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1. Introduction 

The second Stanford hand-eye system is the 
result of a design based on the previous solu­
tions to hand-eye subproblems, but with the 
various problems considered more broadly. The 
systems and language services which the new system 
ut i l i zes are based on, among other things, the 
requirement that several programs or cooperating 
tasks be able to operate concurrently. Further, 
each subproblem task is to be under the super­
vision of a strategy monitor: a strategy for 
solving a preception or manipulation problem is 
generated and subsequently executed. During 
execution, the strategy may ca l l for various 
subgoals to be pursued with various p r i o r i t i es , 
for subgoal progress reports, and possibly for 
al terat ion of the strategy i t se l f . 

The tasks, or "modules," which constitute 
the system are largely independent but cooperate 
with the strategy program to solve the perception 
and manipulation problems put to the system. 
Examples of tasks are: (1) the TV camera calibra­
t ion routines, (2) the camera positioning program, 
(3) the color discriminator, (4) the edge 
follower, (5) the program to optimize feature 
discrimination by the TV, (6) the body recognizer, 

(7) the program to compute an arm trajectory, 
(8) the task which actually moves the arm over a 
trajectory, and (9) the strategy task i t s e l f . 
Each of these modules is a complicated computer 
program, but requires only a f a i r l y simple 
interaction with the other system modules. The 
resource and execution requirements vary among 
the tasks: Some are executed periodically 
throughout a run (e.g. strategy task); some are 
used only during i n i t i a l i za t i on (e.g. camera 
cal ibrat ion); some must deliver real-time service 
to hardware devices (e.g. arm mover). 

Since the tasks are reasonably self-contained, 
each was designed by a separate programmer. Each 
module was to be wri t ten and debugged in isola­
t ion and then merged into the system. This 
merging ef for t is minimized by requiring a l l 
programmers to observe the programming conven­
tions of a high level language, SAIL, (see 
section 2). SAIL was designed with the coding 
of the hand-eye system in mind, and includes 
several features to ease that coding. 

Even though these tasks are merged into a 
f u l l system, they remain quite independent. The 
strategy program monitors and controls each task 
separately, and may allow concurrent execution 
of several tasks. For example, the edge follower 
may be working on a cube at the same time the arm 
is being positioned. Major changes in the hand-
eye system may require new tasks to be added to 
the system repertoire, or old ones to be deleted. 
The requirements of f l e x i b i l i t y , independence, 
and concurrent operation are most easily met by 
executing each task as a separate job in the 
PDP-10 timesharing system (1). The status of 
each task as a timesharing job means that 
existing timesharing f ac i l i t i e s (e.g. f i l e system, 
teletype communication, storage management) are 
available to each task. The timesharing job 
scheduler, acting on information supplied by the 
strategy program, can be used to allocate hard­
ware resources to each task. The alternative to 
using the timesharing system was to bui ld a 
scheduler and swapper into a monitor for the 
hand-eye system which could allocate resources 
according to p r io r i t i es set by the strategy task. 
Since this method would duplicate many of the 
functions of the timesharing system, we preferred 
changing the existing system to start ing afresh. 

An easy means of sharing certain system data 
among a l l tasks and of communicating between 
tasks is necessary, but is not provided by the 
timesharing system. Data sharing is fac i l i ta ted 
by the PIP-10 memory address mapping feature, 
which allows a col lect ion of jobs to have a 
common portion of their address spaces reference 
a common segment of memory. Such a shareable 
segment of memory is called a "second segment" 
(as opposed to a " f i r s t segment," which is 
private for each timesharing job) and is generally 
used to store a pure procedure which is common 
to several jobs. The hand-eye system, however, 
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uses a second segment to store common data as 
wel l as common procedures. The SAIL language 
provides method of referencing data in this 
common area (see section 3). Also, a "message 
procedure" f a c i l i t y was bu i l t into SAIL to handle 
intertask communications (see section4) which 
could not be accomplished easily with the data 
sharing mechanisms. 

The large number and complexity of tasks 
necessitate specific aids to debugging the 
system. Because the tasks are f a i r l y independent, 
each can be checked out before being merged into 
the system. In many cases, the system environ­
ment for a task can be simulated by another task 
for purposes of debugging. Debugging the f u l l 
system is d i f f i c u l t since as many as a dozen 
tasks are active concurrently; specif ic debugging 
and operating aids were constructed to simplify 
this process. For example, the user may control 
the entire system from a single display console 
(see section 5) and may request traces of task-
to-task and user-to-task communications (see 
sections 4 and 5). 

2. SAIL 

SAIL (2), the language used for most of the 
programming in the hand-eye system, is a dialect 
of ALGOL 60 augmented by a complete character-
str ing f a c i l i t y , by f i le-handling operations 
tai lored to the PEP-10 operating system, and by 
LEAP f a c i l i t i e s , which are a set of associative 
data storage conventions and operations. A one-
pass compiler and a runtime executive were bu i l t 
for this language. The compiler produces 
programs to be loaded by a l inking loader, which 
can include other SAIL, FORTRAN, or machine-
language procedures. We adopted the philosophy 
that the language should change to ref lect the 
col lective needs of the hand-eye system pro­
grammers. Thus we insisted that the methods 
adopted for data-sharing and intertask communi­
cation be supported di rect ly by the SAIL language. 
The compiler was constructed so that such modi­
f icat ions to the language might be made easily. 

3. Data Sharing 

Data that is needed by more than one module 
of the hand-eye system is declared as GLOBAL in 
each module so that it may be stored in the 
second segment portion of the hand-eye system's 
PIP-10 address space. 

The global data f ac i l i t i e s are used for 
global system variables (e.g. a boolean debug 
f lag to instruct tasks to record debugging 
information), and part icular ly a "world model" 
containing information about the posit ion and 
ident i ty of a l l objects recognized by the system, 
the positions of the arm and camera, etc. This 
world model is the system's best estimate of the 
state of the problem solut ion, and is used to 
influence strategy decisions. Each module may, 
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with appropriate precautions, read or update 
this model. 

Shared data is referred to by name in SAIL 
just as are any other SAIL variables. A dic­
tionary of globally declared names and their 
data types is used by the SAIL compiler during 
compilation of each module. Declaring a name 
as GLOBAL allows SAIL to assign to that global 
variable an address in the second segment. Such 
declarations are wri t ten as: 

GLOBAL INTEGER DEBUG_FLAC; 
GLOBAL REAL ARRAY CAMERAJTRANSFORM [1:6,1:6] ; 

Since the global data area is shared among 
a l l tasks, an interlock mechanism is required 
to prevent concurrent attempts to allocate 
storage in the second segment at runtime or to 
change some sensitive SAIL data structure (e.g. 
SETs). The SAIL runtime routines provide this 
interlock with a Dijkstra P-V operation (5). 

Interlocking the runtime routines is not 
suf f ic ient to prevent several separate tasks 
from making conf l ic t ing modifications in the 
global data. Updates should be performed " a l l 
at once" since another task may be reading the 
same global data concurrently, and may not be 
able to tolerate an inconsistent global model. 
This update-access interlocking is essentially 
a scheduling function and is administered by 
the strategy program which allows access to a 
portion of the data by only one reader or 
wri ter at a time. This access privi lege is not 
enforced by hardware protection, but rather by 
requesting permission from the strategy task, 
making the modifications, and announcing to the 
strategist that the modifications are complete. 
In fac t , the strategist may choose to allow 
modifications only after some validation tests 
of the new data have been performed (the 
strategy program might activate two concurrent, 
but d i f ferent , attempts to compute a result and 
compare resul ts, have a val idation process check 
the data, etc) . The communication with the 
strategy task to establish permission to write 
in the global model is accomplished with message 
procedures (see section 4). These modification 
protocols are not bu i l t into the SAIL language, 
but are coded exp l i c i t l y in each module which 
may make sensitive modifications. 

Much of the shared data may not require, 
and hence is not subject to , this close super­
vis ion. Some data is declared GLOBAL simply so 
that two sympathetic tasks might reference i t . 
For instance, since both the color discriminator 
module and the edge following module use infor­
mation about the current sensi t iv i ty of the TV 
camera, these parameters are stored as global 
data. 
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3.1 The Global LEAP Model 

LEAP fac i l i t i e s are used to process much of 
the symbolic data in the hand-eye system. A 
f u l l description of LEAP is presented elsewhere 
(4), and a br ief review w i l l suffice here. LEAP 
is a collection of SAIL syntax and runtime 
routines for manipulating ITEMs and associatioas 
of ITEMS. An item is merely a number in the 
range 0-4096 which has a symbolic use (c. f . 
ATOMs in LISP). Items may be associated together 
as tr iples (or associations) stored in the 
"associative store." In fact a t r i p le may i t ­
self be considered as an item and may occur as 
a component in a further association. Triples 
are added to the associative store with the 
MAKE statement. For example: 

MAKE father g>john E joe ; 
MAKE endpoint ® x E point1 ; 

The three items in a t r ip le are referred to 
as the at t r ibute, the object, and the value 
respectively. This suggests that a t r ip le be 
reas as: "endpoint of x is po in t l . " Associa­
tions are removed from the associative store 
with the ERASE statement, as: 

ERASE iteml ® item2 = item3; 

and the associative store is seardied with the 
FOREACH statement: 

FOREACH x SUCH 1HAT endpoint ® x E point l do 
<statement>; 

The <statement> is executed once for each 
value of the itemvar x which occurs in the 
associative store in an association endpointflxE 
po in t l . 

Each item may have a IftTIJM which is an 
arithmetic value or array of values associated 
with the item. Thus the DATUM of an item which 
is intended to represent the endpoint of a l ine 
in three dimensions might be a 3-element array 
containing values for the x, y and z coordinates 
of the point. SAIL accesses the DATUMs of items 
in only 3 PDP-10 instructions, which makes the 
combined use of arithmetic and symbolic pro­
cessing very at tract ive. 

The associative store of item tr ip les and 
the DATUM store of algebraic values associated 
with items together constitute a "LEAP model." 
A l l of the information about positions of bodies 
in the hand-eye system is represented in such a 
model. Certain kinds of processing, such as 
pattern matching, arm col l is ion avoidance, and 
l imited problem-solving make use of this model. 

A "global LEAP model" is resident in the 
shared segment and can be accessed by a l l tasks. 
It consists of an associative store and a DATUM 
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store, just as any other LEAP model, but is 
completely independent of the local LEAP models. 
Global item numbers are assigned by SAIL in the 
range 3072-4096, while locals are in the range 
0-3071. The assignment of numbers is made 
either by the compiler as a result of a 
declaration: 

GLOBAL ITEM a; 

or by a runtime function which assigns unique 
global item numbers: 

x ← GLOBAL NEW; 

Local models may contain references to 
global items, but the global model may not con­
tain references to any task's local items since 
another task w i l l not be able to interpret such 
an item number. Global items in the local model 
are used extensively (e.g. the body recognizer 
builds in i t s local LEAP model a hypothetical 
"body" making use of global items such as face, 
endpoint, l i ne , e tc . ) . A task may make a local 
copy of a portion of the global associative 
store if these associations are to be changed in 
ways which should be hidden from other tasks. 

Of course, the operations MAKE, ERASE, 
PDREAOl, and DATUM may refer to either the local 
or global models, and the user is required to 
remove this ambiguity by specifying as GLOBAL 
those operations on the global model, as: 

x ← GLOBAL DATUM ( cube ); 
GLOBAL MAKE face cube = y ; 

The entire shared data area, consisting of 
the LEAP global model, global arithmetic 
variables and shared runtime routines, represents 
much of the environment in which a task program 
is executed. Thus the current environment may 
be extracted simply by copying the second 
segment area. The copy can then be saved for 
later study or can be used to restart the system 
from the point where the copy was made. For 
example, a rather cumbersome global model 
i n i t i a l i za t i on procedure was avoided by using a 
copy of a second segment which has already been 
in i t i a l i zed . 

4. Message Procedures 

Intertask communication is accomplished by 
invoking '"message procedures." In s p i r i t , task 
A may send a message to task B requesting that 
one of B's procedures be executed (hence the 
name "message procedures"). For example, task A 
requests evaluation of the procedure f ind , 
located in task B: 

BEGIN "A" 
INTEGER g , i ; 
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PORWARD MESSAGE PROCEDURE f ind (INTEGER a,b); 

i ← ISSUE ( '7,"A","B", MESSAGE f ind (10,g) ); 

END "A"; 

In the ISSUE c a l l , task A supplies the name 
of the task to receive the message ("B") and the 
procedure c a l l , complete with actual parameter 
values. Task B is coded as follows: 

BEGIN "B" 

INTEGER mess,i; 

MESSAGE PROCEDURE f ind (INTEGER x,y) ; 

BEGIN 

comment . . . code for the procedure . . . ; 

END; 

mess ← GET_ENTRY ( '120," " , "B" , " " ) ; 

i ← QUEUE ('600,mess) ; 

END "B"; 

The GET_ENTRY routine examines a queue of 
pending messages for one destined for task "B". 
The QUEUE ca l l invokes a routine which actually 
evaluates the procedure f ind (named in the 
message) with the actual parameters supplied by 
task A. Notice that B must exp l i c i t l y ca l l the 
message processor runtime routines to scan the 
queue for messages destined for B. Then if B 
is disposed to process a part icular request 
found in the queue, it may direct the message 
processor to apply the named procedure of B to 
the parameters in the message record. We chose 
not to automatically interrupt B and execute the 
message procedure since B may be indisposed to 
interruption (some data structures or hardware 
devices may be in sensitive conditions and 
cannot tolerate immediate execution of the 
message procedure). 

Almost a l l forms of SAIL data may be passed 
as actual parameters in message procedure calls 
( i . e . with the ISSUE function): STRINGS, INTEGERS, 
REALS, ARRAYS, SETs, ITEMs, and ITEMVARs. If 
the variable is in the private address space of 
the ca l ler , a copy w i l l be made in the shared 
space so that the called task may reference i t . 
No data is ever copied back into the ca l ler 's 
private space after evaluation of the message 
( i . e . no ca l l by reference for private variables). 
If data is to be returned from the message pro­
cedure to i t s cal ler , the called task may leave 
information in the global data area ( i . e . pass 
global variables by reference) or may ISSUE a 
return message to the cal ler which contains the 
appropriate data. 

Associated with the message data is a 
mechanism to control execution of the cal ler and 
called tasks. A task is said to be "active" 
(being executed or able to be executed) or 
"blocked" (execution suspended). A task such as 
the camera servoing module may request to be 
blocked waiting for messages. When a message 
procedure ca l l is issued to a message procedure 
in a blocked task, the message processor in ­
structs the timesharing system to resume 
execution of that task. The activated task may 
scan the queue, evaluate the procedure and then 
request to be blocked while awaiting more 
messages. Simi lar ly, the task which issues the 
message may request to be blocked un t i l the 
called task has completed execution of the 
message procedure, at which point an 
ACKNOWLEDGEment is produced by the called task, 
and the timesharing system resumes execution of 
the cal l ing task. 

The details of the implementation of message 
procedures allow considerably more f l e x i b i l i t y 
than described in the preceding discussion. Both 
the sender and receiver must declare the names 
and parameter types for any message calls to be 
passed between them. A typical declaration i s : 

PORWARD MESSAGE PROCEDURE f ind (INTEGER x; REAL y) ; 

PORWARD specifies that the text of the 
procedure body does not accompany this declara­
t ion . The module which w i l l process messages 
requesting evaluation of " f i nd " must contain 
somewhere the text of " f i n d . " 

The sender of a message to " f i nd " makes the 
following c a l l : 

x ← ISSUE (direct ive, "A", "B", MESSAGE find 
(10,g) ); 

ISSUE is a ca l l to the message processor 
which composes a message from the task named A 
to the task named B to evaluate the procedure 
" f i nd " with arguments 10 and the value of g. The 
message record is composed and placed in the 
message queue. The sender has further options, 
specified by the value of the directive code: any 
or a l l of the following may be specified in 
combination, to be interpreted in the order given 
here: 

1). SEND the message to the task named B. 
If B is blocked awaiting receipt of a message, 
the message processor directs the timesharing 
system to unblock the job which corresponds to 
the message destination B. Races inherent in the 
decision to unblock are avoided by interlocking 
portions of the shared message processor code. 

2). WAIT for ACKNOWLEDGEMENT of the message. 
Since it is common practice to ACKNOWLEDGE a 
message after evaluation is complete, WAITing 



Session No. 5 Software Support 187 

normally means blocking execution of the cal l ing 
task u n t i l the called task has evaluated the 
message procedure. 

3). KILL the record of the message ( i . e . 
delete the record from the message queue). If 
KILL is not specified, the message record w i l l 
remain in the queue even after the message has 
been received and processed by the called task. 
KILLing is not automatic, since the cal l ing task 
may wish to examine this record. 

The ISSUE function returns a descriptor for 
the message issued which can be used for further 
inquir ies. For example, A need not wait for B 
to complete evaluation of the procedure, but may 
wish to continue execution. However, at some 
later time, A may wish to veri fy that the message 
procedure has been invoked and completed, and may 
use this descriptor to make such inquiries of 
the message processor. 

The receiving task, B, must process messages 
sent to i t . Whenever the program for B wishes to 
scan the message queue, it executes the following 
statement: 

x ← GET_NTRY (direct ive, "A","B", "f ind") ; 

which invokes a search of the message queue for 
messages destined for B from A requesting 
evaluation of procedure " f i nd . " The receiving 
task may be indif ferent about the names of cal ler 
and message procedure, and may specify in the 
directive code that this portion of the match is 
to be ignored. The receiver may also specify 
that his execution is to be blocked unt i l an 
appropriate message arrives. The value of 
GET_ENTRY is the descriptor of a message. 

The receiving task may use this message 
descriptor to invoke several message processor 
functions with the QUEUE c a l l : 

1). ACTIVATE the message. The parameters 
in the message record are used to evaluate the 
message procedure test in the receiver's program. 

2). ACKNOWLEDGE the message. This is 
usually an indication to the cal ler that the 
message procedure has been evaluated. If the 
cal l ing program was WAITing for such an 
ACKNOWLEDGEMENT, i t s execution is now resumed. 

3). KILL the message record. 

The message processor has a feature which 
allows tracing of messages. When a message is 
ISSUEd, a message record is composed but not 
SENT. The message processor sends another 
message to a task named 'TRACE." This new 
message is a request for evaluation of the 
message procedure "TRACE" with the descriptor of 
the message record being traced as parameter. 
The or iginal ISSUEr is blocked un t i l the TRACE 
message is ACKNOWLEDGED, at which point the 
or iginal message is f i na l l y SENT. 

Printouts by the 'TRACE" procedure of the message 
ac t iv i ty which c i te times of ISSUE, source, 
destination, message procedure names and parameter 
values are a great aid to debugging. The trace 
f a c i l i t y may also be used by the strategy task, 
which monitors a l l requests for message procedure 
evaluations and approves of them or prematurely 
ACKNOWLEDGES them and sends an indication to the 
cal ler that his request was denied. The strategy 
program administers resource al location of the 
hand-eye system and may wish to deny requests 
which use special I/0 devices or extensive 
calculations. 

5. User's Control at the Console 

Monitoring of the hand-eye system is 
accomplished with another timesharing job, the 
"pseudo-teletype control ler ," which mixes tele­
type output from a l l of the system tasks for 
display at the user's console and allows him to 
send character strings or timesharing commands 
to any of the tasks. A typical session w i l l 
involve start ing the controller task, using it 
to create one timesharing job for each hand-eye 
system task and assigning each a logical name. 
To send characters to a task via the control ler, 
the user types: 

lognam; characters to go to task of name lognam 

The user may subsequently omit the "lognam;" 
and strings w i l l go to the most recently specified 
destination. The user may also specify time­
sharing-system commands to be executed on behalf 
of any task. A special command format is 
implemented since command strings must be directed 
to the timesharing system command decoder rather 
than to the running task: 

lognam: timesharing command for task lognam 
:: command to be sent to a l l tasks 

Output from jobs is displayed to the user 
as: 

lognam→output characters 

Task operation with the pseudo-teletype con­
t ro l l e r task as an intermediary or with a direct 
connection to the user's console appear identical 
to the task. Any requests for teletype input or 
output are routed by the timesharing system to 
the pseudo-teletype control ler. The timesharing 
system also routes task display output to the 
graphics display console used by the pseudo-
teletype control ler. The user may thus interact 
from a single console with a l l jobs in the hand-
eye system. A l l transactions of the pseudo-
teletype controller may be traced and recorded 
on a disk f i l e . This record and the message 
procedure trace provide a convenient post-mortem. 
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6. Debugging 

One troublesome aspect of running this 
system is that a bug which appears in one run 
may not reappear subsequently. A l i t t l e less 
noise in the camera or position-sensing 
potentiometers of the arm may prevent recurrence 
of the error. Many of the tasks keep traces of 
their performance as the system executes. This 
information may be used to search for signs of 
i r regu lar i ty , or to recreate in a task the con­
ditions of fa i lure and thus permit the pro­
grammer's scrutiny. 

The organization of the system greatly 
fac i l i ta tes debugging i t . The modular nature of 
the system permits the user to replace a 
defective module with a dummy which records on a 
disk f i l e the global environment and input 
information sequence for the task. Later, a 
small system consisting of the defective module 
and a "dr iver" is assembled. The driver uses 
the disk f i l e to recreate the environment in 
which the defective module fa i led ; the author of 
the defective code may now engage in debugging 
act iv i t ies without loading the entire hand-eye 
system. For example, the body recognizer is 
checked out using disk f i l es containing two-
dimensional l ine representations of objects. 
These f i l es are created by a two-task system in 
which a dummy invokes the edge follower to read 
the TV camera and edge-follow a body, and then 
saves a f i l e containing the edge data. 

In l ieu of a special driver for debugging 
each subsystem, the user may type SAIL statements 
for immediate execution. A special version of 
the SAIL compiler was constructed which compiles 
code into core and executes it on demand. This 
compiler is i n i t i a l i zed with the appropriate 
global data and message procedure definit ions 
and is executed as one of the tasks in the hand-
eye system. A user may construct message 
procedure calls or strategies on-l ine, may 
examine global variables, and may search the 
global associative store. An example of such an 
"immediate" SAIL program i s : 

EXECUTE show_item ( blobs ) END; 

A f i l e containing a l l on-line commands is 
kept which later can be edited to y ie ld a SAIL 
program for compilation. 

A machine-language debugging program, 
RAID(3), is loaded with each task. If necessary, 
the user at the console may interrupt a task and 
use RAID to peek at the memory cel ls assigned 
to the task. The loading process leaves a 
symbol table which has entries for a l l local and 
global data names used by the task, as well as 
indications of procedure entry points, labels, 
etc. RAID uses this symbol table to create a 
symbolic display of machine code and variable 
values. 

7. Discussion 

The global data, message procedure, console 
and debugging features described have a l l been 
implemented and used in the Stanford hand-eye 
project. These f a c i l i t i e s were used in pro­
gramming the Instant Insanity puzzle, which 
required 9 cooperating tasks (6). These tasks 
were designed to test new approaches to hand-eye 
solutions, especially the ideas of strategy 
generation and supervision. However, the strategy 
program, i t s protocols for monitoring tasks, and 
i t s interaction with the timesharing system have 
not yet been fu l l y developed. 

The hand-eye system researchers f ind this 
col lect ion of system fac i l i t i e s f a i r l y easy to 
use. One major shortcoming, however, is the 
lack of a SAIL debugging system capable of 
displaying and modifying the various algebraic 
and symbolic data in a program. Examining LEAP 
structures is part icular ly d i f f i c u l t ; some users 
included in their programs procedures for pre­
senting their data structures in a meaningful 
way (e.g. a display of a perspective projection 
of the "world" they are processing). 

The f l e x i b i l i t y of this system steins from 
the factoring of the hand-eye problem into a 
set of largely independent tasks. The interface 
among tasks (message procedures) and shared data 
are a l l documented in a small f i l e which con­
tains the SAIL declarations which each task 
includes in order to access this data. An 
experimenter who wishes to add a task to the 
system or to replace an existing task has only 
to observe the conventions for communication 
with neighboring tasks. He may then test out 
his new methods as they are applied during 
solution of various manipulation problems posed 
to the system. 

The smooth evolution of the system so far 
suggests that modifications to accomodate future 
requirements may be quite simple. The message 
procedure and global data f ac i l i t i e s were added 
easily to SAIL as the system design progressed. 

The data sharing and message communication 
f ac i l i t i e s described in this paper represent 
one solution to the problem of multitasking. 
The PL/1 language provides a very similar 
solut ion, in which procedures may be executed as 
asynchronous TASKs, each of which is named. 
Synchronization is accomplished by WAITing for 
the completion of a named task. Since a l l tasks 
are procedures declared in one PL/1 program, 
data sharing is straightforward: global data is 
declared in the outer block and is hence 
accessible to a l l tasks (procedures). The PL/1 
solution was inadequate for the hand-eye system 
for several reasons: (1) A l l procedures must 
reside in core simultaneously, in order that the 
execution environment for a task can include a l l 
outer block data (This is also in keeping with 
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OS/360 restr ic t ions). The hand-eye system is 
too large to enjoy this luxury and includes 
large quantities of code used only for i n i t i a l i z -
t i on , for error recovery, or for debugging which 
need not reside in core during a run (One 
function of a swapping timesharing system is to 
move idle tasks to secondary storage). (2) If 
a l l tasks are compiled as one PL/1 program, the 
program must be recompiled each time a local 
change is made. The tremendous size of the 
hand-eye system and the large number of pro­
grammers at work on it would make this process 
time-consuming and d i f f i c u l t . (3) Our system 
permits separate tasks to be substituted at 
w i l l with a minimum of attention to the 
environment in which they w i l l execute. (4) Our 
system requires an expl ic i t scan of the message 
queue to avoid invoking procedures when 
inconvenient to the called task. The PL/1 
f ac i l i t i e s do not direct ly solve this problem. 

Data sharing and message procedure 
mechanisms are useful to programs other than the 
hand-eye system. Compelling reasons, both 
aesthetic and pract ica l , often suggest dividing 
a programming task into a collection of possibly 
concurrent processes, but the lack of good ways 
to coordinate the processes is a sizeable 
obstacle. We feel that a programming language 
should provide solutions to these problems 
appropriate to the operating system used to 
execute the programs. 
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