Session No. 5 Software Support

159

A PROGRAMVING TOOL FOR MANACHVENT OF A
PREDICATE-CALCULUS-ORIENTED DATA BASE*

Erik Sandewall
Uppsala University
Uppsala, Sweden

Abstract

This paper describes a LISP program, called
PCDB, for storage and retrieval in a data base
of predicate calculus (PC) formulas. The PCDB
pacxage uses standardized representations of
PC formulas, where ground unit clauses are
stored efficiently, e.g. on the property-lists
of their arguments, and other clauses have
other representation. The major part of the
PCDB package is a function generator, which
accepts declarations of PC relations and
functions, and Which also accepts "rules" (=
non-ground axioms intended for use in deduction)

Declarations and rules are used to generate
efficient code for storage and retrieval of
"facts" (usually = ground unit clauses) in and
from the data base. This generation process
may be characterized as a "compilation"” of the
rules (from predicate calculus to LISP).

Key words and phrases

Axiom compilation, deduction, function gene-
rator, LISP, partial evaluation, retrieval.

Motivation

Many programming tasks in artificial intelli-
gence require the manipulation of small data
bases. Question-answering programs maintain a
data base of accumulated facts, and inquire
the data base for answers to questions. Robot
programs maintain a data base which describes
the robot's environment. Advanced CAI programs
maintain a data base of the subject-matter
that they have to teach. Simulated scientists
(e.g. the Dendral program) maintain a data
base of know-how in a narrow but deep field of
human knowledge. These programs, and other
similar ones, need to perform complex retrieval
operations (and sometimes, reorganization) in
the data base.

(X) This research was supported in part by the
Swedish Natural Science Research Council
(contract Dnr 2654-3)

In the design of such programs, it is crucial
to find a good representation of one's data.
Programming languages like LISP, PL/I, or
SIMULA 67 offer a machine-oriented data struc-
ture; for example, LISP offers the use of
property-lists, and SIMULA 67 offers the use of
Hoare's record structure. However, it is often
desirable to find a more problem-oriented rep-
resentation, such as nested trituples, colored
graphs, or "semantic nets".

Predicate calculus notation is often used as
such a "high-level data language". The SRI A.l.
project uses predicate calculus for their
robot project (see Nilsson, 1969) and for
question-answering (see Green, 1969). Two diffe-
rent methods for using predicate calculus as a
data language in program manipulation programs
have been proposed by Burstall (1969) and by
Manna and Waldinger (1970). Burstall (1970) has
proposed a set or conventions for expressing
the deep structure of natural language in
predicate calculus, and a similar proposal has
been made by the present author (Sandewall,
1970). The list can be continued.

Predicate calculus offers the user two major
advantages: First, it is a versatile notation,
and second, the user can express the logical
properties of his data through a set of axioms.
These axioms can be used as a theoretical basis
for the program, or they can be given to a
theorem-proving program (such as QA3, see Green,
1969). In the latter case, the theorem-proving
program "interprets" the axioms. This was
discussed in Green, op.cit., page 131. In the
former case, the same axioms have been manually
re-written ("compiled”) into a program. Using
a theorem-proving program is more convenient,
but a tailor-made program can be expected to be
much more efficient.

Topic of this paper. the PCDOB

package

This paper describes an existing LISP "program”
(or to be precise, function package) which com-
bines the generality and convenience of a

theorem-proving program with the relative effi-
ciency of tailor-made programs. Our program is

160

called PCDB (for "Predicate Calculus Data
Base"), and it is a function generator. PCDB
takes the following types of input:

declarations of the predicate calculus rela-
tions and functions that the user wants to
utilize;

facts, i.e. ground unit clauses which are
Intended as contributions to the data base;

guestions, i.e. unit clauses which are to be
proved from the data base. Question clauses
may be ground (for closed questions) or non-
ground (for open questions);

rules, i.e. non-ground (and usually non-unit)
clauses which are to be accumulated, and later
used for forward deduction from facts and/or

for backward deduction in answering questions.

When the package receives rules, it generates
"code" (i.e. LISP S-expressions) that corres-
ponds to these rules (i.e. it "compiles" the
rules), and when it receives facts and quest-
lons, this code is utilized. Declarations set
certain flags and properties which govern
subsequent code generation.

The PCDB package is useful in problem environ-
ments where there is a large and open-ended
data base of "facts" (in the above sense of the
word) and a relatively small and limited
number of "rules". Question-answering appli-
cations and Burstall's notation for program
descriptions satisfy this requirement. - The
package is not useful in problem environments
where the major part of the data base consists
of "rules". Manna's approach to program analy-
sis is an example of such an environment. For
such applications, conventional resolution
programs seem more suitable.

Example of predicate calculus usage

Before we proceed to a detailed description of
PCDB, let us give an example of the use of
predicate calculus as a high-level data
language. With this example, the reasons for the
design of PCDB will be more transparent.

Suppose we want to perform that standard exer-
cise: writing a kinship handling, question-
answering program. Some simple kinship rela-
tionships may be expressed in predicate calculus
as

Sibling(Jesper,Bodil)

Male(Jesper)
Father(Jesper) = Edvin
Wife (Edvin) = Edla

Session No. 5 Software Support

etc. ("Sibling" stands for "brother or sister").
For simple facts there is no essential diffe-
rence in effort between making these predicate-
calculus statements and making the obvious
property-list storage instructions. However, In
more complex expressions, like

Sibling(Father(Hedvig), Wife(Neighbor
(Halvard)))

(for "Hedvig's father is a sibling of Halvard's
neighbor's wife) the predicate calculus formu-
lation is probably more convenient than what we
could immediately do with e.g. property-list
storage instructions. In this sense, the nota-
tion is "high-level”™ and "problem-oriented”.

Moreover, predicate calculus permits us to state
general axioms, which characterize these kin-
ship functions and relations, e.qg.

(x) Male(x) = «Female(x)
(x) Child(x,Father(x))

(x)(y)(z) Child(x,y) A Child(x,z) D y =
z V Sibling(y,7)

If we write a direct program for the kinship
exercise (without the support of any standard
program), then the information contained in
these axioms must somehow go into that program.
Normally, it goes into the retrieval part, but
some of the axioms could also go into the
storage part. For a trivial example, the first
axiom could correspond to a segment of the
retrieval procedure which says "if it has been
asked whether x is male, and if there is no
immediate information in the data base saying
that he is or isn't, then ask as a sub-question
whet er x is female, and negate the answer”,
and to a corresponding segment for the case
where x is female. But alternatively, it could
correspond to a section of the storage proce-
dure which says "if you have to store that x is
male, then store also that x is not female" and
similarly for the symmetric case. The retrieval
procedure does backward deduction, whereas the
storage procedure does forward deduction. It is
one purpose of PCDB to generate code for and to
administrate backward and forward deduction.
With this example as a background, let us now
describe the PCDB program by tracing what
happens when some selected expressions are given
as "input", i.e. as argument to functions in the
package.

Declarations of relations

LISP atoms areused for relations symbols,
function symbols, and object symbols. The pur-
pose of declaring a relation is to provide it
with a number of functions (lambda-expressions)
which are properties on the property-list of the
relation. For example, a binary relation Father

Session No. 5 Software Support

(such that Father(x,y) means "y is the father
of x") might be associated with at least the
following lambda-expressions:

indicator

property

STOREDEF (LAMBDA (X Y) (PUTPROP
X Y 'FATHER)
(ADDPROP Y X
'REVFATHLR]
TESTDEF (LAMBDA (X Y)
(EQ X (GET X 'FATHLR]
FETCHDEE (LAMBDA (X) (GI'T X 'FATHER))

These properties are used for assertions, for
closed questions, and for open questions,
respectively. Additional properties are needed
for deduction, for undoing previous assertions,
etcetera. It would have been possible to
design the PCDB package so that all of these
properties are generated and assigned at the
point where FATHER is declared to be a binary
relation. However, we have preferred to do
things as follows in PCDB:

at declaration time, some flags are put on the
property-list of the new relation. These flags
correspond directly to the information in the
declaration. No functional expressions are
generated.

when a functional property is needed, the
system asks for it by doing e.qg.

getd fill FATHER, TESTDEF]

where the function qgetdflt is defined essecti-
ally as

getdflt[fa,i] = get[a,i] V putpropla,i[a],
Il

The first time the TESTDEF property of FATHER
Is asked for, the value of getfFATHER, TESTDEF]
Is NIL, so testdef[FATHER] is evaluated, stored
as a property, and returned as a value. This is
the required function definition. In other
words, the functions testdef, storedef, etc.
all return lambda-expressions as values.

On each succeeding call for the TESTDEF proper-
ty, it can be retrieved from the property-
list, and it need not be computed again. (The
value of the function testdef is memoized).

This design has several advantages:

(a) functional properties are not generated
unless they are really needed,;

(b) the user may make several declarative

161

statements, provided they have all been
given before the first time the relation
(or function) is used,;

(c) declarations may be implicit. Functions
like testdef must clearly inquire the
property-1ist of their argument for the
flags that were assigned by the declara-
tion. If these flags are not present, then
testdef (and similar functions) can com-
pute default values.

In fact, this is a simple example of backward
deduction.

The PCDB package contains various service
functions for doing declarations in a conveni-
ent way. However, let us ignore the conven-
tions of those service functions, and look at
their effect in the example of the relation
Father, where the declaration might have imme-
diate effect of putting the following proper-
ties of the property-list of the atom FATHER

indicator | value meaning

RELTYPE CLEANPRID binary relation; both
arguments are ''proper"
(1.e. either argument
may be omitted in open
questions)

ARGTYPTS ((AA)
(AA)) |both arguments must be
represented by alpha-
meric atons

ONE-MANY (MANY
ONF) |relation 1is functional
in second argument
(i.e. nobody has more
than one father) but
not in first

LOCATTD ARGS stored on the property-

lists of the arguments

The functions testdef[r], storedef[r], etc. have
been defined so as to branch on get[r,KELTYFE],
get[r,LOCATED], etc. and to return a functional
expression in each case. With the given decla-
rations, the above-mentioned lambda-expressions
will be obtained.

The PCDB package recognizes different kinds of
relations, with different numbers of arguments
(one, two, three, or more), different storage
conventions (on property-lists of arguments, on
property-list of relation symbol; hashed in an
array is planned, etc.) and other idiosyncra-
cies. Since each relation has its own storage

162

and retrieval routines, it becomes possible to
assign tailor-made routines automatically to
all relatinns.

The path of an assertion

Let us continue the example with the relation
Father. The PCDB package contains a standard
function assert, where evaluation of

assert{ FATHER ,DICK,JOHN]
will cause the following flow of control:

1. assert checks the well-formed-ness of the
arguments, and calls
sysassert|! 1, (FATHER DICK JOHN) 1

The number 1 is inserted as a default value,
and limits the number of H-expressions that
are generated in forward deduction (see below).
It could have been given explicitly as a first

argunent to assert.

2. sysassert is defined in principle as
follows:

sysassert[n,guc]l = 1f test[guc] then T
else

prog?| storelgucl, applylget!carlguc],
ASSERTDEF] ,[cdr gucll]]

with
store[guc] = applyl getl|car[guc],STOREDEF],
cdriguc]]
and
testlguc]l = applyl getlcarlgucl],TESTDEF],
cdrlguc]]

Thus we first use the TESTDET property of the
atom FATHER as a function, with the list

(DICK JOHN) as an argument list. Normally, the
relationship was not known to the system
before. Tt i1s then stored by the STORCDLEF
property. Finally sysassert applies the
ASSERTDEF property of the atom FATHER to the
list (DICK JOHN). The ASSERTDLT property has in
principle the form

(LAMBDA (X Y) (PROGN

(PROG ...)
(PROG ...)
(PROG ...)))

where each prog-expression 15 a compiled axiom
in forward usage. (In same cases, the system
may have been able to simplify the expressions
so much that the prog vanishes). Initially,
the ASSERTDEF property has the form

(LAMBDA (X Y) (PROGN))

and 1t is then updated each time an axiom is

Session No. 5 Software Support

given to the system. Compiled forward axiams
call sysassert with their conclusion, so
triggering may be continued recursively. There
are other functions which are similar to assert,
but which do slightly different things. For
example, the function claim makes a search to
check that the new fact does not contradict the
old data base, before i1t stores the new fact
and triggers side-effects.

A user may often want to call an arbitrary LISP
function during forward deduction, and to write

e.g. the "rule":
Pix,y] = print[x]

This is easily done in PCDB by assigning a
suitable STOREDLF property to the atom PRINT,
or by writing the rule as

Plx,y] @™ Dolprint(x]]

where the STOREDEF property of the atom DO 1s
Simply

(LAMBDA (X) XD
Relations used in backward deduction axioms can
be defined similarly. This is equivalent to the

"predicate evaluation" feature in various reso-
lution programs.

The path of a c%gsed:gpestidn

Closed questions are represented as ground unit
clauses ("guc'-s), just like facts. The follo-

wing standard functions are presently provided

in PCDB for answering closed questions:

test, which simply checks whether the clause
has been explicitly stored

search, which does a breadth-first search
through backward deduction axioms in order to
prove the clause. There 1s a call to test at
each tip of the search tree. Multiple occurren-
ces of a sub-question are recognized.

Pecsgépgg, which is like search except that the
search 15 depth-first, and multiple occurrences
of sub-questions are not recognized.

ask, which calls search with its argument and
with 1ts negated argument, and then answers
YES, NO, or DON'T-KNOW as described by Palme
(1971).

The function test is similar to store, and both
search and recsearch are similar to assert.
There are {unctions syssearch, sysrecsearch,
etc. and relations have function definitions on
their property-lists under the indicators
TESTDEY, SCARCHDLY, etc. TFor example,
sysrecsearch is in principle defined as

Session No. 5 Software Support

(LAMBDA (N GUC)
(COND ((TEST GUC) T)
((ZEROP N) NIL)
(T (APPLY (GET (CAR GUC)
'RECSEARCHDET)
(CONS N (CDR GUC]

Moreover, the RECSEARCHDEF property of a
binary relation has the form

(LAMBDA (N¥ X Y) (OR
[COND ((SYSRECSEARCH (SUB1 N¥X)
(sub~question))
(RETURN T]

vos)
))

Each argument to OR is a compiled axiom, and
each compiled axiom calls sysrecsearch once
for each sub-question it generates.

SEARCHDEF properties (which are used by
syssearch for breadth-first search) are similar
to RECSEARQIDEF's, but instead of calling
sysrecsearch, they store the sub-question on a
FIFO subquestion queue which the function
syssearch maintains as the value of a prog

variable, which then is free in the SEARCHDEF.

Compilation of rules

The compilation process starts with a rule (i.e.

a non-ground, and usually non-unit clause), and
ends when this rule has been transformed to
LISP code and inserted in an ASSERTDEF,
SEARCHDEF, and/or RECSEARCIDEF property. Compi-
lation is done in several passes. Let us
iIllustrate it with a concrete example, namely
the axiom

RIx,yl A Plyl A Sly,zl D Qlz,x]

Let us assume, furthermore, that this rule is
to be used for forward deduction, so that when
R[x,y] Is asserted, and Ply] has previously
been asserted, then for all z such that S|y,z]
has been asserted, Q[z,x] is to be asserted.
The treatment of rules for backward deduction
IS analogous.

Pass |I: External to internal notation. This
step transforms infixes (such as A, or infix
relations) to prefix form. It also makes a list
of the variables, and classifies the literals
as an antecedent, a list of conditions, and a
consequent. The result is

(X Y 2
R X Y)

vari ables
antecedent

163

(P Y) (S Y 2)
Q Z X))

conditions
consequent

In this example, R(x,y) is selected as the
antecedent, since it is to be the triggering
literal (i.e. the compiled axiom is to be on
the ASSERTDEF property of R). In general one
may want to have several versions of the same
axiom, with different choice of an antecedent.

Pass 2: Convert to PROG-expression. This pass
generates a very inefficient but yet executable
prog-expression, and can be considered as the
compilation proper. In our example it will
generate the expression

(R (N X Y) (PROG (Z ZQUE)
Bl (BIND NIL '(P Y) 'R2 'END 2)
ML (CONT NIL '(P Y) 'END)
B2 (BIND '(Z) '(SY 7) 'B3 'ML 2)
M2 (CONT '(Z) '(S Y Z) '"ML)
B3 ((LAMBDA (X¥) (SYSASSLRT N (CLOSE X¥)))
'"(Q Z X))
(GO M?)
IND (RETURN)))

Thus the antecedent determines the contents of
the first line (intended as lambda-variables
etc.); each condition generates a bind-cont
pair, and the consequent is used as an argument
to the lambda-expression. The functions in this
prog are defined as follows:

bind[varlist,literal, oontlabel, backuplabel,
depth]. If varlist is NIL, then bind does a
recsearch on the literal with the indicated
depth. If the value is T (i.e. if the condition
Is verified), then bind does a goto the
contlabel, where the next condition is tested,
otherwise it does a goto the backuplabel, i.e.
the corrt-statement of the previous condition.

If the varlist is non-NIL, then bind binds
(using the LISP function set) the variables on
the varlist. In general, the varlist contains
all variables which occur in literal, and which
have not occurred in the antecedent or in any
previous literal. In position B2 above, bind
will assign to AAE the list of all z which
satisfy S(y,z) for the given y, and to Z the
first element of ZQUE. Moreover, bind will go to
contlabel if the value of zque is non-NIL (i.e.
some z has been found)), and to backuplabel
otherwise.

cont[varlist, literal, backuplabel]. This func-
tion has the primary purpose of doing (in the
above example)

Z = car[zque]
ZAAE = cdr[zque]

164

When zque has been exhausted, cont goes to
backuplabel (where an "earlier" variable will
be cont-ed), otherwise it leaves control to the
next statement in the prog (where the next
condition is bind-ed, or the consequent of the
clause is processed). Moreover, if the varlist
Is empty, the corresponding bind only served
as a test, and then cont should trivially go
to backuplabel.

The reason cont is given literal as an argu-
ment is that in cases like

CONT '(Y) 'R XY) 'Me)

If R has been declared to be functional in the
second argument, it is obvious that there is
nothing to continue with. Then cont can again
trivially go to backuplabel.

close[form]. This function is defined as

cons[car[form],evlis[cdr[form]]]

In the example, it is used to pick up the
current values of x and z. - it should also be
remarked that the variable n i1s used to control
the number of new nodes that are introduced.

N is decremented when we have forward axioms
like

P(x,y) O R(x,f(y)

where y is a function from the predicate-
calculus viewpoint.

Pass 3: Partial evaluation. This is an equiva-
lence transformation which transforms the prog-
expression into another expression, which has
the same value and the same side-effects for

all arguments, but which runs more efficiently.
Partial evaluation Is possible since all argu-
ments to bind and cont have been given explicit-
ly. For example, the function cont is defined
as

cont[vl,e,m] =

if null[vll then goto[m]
elseif null[cdr[vl]] then
(if. . . . then goto[m]

else prog2[set[car[vl],car[eval[que[car
11117

set[que:Car[vl]],[c\éir]fe]\'/'a

[que[car[vl]]]]]])

else
where que is a packing and memoizing function
defined so that

que[Z] = ZAQAkE
In partial evaluation, the definitions of cont,

que, etc. are inserted In the prog-expression;
lambda-expressions are expanded, and function

expressions are collapsed whenever possible,

Session No. 5 Software support

e.g. so that

CAR (CONS x vy)) > x

(EVAL QUOTE X)) -> x

(GOTO QUOTE D) -> (GO 1)
SET @QUOTE x) y) > (SETQ x)

With such simplifications, the expression in
position B2 above is reduced to

B? (COND ((NULL ZQUE) GO MI))
(T (SETQ Z (CAR ZQUE))
(SETQ ZQUE (CDR ZQUE]

which is quite reasonable code.

Pass 4: Prog-reduction. Partial evaluation will
leave a lot of redundant go statements in the

prog, e.g. like

GO L)

.*.

L GO M)

..))

In this pass, the obvious simplifications are
made.

In a fifth step, the prog-expression is inserted
into the relevant ASSERIDEF or other ...DEF
properties.

It should be noticed that pass 2 and step 5 are
the only steps that are logically needed. Pass 1
only provides some added notational convenience,
and Is dispensable. Passes 3 and 4 serve to
speed up the program, but they are not necessary
For testing purposes, it is sometimes better not
to use them.

Predicate-calculus functions

Operators which are functions from the predicate
calculus viewpoint (these must be carefully
distinguished from functions in the LISP system,
which in a certain sense interprets the predi-
cate calculus expressions), are handled in the
following fashion:

Every PC function is assigned a LISP function
definition, which follows a standard pattern. If
g is an n-ary PC function, then it is also an
n-ary LISP function which returns an expression
of the form

G8 GAB)

where G8 is a gensym-atom, and A and B are the
evaluated arguments to g. This expression is
called an H-expression. (H stands for Herbrand).
It is generated the first time g[A,B] is evalua-
ted, and the same (with eq) expression is ob-
tained on each successive evaluation of g[A,B].

Session No. 5 Software Support

The atom G8 carries a property-list, on which
relations can be stored. Moreover, the proper-
ty-list of the first argument (in this case,
A), contains a pointer to the above expression
under a certain indicator. Notice that A need
not be an atom, but it may itself have been
generated by a PC function.

When functions appear in axioms, then linear
code for the matching ("unification") is
generated at compile time. For a trivial
example, if the axiom

Plglx,y1] 2D Qly,x]

is declared for forward usage, then it is re-
written in an early compilation step as

Plz] A GGlz,x,yl D Qly,x]

where gg is considered as a relation which has
a peculiar mode of storage, but which is other-
wise similar in all respects to user-declared
relations. If the user declares g as a PC
function, then the necessary declaration of

ggq is implicit. - Notice that this axiom would
not be re-written if it were declared for
backward usage. Thus new H-cxpressions may be
introduced during deduction.

Comparisons with some existing programs

Several existing programs show similarities
with FODB in some respects. We shall attempt
a comparison, even if there is on obvious risk
that we are misinformed about some aspect of
the other programs. The reader should take the
discussion here as a first approximation.

QA3 and QA35 (see Green, 1969, and Garvey and
Kling, 1969). QA3 is a resolution-oriented
theorem-proving program, which maintains a
"memory" (set of clauses that are stored in
the system) and a "clauselist" (set of clauses
that are active during a deduction). Clauses
iIn memory are indexed by predicate letter and
then by length; clauses on the clauselist by
ength only. Moreover, there are special
neuristics for handling e.g. sequences of reso-
utions with binary clauses ("chaining"). QAS.
Is similar in all of these respects. The major
differences between QA3 and FCDB are:

1. QA3 interprets all "rules"; PCDB compiles
them.

2. QA3 can perform resolution proofs according
to arbitrary strategies. The proofs performed
by the PCDB search executive and the compiled
axioms correspond to some highly restricted
resolution strategies.

3. QA3 treats all clauses uniformly, and does

165

not store ground unit clauses ("facts") in a
special way as PCDB does, (it is possible to
interface QA3 with a program for such storage,
for example by using the predicate evaluation
feature. However, it seems to be a non-trivial
task to make this work fully automatically,
and to implement it for clauses where the rela-
tion's arguments have been constructed with

PC functions).

The difference indicated in point 2 implies
that QA3 is more general-purpose than PCDB is,
and that it is more suitable for tasks where a
major part of the clauses as non-ground and
non-unit. On the other hand, points 1 and 3
enable us to guess that PCDB should be much
faster in those cases where it is applicable,
although no comparative measurements are yet
available.

The NIH Heuristics Laboratory program (see
Norton, 1971, and Dixon, 1971). This program is
similar in approach to QA3. In some experiments,
the NIH program has been guided by heuristic
search, but this does not affect the comparison
with PCDB. The NIH group have compiled axioms
using partial evaluation, and did so a year
before us. However, their compilation (at least
as described in the paper by Dixon) seems to be

more restricted. It is performed so that

resolvelc,c'] = (compile[c]) Ic']

whereas the execution of one compiled rule in
PCDB may be equivalent to a large number of
resolutions.

Planner (see Hewitt, 1970). Like PCDB and unlike
the preceeding programs, Planner is a substrate
for special-purpose theoreni-provers, rather than
a general-purpose theorem-prover. Planner is
also more data-base-oriented than the preceeding
programs. For example, Planner uses the idea of
associating procedures with relation symbols,
and to execute these for storage and/or retrie-
val . The dichotomy between forward and backward
deduction is present in Planner, where one
speaks about "consequent” and "antecedent"
theorems, re spectively.

The major difference is that Planner uses a
general high-level control mechanism, which is
similar in approach to non-deterministic prog-
ramming. This control mechanism is available to
the user of Planner; the user of PCDB does not
have it (except trivially when he can utilize
the system's search executive for backward
proof in some round-about way). The control
mechanism is also used inside Planner. The
occurrences of this correspond e.g. to the
breadth-first search that is performed by the
function syssearch in PCDB, and to the loops

166

that are generated by bind and cant in compiled
axioms. This difference is correlated with
another:

Planner thinks about its user as a programmer,
and about its "theorems" as programs, albeit in
a very machine-remote programming language
which assumes the above-mentioned control
structure. PCDB thinks about its input as sta-
tic information ("declarations", "facts”,
"rules"), plus some tags which hint when and
where this static information is to be used,
and PCDB takes as its task to "digest" its in-
put so that it can later be used in the indi-
cated situations. (This attitude of PCDB can be
overcome, e.g. using the function do that was
described above, but it is still significant).
As a consequence of this, PCDB assumes predicate
calculus notation as input, whereas Planner
assumes its own input language. (It is an
interesting problem to write a translator from
predicate-calculus-plus-control-tags to the
Planner language). Thus PCDB is in several
respects slightly closer to conventional
theorem-proving programs than Planner is.

Present status and planned extensions of PCDB.
Most features described in this paper are
presently working (May 20, 1971). The excep-
tions are: (a) pass | of compilation (infix to
prefix notation); (b) pass TV of compilation
(prog-reduction) and the function collapsing
step in pass |Ill (partial evaluation);

(c) function-to-relation conversion in compiling
rules with PC functions in them. The immediate
plans are to complete these steps; to add a
package for answering open questions (exists in
outline); and to compare the efficiency of
PCDB-generated code with manually produced
code.

Acknowledgement s

Many thanks to Lennart Drugge, Anders Haraldson,
Rene Reboh and Arne Tengvald, who helped great-
ly with testing and debugging various parts of
the PCDB program. Thanks also to David Luckham,
who patiently explained some of the intricacies
of resolutionology, and to members of the SRI
A.l. group for the opportunity to discuss and
to play with the QA3.5 program.

References

Burstall, RM. (1969)
Formal description of program structure and
semantics in first-order logic
in Meltzer & Michie (eds) Machine Intelli-
gence, Vol. 5 (Edinburgh, 1969)

Session No. 5 Software Support

Burstall, RM. (1970)
Formalising the semantics of first-order
logic in first-order logic, and an applica-
tion to planning for robots

Dixon, John K. (1971)
THE SPECIALIZER: A Method of Automatically
Writing Computer Programs
NIH Heuristics Laboratory (unpublished)

Garvey, Thomas D. and Kling, Robert E. (1969)
User's Guide to QA3,5 Question Answering
System
SRI Artificial Intelligence Group, Technical
Note 15 (1969)

Green, Cordell C. (1969)
The application of theorem proving to
guest ion-answering systems
SRI Artificial Intelligence Group, June 1969

Hewitt-, Carl (1970)
PLANNER: a Language for Manipulating Models
and Proving Theorems in a Robot
MIT Project MAC Artificial Intelligence
Meno No. 168

Manna, Zohar and Waldinger, Richard J. (1970)
Towards Automatic Program Synthesis
Stanford Artificial Intelligence Project

Moo AlIM-127

Nilsson, Nils (1969)
A mobile automaton: an application of
artificial intelligence techniques
Paper presented at the first International
Joint Conference on Artificial Intelligence
(1069)

Norton, Lewis M. (197])
Experiments with a Heuristic Theorem-Proving
Program for Predicate Calculus with Equality
NIH Heuristics Laboratory (unpublished)

Palme, Jakob (1971)
Making Computers Understand Natural Language
in Findler (ed.), Artificial Intelligence
and Heuristic Programming
Oxford University Press, 1971

Sandewall, Erik (1970)
Representing natural-language information in
predicate calculus
in Meltzer & Michie (eds) Machine Intelli-
gence, Vol. 6 (Edinburgh, 1970)

