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Abstract

There has been a great deal of work on character-
izing the complexity of the satisfiability and valid-
ity problem for modal logics. In particular, Ladner
showed that the satisfiability problem for all logics
between K and S4 is PSPACE-hard, while for S5 it
is NP-complete. We show that it is negative intro-
spection, the axiom ¬Kp ⇒ K¬Kp, that causes
the gap: if we add this axiom to any modal logic
between K and S4, then the satisfiability problem
becomes NP-complete. Indeed, the satisfiability
problem is NP-complete for any modal logic that
includes the negative introspection axiom.

1 Introduction

There has been a great deal of work on characterizing the
complexity of the satisfiability and validity problem for
modal logics (see [Halpern and Moses, 1992; Ladner, 1977;
Spaan, 1993; Vardi, 1989] for some examples). In particular,
Ladner 1977 showed that the validity (and satisfiability) prob-
lem for every modal logic between K and S4 is PSPACE-
hard; and is PSPACE-complete for the modal logics K, T,
and S4. He also showed that the satisfiability problem for S5

is NP-complete.
What causes the gap between NP and PSPACE here? We

show that, in a precise sense, it is the negative introspection
axiom: ¬Kϕ ⇒ K¬Kϕ. It easily follows from Ladner’s
proof of PSPACE-hardness that for any modal logic L be-
tween K and S4, there exists a family of formulas ϕn, all
consistent with L such that such that |ϕn| = O(n) but the
smallest Kripke structure satisfying ϕ has at least 2n states
(where |ϕ| is the length of ϕ viewed as a string of symbols).
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By way of contrast, we show that for all of the (infinitely
many) modal logics L containing K5 (that is, every modal
logic containing the axiom K—Kϕ ∧K(ϕ ⇒ ψ) ⇒ Kψ—
and the negative introspection axiom, which has traditionally
been called axiom 5), if a formulaϕ is consistent with L, then
it is satisfiable in a Kripke structure of size linear in |ϕ|. Us-
ing this result and a characterization of the set of finite struc-
tures consistent with a logic L containing K5 due to Nagle
and Thomason 1985, we can show that the consistency (i.e.,
satisfiability) problem for L is NP-complete. Thus, roughly
speaking, adding negative introspection to any logic between
K and S4 lowers the complexity from PSPACE-hard to NP-
complete.

The fact that the consistency problem for specific modal
logics containing K5 is NP-complete has been observed be-
fore. As we said, Ladner already proved it for S5; an easy
modification (see [Fagin et al., 1995]) gives the result for
KD45 and K45.1 That the negative introspection axiom
plays a significant role has also been observed before; indeed,
Nagle 1981 shows that every formulaϕ consistent with a nor-
mal modal logic2 L containing K5 has a finite model (indeed,
a model exponential in |ϕ|) and using that, shows that the
provability problem for every logic L between K and S5 is
decidable; Nagle and Thomason 1985 extend Nagle’s result
to all logics containing K5 not just normal logics. Despite
all this prior work and the fact that our result follows from
a relatively straightforward combination of results of Nagle
and Thomason and Ladner’s techniques for proving that the
consistency problem for S5 is NP-complete, our result seems
to be new, and is somewhat surprising (at least to us!).

The rest of the paper is organized as follows. In the next
section, we review standard notions from modal logic and the
key results of Nagle and Thomason 1985 that we use. In Sec-
tion 3, we prove the main result of the paper. We discuss
related work in Section 4.

1Nguyen 2005 also claims the result for K5, referencing Ladner.
While the result is certainly true for K5, it is not immediate from
Ladner’s argument.

2A modal logic is normal if it satisfies the generalization rule
RN: from ϕ infer Kϕ.
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2 Modal Logic: A Brief Review

We briefly review basic modal logic, introducing the notation
used in the statement and proof of our result. The syntax of
the modal logic is as follows: formulas are formed by start-
ing with a set Φ = {p, q, . . .} of primitive propositions, and
then closing off under conjunction (∧), negation (¬), and the
modal operator K . Call the resulting language LK

1
(Φ). (We

often omit the Φ if it is clear from context or does not play a
significant role.) As usual, we define ϕ∨ψ and ϕ⇒ ψ as ab-
breviations of ¬(¬ϕ∧¬ψ) and ¬ϕ∨ψ, respectively. The in-
tended interpretation of Kϕ varies depending on the context.
It typically has been interpreted as knowledge, as belief, or as
necessity. Under the epistemic interpretation, Kϕ is read as
“the agent knows ϕ”; under the necessity interpretation, Kϕ
can be read “ϕ is necessarily true”.

The standard approach to giving semantics to formulas in
LK

1 (Φ) is by means of Kripke structures. A tuple F = (S,K)
is a (Kripke) frame if S is a set of states, and K is a binary
relation on S. A situation is a pair (F, s), where F = (S,K)
is a frame and s ∈ S. A tuple M = (S,K, π) is a Kripke
structure (over Φ) if (S,K) is a frame and π : S × Φ →
{true, false} is an interpretation (on S) that determines
which primitive propositions are true at each state. Intu-
itively, (s, t) ∈ K if, in state s, state t is considered pos-
sible (by the agent, if we are thinking of K as representing
an agent’s knowledge or belief). For convenience, we define
K(s) = {t : (s, t) ∈ K}.

Depending on the desired interpretation of the formula
Kϕ, a number of conditions may be imposed on the binary
relation K. K is reflexive if for all s ∈ S, (s, s) ∈ K; it is
transitive if for all s, t, u ∈ S, if (s, t) ∈ K and (t, u) ∈ K,
then (s, u) ∈ K; it is serial if for all s ∈ S there exists t ∈ S
such that (s, t) ∈ K; it is Euclidean iff for all s, t, u ∈ S, if
(s, t) ∈ K and (s, u) ∈ K then (t, u) ∈ K. We use the super-
scripts r, e, t and s to indicate that the K relation is restricted
to being reflexive, Euclidean, transitive, and serial, respec-
tively. Thus, for example, Srt is the class of all situations
where the K relation is reflexive and transitive.

We write (M, s) |= ϕ if ϕ is true at state s in the Kripke
structure M . The truth relation is defined inductively as fol-
lows:

(M, s) |= p, for p ∈ Φ, if π(s, p) = true

(M, s) |= ¬ϕ if (M, s) �|= ϕ

(M, s) |= ϕ ∧ ψ if (M, s) |= ϕ and (M, s) |= ψ

(M, s) |= Kϕ if (M, t) |= ϕ for all t ∈ K(s)

A formula ϕ is said to be satisfiable in Kripke structure
M if there exists s ∈ S such that (M, s) |= ϕ; ϕ is said
to be valid in M , written M |= ϕ, if (M, s) |= ϕ for all
s ∈ S. A formula is satisfiable (resp., valid) in a class N of
Kripke structures if it is satisfiable in some Kripke structure
in N (resp., valid in all Kripke structures in N ). There are
analogous definitions for situations. A Kripke structureM =
(S,K, π) is based on a frame F = (S′,K′) if S′ = S and
K′ = K. The formula ϕ is valid in situation (F, s), written
(F, s) |= ϕ, where F = (S,K) and s ∈ S, if (M, s) |= ϕ for
all Kripke structure M based on F .

Modal logics are typically characterized by axiom systems.
Consider the following axioms and inference rules, all of
which have been well-studied in the literature [Blackburn et
al., 2001; Chellas, 1980; Fagin et al., 1995]. (We use the tra-
ditional names for the axioms and rules of inference here.)
These are actually axiom schemes and inference schemes; we
consider all instances of these schemes.

Prop. All tautologies of propositional calculus

K. (Kϕ ∧K(ϕ⇒ ψ)) ⇒ Kψ (Distribution Axiom)

T. Kϕ⇒ ϕ (Knowledge Axiom)

4. Kϕ⇒ KKϕ (Positive Introspection Axiom)

5. ¬Kϕ⇒ K¬Kϕ (Negative Introspection Axiom)

D. ¬K(false) (Consistency Axiom)

MP. From ϕ and ϕ⇒ ψ infer ψ (Modus Ponens)

RN. From ϕ infer Kϕ (Knowledge Generalization)

The standard modal logics are characterized by some sub-
set of the axioms above. All are taken to include Prop, MP,
and RN; they are then named by the other axioms. For exam-
ple, K5 consists of all the formulas that are provable using
Prop, K, 5, MP, and RN; we can similarly define other sys-
tems such as KD45 or KT5. KT has traditionally been
called T; KT4 has traditionally been called S4; and KT45

has traditionally been called S5.

For the purposes of this paper, we take a modal logic L
to be any collection of formulas that contains all instances
of Prop and is closed under modus ponens (MP) and substitu-
tion, so that if ϕ is a formula in L and p is a primitive proposi-
tion, then ϕ[p/ψ] ∈ L, whereϕ[p/ψ] is the result of replacing
all instances of p in ϕ by ψ. A logic is normal if it contains
all instances of the axiom K and is closed under the inference
rule RN. In terms of this notation, Ladner 1977 showed that
if L is a normal modal logic between K and S4 (since we
are identifying a modal logic with a set of formulas here, that
just means that K ⊆ L ⊆ S4), then determining if ϕ ∈ L
is PSPACE-hard. (Of course, if we think of a modal logic as
being characterized by an axiom system, then ϕ ∈ L iff ϕ is
provable from the axioms characterizing L.) We say that ϕ
is consistent with L if ¬ϕ /∈ L. Since consistency is just the
dual of provability, it follows from Ladner’s result that testing
consistency is PSPACE-hard for every normal logic between
K and S4. Ladner’s proof actually shows more: the proof
holds without change for non-normal logics, and it shows that
some formulas consistent with logics between K and S4 are
satisfiable only in large models. More precisely, it shows the
following:

Theorem 2.1: [Ladner, 1977]

(a) Checking consistency is PSPACE complete for every
logic between K and S4 (even non-normal logics).

(b) For every logic L between K and S4, there exists a fam-
ily of formulas ϕL

n , n = 1, 2, 3, . . ., such that (i) for all
n, ϕL

n is consistent with L, (ii) there exists a constant d
such that |ϕL

n | ≤ dn, (iii) the smallest Kripke structure
that satisfies ϕ has at least 2n states.
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There is a well-known correspondence between properties
of the K relation and axioms: reflexivity corresponds to T,
transitivity corresponds to 4, the Euclidean property corre-
sponds to 5, and the serial property corresponds to D. This
correspondence is made precise in the following well-known
theorem (see, for example, [Fagin et al., 1995]).

Theorem 2.2: Let C be a (possibly empty) subset of {T, 4, 5,
D} and let C be the corresponding subset of {r, t, e, s}. Then
{Prop, K, MP, RN} ∪ C is a sound and complete axiomatiza-
tion of the language LK

1 (Φ) with respect to SC(Φ).3

Given a modal logic L, let SL consist of all situations
(F, s) such that ϕ ∈ L implies that (F, s) |= ϕ. An imme-
diate consequence of Theorem 2.2 is that Se, the situations
where the K relation is Euclidean, is a subset of SK5.

Nagle and Thomason 1985 provide a useful semantic char-
acterization of all logics that contain K5. We review the rele-
vant details here. Consider all the finite situations ((S,K), s)
such that either

1. S is the disjoint union of S1, S2, and {s} and K =
({s} × S1) ∪ ((S1 ∪ S2)× (S1 ∪ S2)), where S2 = ∅ if
S1 = ∅; or

2. K = S × S.

Using (a slight variant of) Nagle and Thomason’s nota-
tion, let Sm,n, with m ≥ 1 and n ≥ 0 or (m,n) = (0, 0),
denote all situations of the first type where |S1| = m and
|S2| = n, and let Sm,−1 denote all situations of the second
type where |S| = m. (The reason for taking -1 to be the
second subscript for situations of the second type will be-
come clearer below.) It is immediate that all situations in
Sm,n for fixed m and n are isomorphic—they differ only in
the names assigned to states. Thus, the same formulas are
valid in any two situations in Sm,n. Moreover, it is easy to
check that the K relation in each of the situations above in
Euclidean, so each of these situations is in SK5. It is well
known that the situations in Sm,−1 are all in SK5 and the sit-

uations in Sm,−1 ∪Sm,0 are all in SKD45. In fact, S5 (resp.,
KD45) is sound and complete with respect to the situations
in Sm,−1 (resp., Sm,−1 ∪ Sm,0). Nagle and Thomason show

that much more is true. Let T L = (∪{Sm,n : m ≥ 1, n ≥
−1 or (m,n) = (0, 0)}) ∩ SL.

Theorem 2.3: [Nagle and Thomason, 1985] For every logic
L containing K5, L is sound and complete with respect to
the situations in T L.

The key result of this paper shows that if a formula ϕ is
consistent with a logic L containing K5, then there exists
m,n, a Kripke structure M = (S,K, π), and a state s ∈ S
such that ((S,K), s) ∈ Sm,n, Sm,n ⊆ T L, and m+ n < |ϕ|.

3We remark that soundness and completeness is usually stated
with respect to the appropriate class MC of structures, rather than
the class SC of situations. However, the same proof applies without
change to show completeness with respect to SC , and using SC

allows us to relate this result to our later results. While for normal
logics it suffices to consider only validity with respect to structures,
for non-normal logics, we need to consider validity with respect to
situations.

That is, if ϕ is satisfiable at all, it is satisfiable in a situation
with a number of states that is linear in |ϕ|.

One more observation made by Nagle and Thomason will
be important in the sequel.

Definition 2.4 : A p-morphism (short for pseudo-
epimorphism) from situation ((S′,K′), s′) to situation
((S,K), s) is a function f : S′ → S such that

• f(s′) = s;

• if (s1, s2) ∈ K, then (f(s1), f(s2)) ∈ K′;

• if (f(s1), s3) ∈ K, then there exists some s2 ∈ S′ such
that (s1, s2) ∈ K′ and f(s2) = s3.

This notion of p-morphism of situations is a variant of stan-
dard notions of p-morphism of frames and structures [Black-
burn et al., 2001]. It is well known that if there is a p-
morphism from one structure to another, then the two struc-
tures satisfy the same formulas. An analogous result, which
is proved in the full paper, holds for situations.

Theorem 2.5: If there is a p-morphism from situation (F ′, s′)
to (F, s), then for every modal logic L, if (F ′, s′) ∈ SL then
(F, s) ∈ SL.

Now consider a partial order on pairs of numbers, so that
(m,n) ≤ (m′, n′) iff m ≤ m′ and n ≤ n′. Nagle and
Thomason observed that if (F, s) ∈ Sm,n, (F ′, s′) ∈ Sm′,n′ ,
and (1,−1) ≤ (m,n) ≤ (m′, n′), then there is an obvi-
ous p-morphism from (F ′, s′) to (F, s): if F = (S,K),
S = S1 ∪ S2, F ′ = (S′,K′), S′ = S′

1
∪ S′

2
(where Si and

S′

i for i = 1, 2 are as in the definition of Sm,n), then define
f : S′ → S so that f(s′) = s, f maps S′

1
onto S1, and, if

S2 �= ∅, then f maps S′

2
onto S2; otherwise, f maps S′

2
to

S1 arbitrarily. The following result (which motivates the sub-
script −1 in Sm,−1) is immediate from this observation and
Theorem 2.5.

Theorem 2.6: If (F, s) ∈ Sm,n, (F ′, s′) ∈ Sm′,n′ , and
(1,−1) ≤ (m,n) ≤ (m′, n′), then for every modal logic
L, if (F ′, s′) ∈ T L then (F, s) ∈ T L.

3 The Main Results

We can now state our key technical result.

Theorem 3.1: If L is a modal logic containing K5 and ¬ϕ /∈
L, then there exist m, n such that m + n < |ϕ|, a situation
(F, s) ∈ SL ∩ Sm,n, and structure M based on F such that
(M, s) |= ϕ.

Proof: By Theorem 2.3, if ¬ϕ /∈ L, there is a situation
(F ′, s0) ∈ T L such that (F ′, s0) �|= ¬ϕ. Thus, there exists
a Kripke structure M ′ based on F ′ such that (M ′, s0) |= ϕ.
Suppose that F ′ ∈ Sm′,n′ . If m′ + n′ < |ϕ|, we are done, so
suppose that m′ + n′ ≥ |ϕ|. Note that this means m′ ≥ 1.
We now construct a a situation (F, s) ∈ Sm.n such that
(1,−1) ≤ (m,n) ≤ (m′, n′), m+ n < |ϕ|, and (M, s) |= ϕ
for some Kripke structure based on F . This gives the desired
result. The construction of M is similar in spirit to Ladner’s
1977 proof of the analogous result for the case of S5.

IJCAI-07
2308



Let C1 be the set of subformulas of ϕ of the formKψ such
that (M ′, s0) |= ¬Kψ, and let C2 be the set of subformulas
of ϕ of the formKψ such thatKKψ is a subformula of ϕ and
(M ′, s0) |= ¬KKψ ∧Kψ. (We remark that it is not hard to
show that if K is either reflexive or transitive, then C2 = ∅.)

Suppose that M ′ = (S′,K′, π′). For each formula

Kψ ∈ C1, there must exist a state sC1

ψ ∈ K′(s0) such that

(M ′, sC1

ψ ) |= ¬ψ. Note that if C1 �= ∅ then K′(s0) �= ∅.

Define I(s0) = {s0} if s0 ∈ K′(s0), and I(s0) = ∅ oth-

erwise. Let S1 = {sC1

ψ : Kψ ∈ C1} ∪ I(s0). Note that

S1 ⊆ K′(s0) = S′

1
, so |S1| ≤ |S′

1
|. If Kψ ∈ C2 then

KKψ ∈ C1, so there must exist a state sC2

ψ ∈ K′(sC1

Kψ) such

that (M ′, sC2

ψ ) |= ¬ψ. Moreover, since (M ′, s0) |= Kψ, it

must be the case that sC2

ψ /∈ K′(s0). Let S2 = {sC2

ψ : Kψ ∈

C2}. By construction, S2 ⊆ S′

2
, so |S2| ≤ |S′

2
|, and S1 and

S2 are disjoint. Moreover, if S1 = ∅, then C1 = ∅, so C2 = ∅
and S2 = ∅.

Let S = {s0}∪S1∪S2. Define the binary relation K on S
by taking K(s0) = S1 and K(t) = S1 ∪ S2 for t ∈ S1 ∪ S2.
In the full paper, we show that K is well defined; in particular,
we show that (a) s0 /∈ S2 and (b) if s0 ∈ S1, then S2 = ∅.
We also show that K is the restriction of K′ to S.

Let M = (S,K, π), where π is the restriction of π′ to
{s0}∪S1∪S2. It is well known [Fagin et al., 1995] (and easy
to prove by induction on ϕ) that there are at most |ϕ| subfor-
mulas of ϕ. Since C1 and C2 are disjoint sets of subformulas
of ϕ, all of the form Kψ, and at least one subformula of ϕ is
a primitive proposition (and thus not of the formKψ), it must
be the case that |C1| + |C2| ≤ |ϕ| − 1, giving us the desired
bound on the number of states.

In the full paper we show, by a relatively straightforward
induction on the structure of formulas, that for all states s ∈ S
and for all subformulas ψ of ϕ (including ϕ itself), (M, s) |=
ψ iff (M ′, s) |= ψ. The proof proceeds by induction on the
structure of ϕ.

By construction, (F, s) ∈ Sm,n, where m = |S1| and n =
|S2|. We have already observed thatm+n < |ϕ|, |S1| ≤ |S′

1
|,

and |S2| ≤ |S′

2|. Thus, (m,n) ≤ (m′, n′). It follows from
Theorem 2.6 that (F, s) ∈ T L ⊆ SL. This completes the
proof.

The idea for showing that the consistency problem for a
logic L that contains K5 is NP-complete is straightforward.
Given a formula ϕ that we want to show is consistent with L,
we simply guess a frame F = (S,K), structure M based on
F , and state s ∈ S such that (F, s) ∈ Sm,n withm+n < |ϕ|,
and verify that (M, s) |= ϕ and Sm,n ⊆ T L. Verifying
that (M, s) |= ϕ is the model-checking problem. It is well
known that this can be done in time polynomial in the num-
ber of states of M , which in this case is linear in |ϕ|. So it
remains to show that, given a logic L containing K5, check-
ing whether Sm,n ⊆ T L can be done efficiently. This follows
from observations made by Nagle and Thomason 1985 show-
ing that that, although T L may include Sm′,n′ for infinitely

many pairs (m′, n′), T L has a finite representation that makes
it easy to check whether Sm.n ⊆ T L.

Say that (m,n) is a maximal index of T L if m ≥ 1,
Sm,n ⊆ T L, and it is not the case that Sm′,n′ ⊆ T L for some

(m′, n′) with (m,n) < (m′, n′). It is easy to see that T L can
have at most finitely many maximal indices. Indeed, if (m,n)
is a maximal index, then there can be at mostm+n−1 max-
imal indices, for if (m′, n′) is another maximal index, then
either m′ < m or n′ < n (for otherwise (m,n) ≤ (m′, n′),
contradicting the maximality of (m,n)). Say that m ≥ 1 is
an infinitary first index of T L if Sm,n ⊆ T L for all n ≥ −1.
Similarly, say that n ≥ −1 is an infinitary second index of
T L if Sm,n ⊆ T L for all m ≥ 1. Note that it follows from
Theorem 2.6 that if (1,−1) ≤ (m,n) ≤ (m′, n′), then if m′

is an infinitary first index of T L, then so is m, and if n′ is an
infinitary second index of T L, then so is n. Suppose that m∗

is the largest infinitary first index of T L and n∗ is the largest
infinitary second index of T L, where we take m∗ = n∗ = ∞
if all first indices are infinitary (or, equivalently, if all second
indices are infinitary), we take m∗ = 0 if no first indices are
infinitary, and we take n∗ = −2 if no second indices are in-
finitary. It follows from all this that T L can be represented by
the tuple (i,m∗, n∗, (m1, n1), . . . , (mk, nk)), where

• i is either 0 or 1, depending on whether S0,0 ∈ T L;

• m∗ is the largest infinitary first index;

• n∗ is the largest infinitary second index; and

• ((m1, n1), . . . , (mk, nk) are the maximal indices.

Given this representation of T L, it is immediate that Sm,n ⊆
T L iff one of the following conditions holds:

• (m,n) = (0, 0) and i = 1;

• 1 ≤ m ≤ m∗;

• −1 ≤ n ≤ n∗; or

• (m,n) ≤ (mk, nk).

We can assume that the algorithm for checking whether a for-
mula is consistent with L is “hardwired” with this description
of L. It follows that only a constant number of checks (inde-
pendent of ϕ) are required to see if Sm,n ⊆ T L.4

Putting all this together, we get our main result.

Theorem 3.2: For all logics L containing K5, checking
whether ϕ is consistent with L is an NP-complete problem.

4 Discussion and Related Work

We have shown all that, in a precise sense, adding the negative
introspection axiom pushes the complexity of a logic between
K and S4 down from PSPACE-hard to NP-complete. This is
not the only attempt to pin down the NP-PSPACE gap and to
understand the effect of the negative introspection axiom. We
discuss some of the related work here.

A number of results showing that large classes of logics
have an NP-complete satisfiability problem have been proved

4Here we have implicitly assumed that checking whether in-
equalities such as (m, n) ≤ (m′, n′) hold can be done in one time
step. If we assume instead that it requires time logarithmic in the
inputs, then checking if Sm,n ⊆ T L requires time logarithmic in
m + n, since we can take all of m∗, n∗, m1, . . . mk, n1, . . . , nk to
be constants.
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recently. For example, Litak and Wolter 2005 show that
the satisfiability for all finitely axiomatizatble tense logics
of linear time is NP-complete, and Bezhanishvili and Hod-
kinson 2004 show that every normal modal logic that prop-

erly extends S5
2 (where S5

2 is the modal logic that con-
tains two modal operators K1 and K2, each of which satis-
fies the axioms and rules of inference of S5 as well as the
axiom K1K2p ⇔ K2K1p) has a satisfiability problem that
is NP-complete. Perhaps the most closely related result is
that of Hemaspaandra 1993, who showed that the consis-
tency problem for any normal logic containing S4.3 is also
NP-complete. S4.3 is the logic that results from adding the
following axiom, known in the literature as D1, to S4:

D1. K(Kϕ⇒ ψ) ∨K(Kψ ⇒ ϕ)

D1 is characterized by the connectedness property: it is
valid in a situation ((S,K), s) if for all s1, s2, s3 ∈ S, if
(s1, s2) ∈ K and (s1, s3) ∈ K, then either (s2, s3) ∈ K or
(s3, s2) ∈ K. Note that connectedness is somewhat weaker
than the Euclidean property; the latter would require that both
(s2, s3) and (s3, s2) be in K.

As it stands, our result is incomparable to Hemspaandra’s.
To make the relationship clearer, we can restate her result as
saying that the consistency property for any normal logic that
contains K and the axioms T, 4, and D1 is NP-complete. We
do not require either 4 or T for our result. However, although
the Euclidean property does not imply either transitivity or
reflexivity, it does imply secondary reflexivity and secondary
transitivity. That is, if K satisfies the Euclidean property, then
for all states s1, s2, s3, s4, if (s1, s2) ∈ K, then (s2, s2) ∈ K
and if (s2, s3) and (s3, s4) ∈ K, then (s2, s4) ∈ K; roughly
speaking, reflexivity and transitivity hold for all states s2 in
the range of K. Secondary reflexivity and secondary transi-
tivity can be captured by the following two axioms:

T′. K(Kϕ⇒ ϕ)

4′. K(Kϕ⇒ KKϕ)

Both T′ and 4′ follow from 5, and thus both are sound in any
logic that extends K5. Clearly T′ and 4′ also both hold in any
logic that extends S4.3, since S4.3 contains T, 4, and the in-
ference rule RN. We conjecture that the consistency property
for every logic that extends K and includes the axioms T′,
4′, and D1 is NP-complete. If this result were true, it would
generalize both our result and Spaan’s result.

Vardi 1989 used a difference approach to understand the
semantics, rather than relational semantics. This allowed
him to consider logics that do not satisfy the K axiom. He
showed that some of these logics have a consistency prob-
lem that is NP-complete (for example, the minimal normal
logic, which characterized by Prop, MP, and RN), while oth-
ers are PSPACE-hard. In particular, he showed that adding
the axiom Kϕ ∧ Kψ ⇒ K(ϕ ∧ ψ) (which is valid in K)
to Prop, MP, and RN gives a logic that is PSPACE-hard. He
then conjectured that this ability to “combine” information is
what leads to PSPACE-hardness. However, this conjecture
has been shown to be false. There are logics that lack this
axiom and, nevertheless, the consistency problem for these
logics is PSPACE-complete (see [Allen, 2005] for a recent
discussion and pointers to the relevant literature).

All the results for this paper are for single-agent logics.
Halpern and Moses 1992 showed that the consistency prob-
lem for a logic with two modal operators K1 and K2, each
of which satisfies the S5 axioms, is PSPACE-complete. In-
deed, it is easy to see that if Ki satisfies the axioms of Li for
some normal modal logic Li containing K5, then the consis-
tency problem for the logic that includes K1 and K2 must be
PSPACE-hard. This actually follows immediately from Lad-
ner’s 1977 result; then it is easy to see that K1K2, viewed as
a single operator, satisfies the axioms of K. We conjecture
that this result continues to hold even for non-normal logics.

We have shown that somewhat similar results hold when
we add awareness to the logic (in the spirit of Fagin and
Halpern 1988), but allow awareness of unawareness [Halpern
and Rêgo, 2006]. In the single-agent case, if the K operator
satisfies the axioms K, 5, and some (possibly empty) subset
of {T, 4}, then the validity problem for the logic is decidable;
on other hand, if K does not satisfy 5, then the validity prob-
lem for the logic is undecidable. With at least two agents, the
validity problem is undecidable no matter which subset of ax-
iomsK satisfies. We conjecture that, more generally, if theK
operator satisfies the axioms of any logic L containing K5,
the logic of awareness of unawareness is decidable, while if
K satisfies the axioms of any logic between K and S4, the
logic is undecidable.

All these results strongly suggest that there is something
about the Euclidean property (or, equivalently, the negative
introspection axiom) that simplifies things. However, they do
not quite make precise exactly what that something is. More
generally, it may be worth understanding more deeply what
is about properties of the K relation that makes things easy or
hard. We leave this problem for future work.
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