (relative to computing the LP relaxations). In addition to
breaking exact ties, we also experimented with the approach
of considering two variables having SB scores within x% of
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each other as tied. In the experiments (described below) we
tested with x ∈ {0, 5, 10}.

4.2 Combinational methods

We present two methods of combining information from SB
and EB in order to compute a single score for a variable. The
variable with the best score will then be branched on.

The first method, RANK, performs the computation for
SB and EB first. (Again, these computations are performed
simultaneously at little additional cost beyond doing either
SB or EB alone.) Define rankSB(xi) to be the rank of
variable xi in terms of its SB score (i.e., the variable with
the largest score would have rank 1, the variable with the
second-largest score would have rank 2, and so on). Sim-
ilarly, define rankEB(xi) to be the rank of variable xi in
terms of its EB entropy. Then, for each variable, we let
rank(xi) = rankSB(xi)+rankEB(xi) and choose the vari-
able xi with the smallest rank.

The second method, COMB(ρ, 1 − ρ), computes a convex
combination of the SB score (with weight ρ) and the current
entropy minus the EB score (with weight 1−ρ). It then selects
the variable with the highest final score.

4.3 Experiments on EB and the hybrid methods

We conducted a host of experiments with the search methods
described above, both on MIPLIB and real-world procure-
ment optimization instances. In all of our experiments the
algorithms ran in main memory, so paging was not an issue.

In order to be able to carefully and fairly control the pa-
rameter settings of both SB and EB, we implemented both.
(Using CPLEX’s default SB would not have allowed us to
control the proprietary and undocumented candidate selection
method and scoring function, and CPLEX does not provide
adequate APIs to use those same methods for EB.) Implemen-
tation of both algorithms in the same codebase also minimizes
differences in implementation-related run-time overhead.

Experiments on MIPLIB 3.0

MIPLIB [Bixby et al., 1998] is a library of MIP instances that
is commonly used for benchmarking MIP algorithms. We
experimented on all instances of the newest MIPLIB (3.0).

EB and SB were comparable: they reached the 1-hour time
limit on 34.7% and 24.5% of the instances, respectively. EB
outperformed SB on 13 of the 49 instances. This is quite
remarkable in the sense that EB does not use the objective
function of the problem at all in making branching decisions.

Our experiments show that, on average, RANK is the best
among the hybrid methods. On 17 of the instances, at least
one of the hybrid methods outperformed both SB and EB,
showing that the combination is better than either of its parts.

Although EB performs comparably to SB, both of these
strategies are dominated on MIPLIB by CPLEX’s default
branching strategy (although it searches a larger number of
nodes). For problems with lots of structure, we expect the
reverse to be true. Indeed, in the next subsection we use in-
stances on which CPLEX’s default SB outperforms CPLEX’s
default branching strategy, and we demonstrate that EB out-
performs SB on that data set.

Experiments on real-world procurement optimization

As we showed in the previous section, lookahead (such as in
strong branching) does not pay off on all classes of problems.
To obtain a pertinent evaluation of EB against the state-of-
the-art lookahead-based technique, SB, we wanted to test on
a problem set on which SB is the algorithm of choice (com-
pared to non-lookahead-based standard techniques). We ran
experiments on CombineNet, Inc.’s repository of thousands
of large-scale real-world industrial procurement optimization
instances of varying sizes and structures, and selected the in-
stances on which CPLEX’s implementation of SB was faster
than CPLEX’s default branching strategy. On those 121 in-
stances, CPLEX’s implementation of SB was on average 27%
faster than CPLEX’s default branching strategy. Thus we
concluded that SB is a good algorithm for that data set, and
performed a comparison of EB against SB on that data.

Tables 1–3 summarize the experimental results for EB. We
varied the size of the candidate list and the number of sim-
plex iterations performed in the dual LP of each child of the
candidate.4 When limiting the size of the candidate list, we
choose the candidates in order of most fractional.

candidates 10 iters 25 iters 100 iters unlimited iters

10 1947.00 2051.07 1966.21 1913.56

unlimited 1916.81 1962.09 1813.76 1696.53

Table 1: Average computation time over 121 instances for
entropic branching with a 1-hour time limit.

candidates 10 iters 25 iters 100 iters unlimited iters

10 3600 3600 3600 3600

unlimited 2955.78 3195.58 1374.679 590.23

Table 2: Median computation time over 121 instances for en-
tropic branching with a 1-hour time limit.

candidates 10 iters 25 iters 100 iters unlimited iters

10 62 65 62 61

unlimited 59 57 54 49

Table 3: Number of instances (of 121) taking over an hour.
As the tables demonstrate, EB was fastest with the most

detailed branch selection. The additional work in performing
more simplex iterations pays off by giving a more accurate
estimate of the entropy of the individual variables. Similarly,
by examining more candidate variables, EB is more likely to
branch on a variable that decreases the total amount of en-
tropy the most. This suggests that a better method for choos-
ing the candidate list could lead to further speedup. When
both methods were allowed unlimited candidates and itera-
tions, EB was 29.5% faster than SB: the comparable number
to EB’s 1696.53 average seconds was 2406.07 for SB.

5 Family 3: Entropic lookahead-free variable

selection

We introduce a third family of branching strategies, again
within the entropy-based branching paradigm. This method

4As usual in MIP, we tackle the dual LP instead of the primal
LP because a node’s dual solution serves as a feasible basis for the
child and thus serves as a hot start for simplex. The first child’s dual
LP solve starts from the parent’s dual LP basis. The second child’s
LP solve starts from the first child’s LP basis.
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is computationally less expensive than the methods we pre-
sented so far because it does not use lookahead. How-
ever, it does require an advanced knowledge of the struc-
ture of the problem. The problem with which we experi-
ment is motivated by a real-world electronic commerce ap-
plication: a combinatorial procurement auction (aka. re-
verse auction) where the buyer specifies the maximum num-
ber of winning suppliers [Davenport and Kalagnanam, 2001;
Sandholm and Suri, 2006].

Definition 4 (Combinatorial procurement auction with max-
imum winners constraint)
LetM = {1, . . . , m} be the m goods that the buyer wishes
to procure (the buyer wants at least one unit of each good).
Let S = {1, . . . , s} be the s suppliers participating in the
procurement and let B = {B1, . . . , Bn} be the bids, where
Bi = 〈Gi, si, pi〉 indicates that supplier si can supply the
bundle of goods Gi ⊆ M at price pi. Finally, the buyer
indicates the maximum number of winners, k. The winner de-
termination problem is to identify the winning bids so as to
minimize the buyer’s cost subject to the constraints that the
buyer’s demand is satisfied and that the maximum number of
winners constraint is satisfied.

This problem is NP-complete, even if the bids are on sin-
gle items only [Sandholm and Suri, 2006]. Integer pro-
gramming methods have been successfully used previously in
winner determination research (e.g. [Andersson et al., 2000;
Sandholm et al., 2005; Sandholm, 2006]), and we can very
naturally formulate the above generalized winner determina-
tion problem as a MIP:

minimize
∑n

i=1
pixi

such that
∑

i|j∈Gi
xi ≥ 1 j ∈ {1, . . .m}∑

i|si=j xi −myj ≤ 0 j ∈ {1, . . . , s}∑s

j=1
yj − k ≤ 0

xi ∈ {0, 1} i ∈ {1, . . . , n}
yj ∈ {0, 1} j ∈ {1, . . . , s}

The formulation is typical of a common class of problems
in which binary “indicator” variables—the yj variables in
the formulation above—are used to model logical connec-
tives [Nemhauser and Wolsey, 1999]. Constraints that state
that at most (or exactly) k variables from a set of variables can
be nonzero are an important special case. (The case k = 1 is
called a special-ordered set of Type I.) Typically, the LP relax-
ation gives poor approximate values for indicator variables:
due to big-M ’s in the constraints that include the indicators
(and even with large m’s that are as small as possible as in
the above formulation), an indicator can in effect be on even
while taking a tiny value (or conversely, be off while holding
a value close to 1). As we show, the branching method that
we propose helps significantly to address this problem.

5.1 Branching strategy

The hardness in this problem comes primarily from deter-
mining the winning set of suppliers. In terms of the above
MIP, we need to determine the yj values. The main idea
in our branching strategy for this problem is to branch on
yj values that correspond to suppliers about which we are
most uncertain. But rather than deriving this uncertainty

from the variable yj (for which the LP gives very inaccu-
rate values), we derive it from the variables corresponding
to supplier j′s bids. The branching strategy works as fol-
lows. For each supplier j where yj /∈ {0, 1}, compute
entropy(j) =

∑
i|si=j e(xi) and branch on the variable yj′

where j′ = argminj entropy(j). This strategy does not use
lookahead: it only uses the LP values of the current search
node. We call this branching strategy Indicator Entropic
Branching (IEB).

5.2 Experimental results

Although this problem is motivated by a real-world applica-
tion, there are no publicly available real-world instances (the
real-world data studied in the previous section does not ex-
actly fit this model).5 Instead we created an artificial instance
distribution for this problem which closely approximates the
real-world problem.

Given parameters s (number of suppliers), r (number of
regions), m (goods per region), and b (bids per region) we
create an instance of a procurement auction with a maximum
winners constraint as follows: 1) Each bidder bids on a re-
gion with probability 0.9; 2) for each region, generate the
bidder’s bids using the Decay distribution [Sandholm, 2002]

with α = 0.75.6 For this data distribution, we determined
that CPLEX’s default branching strategy was the best of the
four qualitatively different branching strategies that CPLEX
offers. In particular, it was faster than strong branching on
this data. Table 4 shows experimental results comparing IEB
with CPLEX using its default branching strategy. The results
indicate that IEB performs significantly better, and the rela-
tive difference increases with problem size. (We also found
that part of the benefit can be achieved even without entropic
branching by simply forcing branching on every path to occur
on the fractional indicator variables first before branching on
any other variables. Other than that, we let CPLEX make the
variable selection in that strategy (CPLEX-IF)).

s r m b k CPLEX CPLEX-IF IEB

20 10 10 100 5 25.63 15.13 11.81

30 15 15 150 8 5755.92 684.83 551.82

40 20 20 200 10 37.05% 32.38% 30.57%

Table 4: The first two rows contain the solution time (in seconds)
for finding the optimal solution and proving optimality averaged
over 25 instances (there were no timeouts). The third row indicates
the average integrality gap (how far from optimal (at worst) the best
solution found so far is) after one hour.

6 Family 4: Entropic lookahead for

multi-variable branches

In this section we introduce a fourth family of methods for
determining a good question to branch on. In EB, we per-
formed a one-step lookahead for each non-integral variable.
Here, we generalize entropic lookahead beyond branching on

5Furthermore, none of the combinatorial auction instance gener-
ators published in the literature have a notion of supplier.

6Each bid in the Decay distribution is generated as follows. Give
the bid one random item from M. Then repeatedly add a new ran-
dom item from M (without replacement) with probability α until
an item is not added or the bid includes all m items. Pick the price
uniformly between 0 and the number of items in the bid.

IJCAI-07
2290



variables. In integer programming one can branch on the
sum of the values of a set of variables. For example, if the
LP relaxation at the current search node has xi = 0.2 and
xj = 0.6, we could set one branch to be xi + xj ≤ 0 and
the other branch to be xi + xj ≥ 1. In general, given a set
X of variables and the current LP relaxation solution x̂, we
can let k =

⌊∑
i∈X x̂i

⌋
and we can generate the branches∑

i∈X xi ≤ k and
∑

i∈X xi ≥ k + 1.7,8,9 Then, instead of
branching on the variable with the smallest amount of entropy
in its child nodes, we select the set X of variables for branch-
ing that results in the smallest amount of entropy in the two
child nodes.10 In step 2.d of EB, we weighted the entropy of
each child by the probability that we expect the optimal so-
lution to occur in each child. In the multi-variable case, we
still perform this weighting, but it is more complicated since
the probability of each branch depends on several variables.
The probability that the sum is less than k is the summation
of a combinatorial number of products of probabilities; this
number is exponential only in |X |, so it is not prohibitive for
generating branches with small numbers of variables.)

While branching on more than one variable at a time may
seem unintuitive, it does not cause any obvious loss in branch-
ing power:

Proposition 1 Assume that each integer variable xi has fi-
nite domain Di. Ignoring the effects of pruning (by infeasi-
bility, bound, and LP integrality), propagation (by LP), and
learning (e.g., from conflicts in subproblems [Achterberg,
2006; Sandholm and Shields, 2006]), the number of leaves
in the tree is the same regardless of how many (and which)

7No other value of k is worth considering: any other integer
value would cause one child’s LP optimum to be exactly the same
as the node’s. Thus that child’s EB analysis (or SB analysis, or in
fact any branching rule based solely on the node’s local information)
would be the same as that of the node’s, leading to an infinitely deep
search path and non-termination of the overall algorithm.

8The special case k = 0 of this branching question has
been shown to be effective in set partitioning, set packing, and
set covering problems [Etcheberry, 1977; Ryan and Foster, 1981;
Ryan, 1992]. For such 0-1 problems, theory has been developed that
shows that each path consisting of carefully selected such branches
will yield an LP with all vertices integral after a quadratic number of
branches in the number of constraints [Barnhart et al., 1998]. Future
research includes exploring the use of techniques from our Family 4
to select among such branching candidates in those problems.

9More generally, one can branch on the disjunctionP
i∈X

aixi ≤ r versus
P

i∈X
aixi ≥ r + 1, where the con-

stants ai can be positive or negative, as long as there are no
integer solutions between those two hyperplanes (e.g., [Owen and
Mehrotra, 2001]). Our entropy reduction measure could then be
used to select from among such pairs of hyperplanes. Branching
on high-level properties has also been shown efficient in constraint
satisfaction problems [Gomes and Sellmann, 2004], and it would
be interesting to try the information-theoretic paradigm for branch
question selection in that context as well.

10We never branch on a set of variables X if
P

i∈X
x̂i happens to

be integral because one of the branches will not constrain the current
LP solution. Thus the corresponding child node will be identical
to its parent, leading again to nontermination with any branching
rule that is based on location information. (In fact, we do not even
conduct the lookahead for such X .)

variables are used in different branches—as long as trivial
branches where a child is identical to its parent are not used.
If the branching factor is two, then this equality applies to the
number of nodes in the tree as well.

PROOF. There are
∏n

i=1
|Di| solutions. For any nontrivial

branching, that is the number of leaves. Binary trees with the
same number of leaves have the same number of nodes. �

We performed experiments on MIPLIB 3.0 and on com-
binatorial auction winner determination problem instances
(again from the Decay distribution). We limited our algo-
rithm to considering branches containing just 1 or 2 variables
in order to keep the number of candidate branching questions
small so as to not have to solve too many child LPs. This also
helps keep the LP sparse and thus relatively fast to solve.

While we found that this strategy led to trees that are
slightly smaller on average than when branching on individ-
ual variables only, the computational effort needed to perform
the lookahead for pairs of variables was not worth it in terms
of total search time. It thus seems that in order for this method
to be effective, there needs to be some quick way of determin-
ing (before lookahead) what good candidate variable sets to
branch on might be, and to only conduct the lookahead on
them. We also tried randomly picking only a restricted num-
ber of variable pairs as candidates; even though that helped
in overall run-time, it did not help enough to beat branching
on individual variables only. Hopefully future research will
shed light on what might be considered good multi-variable
branching candidates.

7 Conclusions, discussion, and future research

We introduced a new paradigm for branch selection in search
based on an information-theoretic approach. In the beginning
of a search, there is the most uncertainty about the optimal
solution. When the search is complete, there is zero uncer-
tainty. Using this observation, we developed four families of
methods for selecting what question to branch on at a search
node so as to reduce the amount of uncertainty in the search
process. All four of our families of methods are information-
theoretically motivated to reduce remaining entropy. In the
first family, a good variable to branch on is selected based
on lookahead. Experiments show that this entropic branch-
ing method performs comparably to strong branching (a clas-
sic technique that uses lookahead and LP-bounds to guide
the search) on MIPLIB, and better than strong branching on
hard real-world procurement optimization instances on which
CPLEX’s default strong branching outperforms CPLEX’s de-
fault branching strategy. The second family combines this
idea with strong branching in different ways. The third fam-
ily does not use lookahead, but instead exploits the tie be-
tween indicator variables and the other variables they govern.
Experiments show that this family significantly outperforms
the state-of-the-art branching strategies. The fourth family is
about branching using carefully constructed linear inequality
constraints over sets of variables.

One can view many existing search methods as quick ap-
proximations of entropy-based search. First, the classic OR
idea of branching on the variable that has the most fractional
LP value at the node in best-bound search [Wolsey, 1998] is
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a lookahead-free approximation to entropy-based variable se-
lection: it also tries to branch on the variable that the LP is
most uncertain about and thus that branch should reduce un-
certainty the most. Second, using entropy as the f -function
in A* search (i.e., always picking the node with least en-
tropy to expand next) tends to make A* more like depth-first-
search because deeper nodes tend to have less entropy. (How-
ever, entropy does not always decrease monotonically even
along one search path.) Third, the most common heuristic in
constraint satisfaction problems, most-constrained-variable-
first [Bitner and Reingold, 1975], and its usual tie-breaker,
the most-constraining-variable-first heuristic [Brélaz, 1979],
approximate entropy-based variable selection: they tend to
assign a variable that affects the other unassigned variables
the most, thus reducing the entropy of those variables.

There are several promising directions for future research
down this path. One could develop quick heuristics to curtail
the set of candidate questions to branch on before lookahead.
One could even narrow down the candidate set incrementally
by deeper and deeper lookahead (the leaves being evaluated
using our entropic measure).

It would also be interesting to try the paradigm on addi-
tional problems, for example, on set covering, packing, and
partitioning problems—perhaps using the specialized branch-
ing constraints (discussed above) as the candidates.

Our methods were largely derived for A* (best-bound)
search where it is best to branch on a question about which
the algorithm is most uncertain; in contrast, in the depth-first
node selection strategy it is often best to branch on a question
for which the algorithm knows the right answer with high
confidence [Sandholm et al., 2005; Sandholm, 2006]. Thus
it is not clear that these branch question selection techniques
would work as well under the depth-first strategy. That is a fu-
ture question to pursue. One could also try our paradigm on
constraint satisfaction problems; given that there are no LP
values, one would need another way of measuring entropy.

While we introduced four families of branch question se-
lection techniques under the information-theoretic paradigm,
we see no reason to believe that these are the only, or best,
families. Future research should explore the development
of additional families of entropy-motivated branch ques-
tion selection techniques. Perhaps the information-theoretic
paradigm can be helpful in search guidance beyond branch
question selection as well.
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