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ABSTRACT

The goal of the work here reported Is
to Investigate algorithms which find the
real straight edges In scenes consisting
of prismatic solids, taking Into account
smooth variations In Intensity over
faces, blurring of edges, and noise. To
this end we give In thts paper a model
of the appearance to an optical Input
device of such scenes; and describe a
sub-optimal statistical decision
procedure, based on the model, for the
ldentification of a line within a narrow
band on the field of view, given an
array of Intensities from within the
band.

. INTRODUCTION

In the following six sections a model-
based line predicate I|Is developed
analytically. The remaining two sections
summarize the results In a computa-
tionally feasible form, and discuss
empirical Investigations of Its
behavior. The reader may wish to examine
these two sections prior to undertaking
a study of the analysts upon which the
results are based.

1. THE BASIS OF THE DECISION PROCEDURE
Our procedure for determining the ex-
istence of a real edge within a narrow
sub-rectangle on some field of view,
given a set of Intensity values J from
within the sub-region, Is to compute a
probability function of these Inten-
sities, P(CB/J), and to compare this

value with a preassigned threshold
value. P(CB/J) Is the conditional proba-
bility, given that J was obtained over
the sub-region, that a boundary line was
actually present and centered In the
region. The use of probabilistic
techniques reflects the assumption that
noise prevents us from having access to
the set of actual "nolse-free" Intensity
values, | over the domain. This proce-
dure can be shown (1, 2) to be optimal
In the sense of making the best decision
about the existence of a line In the
region over which the Intensity sample J
iIs taken, given only this Intensity
sample, and no spatial context
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Information about the possible existence
of other lines In the scene, e.g. coter-
mlnal with, or parallel to the line |In
qguestion. In particular the procedure of
accepting the hypothesis of the exis-
tence of an edge when PCCB/J) is above
some threshold has the following proper-
ties:

1) Suppose It Is desired to keep the
probability of a false positive error
(false claim that a line exists) at or
below a certain value. Then there exists
a threshold for PCCB/J) which guarantees
this bound on the false positive error
rate and at the same time minimizes the
probability of missing an actual Iline.

2) Similarly there exists a threshold
for P(CB/J) which guarantees a particu-
lar bound on the probabllllty of missing
lines and at the same time gives a
minimum rate of false positive errors.

3) Further, there exists a threshold
value for PCCB/J) which guarantees that
the sum of the probabilities of missing
a line and of making a false positive
error Is minimized.

The general strategy for establishing
a value for PCCB/J) is based on some
simple Bayeslan probability analysis.
First, we note that by definition:

P(CB/J) = D P(I /J) C2.1)
;€ CB
where CB Is the set of I 's over narrow

rectangular domains containing the Image
of a centered boundary line. Formula
C2.1) follows from the fact that
PCCB/J) is the conditional probability
that the actual Intensity pattern over
the given sub-region is some member of
CB, given that the pattern J was
obtained over the region. It Is thus the
sum over all elements of CB, of the con-
ditional probability of this element
being the Intensity pattern, given that
the pattern J was obtained. From Bayes'
rule we have:

PCI, /J) - PCJ,l, )/PCJ)

where PCJ) Is the a priori probability
of occurrence of the obtained Intensity
pattern J and PCJ,l; ) Is the Joint
probability of obtaining that pattern
along with |. being the real pattern of
Intensities. Using this relation, (2.1)

becomes:
D PG, 1)
,€CB
PCCB/J) - (2.2)
P(J)

Clearly P(J), the a priori probability
of existence of J, is the sum of J's
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Joint probability of existence along
with some member of CB, and Its Joint
probability of existence with a member
of CN (the complement of CB In the set
Cl = {l;} ), since this exhausts all
possible cases. Hence:

PCJ) = D P(I, ,J) + ;P(li )
'l

|"€CB CN
so that (2.2) becomes:

D P, L)

1’€cs 5
P(CB/Y) »« —————————— (2.
SPL,L )+ 2P
1 €CB I € CN

Agaln, from Bayes' rule we have:
PCJ,1,) = P(J/1,)PCL, ).

Thus we can express P(CB/J) as follows:

P(CB/J) =
D P(J/1, )P, )
1, €CB
- (2.4
D P/ IPCL )+ D PG/ IPCE )
|,€CB i, € CN
The remainder of this paper will be

devoted to modelling the set CI, so as
to provide a basis for expressing the
various probabilities In the above
expression. The end result will be a
closed form threshold function Q(J)
giving an approximate value of P(CB/J)
as a function of the set of Intensities
contained In the set J.

|1 1. DEFINITION AND CATEGORIZATION OF CI
Mathematically the elements of CI| are
real valued functions of two variables
defined over a narrow rectangular region
of the plane. A member [} of Cl Is to be
thought of as giving the value of the
light Intensity, as a function of posi-
tion, over some narrow rectangular sub
region of a two dimensional Image. It
should be emphasized that the Intensity
functions we have In mind In this
section are those giving the real Inten-
sities over the sub regions In question,
In the absence of any noise and
distortion which would be introduced by

some physical Instrument designed to
obtain Intensity values. We shall |imit
out attention to Intensity functions
taken over domains of a single

preasstgned size. It will be apparent
that no loss of generality will result
from so doing.

We will define a function to be a

member of CIl If It gives the Intensity
over some rectangular sub region of a
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two dimensional Image of some scene
having the following properties:

1) The scene consists of prismatic
(plane-faced) solids.

2) The Intensity over the faces of the
objects, and In the background, Is a
smooth continuous function of position.

3) At the Images of the real edges In
the scene, the Intensity Is either
simply discontinuous In value (hereafter
this will be referred to as an "edge'");
or has an anaomalous value with equal
Intensities Just to either side, as
produced by a crack between blocks or
by a highlight. (The latter will
heafter be referred to as "lines").

Further, by assuming that the Inten-
sity values are actually the logarithms
of the Intensities In the scene, we have
the additional properties:

4) The difference In Intensity across
an "edge" will be approximately constant
along Its length, although the absolute
Intensity along the edge may smoothly
vary,

5) The difference between the

anomalous Intensity along a "line" and
the Intensity of the Immediately
surrounding area will be approximately

constant along the length of the line.

Note that the possible existence of
shadows need pose no problem, since real
edges partially In shadow may be
considered for the purposes of the model
to be two distinct "lines" or "edges”.
Further, the edges of the shadows
themselves have properties Ildentical to
those of "edges", and may be so modeled.

We can be more specific about the
previously Indicated division of CI| Into
two subsets CB and CN:

Let CB be the subset of Cl consisting
of all Images of "boundaries", |I.e.
"lines" or "edges", exactly centered
In, and traversing the entire length
of, the rectangular domain of
definition. An example:

1y + 2.5 x < .5
t(x,y) =

.ly + 3.5 X > .5
over the rectangle bounded by the points
(0,0), (1,0), (0,10) and (1,10).

Let CN be the remainder of CI.

The class CB may be further subdivided
In accordance with the distinction made
earlier between an "edge" and a "line":

>Let CE be the subset of CB consisting
of those functions representing simple
discontinuities of Intensity. The
function given as an example under the
definition of CB above Is of this type.

>Let CL be the remainder of CB, |I.e.
those Intensity functions representing a
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line of anomalous Intensity, such as
from a highlight or crack between two

blocks. An example:

by + 3 x = .5
1 (x,y) =

- by + 6 x ¢ .5

over the rectangle bounded by the points
(0,0), (1,0), (0,10) and (1,10).

Finally we may subdivide the class CN
Into two sub-classes:

>Let CH be the subset of CN consisting
of Intensity functions over rectangular
sub-regions of the plane which are not
crossed by Images of any 1 Ines of the
scene. An example:

I(x,y) = .3x + .2y + 10.

over the region bounded by the points
(0,0), (1,0), (0,10) and (1,10).

> Let CS be the remainder of CN.
Intensity functions In this class are
those over rectangular sub regions of
the plane containing the Image of part
of a line, or possibly a closely spaced
pair.

The helrarchy of sub categories Just

described is summarized In the following

diapram:

highllghts
CE SImple edges

CB Lines centered

{CL Cracks and
In the rectangle

Cl CH Homogeneous
CN The rest reglons
of CI CS Parts of
llnes etc.
Flgure 1.

V. NUMERICAL CHARACTERIZATION OF THE
MEMBERS OF ClI AND A PROBABILITY
DISTRIBUTION ON THEM

As a further step In modeling the set

Cl, we would like to be able to charac-

terize an element of any of the above

subsets by some simple numerical

description. The functional descriptions

given In the above examples are too

extensive to lend themselves to the sort

of analysis we wish to perform. By way
of simpliflcaton, we Intend to omit any
reference to absolute Intensity,

treating, for example, the following two

functlons:

2y + 3 x < .5
f(x,y) = {

2y + 5 X D o5
and

Ay + U x ¢ .5
g(x,y) - {

2y + 6 X 2 o5
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as equivalent, as they differ only by a
constant over their domains. Members of
CE and CH will thus be characterized
only by their "relative amplitudes” or
amplitude of discontinuity along their
lengths. The above examples are
misleadingly simple in that this
relative amplitude has been a constant
over the whole length of the domain. We
actually Intend that there be a small
"ripple"” In the relative amplitude along
the lines, as was Implied by the
expression "approximately constant” In
assumptions 4) and 5) above.

Although we may thus characterize a
member of CL or CE by a nearly constant
function of one variable, it is more
practical for the following analysis to
assume the domain of definition to be
divided into n approximately square sub
components and give a description In
terms of the n average "relative ampli-
tudes" over these regions. We propose

the notation | (a,,, ... , a,n,) for a
member of CL, and I(b,i , ... , Db,, ) for
a member of CE. The function f(x,y), a

member of CE, Just referred to would be
thus described by the 10-tuple (2, 2,
, 2), and would be denoted by 1(2,

Members of CH are similarly treated,
with average gradient within a square
sub-region In place of average relative
Intensity. For these elments, we will
use the notation I(cn , ... , Cc,n).

The reader may note that no reference
has been made to the remaining class
composing CIl, namely CS. Suffice It to
say here that in the analysis which
follows, such a characterization s
unnecessary, provided one Is willing to
trade computational feasibility for a
small amount of mathematical exactness.
The reader might further be puzzled that
no reference is made In a description of
a member of CL or CE to the underlying
crosswise gradients to either side of
the discontinuity, while members of CH
are described entirely In terms of a
gradlert. The answer Is that In the case
of CH, the gradients are the principal
effect, whereas in the case of members
of CL and CE they are not. In the
analysis which follows the gradients in
the members of CE and CL are Indeed
Ignored, since no provision is made for
them in the n-tuple descriptions.
However in (1) it is shown how these
can be taken into acccount to a first
order of approximation.

We are now In a position to put a
probability distribution on the members

of the sets CL, CE and CH based on the
above chatracterlzatlon. Specifically,
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we shall express the a priori probabil-
ity of existence of a member, e.g. of
CL, as a relatively simple function of
(a,|] , ... , a,n ), the n relative
amplitudes which are used to describe
|t.
To begin with, assume that each high-
light or crack In scenes under consider-
ation, l.e. each member of CL, has an
"ldealized amplitude” a. This should be
thought of as the relative amplitude
which would occur along the whole length
of the highlight or crack iIn the absence
of minor Irregularities in lighting or
defects In the objects themselves. Let
us further assume that the probability
distribution P(a) on this parameter |Is
known. Finally let us assume that for
all highlights or cracks with Idealized
amplitude a, the various actual relative
amplitude values a, are statlstleally
Independent; and that they have a normal
distribution with mean a and standard
deviation a Independent of a. From this
It follows that the probability PC1 (aq ,
, a,n)la)), l.e. the probability of
existence of a crack or highlight with
actual relative amplitudes a,| , ... ain
along Its length, given that the
ldealized amplitude was a, is given by:

n : _%. [Eua' a]2
P(a)n 5 "6’ da

s =}
To obtain P(l(a,i , ... , a,, )), the a

priori probability of existence of the
highlight or crack with relative ampli-
tudes a,) , ... , ajn, we need only sum
the above expression over all values of
a. Hence for I, a member of CL we have:

P(1,) = P(I(a,;, ... , @ap}) =

n
S e[ Jra.e,,) (4.1)
a §=)
where
_1 [Eu_'_e]’
' 2 o
F(a,a; ) " oTF e da,, (4.2)

Similar formulas hold for members of CE
and CH, with b and ¢ In place of a, P’
and P" in place of P, and a' and a"
place of o.

In

V. THE PROBABILISTIC RELATIONSHIP BE-
TWEEN AN OBTAINED SET OF INTENSITIES
AND A NOISE FREE INTENSITY FUNCTION

In this section we shall specify a
plausible relationship between obtained
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"nolsy" (tensity samples taken over long
rectangular regions and actual possible
iIntensity functions over such regions,
l.e. the members of CL, CE and CH. The
object will be to give analytic closed
form expressions for the values of the
conditional probabilities P(J/li)as
apear In the decision predicate (2.4).
The relationship between an obtained
sample and possible actual Intensity
fuctlons is determined by two effects.
The first of these Is the blurring
Inherent in any optical system, which
turns theoretically sharp Intensity
discontinuities Into smooth slopes, and
turns highlights, hypothesized as lines
of discontinuity of virtually no width,
Into smooth ridges. The second effect Is
random time noise.

It will be assumed In what follows
that the degree of blurring of edges
that Is Inherent In the Intensity
samples J obtained by an actual optical
Input device from scenes of the sort
described Is homogeneous and |Isotropic
over all scenes under consideration.
This assumption might be violated If the
scenes had suflclent depth that some
parts would be significantly out of
focus. However In using the device
mentioned In (1) and In the last part of

this paper It Is possible to have the
optical focus blurring dominated by
other Dblurring effects, which are
spatially unlform.

It Is Instructive In considering the
relationship between an obtained Inten-
sity sample J and members of CL CE or CH
to consider the result of applying this
blurring to members of the latter sets.
These Dblurred Intensity functions will
be denoted by the symbol I,'. It Is easy
to show that If blurring Is uniform and
Isotropic over a field of view, It acts
on an Intensity function I(x,y) to
produce a blurred function |'(x,y) as
follows:

1'(x,y) = ffB(x-t,y-u)l(t,u)dtdu

where B(x,y) Is the Intensity function
resulting from applying the blurring to
an Intensity function having the value
zero except at the origin of the Image
space. Now If |} belongs to the class CL
then the corresponding blurred version

I has the property that Its value along
any normal to the major axis of the rec-
tangular domain is given by ag(x) + b,
where a |Is the relative amplitude of the
discontinuity at the point where the
normal Intersects the major axis, and
g(x) is related In a simple way to the
function B(x,y) Just mentioned. It
should be emphasized that g(x) Is not
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dependent on any property of |, other
than that It Is a members of CL. Similar
results hold for members of CE with a

function h(x) In place of g(x); the
latter being the Integral of the former.
Typically g(x) will resemble a "bell

curve"; and h(x) a simple step function
with rounded corners. The case of
members of CH Is similar, but wllh the
simple linear function I(x)=mx In place
of g(x) or h(x). These properties will
be useful later In this section.

The geometry over the Image plane of
the points at which Intensities are to
be obtained has thus far been left
unspecified. We will stipulate that this
geometry be the same for all of the
square sub-regions Into which the rec-
tangular domain of the Iline predicate Is
divided. In particular we stipulate that
It consist of a set of m points lying
along a line traversing the square sub-
region through Its center, normal to the
major axis of the main rectangular band.

The discussion of the "blurred" Inten-
sity functions 14' can now be carried one
step farther by considering the resut
of restricting these functions to the
finite set of points whose geometry has
just been described. The resulting In-
tensity function, which we shall denote
by the symbol |I,", are clearly formally
similar to the sets J of obtained Inten-
sity values. The nature of the
relationship between these two classes,
and Its Implications In developing
closed form expressions for the condi-
tional probabilities P(J/l;) will be
discussed presently. Meanwhtle, various
properties of the functions |," will be
noted. First, each consists of n m-
tuples of values, each m-tuple being the
value of the corresponding function |,
over a set of m points lying along one
of a set of equally spaced normals to a
m,adJor axis of the domain of definition

of I, . Secondly, If Iy Is in the class
CE, CL or CH, then any m-tuple from a
corresponding I" Is determined entirely

from the values of two parameters, and
from whether Ii came from CL, CE or CH.
This follows from the properties of the
functions 1, mentioned In the paragraph
before last, and from the uniformity of
the geometry of the points In the domain
of the function 14". This may be formally
restated as follows: There exists an

m-tuple (V{1 , .... , Vm) such that If
I(a,l, ... , a,n ) Is a member of CL,
then the corresponding I;" is given by:

||"-[(a”v], see a.IVm)

® 0 5 & 8 5 50 0 O 6 s S (5.1)

(ainVI, so o & a,an)]
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For |, a member of CE there exists a
corresponding m-tuple (V¢ , <+ , V' );
and for |, a member of CH an m-tuple (V"
, ... , Vn"). These m-tuples are simply
the values of the functions g(x), h(x)
and |(x) mentioned In the discussion of
the functions 1;', suitably scaled.

We now address ourselves to an
expression for the value of P(J/I, ).
This, It may be recalled, Is the condi-
tional probability of obtaining the In-
tensities comprising J, over the region
In question, given that the actual In-
tensity over the region Is given by

the function I, . If the latter Is a
member of CL, CE or CH, then the
corresponding ;" as given by (5.1) gives

what the values In the set ought to be
In the absence of noise. This noise |Is
assumed to be uniform over the field of
view of the Intensity measuring
Instrument; and values x of Intensity
taken repeatedly at a particular point
are assumed to have a distribution
around a mean of x given by:

x-i"]’

dx

) eﬁ%[

r

Thus If the sample J ls expressed In the
form of n m-tuples, as was II" In (5.1),
by:

J = [Cuyy s vee sy )

(5.2)
(un]' o o0 Y, unm)]

then P(J/1 ) Is glven by:

P(J/1,) = P(J/1(a,), oo » B )) =

in
)2

N ! e-'/z(usl -~ a,V
n[-l'\/zﬂ dug, .
Sm} (=]

This may be expressed Iin a form simllar
to (L.1):

n

If[G(a',,U'], e 0 = ’ u‘m) (5.3)

P(J/l.) - P(J/'(ail’ ® ® a Y a )) -
n

du’]..du‘mc(SQu)

VI. TOWNARD A CLOSED FORM FOR PCCB/J)
In this section we shall show how to
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express certain sums constituting the
numerator and denominator of our line
decision function (2.4) as closed form
functions of the Intensity values from a

rectangular region. First, let:

CLCI) = D PCJ/IL, IPCH, ) (6.1)
'€ CL

CE(J) = D P(J/1,)PCI, ) (6.2)
1€ cE

CH(J) = D P(J/IL )P, ) (6.3)
| '€ CH

CS(J) = D P(J/1, )P, ) (6.4)
1 €ECS

and note that P(CB/J) In (2.4) may be
expressed In terms of the foregolng as:

P(CB/J) =

CL(J) +« CE(J) (6.5)
CL(J) + CE(J) ¢ CH(J) + CS(J)

It |Is the goal of this section to give
closed form expressions for the sums
CL(J), CE(J), and CH(J) making use of
the closed form expressions (4.1),
(4.2), (5.3) and (5.4). The matter of
the sum CS(J) will be deferred to the
next section.

Now (6.1) may be rewritten using (4.1)
and (5.3) as:

CL(J) =
5 [n 5o

G(a' ,U ] 2 o o U ) P(a) F(a'a )
o ’mlkza: !_! N ]

Because summation of | over elements of
CL is simply summation over all posslible
n-tuples of (a,;,, ... , a,), thls
formula becomes, with a blt of
rearrangling:

CL(J) =

ZP(a)Z ZnF(a a,,l)Gla  ,ug,..ugm)

a alnS'l

with, again, F and G given by (4.2) and
(5.4) respectively. Also, It ts easy to
show that the product over s and the sum
over the as 's may be Interchanged, so
that:

CL(J) =

ZP(a)HZF(a ,a,, )6(a,, ,Uy1 seoliym) (6.6)

As a consequence of Ignoring absolute
Intensity we may assume that the
obtained Intensities have been
normalized by sub regions so that:
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};v, - 0
};u,. = 0

and using the deflnitlions:

ar = Tuy Y, /;v,2 (6.7)
b = Y2 (6.8)
t

2 (6.9)

Ry, = 3 (u,, = a®V,)
t
It Is not difflicult to rewrlte (5.4) as:

G(al‘ Y Usl, o e s 2 Usm) =

b(a,, -a¢ Y+ R]

g T

(6.10)
(rviifn
Combinlng (6.6) with (4L.2) and (6.10):
CL(J) =
_1|bla,, -ag)z'* R, (a-a, )?
e N vt T (6.11)

with b, a*, and R, glven by (6.7) (6.8)
and (6.9). The lnner sum may be put In
the form:

-B
IK:E: € da
which admits of the approxIimation:

Bx'+ Cx + D

AD € =
.Bx’ + Cx + D 7 _C?/48 + D
Afe -"-\'539

Applying thls approximation to the Inner
sum In (6.11) we have, after
conslderable algebra:

CL(J) =

r

ZP(a) ]—[ Vritbo? Gm)

l1|R, b(ar-a)
- i —_ s -7
€ 7[" * r’+ba’]
where the differentials have been
omitted for clarity., This may
alternatively be expressed:
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CL(J) =
r n
Z P(a)[;,\/.‘,—”)mvrwz]
a
_1 ] 3R, b 3 (a» -a)°
2 |+ + .
e 4 r‘ +bo?

Assuming the Idealized relative ampli-
tudes have a normal distribution with
mean O and standard deviation p, then:

1
P(CL) e 21°P
P(a) = p\/2m

where P(CL) Is the a priori probability
of a "line". This latter expression for
CL(J) may be put Into the form:

-852 + Ca ¢« D
AY €
a

and approximated as before to ylield:

CL{J)= n (6.12)
d I \/p? 2

nb’p?S(as =a% )]

_1[3R, bYa#
2 | = ’
f?

+ — -
e L bo#nbp™+ r? (bo?4 r*Xbo?+nbp?+ r?)

Similar formulas exist for CE(J) and
CH(J).

VIlI. RATIONALE FOR IGNORING THE CLASS CS
A an analysis similar to the

foregoing/ with the goal of obtaining a
closed form expression for CS(J), may be
avoided. It has been shown In (1) that
Q(J) given by:

Q(J) = CL(J) + CE(J) (7.1)
CL(J) + CE(J) + CH(J)

has the following properties:

1) Q(J) and PCCB/J) are nearly equal
when J consists of Intensity values
from a narrow region which contains
no part of a "boundary", l.e. an edge,
highllght or crack.

2) Q(J) and P(CB/J) are nearly equal
when J consists of Intensities from
within a narrow rectangular region
containing a centered boundary line.

3) Values of Q(J) for J's from various
narrow rectangular regions approximately
centered on a boundary line have a
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maximum for the set J from a region In
which the boundary Is exactly centered.

If care |Is exercised, Q(J) thus serves
as a substitute for PCCB/J). Problems do
arise, as the foregoing would predict,
when Q(J) is applied to Intensity sets
from a narrow rectangular band crossed
at an angle of, e.g., 30 degrees by an
Intense boundary line. It was necessary
In practise to Include a heuristic pro-
cedure for eliminating the spurious
line evidence produced by these oblique
crossings of a region by an Intense
boundary.

VIM. SUMMARY: A LINE DETECTION
PROCEDURE
The foregotng analysis yields a four
step procedure for deciding on the exis-
tence of a line between some pair of
points on the Image of a scene consist-
ing of plane faced prismatic solids.
The first step Is to make n equally
spaced scans across the proposed edge.
This yields n m-tuples of Intensity
values. The second step Is to compute
six values, a*, Ri, a*', R,, a*" and R"
from each of these m-tuples. Tne third
step is to compute from these 6n values
the value of:

Q'(J) = (f.l)
("):R:' + l('l'%alt'a + KD ?(ar“-'a"*") ) -
MINCCER, + K| Tasz + K, S(as -5% )7)
) | !

(ER! + K! Tas'2 + K3 S(ap'-3%')"))
i A
where the summations are taken from i=1
to 1=n, and the six (positive) constants
K1, .. K2" are derivable from the
constants In the exponents of (6.12).
Finally this value Is compared with a
threshold, and a line Is claimed to
exist |If the value exceeds It.
The calculation required to obtain the
six values a”, ., R,” from an m-tuple
of Intensity' values Is quite simple.
Consider the Intensities obtained from
the |-th scan to be an_m-yector U, . Then
there exist m-vectors V, V' and V" such
that:

ar w C]V°U|

ci

as' = ClVey (8.2)

cl

ar" = c,"\'/- i
|

where * Is the standard dot-product
operator. The vectors V, V' and V" are
constants, the same for each value of |I.
Each "R" value Is a linear combination
of a corresponding "a*" value with the
dot product of U, with Itself, I|.e., for



24

some C, C) ... C} Independent of l:

'
R.' = cz'a.*. 4+ C;D..l-j' (8.3)
R!" = Clax" + CjUeU,

The values a*,R1,, ... R", derived from
the m successive 'intensity values from
some short scan across a scene, have a
simple Intuitive significance. Recall
that they are obtained from (8.2) and
(8.3) using three m-tuples of constants
symbolized as the vectors V, V' and V".
The m-tuple of values comprising, e.g.,
V, are simply the m Intensity values
which would be obtained from scanning
across a perfectly clean paradigm high-
light by an Intensity measuring device
whose blurring characteristics are
identical with the one used In obtaining
U,, but which has a negligible noise
level. Of course the separation of the m
points Involved In this "paradigm high-
light profile”" must be the same as the
actual separation of the pojnts at which
the Intensities comprising U, are
obtained. Now suppose that the "paradigm
profile" V Is least squares fitted to
the set of Intensities U, . The factor by
which the former must be multiplied In
order to achieve this best fit Is simply
some constant multiple of ai*. We shall
thus refer to a value of a* as the
"highlight distinctness” of the set of
Intensities U, from which It was
obtained; and refer to the value of R,
as the "highlight similarity” of Ui . It
may be shown that a* has the property of
being near zero when the "shape" of the
profile Ui from which It was computerd
Is not at all hlghlight-1lke. We may
similarly refer to ai*' as the "edge
distinctness" of Ui ;' and te R' as the

"edge similarity"”™ Finally V" 'is simply a
linearly Increasing sequence of values;
so that a*" is a measuer of local
gradient and R" a measure of the aparent
homogenlty of the surface across which
the corresponding U, was obtained.

It may be shown that the threshold pro-
cedure Involving (8.1) Is approximately
equivalent to the procedure Involving
(7.1) and (6.12). The proof of
approximate equivalence, which will not
be given explicitly here, depends on two
properties of the latter two
expressions. First, |If the three terms
given by (6.12) are plugged Into (7.1),
and the (omitted) mn differentials and
mn factors of r, common to all terms,
are cancelled; then the resulting
coefficients of e are all less than 1.
Second, It may be shown (1) that If the
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value of (7.1) Is, e.g., above .95, then
the two terms of the numerator are
necessarily quite unequal. It appears to
be necessary to threshold at above this
value If the predicate Is to be applied
a large number of times to avoid a
significant number of false positive
errors.

|X. EMPIRICAL INVESTIGATIONS
Investigations of the present line
detection procedure were based on Inten-
sity Information obtained from a
computer controlled Image dissector
(Information International "VIdI-
ssector"). This device makes available
to the computer Intensity values from
any point on a 40000, by 40000,grd.
Intensity values are logarltmlically
scaled with about 80 gray levels for
every factor of two In actual Intensity.
Several dozen scenes, mostly consisting
of plane-faced white prismatic solids,
were analysed, with the following
conclus lons:

>ERIFICATION OF UNDERLYING
ASSUMPTIONS. It was first necessary to
Investigate the validity of various
assumptions up on which the foregoing
analysis Is based, namely:

1) Intensity values supplied by the
Image dissector have an appreciable
random noise component which Is Gaus-
sian, and whose level Is Independent
both of Intensity and location.

2) Profiles of Intensity along scans
normal to real edges In analysed senes
are either cliff-shaped or peak-shaped.
3) Various profiles of one or the other
of these two types differ only In ampli-
tude, and not In width or skewness.

4) Intensity scans taken normal to a
real edge, at regular Intervals along
Its length show a good degree of con-
sistency as to amplitude and type.

The first assumption Is theoretically
guaranteed by the design of the Image
dissector used. Various empirical Inves-
tigations were made which verified this.
Assumptions two and three were found to
be largely true In that the shape of an
Intensity profile across a particular
edge appeared to be Independent of posi-
tion on the field; and also the shapes
of Intensity profiles taken across
various highlights or edges between
equally lighted uniform faces differed
only by multiplicative constants.
However, In the scenes analysed there
appeared to be a larger variety of types
of edge profiles than expected, particu-
larly across rather subtle boundaries. A
reasonable representative set of six
profiles Is Illustrated In figure 2.
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Figure 2.
Assumption 4 appeared to be true to a
marked degree for Intense edges. However
this was not always the case for very
subtle edges. The Implications of this
will be discussed later.
The existence of more than two edge
types does not especially Invalidate the
foregoing theory and analysis, which may
clearly be generalized to six types
Instead of two. This results In a
decision function similar to (8.1) but
with the minimum taken over six
expressions Instead of two. These six
expressions are calculated using (8.2)
and (8.3) and a set of six m-vectors of
constants. Each of these vectors |Is
obtained from one of the profiles of
Figure 2, and consists of a set of
successive values taken at equally
spaced points. The number (m) and
spacing will now be discussed.
>GEOMETRY OF THE SAMPLING DOMAIN. Two
spatially local parameters govern the
acquisition of Intensity Information to
be given to the present line predicate.
These are the length of each of the n
sub-scans, and the number (m) of Inten-
sities In each.

It seemed to be of prime Immportance
that the length of the scan be Just
enough to encompass the entire shape of
the various profiles. Referring to
figure 2, this would appear to be about
15 units or 1.5% of the width of the
field. If this were much wider, a
greater diversity of paradigm profiles
would have to be used reflecting various
different combinations of gradient
values (slopes) of the "tails" of the
profiles. Experiments Involving scan
lengths of 1%, 2% and 1.5% of the field
width confirmed the relative superiority
of the latter.

The most Important criterion for estab-
lishing point separation seemed to be
that the spacing be suflclently fine
that a scan across a highlight would
Include at least one value suflclently
close to the center of the peak as to
have a value within, e.g., 90% of the
maximum value at the peak. Referring to
Figure 2, the reader may see that the
corresponding separation Is one or two
units, or about .1% of the field width
of the present Instrument. Experiments
Involving a spacing of .05% Indicated
no particular advantage over .1%.

For a majority of subsequent
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experiments values of the (generalized)
threshold function (8.1) and terms
thereof, were computed (using (8.2) and
(8.3)) from a specific set of 7 16-
vectors of constants derived from the
profiles In figure 2, matched to a
spacing of . 1% of the field width.
Intensity values were read at this
spacing In sets of 16. The reported
results were based on exhaustive
calculation of various "R" and "a™"
values for scenes of prismatic solids.
Typically 100 scans of 500 Intensity
values each were made covering the
entire scene. For each scan 485 values
of each of the 7 "a*™'s and "R""s were
computed from each successive 16-tuple
of Intensity values. These values were
graphed or printed Iline by line for
analysls.

>LOCAL SENSITIVITY. Restricting the
function given by (8.1) (or rather the
mentioned generalization of It) to a
single scan (n m 1) results In a
simplified formula, since the (a*-a*)?
terms are all zero. Further, as will be
later explained, the a** terms are of
doubtful significance. There thus
results a non-linear decision function
based on the values of seven "R"'s.

This localized version of the present
procedure was compared with two other
local edge detection operators. The
first operator |Is due to Roberts (3) and
uses the following function of four In-
tensity values vy, v,, vzand vs from the
corners of a small square:

\I(vl - va)T+ (v, = v )2

In (1) It was shown that the present
edge predicate, even taking Into account
Its use of more Intensity values, |Is
more than twice as sensitive as the
Roberts operator. The present operator
was also compared with a second
difference operator discussed In (4)
Involving four successive Intensity
values V;, Vo, vz and vs, obtained at
equal Intervals along a line normal to a
proposed edge. The formula Is given by:

2(vy = vy) = (vy = v;) = (vg = v,)

It may be shown by an argument similar
to the one cited In connection with the
Roberts operator that the present proce-
dure Is slightly more sensitive |In
detecting edges than the second
difference method provided the latter's
point spacing Is wide relative to the
blurring. Referlng to the edge profiles
at the bottom of figure 2, the reader
should note that |If these four Intensity
values are obtained at 1 unit Intervals
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around the center of the edge, the

value of the operator Is considerably
below that which would be obtained If
the Intensity values were obtained at,
e.g., four unit Intervals. Further If
the edge were exactly centered on second
or third point, the value of the
operator would similarly be reduced.
This four value operator thus becomes
progersslvly less and less sensitive as
the point spacing dereases. This |Is
true of the Roberts operator as well.
On the other hand, In order to avoid
missing highlights, the point spacing
should be quite close.

These observations Indicate a marked
superiority of the persent procedure |In
the local detection of edges, etc,
provided the cost of obtaining Intensity
values |Is considerably greater than the
cost of computation. In the present
Image dissector- computer system this
was Indeed the case. Intensity values
required an average of one millisecond;
whereas the entire time required to
calculate a set of 7 "a*" and "R" values
from a set of 16 Intensity values was
approximately 500 microseconds. In order
not to miss highlights, the successive
Intensity values In a scan must be
obtained at a relatively close spacing.
The effective use of a simple second
difference operator on such Intensity
values would, as cited above, requtre
that e.g., only every fourth Intensity
value of the fine scan be used. Its
sensitivity would thus be considerably
below that of the present operator,
which uses all the Intensity values.

>AVERAGE APPARENT DISTINCTNESS. As may
be Inferred from the discussion earlier
In this section, the terms In (8.1)
Involving the sums over the values a*
and a*' give an average measure of how
distinct an edge or highlight may be
fitted to the obtained profiles. These
terms seem to be of little value In
predicting the existence of a real edge
or line. Two reasons may explain this.
First, large values actually provide
negative evidence In (8.1) as to the ex-
istence of an edge or line, reflecting
the fact that according to the model
very distinct edges are relatively
Infrequent. A second problem Is that a
very distinct edge crossing the examined
region at an obligue angle will produce
a spurious high value In this sum.

>CONSISTENCY OF EDGE DISTINCTNESS. The
seven sums_over terms of the form (ai*-
a*)?, (a*"-a*' )°, etc. In the generalized
version of (8.1) have a simple Intuitive
significance. Consider the sum
corresponding to the uppermost profile
of figure 2. This consists of n terms of
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the form (a.*-a*)?, where a* Is the
average of the n a*'s. Since each a* |Is
a measure of the "highlight !
distinctness" of the scan Intensities
from which It was computed, the entire
sum gives a measure of the variance of
the highlight distinctness along the
length of the proposed line. Thus each
of the seven terms gives a measure of
the consistency of the proposed line
along Its length.

There was Indeed a striking consistency

of this sort among the more distinct

edges, hlghllghts and cracks, In the

many scenes analysed. However, as was

pointed out, the more subtle boundaries
sometimes showed this consistency, and
sometimes not. Since In effect a basic
assumption of the model was partially
violated, a certain doubt was cast on
the validity of these terms. It might be
fruitful to use a heuristic procedure

which would Increase the likelihood of
acceptance of a Iline |If this consistency
were found: but would have no effect If

not. This requires further Invest-
lgatlion.
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