
Session No. 5 Software Support 183

SYSTEM SUPPORT FOR THE STANFORD
HAND-EYE SYSTEM *

Jerome A. Feldman

Stanford University
Stanford, California

Robert F. Sproull

National Institutes of Health
Bethesda, Maryland

Abs tract

The Stanford hand-eye system is implemented
as several separate tasks, each executing under
a timesharing executive. Development of a
programming language (SAIL) and augmentation of
the timesharing system were required to provide
the necessary data sharing and control flow among
the tasks. The SAIL language provides fac i l i t i es
for "associative processing," and is extended to
serve the data sharing and communication needs of
the hand-eye system. Several user f ac i l i t i es are
designed to aid running and debugging the system.

Keywords

associative processing, programming
languages, symbolic processing, timesharing,
segmentation, interprocess communication,
debugging.

*This work was supported by the Advanced Research
Projects Agency (SD-183).

1. Introduction

The second Stanford hand-eye system is the
result of a design based on the previous solu­
tions to hand-eye subproblems, but with the
various problems considered more broadly. The
systems and language services which the new system
ut i l i zes are based on, among other things, the
requirement that several programs or cooperating
tasks be able to operate concurrently. Further,
each subproblem task is to be under the super­
vision of a strategy monitor: a strategy for
solving a preception or manipulation problem is
generated and subsequently executed. During
execution, the strategy may ca l l for various
subgoals to be pursued with various p r i o r i t i es ,
for subgoal progress reports, and possibly for
al terat ion of the strategy i t se l f .

The tasks, or "modules," which constitute
the system are largely independent but cooperate
with the strategy program to solve the perception
and manipulation problems put to the system.
Examples of tasks are: (1) the TV camera calibra­
t ion routines, (2) the camera positioning program,
(3) the color discriminator, (4) the edge
follower, (5) the program to optimize feature
discrimination by the TV, (6) the body recognizer,

(7) the program to compute an arm trajectory,
(8) the task which actually moves the arm over a
trajectory, and (9) the strategy task i t s e l f .
Each of these modules is a complicated computer
program, but requires only a f a i r l y simple
interaction with the other system modules. The
resource and execution requirements vary among
the tasks: Some are executed periodically
throughout a run (e.g. strategy task); some are
used only during i n i t i a l i za t i on (e.g. camera
cal ibrat ion); some must deliver real-time service
to hardware devices (e.g. arm mover).

Since the tasks are reasonably self-contained,
each was designed by a separate programmer. Each
module was to be wri t ten and debugged in isola­
t ion and then merged into the system. This
merging ef for t is minimized by requiring a l l
programmers to observe the programming conven­
tions of a high level language, SAIL, (see
section 2). SAIL was designed with the coding
of the hand-eye system in mind, and includes
several features to ease that coding.

Even though these tasks are merged into a
f u l l system, they remain quite independent. The
strategy program monitors and controls each task
separately, and may allow concurrent execution
of several tasks. For example, the edge follower
may be working on a cube at the same time the arm
is being positioned. Major changes in the hand-
eye system may require new tasks to be added to
the system repertoire, or old ones to be deleted.
The requirements of f l e x i b i l i t y , independence,
and concurrent operation are most easily met by
executing each task as a separate job in the
PDP-10 timesharing system (1). The status of
each task as a timesharing job means that
existing timesharing f ac i l i t i e s (e.g. f i l e system,
teletype communication, storage management) are
available to each task. The timesharing job
scheduler, acting on information supplied by the
strategy program, can be used to allocate hard­
ware resources to each task. The alternative to
using the timesharing system was to bui ld a
scheduler and swapper into a monitor for the
hand-eye system which could allocate resources
according to p r io r i t i es set by the strategy task.
Since this method would duplicate many of the
functions of the timesharing system, we preferred
changing the existing system to start ing afresh.

An easy means of sharing certain system data
among a l l tasks and of communicating between
tasks is necessary, but is not provided by the
timesharing system. Data sharing is fac i l i ta ted
by the PIP-10 memory address mapping feature,
which allows a col lect ion of jobs to have a
common portion of their address spaces reference
a common segment of memory. Such a shareable
segment of memory is called a "second segment"
(as opposed to a " f i r s t segment," which is
private for each timesharing job) and is generally
used to store a pure procedure which is common
to several jobs. The hand-eye system, however,

184

uses a second segment to store common data as
wel l as common procedures. The SAIL language
provides method of referencing data in this
common area (see section 3). Also, a "message
procedure" f a c i l i t y was bu i l t into SAIL to handle
intertask communications (see section4) which
could not be accomplished easily with the data
sharing mechanisms.

The large number and complexity of tasks
necessitate specific aids to debugging the
system. Because the tasks are f a i r l y independent,
each can be checked out before being merged into
the system. In many cases, the system environ­
ment for a task can be simulated by another task
for purposes of debugging. Debugging the f u l l
system is d i f f i c u l t since as many as a dozen
tasks are active concurrently; specif ic debugging
and operating aids were constructed to simplify
this process. For example, the user may control
the entire system from a single display console
(see section 5) and may request traces of task-
to-task and user-to-task communications (see
sections 4 and 5).

2. SAIL

SAIL (2), the language used for most of the
programming in the hand-eye system, is a dialect
of ALGOL 60 augmented by a complete character-
str ing f a c i l i t y , by f i le-handling operations
tai lored to the PEP-10 operating system, and by
LEAP f a c i l i t i e s , which are a set of associative
data storage conventions and operations. A one-
pass compiler and a runtime executive were bu i l t
for this language. The compiler produces
programs to be loaded by a l inking loader, which
can include other SAIL, FORTRAN, or machine-
language procedures. We adopted the philosophy
that the language should change to ref lect the
col lective needs of the hand-eye system pro­
grammers. Thus we insisted that the methods
adopted for data-sharing and intertask communi­
cation be supported di rect ly by the SAIL language.
The compiler was constructed so that such modi­
f icat ions to the language might be made easily.

3. Data Sharing

Data that is needed by more than one module
of the hand-eye system is declared as GLOBAL in
each module so that it may be stored in the
second segment portion of the hand-eye system's
PIP-10 address space.

The global data f ac i l i t i e s are used for
global system variables (e.g. a boolean debug
f lag to instruct tasks to record debugging
information), and part icular ly a "world model"
containing information about the posit ion and
ident i ty of a l l objects recognized by the system,
the positions of the arm and camera, etc. This
world model is the system's best estimate of the
state of the problem solut ion, and is used to
influence strategy decisions. Each module may,

Session No. 5 Software Support

with appropriate precautions, read or update
this model.

Shared data is referred to by name in SAIL
just as are any other SAIL variables. A dic­
tionary of globally declared names and their
data types is used by the SAIL compiler during
compilation of each module. Declaring a name
as GLOBAL allows SAIL to assign to that global
variable an address in the second segment. Such
declarations are wri t ten as:

GLOBAL INTEGER DEBUG_FLAC;
GLOBAL REAL ARRAY CAMERAJTRANSFORM [1:6,1:6] ;

Since the global data area is shared among
a l l tasks, an interlock mechanism is required
to prevent concurrent attempts to allocate
storage in the second segment at runtime or to
change some sensitive SAIL data structure (e.g.
SETs). The SAIL runtime routines provide this
interlock with a Dijkstra P-V operation (5).

Interlocking the runtime routines is not
suf f ic ient to prevent several separate tasks
from making conf l ic t ing modifications in the
global data. Updates should be performed " a l l
at once" since another task may be reading the
same global data concurrently, and may not be
able to tolerate an inconsistent global model.
This update-access interlocking is essentially
a scheduling function and is administered by
the strategy program which allows access to a
portion of the data by only one reader or
wri ter at a time. This access privi lege is not
enforced by hardware protection, but rather by
requesting permission from the strategy task,
making the modifications, and announcing to the
strategist that the modifications are complete.
In fac t , the strategist may choose to allow
modifications only after some validation tests
of the new data have been performed (the
strategy program might activate two concurrent,
but d i f ferent , attempts to compute a result and
compare resul ts, have a val idation process check
the data, etc) . The communication with the
strategy task to establish permission to write
in the global model is accomplished with message
procedures (see section 4). These modification
protocols are not bu i l t into the SAIL language,
but are coded exp l i c i t l y in each module which
may make sensitive modifications.

Much of the shared data may not require,
and hence is not subject to , this close super­
vis ion. Some data is declared GLOBAL simply so
that two sympathetic tasks might reference i t .
For instance, since both the color discriminator
module and the edge following module use infor­
mation about the current sensi t iv i ty of the TV
camera, these parameters are stored as global
data.

Session No. 5 Software Support

3.1 The Global LEAP Model

LEAP fac i l i t i e s are used to process much of
the symbolic data in the hand-eye system. A
f u l l description of LEAP is presented elsewhere
(4), and a br ief review w i l l suffice here. LEAP
is a collection of SAIL syntax and runtime
routines for manipulating ITEMs and associatioas
of ITEMS. An item is merely a number in the
range 0-4096 which has a symbolic use (c. f .
ATOMs in LISP). Items may be associated together
as tr iples (or associations) stored in the
"associative store." In fact a t r i p le may i t ­
self be considered as an item and may occur as
a component in a further association. Triples
are added to the associative store with the
MAKE statement. For example:

MAKE father g>john E joe ;
MAKE endpoint ® x E point1 ;

The three items in a t r ip le are referred to
as the at t r ibute, the object, and the value
respectively. This suggests that a t r ip le be
reas as: "endpoint of x is po in t l . " Associa­
tions are removed from the associative store
with the ERASE statement, as:

ERASE iteml ® item2 = item3;

and the associative store is seardied with the
FOREACH statement:

FOREACH x SUCH 1HAT endpoint ® x E point l do
<statement>;

The <statement> is executed once for each
value of the itemvar x which occurs in the
associative store in an association endpointflxE
po in t l .

Each item may have a IftTIJM which is an
arithmetic value or array of values associated
with the item. Thus the DATUM of an item which
is intended to represent the endpoint of a l ine
in three dimensions might be a 3-element array
containing values for the x, y and z coordinates
of the point. SAIL accesses the DATUMs of items
in only 3 PDP-10 instructions, which makes the
combined use of arithmetic and symbolic pro­
cessing very at tract ive.

The associative store of item tr ip les and
the DATUM store of algebraic values associated
with items together constitute a "LEAP model."
A l l of the information about positions of bodies
in the hand-eye system is represented in such a
model. Certain kinds of processing, such as
pattern matching, arm col l is ion avoidance, and
l imited problem-solving make use of this model.

A "global LEAP model" is resident in the
shared segment and can be accessed by a l l tasks.
It consists of an associative store and a DATUM

185

store, just as any other LEAP model, but is
completely independent of the local LEAP models.
Global item numbers are assigned by SAIL in the
range 3072-4096, while locals are in the range
0-3071. The assignment of numbers is made
either by the compiler as a result of a
declaration:

GLOBAL ITEM a;

or by a runtime function which assigns unique
global item numbers:

x ← GLOBAL NEW;

Local models may contain references to
global items, but the global model may not con­
tain references to any task's local items since
another task w i l l not be able to interpret such
an item number. Global items in the local model
are used extensively (e.g. the body recognizer
builds in i t s local LEAP model a hypothetical
"body" making use of global items such as face,
endpoint, l i ne , e tc .) . A task may make a local
copy of a portion of the global associative
store if these associations are to be changed in
ways which should be hidden from other tasks.

Of course, the operations MAKE, ERASE,
PDREAOl, and DATUM may refer to either the local
or global models, and the user is required to
remove this ambiguity by specifying as GLOBAL
those operations on the global model, as:

x ← GLOBAL DATUM (cube);
GLOBAL MAKE face cube = y ;

The entire shared data area, consisting of
the LEAP global model, global arithmetic
variables and shared runtime routines, represents
much of the environment in which a task program
is executed. Thus the current environment may
be extracted simply by copying the second
segment area. The copy can then be saved for
later study or can be used to restart the system
from the point where the copy was made. For
example, a rather cumbersome global model
i n i t i a l i za t i on procedure was avoided by using a
copy of a second segment which has already been
in i t i a l i zed .

4. Message Procedures

Intertask communication is accomplished by
invoking '"message procedures." In s p i r i t , task
A may send a message to task B requesting that
one of B's procedures be executed (hence the
name "message procedures"). For example, task A
requests evaluation of the procedure f ind ,
located in task B:

BEGIN "A"
INTEGER g , i ;

186 Session No. 5 Software Support

PORWARD MESSAGE PROCEDURE f ind (INTEGER a,b);

i ← ISSUE ('7,"A","B", MESSAGE f ind (10,g));

END "A";

In the ISSUE c a l l , task A supplies the name
of the task to receive the message ("B") and the
procedure c a l l , complete with actual parameter
values. Task B is coded as follows:

BEGIN "B"

INTEGER mess,i;

MESSAGE PROCEDURE f ind (INTEGER x,y) ;

BEGIN

comment . . . code for the procedure . . . ;

END;

mess ← GET_ENTRY ('120," " , "B" , " ") ;

i ← QUEUE ('600,mess) ;

END "B";

The GET_ENTRY routine examines a queue of
pending messages for one destined for task "B".
The QUEUE ca l l invokes a routine which actually
evaluates the procedure f ind (named in the
message) with the actual parameters supplied by
task A. Notice that B must exp l i c i t l y ca l l the
message processor runtime routines to scan the
queue for messages destined for B. Then if B
is disposed to process a part icular request
found in the queue, it may direct the message
processor to apply the named procedure of B to
the parameters in the message record. We chose
not to automatically interrupt B and execute the
message procedure since B may be indisposed to
interruption (some data structures or hardware
devices may be in sensitive conditions and
cannot tolerate immediate execution of the
message procedure).

Almost a l l forms of SAIL data may be passed
as actual parameters in message procedure calls
(i . e . with the ISSUE function): STRINGS, INTEGERS,
REALS, ARRAYS, SETs, ITEMs, and ITEMVARs. If
the variable is in the private address space of
the ca l ler , a copy w i l l be made in the shared
space so that the called task may reference i t .
No data is ever copied back into the ca l ler 's
private space after evaluation of the message
(i . e . no ca l l by reference for private variables).
If data is to be returned from the message pro­
cedure to i t s cal ler , the called task may leave
information in the global data area (i . e . pass
global variables by reference) or may ISSUE a
return message to the cal ler which contains the
appropriate data.

Associated with the message data is a
mechanism to control execution of the cal ler and
called tasks. A task is said to be "active"
(being executed or able to be executed) or
"blocked" (execution suspended). A task such as
the camera servoing module may request to be
blocked waiting for messages. When a message
procedure ca l l is issued to a message procedure
in a blocked task, the message processor in ­
structs the timesharing system to resume
execution of that task. The activated task may
scan the queue, evaluate the procedure and then
request to be blocked while awaiting more
messages. Simi lar ly, the task which issues the
message may request to be blocked un t i l the
called task has completed execution of the
message procedure, at which point an
ACKNOWLEDGEment is produced by the called task,
and the timesharing system resumes execution of
the cal l ing task.

The details of the implementation of message
procedures allow considerably more f l e x i b i l i t y
than described in the preceding discussion. Both
the sender and receiver must declare the names
and parameter types for any message calls to be
passed between them. A typical declaration i s :

PORWARD MESSAGE PROCEDURE f ind (INTEGER x; REAL y) ;

PORWARD specifies that the text of the
procedure body does not accompany this declara­
t ion . The module which w i l l process messages
requesting evaluation of " f i nd " must contain
somewhere the text of " f i n d . "

The sender of a message to " f i nd " makes the
following c a l l :

x ← ISSUE (direct ive, "A", "B", MESSAGE find
(10,g));

ISSUE is a ca l l to the message processor
which composes a message from the task named A
to the task named B to evaluate the procedure
" f i nd " with arguments 10 and the value of g. The
message record is composed and placed in the
message queue. The sender has further options,
specified by the value of the directive code: any
or a l l of the following may be specified in
combination, to be interpreted in the order given
here:

1). SEND the message to the task named B.
If B is blocked awaiting receipt of a message,
the message processor directs the timesharing
system to unblock the job which corresponds to
the message destination B. Races inherent in the
decision to unblock are avoided by interlocking
portions of the shared message processor code.

2). WAIT for ACKNOWLEDGEMENT of the message.
Since it is common practice to ACKNOWLEDGE a
message after evaluation is complete, WAITing

Session No. 5 Software Support 187

normally means blocking execution of the cal l ing
task u n t i l the called task has evaluated the
message procedure.

3). KILL the record of the message (i . e .
delete the record from the message queue). If
KILL is not specified, the message record w i l l
remain in the queue even after the message has
been received and processed by the called task.
KILLing is not automatic, since the cal l ing task
may wish to examine this record.

The ISSUE function returns a descriptor for
the message issued which can be used for further
inquir ies. For example, A need not wait for B
to complete evaluation of the procedure, but may
wish to continue execution. However, at some
later time, A may wish to veri fy that the message
procedure has been invoked and completed, and may
use this descriptor to make such inquiries of
the message processor.

The receiving task, B, must process messages
sent to i t . Whenever the program for B wishes to
scan the message queue, it executes the following
statement:

x ← GET_NTRY (direct ive, "A","B", "f ind") ;

which invokes a search of the message queue for
messages destined for B from A requesting
evaluation of procedure " f i nd . " The receiving
task may be indif ferent about the names of cal ler
and message procedure, and may specify in the
directive code that this portion of the match is
to be ignored. The receiver may also specify
that his execution is to be blocked unt i l an
appropriate message arrives. The value of
GET_ENTRY is the descriptor of a message.

The receiving task may use this message
descriptor to invoke several message processor
functions with the QUEUE c a l l :

1). ACTIVATE the message. The parameters
in the message record are used to evaluate the
message procedure test in the receiver's program.

2). ACKNOWLEDGE the message. This is
usually an indication to the cal ler that the
message procedure has been evaluated. If the
cal l ing program was WAITing for such an
ACKNOWLEDGEMENT, i t s execution is now resumed.

3). KILL the message record.

The message processor has a feature which
allows tracing of messages. When a message is
ISSUEd, a message record is composed but not
SENT. The message processor sends another
message to a task named 'TRACE." This new
message is a request for evaluation of the
message procedure "TRACE" with the descriptor of
the message record being traced as parameter.
The or iginal ISSUEr is blocked un t i l the TRACE
message is ACKNOWLEDGED, at which point the
or iginal message is f i na l l y SENT.

Printouts by the 'TRACE" procedure of the message
ac t iv i ty which c i te times of ISSUE, source,
destination, message procedure names and parameter
values are a great aid to debugging. The trace
f a c i l i t y may also be used by the strategy task,
which monitors a l l requests for message procedure
evaluations and approves of them or prematurely
ACKNOWLEDGES them and sends an indication to the
cal ler that his request was denied. The strategy
program administers resource al location of the
hand-eye system and may wish to deny requests
which use special I/0 devices or extensive
calculations.

5. User's Control at the Console

Monitoring of the hand-eye system is
accomplished with another timesharing job, the
"pseudo-teletype control ler ," which mixes tele­
type output from a l l of the system tasks for
display at the user's console and allows him to
send character strings or timesharing commands
to any of the tasks. A typical session w i l l
involve start ing the controller task, using it
to create one timesharing job for each hand-eye
system task and assigning each a logical name.
To send characters to a task via the control ler,
the user types:

lognam; characters to go to task of name lognam

The user may subsequently omit the "lognam;"
and strings w i l l go to the most recently specified
destination. The user may also specify time­
sharing-system commands to be executed on behalf
of any task. A special command format is
implemented since command strings must be directed
to the timesharing system command decoder rather
than to the running task:

lognam: timesharing command for task lognam
:: command to be sent to a l l tasks

Output from jobs is displayed to the user
as:

lognam→output characters

Task operation with the pseudo-teletype con­
t ro l l e r task as an intermediary or with a direct
connection to the user's console appear identical
to the task. Any requests for teletype input or
output are routed by the timesharing system to
the pseudo-teletype control ler. The timesharing
system also routes task display output to the
graphics display console used by the pseudo-
teletype control ler. The user may thus interact
from a single console with a l l jobs in the hand-
eye system. A l l transactions of the pseudo-
teletype controller may be traced and recorded
on a disk f i l e . This record and the message
procedure trace provide a convenient post-mortem.

188 Session No. 5 Software Support

6. Debugging

One troublesome aspect of running this
system is that a bug which appears in one run
may not reappear subsequently. A l i t t l e less
noise in the camera or position-sensing
potentiometers of the arm may prevent recurrence
of the error. Many of the tasks keep traces of
their performance as the system executes. This
information may be used to search for signs of
i r regu lar i ty , or to recreate in a task the con­
ditions of fa i lure and thus permit the pro­
grammer's scrutiny.

The organization of the system greatly
fac i l i ta tes debugging i t . The modular nature of
the system permits the user to replace a
defective module with a dummy which records on a
disk f i l e the global environment and input
information sequence for the task. Later, a
small system consisting of the defective module
and a "dr iver" is assembled. The driver uses
the disk f i l e to recreate the environment in
which the defective module fa i led ; the author of
the defective code may now engage in debugging
act iv i t ies without loading the entire hand-eye
system. For example, the body recognizer is
checked out using disk f i l es containing two-
dimensional l ine representations of objects.
These f i l es are created by a two-task system in
which a dummy invokes the edge follower to read
the TV camera and edge-follow a body, and then
saves a f i l e containing the edge data.

In l ieu of a special driver for debugging
each subsystem, the user may type SAIL statements
for immediate execution. A special version of
the SAIL compiler was constructed which compiles
code into core and executes it on demand. This
compiler is i n i t i a l i zed with the appropriate
global data and message procedure definit ions
and is executed as one of the tasks in the hand-
eye system. A user may construct message
procedure calls or strategies on-l ine, may
examine global variables, and may search the
global associative store. An example of such an
"immediate" SAIL program i s :

EXECUTE show_item (blobs) END;

A f i l e containing a l l on-line commands is
kept which later can be edited to y ie ld a SAIL
program for compilation.

A machine-language debugging program,
RAID(3), is loaded with each task. If necessary,
the user at the console may interrupt a task and
use RAID to peek at the memory cel ls assigned
to the task. The loading process leaves a
symbol table which has entries for a l l local and
global data names used by the task, as well as
indications of procedure entry points, labels,
etc. RAID uses this symbol table to create a
symbolic display of machine code and variable
values.

7. Discussion

The global data, message procedure, console
and debugging features described have a l l been
implemented and used in the Stanford hand-eye
project. These f a c i l i t i e s were used in pro­
gramming the Instant Insanity puzzle, which
required 9 cooperating tasks (6). These tasks
were designed to test new approaches to hand-eye
solutions, especially the ideas of strategy
generation and supervision. However, the strategy
program, i t s protocols for monitoring tasks, and
i t s interaction with the timesharing system have
not yet been fu l l y developed.

The hand-eye system researchers f ind this
col lect ion of system fac i l i t i e s f a i r l y easy to
use. One major shortcoming, however, is the
lack of a SAIL debugging system capable of
displaying and modifying the various algebraic
and symbolic data in a program. Examining LEAP
structures is part icular ly d i f f i c u l t ; some users
included in their programs procedures for pre­
senting their data structures in a meaningful
way (e.g. a display of a perspective projection
of the "world" they are processing).

The f l e x i b i l i t y of this system steins from
the factoring of the hand-eye problem into a
set of largely independent tasks. The interface
among tasks (message procedures) and shared data
are a l l documented in a small f i l e which con­
tains the SAIL declarations which each task
includes in order to access this data. An
experimenter who wishes to add a task to the
system or to replace an existing task has only
to observe the conventions for communication
with neighboring tasks. He may then test out
his new methods as they are applied during
solution of various manipulation problems posed
to the system.

The smooth evolution of the system so far
suggests that modifications to accomodate future
requirements may be quite simple. The message
procedure and global data f ac i l i t i e s were added
easily to SAIL as the system design progressed.

The data sharing and message communication
f ac i l i t i e s described in this paper represent
one solution to the problem of multitasking.
The PL/1 language provides a very similar
solut ion, in which procedures may be executed as
asynchronous TASKs, each of which is named.
Synchronization is accomplished by WAITing for
the completion of a named task. Since a l l tasks
are procedures declared in one PL/1 program,
data sharing is straightforward: global data is
declared in the outer block and is hence
accessible to a l l tasks (procedures). The PL/1
solution was inadequate for the hand-eye system
for several reasons: (1) A l l procedures must
reside in core simultaneously, in order that the
execution environment for a task can include a l l
outer block data (This is also in keeping with

Session No. 5 Software Support

OS/360 restr ic t ions). The hand-eye system is
too large to enjoy this luxury and includes
large quantities of code used only for i n i t i a l i z -
t i on , for error recovery, or for debugging which
need not reside in core during a run (One
function of a swapping timesharing system is to
move idle tasks to secondary storage). (2) If
a l l tasks are compiled as one PL/1 program, the
program must be recompiled each time a local
change is made. The tremendous size of the
hand-eye system and the large number of pro­
grammers at work on it would make this process
time-consuming and d i f f i c u l t . (3) Our system
permits separate tasks to be substituted at
w i l l with a minimum of attention to the
environment in which they w i l l execute. (4) Our
system requires an expl ic i t scan of the message
queue to avoid invoking procedures when
inconvenient to the called task. The PL/1
f ac i l i t i e s do not direct ly solve this problem.

Data sharing and message procedure
mechanisms are useful to programs other than the
hand-eye system. Compelling reasons, both
aesthetic and pract ica l , often suggest dividing
a programming task into a collection of possibly
concurrent processes, but the lack of good ways
to coordinate the processes is a sizeable
obstacle. We feel that a programming language
should provide solutions to these problems
appropriate to the operating system used to
execute the programs.

Acknowledgements

Much of the development and programming for
the system described in this paper were done by
Daniel C. Swinehart and Karl K. Pingle. Many
users oi' the system offered helpful suggestions.

References

1. Hie Stanford hand-eye system is run on a
PDP-10 and PDP-6 computer, with 128k of core
memory connected to both processors. The
PDP-10 executes timesharing jobs, and the
PDP-6 is used for real-t ine service and for
driving special hardware devices. Hand-eye
hardware such as camera motors, ami controls,
A-D converters are serviced from the PDP-6.
The TV camera is serviced by the PDP-10 time­
sharing system. Users may work from one of
6 display consoles, from one of several
teletypes, or from one of 25 video terminals.
The timesharing system is a DEC PDP-10/50
system, extensively modified to service the
TV, displays, shareable second segments,
and diverse scheduling requests.

2. Swinehart, D.C., and Sproull, R.F. SAIL
Manual, Stanford A r t i f i c i a l Intelligence
Laboratory Operating Note No. 52.

189

3. Pet i t , P.M. RAID Manual, Stanford
A r t i f i c i a l Intelligence Laboratory Operating
Note No. 58.

4. Feldman, J.A., and Rovner, P.D. An Algol-
Based Associative Language, CACM, 12, 8,
p. 439 (1969).

5. Di jkstra, E.W. The Structure of "THE"
Multiprogramming System, CACM L I , 5, 341.

6. Feldman, et a l . The Use of Vision and
Manipulation to Solve the Instant Insanity
Puzzle, these proceedings.

7. PL/1 Reference Manual, IBM DOC. No. C28-8201-1.

