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Abstract

Learning real-time search, which interleaves plan-
ning and acting, allows agents to learn from mul-
tiple trials and respond quickly. Such algorithms
require no prior knowledge of the environment
and can be deployed without pre-processing. We
introduce Prioritized-LRTA* (P-LRTA*), a learn-
ing real-time search algorithm based on Prioritized
Sweeping. P-LRTA* focuses learning on important
areas of the search space, where the importance of
a state is determined by the magnitude of the up-
dates made to neighboring states. Empirical tests
on path-planning in commercial game maps show
a substantial learning speed-up over state-of-the-art
real-time search algorithms.

1 Introduction
We introduce Prioritized Learning Real-Time A* (P-LRTA*).
P-LRTA* prioritizes learning to achieve significant speed-ups
over competing real-time search algorithms.

Real-time search algorithms interleave planning and acting
to generate actions in user-bounded time. These algorithms
are also agent-centered [Koenig, 2001]: they do not require
a priori knowledge of the map, they learn the transition model
by interacting with the environment, and they improve their
solutions by refining a heuristic function over multiple trials.
Algorithms with these three properties can be used for path-
planning in computer games, virtual reality trainers [Dini et
al., 2006], and robotics [Koenig and Simmons, 1998]. In each
of these domains, agents plan and act in potentially unknown
environments; when identical tasks must be solved in succes-
sion, the agent has an opportunity to improve its performance
by learning. Examples include commute-type tasks, such as
resource collection and patrolling.

Our focus is on the learning process. Since learning takes
place on-line and on-site, it is critical to minimize learning
time by converging rapidly to high-quality solutions.

We build on existing research and present a learning real-
time search algorithm that makes learning more experience-
efficient by prioritizing updates [Moore and Atkeson, 1993].
States that are deemed important are updated before other
states, where importance is determined by the magnitude of

the updates made to a neighboring state. Prioritizing heuris-
tic updates for efficient learning is motivated by two obser-
vations about asynchronous dynamic programming [Barto et
al., 1995]. First, since states are updated one at a time, new
state values depend upon the order in which the updates oc-
cur; a judicious update ordering can make individual updates
more effective. Second, a significant update to one state often
affects its neighbors, and giving priority to these neighbors
can focus computation on the most worthwhile updates.

The rest of the paper is organized as follows: first, we for-
mally describe the problem. Next, we examine and identify
the shortcomings of related algorithms, and motivate our ap-
proach. We then provide a comprehensive description of our
novel algorithm, and its general properties. Next we justify
our performance metrics and conduct an empirical evaluation.
We conclude by considering possible extensions to P-LRTA*.

2 Problem Formulation
We focus on problems defined by the tuple
(S, A, c, s0, sg, h0): S is a finite set of states, A is a
set of deterministic actions that cause state transitions, and
c(s, a) is the cost of performing action a ∈ A in state s ∈ S;
if executing action a in state s returns the agent to state
s, that action is said to be blocked. Blocked actions are
discovered when they are within the agent’s visibility radius,
the distance at which the agent can sense the environment
and update its transition model.

The agent begins in a particular start state s0 ∈ S and aims
to reach the goal state sg . Upon reaching a goal state, the
agent is teleported back to the start state and commences a
new trial. A learning agent has converged when it completes
a trial without updating the heuristic value of any state.

For every action executed, the agent incurs a cost associ-
ated with that action. In general, any real-valued costs lower-
bounded by a positive constant can be used. We assume that
the state space is safely explorable insomuch as a goal state
is reachable from any state.

The agent deals with its initial uncertainty about whether
an action is blocked in a particular state by assuming that all
actions from all states are unblocked; this belief is known
as the freespace assumption [Koenig et al., 2003]. As the
agent explores, it can learn and remember which actions are
possible in which states, and plan accordingly.
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3 Related Work
A real-time agent is situated at any given time in a single state
known as its current state. The current state can be changed
by taking actions and incurring an execution cost. An agent
can reach the goal from the current state in one of two ways:
the agent can plan a sequence of actions leading to the goal
and then act, or the agent can plan incompletely, execute this
partial plan, and then repeat until it reaches the goal. We
review search algorithms for both techniques.

An agent using Local Repair A* (LRA*) [Silver, 2005]

plans a complete path from its current state to the goal, and
then executes this plan. This path is optimal given the agent’s
current knowledge. The agent may discover that its planned
path is blocked, and at this point will stop and re-plan with
updated world knowledge. Each plan is generated with an
A* search [Hart et al., 1968], so the time needed for the first
move and for re-planning is O(n log n), where n is the num-
ber of states. Algorithms such as Dynamic A* (D*) [Stentz,
1995] and D* Lite [Koenig and Likhachev, 2002] efficiently
correct the current plan rather than reproduce it, but they do
not reduce the computation needed before the first move of
each trial can be executed. A large first-move delay nega-
tively affects an agent’s responsiveness in interactive environ-
ments such as computer games and high-speed robotics.

In its simplest form, Korf’s Learning Real-Time A*
(LRTA*) [1990] updates the current state only with respect to
its immediate neighbors. We refer to this version of LRTA*
as LRTA*(d=1). If the initial heuristic is non-overestimating
then LRTA* converges optimally [Korf, 1990]. The amount
of travel on each trial during learning can oscillate unpre-
dictably, causing seemingly irrational behavior. Heuristic
weighting and learning a separate upper bound reduces the
path length instability [Shimbo and Ishida, 2003; Bulitko and
Lee, 2006], but can result in suboptimal solutions.

We define the local search space (LSS) as those states
whose neighbors are generated when planning a move.
LRTA*(d=1) only looks at the current state’s immediate
neighbors, but a deeper lookahead gives an agent more in-
formation to decide on the next action [Korf, 1990]. For in-
stance, LRTS [Bulitko and Lee, 2006] considers all of the
states within a radius d of the current state. Alternatively,
Koenig uses an LSS defined by a partial A* search from the
current state to the goal [2004; 2006].

Updating more than one state value in each planning
stage can result in more efficient learning. One example
of this is physical backtracking, which helps to keep state
updates in close physical proximity to the agent: SLA*,
SLA*T [Shue and Zamani, 1993a; 1993b; Shue et al.,
2001], γ-Trap [Bulitko, 2004], and LRTS [Bulitko and Lee,
2006] all physically return to previously visited states, po-
tentially reducing the number of trials needed for conver-
gence with the possibility of increasing travel cost. Al-
ternatively, LRTA*(k) [Hernández and Meseguer, 2005b;
2005a] uses mental backups to decrease the number of con-
vergence trials. These two techniques are difficult to com-
bine, and a recent study demonstrates the fragile and highly
context-specific effects of combining physical and mental
backups [Sigmundarson and Björnsson, 2006].

PRIORITIZED-LRTA*(s)

while s �= sg do
STATEUPDATE(s)
repeat

p = queue.pop()
if p �= sg then

STATEUPDATE(p)
end if

until N states are updated or queue = ∅
s ⇐ neighbor s’ with lowest f(s, s′) = c(s, s′) + h(s′)

end while

Figure 1: The P-LRTA* agent updates the current state, s, and
as many as N states taken from the queue, where N is an
input parameter defined by the user. The agent takes a single
greedy move, and then repeats this process until reaching the
goal state, sg.

Koenig’s LRTA* [Koenig, 2004] updates the heuristic val-
ues of all LSS states on each move to accelerate the conver-
gence process. While the Dijkstra-style relaxation procedure
it uses produces highly informed heuristics, the process is ex-
pensive, and limits the size of LSS that can be used in real-
time domains [Koenig and Likhachev, 2006].

In an attempt to reduce convergence execution cost, PR-
LRTS [Bulitko et al., 2005] builds a hierarchy of levels of
abstraction and runs search algorithms on each level. The
search at the higher levels of abstraction constrains lower-
level searches to promising sections of the map, reducing ex-
ploration in lower levels. As a result, convergence travel and
first move delay are improved at the cost of a complex imple-
mentation and the additional computation required to main-
tain the abstraction hierarchy during exploration.

A different line of research considers sophisticated up-
date schemes for real-time dynamic programming algorithms.
As Barto, Bradtke, and Singh note, “[the] subset of states
whose costs are backed up changes from stage to stage, and
the choice of these subsets determines the precise nature of
the algorithm” [1995]. Prioritized Sweeping, a reinforce-
ment learning algorithm, performs updates in order of pri-
ority [Moore and Atkeson, 1993]. A state has high priority
if it has a large potential change in its value function. Only
states with a potential update greater than ε(ε > 0, ε ∈ R) are
added to the queue. Prioritized Sweeping is shown to be more
experience efficient than Q-learning and Dyna-PI [Moore and
Atkeson, 1993], and is a core influence for our algorithm.

4 Novel Algorithm
Prioritized-LRTA* (P-LRTA*) combines the ranked updates
of Prioritized Sweeping with LRTA*’s real-time search as-
sumptions of a deterministic environment and a non-trivial
initial heuristic. In this section we describe P-LRTA*’s algo-
rithmic details, then comment on the nature of its execution.

A P-LRTA* agent has a planning phase and an acting phase
which are interleaved until the agent reaches the goal (Fig-
ure 1). During its planning phase, the agent gains knowl-
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STATEUPDATE(s)

find neighbor s′ with the lowest f(s, s′) = c(s, s′) + h(s′)
Δ ⇐ f(s, s′) − h(s)
if Δ > 0 then

h(s) ⇐ f(s, s′)
for all neighbors n of s do

ADDTOQUEUE(n, Δ)
end for

end if

Figure 2: The value of state s is set to the lowest available
c(s, s′) + h(s′), where c(s, s′) is the cost of traveling to s′, and
h(s′) estimates the distance from s′ to the goal. If the value of
s changes, its neighbors are enqueued.

ADDTOQUEUE(s,Δs)

if s /∈ queue then
if queueFull() then

find state r ∈ queue with smallest Δr

if Δr < Δs then
queueRemove(r)
queueInsert(s,Δs)

end if
else

queueInsert(s,Δs)
end if

end if

Figure 3: State s is inserted into the queue if there is room in
the queue or if its priority is greater than that of some previ-
ously enqueued state r. If a state has already been enqueued,
it will not be inserted a second time into the queue.

edge about how to navigate the world by updating the dis-
tance heuristics at select states. During its acting phase, the
agent simply uses greedy action-selection to choose it next
move. We describe these two phases in detail.

At the beginning of the planning phase, the agent updates
the current state s by considering its immediate neighbors
(Figure 2). The amount by which the current state’s value
changes is stored in a variable, Δ. Next, each of the cur-
rent state’s neighbors are slated for entry into the queue with
priority Δ. If the queue is full, the entry with lowest prior-
ity is removed (Figure 3). P-LRTA* requires no initial world
model; updates that spread to unseen states use the freespace
assumption.

Once the current state’s heuristic is updated, a series of pri-
oritized updates begins. At most N states, where N is spec-
ified by the user, are taken from the top of the queue and up-
dated using the procedure in Figure 2. If there are still states
in the queue after the N updates, they remain in the queue to
be used in the next planning phase.

Having completed the planning phase, the agent moves to
the acting phase. The agent takes a single action, moving to
the neighboring state s′ with the minimum-valued f(s, s′) =
c(s, s′) + h(s′), where c(s, s′) is the cost of traveling to s′

and h(s′) is the current estimated cost of traveling from s′ to
the closest goal state (Figure 1).

5 Algorithm Properties
In this section we make general observations of the key fea-
tures that make P-LRTA* different from other learning real-
time search algorithms. Next, we discuss P-LRTA*’s conver-
gence, as well as its space and time complexity.

Key Features and Design
Unlike Prioritized Sweeping’s ε parameter, which restricts
potentially small updates from entering the queue, P-LRTA*
specifies a maximum queue size. This guarantees a strict limit
on the memory and computational time used while enabling
the algorithm to process arbitrarily small updates.

Because P-LRTA* specifies that the current state always be
updated, P-LRTA* degenerates to Korf’s LRTA*(d=1) [Korf,
1990] when the size of the queue is 0.

A P-LRTA* agent disallows duplicate entries in its queue,
and retains the contents of its queue between acting phases.
This design is a key difference between P-LRTA* and real-
time search algorithms such as LRTA*(k) [Hernández and
Meseguer, 2005b; 2005a] and Koenig’s LRTA* [Koenig,
2004] since a P-LRTA* agent’s local search space is not nec-
essarily contiguous or dependent on the agent’s current state.
This property is beneficial, as a change to a single state’s
heuristic value can indeed affect the heuristic values of many,
potentially remote, states. Empirically, limiting how far up-
dates can propagate into unexplored regions of the state space
does not significantly impact P-LRTA*’s performance.

The P-LRTA* algorithm we present specifies only a pri-
oritized learning process and greedy action selection. But
P-LRTA* can be modified to select actions in a way that
incorporates techniques from other algorithms, such as in-
creased lookahead within a specified radius [Bulitko and
Lee, 2006], heuristic weighting [Shimbo and Ishida, 2003;
Bulitko and Lee, 2006], or preferentially taking actions that
take the agent through recently updated states [Koenig, 2004].

Theoretical Evaluation
Similar to Korf’s LRTA* [Korf, 1990], P-LRTA* can be
viewed as a special case of Barto et al.’s Trial-Based Real-
Time Dynamic Programming (RTDP). In the following the-
orems, we outline why the theoretical guarantees of Trial-
Based RTDP still hold for P-LRTA*, and explain P-LRTA*’s
time and space complexity.

Theorem 1 P-LRTA* converges to an optimal solution from
a start state s0 ∈ S to a goal state sg ∈ S when the initial
heuristic is non-overestimating.

Our algorithm meets the criteria set out for convergence
by Barto et al. in [Barto et al., 1995]. It is shown that Trial-
Based RTDP, and by extension P-LRTA*, converges to an op-
timal policy in undiscounted shortest path problems for any
start state s0 and any set of goal states Sg when there exists a
policy that takes the agent to the goal with probability 1.

Theorem 2 P-LRTA*’s per-move time complexity is in
O(m · log(q)), where m is the maximum number of updates
per time step and q is the size of the queue.
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The primary source of P-LRTA*’s per-move time complex-
ity comes from the m updates the algorithm performs, where
m can be specified. Each of these m updates potentially re-
sults in b queue insertions, where b is the branching factor
at the current state. Each of these insertions requires that we
check whether that state is already queued (O(1) using a hash
table) and whether or not it has high enough priority to be
queued (O(log(q)) using an ordered balanced tree).

Theorem 3 P-LRTA*’s memory requirements are of space
complexity O(|S|), where |S| is the size of the state space.

P-LRTA* requires memory for both its environmental
model and the states on the queue. Learning a model of an
a priori unknown environment necessitates keeping track of
a constant number of connections between up to |S| states.
Also, because duplicate states are disallowed, the maximum
number of states in the queue, q, cannot exceed |S|.

6 Performance Metrics
Real-time search algorithms are often used when system re-
sponse time and user experience are important, and so we
measure the performance of search algorithms using the fol-
lowing metrics.

First-move lag is the time before the agent can make its first
move. We measure an algorithm’s first-move lag in terms of
the number of states touched on the first move of the last trial;
that is, after the agent has converged on a solution. This is in
line with previous research in real-time search and enables us
to compare new results to old results.

Suboptimality of the final solution is the percentage-wise
amount that the length of the final path is longer than the
length of the optimal path.

Planning time per unit of distance traveled indicates the
amount of planning per step. In real-time multi-agent applica-
tions, this measure is upper bounded by the application con-
straints (e.g., producing an action at each time step in a video
game). An algorithm’s planning time is measured in terms of
the number of states touched per unit of distance traveled.

The memory consumed is the number of heuristic values
stored in the heuristic table. This measure does not include
the memory used to store the observed map, as the algorithms
we run use the same map representation.

Learning heuristic search algorithms typically learn over
multiple trials. We use convergence execution cost to measure
the total distance physically traveled by an agent during the
learning process. We measure this in terms of the distance
traveled by the agent until its path converges, where distance
is measured in terms of the cost c of traveling from one state
to the next.

Note that to keep the measures platform independent, we
report planning time as the number of states touched by an
algorithm. A state is considered touched when its heuristic
value is accessed by the algorithm. There is a linear correla-
tion between the number of states touched and the wall time
taken for our implementation.

7 Experimental Results
We ran search algorithms on path-planning problems on five
different maps taken from a best-selling commercial com-

puter game. The use of this particular testbed enabled com-
parison against existing, published data. The number of states
in each map is 2,765, 7,637, 13,765, 14,098, and 16,142. We
generated 2,000 problems for each map, resulting in a total of
10,000 unique path planning problems to be solved by each
of the 12 competing parameterizations of learning real-time
search algorithms (Table 1).

The agent incurs unit costs for moving between states in

a cardinal direction, and costs of
√

2 for moving diagonally.
All the algorithms experimented with use octile distance [Bu-
litko and Lee, 2006] as the initial heuristic h0, which, for
every state s, is the precise execution cost that would be in-
curred by the agent if there were no obstacles between s and
the goal, sg . The maps are initially unknown to each of the
agents, and the uncertainty about the map is handled using
the aforementioned freespace assumption. The visibility ra-
dius of each algorithm is set to 10, which limits each agent in
what it knows about the world before it begins planning.

We compare P-LRTA* to five algorithms: LRA*,
LRTA*(d=1), LRTS(d=10,γ=0.5,T=0), PR-LRTS with LRA*
on the base level and LRTS(d=5,γ=0.5,T=0) on the first ab-
stract level. The LRTS parameters were hand-tuned for
low convergence execution cost. Since the size of Koenig’s
A*-defined strict search space is a similar parameter to P-
LRTA*’s queue size, we compare against Koenig’s LRTA*
using local search spaces of size 10, 20, 30, and 40.
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Figure 4: Convergence execution cost in semi-log averaged
over 1,000 problems plotted against optimal solution length.
LRTA*(d=1) has a large convergence execution cost, while P-
LRTA*(queueSize=39,updates=40) has convergence execu-
tion cost comparable to LRA*.

Each algorithm’s performance is tabulated for compari-
son in Table 1. LRA* and LRTA*(d=1) demonstrate ex-
tremes: LRA* has the smallest convergence execution cost
and stores no heuristic values, but its first-move lag is the
greatest of all algorithms because it plans all the way to the
goal. LRTA*(d=1) has the largest convergence execution cost
as a result of its simplistic update procedure, but its first-
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Algorithm Execution Planning Lag Heuristic Memory Suboptimality (%)
LRA* 158.3 ± 1.3 49.8 ± 1.1 2255.2 ± 28.0 0 0

LRTA*(d=1) 9808.5 ± 172.1 7.2 ± 0.0 8.2 ± 0.0 307.8 ± 5.1 0
LRTS(d=10, γ=0.5, T=0) 3067.4 ± 504.4 208.6 ± 1.4 1852.9 ± 6.9 24.6 ± 1.2 0.9 ± 0.02

PR-LRTS(d=5,γ =0.5,T=0) 831.9 ± 79.1 57.6 ± 0.3 548.5 ± 1.7 9.3 ± 0.4 1.0 ± 0.02

Koenig’s LRTA*(LSS=10) 2903.1 ± 51.5 70.9 ± 1.62 173.1 ± 0.3 424.5 ± 7.6 0
Koenig’s LRTA*(LSS=20) 2088.6 ± 39.3 130.1 ± 3.5 322.1 ± 0.6 440.2 ± 8.2 0
Koenig’s LRTA*(LSS=30) 1753.2 ± 32.4 188.6 ± 5.0 460.1 ± 1.1 448.8 ± 8.2 0
Koenig’s LRTA*(LSS=40) 1584.4 ± 31.5 250.8 ± 7.5 593.9 ± 1.6 460.4 ± 8.7 0

P-LRTA*(queueSize=9, updates=10) 1236.0 ± 21.5 40.3 ± 0.9 8.2 ± 0.0 339.0 ± 5.2 0
P-LRTA*(queueSize=19, updates=20) 708.2 ± 11.9 83.7 ± 1.8 8.3 ± 0.0 393.4 ± 5.8 0
P-LRTA*(queueSize=29, updates=30) 539.1 ± 8.8 129.7 ± 2.7 8.4 ± 0.0 444.7 ± 6.3 0
P-LRTA*(queueSize=39, updates=40) 462.4 ± 7.3 175.5 ± 3.6 8.3 ± 0.1 504.1 ± 7.2 0

Table 1: Results on 10,000 problems with visibility radius of 10. The results for LRA*, LRTA*, LRTS, and PR-LRTS are taken
from [Bulitko et al., 2005].

move lag and planning costs are extremely low. For each
parameterization, P-LRTA* has a first-move lag comparable
to LRTA*(d=1), and its convergence execution cost is even
lower than algorithms that use sophisticated abstraction rou-
tines, such as PR-LRTS.

Figure 4 shows the average convergence execution cost
of the algorithms on 1,000 problems of various lengths: P-
LRTA*’s convergence execution cost is similar to LRA*’s.
This indicates that heuristic learning in P-LRTA* is efficient
enough that the expense of learning the heuristic function
scales similarly with the expense of learning the a priori un-
known map itself.
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Figure 5: The impact of queue size and maximum number of
updates on convergence execution cost.

Using the same set of 10,000 problems used to generate
Table 1, we explore P-LRTA*’s parameter space. This exper-
iment reveals that the queue size and the maximum number
of updates per move exhibit some independence in how they
affect performance. That is, when we increase the maximum
number of updates with a fixed queue size, the convergence
execution cost decreases; the same happens when we increase

the queue size with a fixed maximum number of updates (Fig-
ure 5). This demonstrates that P-LRTA*’s parameters provide
two effective ways of changing the algorithm to meet specific
time and/or space requirements.

8 Future Work
Prioritized LRTA* is a simple, effective algorithm that invites
further analysis. Further experimentation with randomized
start-locations in the problems we explore could provide ad-
ditional insight. We would also like to extend P-LRTA* to
include dynamic parameterization, as in some settings it may
be beneficial to use extra memory as it becomes available. P-
LRTA* provides a convenient way to take advantage of free
memory: the queue size can be dynamically adjusted.

P-LRTA* may benefit from a more sophisticated action-
selection scheme than the purely greedy decision-making
process we present. P-LRTA*’s simplicity makes it easy to
experiment with a number of recent real-time search tech-
niques that improve convergence time.

State abstraction has been successfully applied to real-time
heuristic search [Bulitko et al., 2005]. A hybrid approach that
combines prioritized updates with state abstraction is likely
to produce a search routine that is more powerful than ei-
ther method alone. Another interesting direction is to extend
P-LRTA* to handle dynamic environments by including fo-
cused exploration and allowing heuristic values to decrease.

9 Conclusions
Incremental search algorithms and real-time search algo-
rithms meet different requirements. Incremental search al-
gorithms such as LRA* converge quickly, but can suffer from
arbitrarily long delays before responding. Real-time search
works under a strict per-move computational limit, but its
long on-line interactive learning process reduces its applica-
bility when good solutions are needed from the start.

P-LRTA* has a response time on par with the fastest known
real-time search algorithms. Meanwhile, its learning process
converges in a time that scales with that of mere map discov-
ery in LRA*. A P-LRTA* agent can learn twice as fast on
the actual map as a state-of-the-art PR-LRTS agent learns on
a smaller, abstract map.
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As a step toward rapid-response algorithms that learn
quickly, we presented a real-time heuristic algorithm that
combines LRTA*’s aggressive initial heuristics and Priori-
tized Sweeping’s ranking of state updates. P-LRTA* does not
require the map a priori making it well suited to virtual re-
ality trainers and computer games in which believable agents
can only see limited portions of the world.
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