
Session No. 8 Robots and Integrated Systems 385 

TRAJECTORY CONTROL OF A COMPUTER ARM* 

by 

Richard Paul 

Stanford A r t i f i c i a l Intelligence Project 
Stanford University 

Stanford, California USA 

This paper describes the programming of a 
computer controlled arm. The programming is d i ­
vided logical ly into planning and execution 
Communication between planning and execution is 
by a data f i l e which specifies the arm trajectory 
with reapect to time, and actions that the arm 
should perform. The servo program which moves 
the arm along the trajectory is based on 
Legrangian mechanics and takes into account 
coupling between l inks, and the variation of 
iner t ia l loading with change of arm configuration. 

Key words: arm, trajectory, servo 

INTRODUCTION 

We are Interested in driving a computer 
controlled arm such as the one shown in Fig. 1. 
This arm [1] has six degrees of freedom with a 
vise grip hand and a useiuL working area about 
equivalent to that of a human arm. 

The arm is powered by printed circuit eie-
t r i c motors with harmonic drive gear reductions. 
The f i r s t two jo ints are rotary; they are f o l ­
lowed by a prismatic jo in t and then by three ro­
tary joints whose axes intersect. 

Joint position is determined by six 
structural ly integrated potentiometers read into 
the computer by a 12 bit analog to d ig i ta l con­
verter. Output is by means of a 9 bi t d ig i ta l 
to voltage pulse width converter producing a 15 
millisecond pulse at maximum output. The servo 
program is executed by a PDP-6 computer which, 
as a part of the time sharing system, is availabJe 
for real time applications. The servo program is 
a sampled data system with a sample rate of 60 
samples per second. 

Information about the location of objects 
is derived from a vision programming system 
u t i l i z i ng a TV camera as input [2] and is avai l ­
able as a global data structure. 

*This research was supported by the Advanced re­
search Projects Agency of the Department of De­
fense under Contract No. SD-183. The views and 
conclusions contained In this document are those 
of the authors and should not be interpreted as 
necessarily representing the o f f i c i a l pol ic ies, 
either expressed or implied, of the Advanced 
Research Projects Agency of the U.S. Government. 

To describe the programming of the computer 
controlled arm and hand, we will begin by dis­
cussing the tasks that we are interested in 
performing. Arm programming may be divided into 
two areas, namely, planning and execution. Plan­
ning will consist of deciding what to do and 
generating a trajectory for the arm. This tra­
jectory will include hand actions to be performed 
during execution. The execution will consist of 
servoing the arm along the trajectory and in the 
performance of the desi gnated hand actions. 

TASKS 

In order to decide what an arm can do, let 
us consider fi rst the arm prope r (excluding the 
hand), and then the hand itself. 

The prime task of the arm is motion, that 
is, the motion necessary to move the hand from 
place to place. This motion is not a simple-
motion; one cannot move the joints of the arm 
independently i rom one value to another. Con-
sider for example the case of turning over a 
block: we will obtain two arm configuration 
such that if the arm assumes the first configura­
tion it will place the hand in a posi ti on where 
it can grasp the block; if it then moves to the 
iinal configuration and releases the block, the 
block will have been turned over as rcqui red. 
During the execution of this task, at a point 
after the hand has grasped the hiock , should the 
arm move the hand directly to its final configura 
tion it will in all likelihood drive the hand 
and block through the support (in our case the 
table). To avoid this we need to specify a 
trajectory such that the block will be lilted 
(in fact, such that the block is lifted and put 
down vertically) and, further, such that the hand 
and block are not driven through the support , 
or through any other objects during the motion. 
To achieve this, we will need to specify a set 



386 

of relationships between joint vari ables. We 
must also control the acceleration of each 
joint if a smooth motion is to be achieved and 
thus the arm motion should be specified as a 
time-dependent coordinated motion. The hand's 
actions are opening, closing, and grasping 
actions, simple tasks requiring no servoing. 

The arm can also perform actions of the 
form of exerting a force, where the arm motion 
is constrained by the hand. Turning a crank 
is an example of such a motion. First the hand 
is brought to the crank, followed by the hand 
action of the hand grasping the crank and 
then the action if the arm exerting a force 
on the crank in the appropriate direction. 

Arm motion will be specified by a trajectory, 
giving joint variables as functions of time in 
the form of a table of values, hand action will 
be specified by procedures which can be executed 
at key points in the trajectory. Consider the 
task of picking up a block, a classic computer 
task: we have the motion of the arm to bring 
the hand over the block, followed by the hand 
action of grasping, followed by the motion of 
the arm in lifting the block. In such a task, 
sequential execution would be required, but in 
a task of throwing an object we would need to 
open the hand while the arm was in motion. 
Thus we have two types of hand action procedures, 
those which require execution while the arm is 
in motion and those which are executed when 
the arm has completed a motion. With the exe­
cution so specified, we can perform tasks such 
as manipulating stationary objects, turning a 
crank, and throwing things. There remains one 
further class of t asks, that of catching or 
intercepting other oblects. To handle such 
tasks we will use the following method: at 
the proper time a pre-computed trajectory which 
would put the arm into the general vicinity 
of the object with the correct velocity would 
be executed; then, as the hand neared the ob­
ject, the trajectory would be perturbed by 
having the contents of an array of external cells 
gradually added to the set point. This,then,is 
the state of the execution part. One key point 
should be noted: in all tasks the trajectory 
is known ahead of time and thus the arm con­
figuration and velocity are also known; this 
information is used in the section which deals 
with servoing the arm. 

PLANNING 

Let us consider the planning phase, that is, 
the set of programs which generate the trajectory 
for the execution phase. In order to cover most 
of the details we will discuss what Is perhaps 
the main arm task: to move the arm from i ts 
initial position to pick up an object, then to 
move the objet t to a final posi tion, piacing it 
there with a given orientation, and finally to 
move the arm clear. 

Perhaps the key procedure will be one that, 
given initial and final arm configurations, 

Session No. 8 Robots and Integrated Systems 

will generate a trajectory between these two 
positions. But before we can call this pro­
cedure we must determine the init ial and final 
positions. In the problem we are considering, 
we have three parts to the trajectory: the 
trajectory from its present position to the point 
at which it will pick up the block, the trajectory 
between picking up and placing the block and, 
finally, the t rajectory to the rest position. 

We know the Initial position, which is the 
armf s current position, and we may assume that 
we know the rest position. The pick-up and put-
down positions are undefined except tor the re­
quirements that the hand be able to grasp the 
block in the first position and release the block 
in the second position with the required position 
and orientation. To specify an arm position we 
give the cartesian coordinates of the center of 
mass of the object to be picked up. We then give 
the orientation vector which points from one fin­
ger tip to the other. Finally, we generate a 
reference direction formed by crossing a vertical 
vector with the orientati on vector, and specify 
the approach angle between the fingers and this 
rei erence di recti on measured about the orientation 
vector. 

For planar or convex surfaces an object 
may be picked up by two parallel faces on an 
axis containing the center of mass. This will 
prevent the object from rotating. One but not 
both surfaces may be replaced by an apex of the 
body. Both surfaces may be replaced by edges if 
they are perpendicular to the mass axis. These 
consi derat i ons define the set of orient at i on 
vectors. 

To find systematically all the possible 
orientation vectors we first find ail vectors 
from the center of mass of the object that inter­
sect and are 1) normal to any edge, or 2) normai 
t o any piane, 3) pass through any apex. We then 
search this list for anti-parallel vectors, being 
careful not to take both vectors from the thi rd 
class. 

These orientation vectors are stored with 
the prototype, which is a global description of 
each object [5]. 

To find out how a particular instance of a 
given prototype may be pieked up, we simply trans­
form the set of orientation vectors of the proto­
type to their space position. From this set we 
can Immedi ately delete any orientation vectors 
which require that a finger be placed on the sup­
porting face or on any edge or vertex of the sup­
porting face. We then have the set of possible 
orientations by which the object may be picked 
up. 

The next problem Is to find out whether the 
arm can reach the object and to establi sh "for each 
possible orientation vector the range of the ap­
proach angle through which it can be reached. 
This is normally a difficult problem and requires 
the arm design to have certain properties if the 
solution Is to be simple. In our case the fact 
that the last three joint axes intersect makes 
the problem relatively simple [4] and we can 



Session No. 8 Robots and Integrated Systems 387 

find the ranges of approach angle, having speci­
fied the x, y, z position of the hand and the 
orientation vector. 

Having found the ranges of approach angle 
for each orientation vector, we need only look 
at the other objects to see that the solution 
we have obtained does not cause an intersection 
between the arm and any other object. 

For any body which is within reach of the 
arm there are normally a fa i r number of possible 
ranges of approach and orientation by which it 
may be picked up. Of course, if the object has 
to be put down somewhere after it has been picked 
up, then the solution is the intersection of the 
possible solutions at both the pick-up and put-
down positions. Thus "pick up the block!" is not 
really a primitive operation unless very l i t t l e 
manipulation of the objects is required; rather 
the primitive operation is "move the block!" 
For unless we consider how the block is to be 
placed prior to picking it up, we may find that 
having picked up the block we have to put it 
down again and pick it up di f ferent ly so that we 
may put it down as required. 

Thus having found the intersection of the 
possible orientation vectors at both the pick-up 
and put-down positions and then having formed 
the intersection of the approach angle ranges 
we may select any approach angle within the 
range. 

These considerations of how a block may be 
picked up specify the missing arm configurations 
and we are able to call the trajectory generating 
procedure. 

TRAJECTORY 

In planning a trajectory there are conf l ic t ­
ing requirements and scarce resources. From the 
point of view of the arm we might want to use 
a "bang bang" servo, i .e . to move the arm so 
as to minimize time, or perhaps to move each 
jo in t so as to minimize time independently. 
But these are unpleasant motions involving much 
transient behavior and movements too fast for 
the arm's own saiety. Better would be a 
trajectory without discontinuities in posi t ion, 
velocity and acceleration, with zero i n i t i a l 
acceleration and with well defined maximum ac­
celeration and velocity. Such a trajectory 
would result in smooth motion of the arm without 
excessive velocity or acceleration. 

There is another way of looking at the arm, 
and that is from the point of view of the object. 
Although we do not want to move the object in a 
straight l ine through space, should it rise up 
ver t ica l ly and then move the appropriate hor i ­
zontal distance before descending ver t i ca l l y , or 
should it move along a smooth space trajectory? 
An important requirement is not col l id ing with 
other objects, but here also we have a choice: 
should the trajectory move from one place to the 
other by feeling i t s way around any intervening 
objects, or should it move up and over a l l the 
intervening objects? 

There is no simple answer to these prohlesm, and 
we are severely limited in time with one to two 
seconds being considered reasonable to plan a 
trajectory. What we do is to start by considering 
the object and to move it vertically with an ac­
celeration initially zero. 

At the end of the trajectory we move it 
similarly but with a controlled deceleration. 
Aiter the initial acceleration which l i f ts the 
object clear of the table,we consider the arm 
and f i t a smooth trajectory which matches po­
sition, velocity and acceleration between the 
two partial trajectories. 

Trajectories are functionally polynomials 
with joint angle as the dependent variable and 
time as the independent variable. The trajectory 
for each joint is a sequence of polynomials, each 
specifying the trajectory for a given period of 
time. The total arm trajectory is a set of six 
such sequences. End conditions for each polynomial 
are continuity of position, velocity and accelera­
tion. In the case of those polynomials specifying 
the beginning and end of the trajectory the initial 
or final velocity and acceleration are zero. To 
specify the Initial part of the trajectory we 
give a point through which the hand must pass and 
a time to reach this point. For picking up blocks 
this point would normally be about one inch above 
the initial position such that the block is lifted 
vertically, however, control of the position of 
this point allows a higher level planning routine 
to specify an initial direction which will lead 
the hand into clear space. The differential 
change in joint angles to move the hand to this 
point is computed, and this,together with the 
time, and the requirement of zero initial and final 
velocity and acceleration, allow us to determine 
the coefficients of a third degree polynomial 
which specifies the initial part trajectory. The 
final part of the trajectory is specified in a 
similar manner, but in this case it is the final 
velocity and acceleration which are zero. 



388 Session No. 8 Robots and Integrated Systems 

The time to move the arm from the f i r s t c r i ­
t i ca l point, at the end of the beginning of the 
trajectory, to the second c r i t i c a l point, at the 
beginning of the end of the trajectory, is cal­
culated on the basis of change of jo in t angles, 
and a set of par t ia l trajectories is calculated 
to jo in the two existing pieces of trajectory. 
These segments of trajectories are then checked 
for excessive acceleration and the time increased 
if necessary. 

Time-
Three Part Stop 

Trajectory Modification 
Figure 3 

The trajectories are then checked for jo int mo­
tion beyond the physical stops. If a jo int 
moves beyond i t s physical stop the trajectory 
segment is broken into two parts. One part brings 
the arm from the f i r s t c r i t i ca l point to the stop, 
with zero f ina l velocity and acceleration, and 
a second part takes the arm from the stop to the 
second c r i t i c a l point. If the sum of the times 
is less than the time available, then a third 
trajectory segment is added between these two, 
which simply keeps the jo in t stationary. If 
the time is greater than the time available be­
tween c r i t i ca l points then the other trajectories 
must be recalculated. Tf we find that we w i l l 
collide with another object, we modify the t ra ­
jectory in such a way that we pass by the object. 
This modification is done heur is t ica l ly . Should 
the object with which we have collided be the 
table, we may simply move up, and by selecting 
some j o i n t , modify the position in the upward 
direction. In the case of blocks this "Up" 
heuristic w i l l s t i l l succeed. But in the case 
of towers and overhanging objects, a different 
heuristic w i l l be required where we w i l l go in 
and around the object. Having decided in what 
direction to move we compute the sensi t iv i ty to 
motion of the six jo ints and select that jo in t 
which has the greatest sensi t iv i ty in this direc­
t ion. The change in angle of" this jo in t is then 
found such that the arm w i l l no longer col l ide. 

This change is added to the present jo in t angle 
to form an intermediate point. The trajectory 
is then broken into two parts: from the f i r s t 
c r i t i c a l point to the intermediate point, termin­
ating with zero velocity and acceleration; from 
the intermediate point to the second c r i t i ca l 
point, start ing with zero velocity and accelera­
t ion. If the time for these two trajectory seg­
ments exceeds the time that the other Joints 
w i l l take, then the time must be increased and 
a l l the trajectories recalculated. If the time 
Is less than that available, then a stationary 
part w i l l be added. 

The modified trajectory is then checked for col­
l is ion from the f i r s t c r i t i ca l point. If an­
other col l is ion is caused by this modification, 
then a point on the original trajectory in the 
v ic in i ty oi this new col l is ion is substituted 
for the f i r s t c r i t i ca l point, and the modifi­
cation is repeated from this point. By this 
means, a smooth trajectory is obtained which f u l ­
f i l l s a l l the requirements: vert ical ascent and 
descent, smooth motion, and col l is ion avoidance. 

SERVOING 

The method of servoing the arm is as follows. 
We have a mechanical system, "the arm," consisting 
of a series of l inks in the form of a chain, with 
one degree of freedom between each l ink. Given 
a table of required values of the l ink variables q 
and the present and past values of these variables', 
we must decide what polar i ty of voltage and pulse 
width to apply to each motor to move the arm along 
the required trajectory. 

We can easily calculate on a jo in t -by- jo in t 
basis the jo in t acceleration necessary to keep 
the arm moving along the trajectory, using con­
ventional servo techniques. This we do using 
both position and velocity error signals. In 

i 



Session No. 8 Robots and Integrated Systems 389 

order to f ind the voltage pulse width, we sub­
s t i tu te the accelerations so found into the 
Newtonian equations relat ing force to acceleration, 
to obtain the jo in t torques. Taking into account 
gear rat io and eff ic iency, we can then find motor 
torque and the related drive current. Using 
the back emf and motor resistance we can f ina l l y 
f ind the voltage pulse width. 

In order to obtain the equations relat ing 
force and acceleration we use the matrix method 
developed by Uicker [6] as follows: Associated 
with each l ink is an orthogonal coordinate sys­
tem fixed in the l i nk , see Fig. . For l ink I 
the Zi axis is directed along the axis of the 
jo in t between l ink i and i+1. The xi axis is 
along the common normal between the two jo in t 
axes of the l ink in the direction from xi-1 to 

x . The y axis completes the right handed set. 
We can relate between coordinate systems 

i-1 and i by performing a rotat ion, followed by 
two translations, followed by a rotation in the 
following manner: 

1). A rotation about zi-1 of 0i to align 
xi-1 with xi the common normal. 

2). A translation si along Zi-1 to locate 
the origin on the common normal. 

3). A translation of a1 along x. to bring 
the origins into coincidence. 

4) . A rotation about xi of α1 to bring the 
z axes together. 

Coordinate System 
Figure 5 



390 Session No. 8 Robots and Integrated Systems 

Although this Is the relat ion between force 
and acceleration, it is not possible to compute 
it in real time. At the time that we are planning 
the trajectory, however we know the values of q1 
and we can compute the coefficients such that we 
have : 

This information is then pre-computed with 
the trajectory and during execution the servo 
program, having measured qi and calculated 
q , simply performs the matrix mult ip l icat ion to 
obtain the forces. To convert from forces to 
pulse width is re lat ive ly simple and some 
f r i c t iona l effects are also included. 

This approach has worked well and it has 
proved possible to servo the arm along a t ra ­
jectory result ing In a change of position of 
some 40 inches in less than 1 second with a f ina l 
accuracy of 0.02% or 1/30 inch. 

Let us see how this relates to a conventional 
servo. Here the output force is the weighted sum 
of the errors (posit ion, velocity, etcetera), 
with the weighting constants usually determined 
experimentally. Although the acceleration may 
be derived as a weighted sum of the errors, the 
force is not proportional to the acceleration 
except in simple systems. In the case of the 
arm the term6 which correspond to the proportion­
a l i t y between acceleration and force, are the d i ­
agonal terms of the matrix. These terms are 
heavily dependent on the arm configuration which 
changes rapidly during motion, some of the terms 
varying by as much as two orders of magnitude. 
The off-diagonal terms of the matrix correspond 
to the coupling between jo in t s , which is nor­
mally ignored. Consider, however, what happens 
when one of the root jo ints exerts a force to 
move the arm up: a l l the external jo ints w i l l 
accelerate downwards causing a subsequent error 
at the next sampling period. In our case a 
compensating force is applied to keep a l l the 
external jo ints in place. The remaining terms 

correspond to gravity and centripetal forces; 
these produce constant compensating forces i n ­
stead of accepting constant error offsets. 

It Is believed that this work provides a 
systematic approach to arm programming and 
avoids the necessity of continually wr i t ing 
special programs to perform each task. 

Using the computer for the servo has been 
central to our work and has made modification 
of approach simple, allowing various techniques 
to be t r ied without the necessity of building 
hardware. 

REFERENCES 

1. Scheinman, V. D., "Design of a Computer Con 
trolled Hand", Stanford Artificial Intel­
ligence Project Memo AI-92, Stanford Uni­
versity, Stanford, California. 

2. Kay, A. C., et al, "The Stanford Hand-Eye 
Project", forthcoming paper. 

3. Kahn, M. E., "Near Time Optimal Control of 
Open Loop Articulated Kinematic Chains", 
Stanford Artificial Intelligence Project 
Memo Al-106, Stanford University, Stanford, 
California. 

Pieper, D. L, "The Kinematics of Manipulators 
Under Computer Control", Stanford Artificial 
Intelligence Project Memo, AI-72, Stanford 
University, Stanford, California. 

Paul, R., Falk, G., Feldman, J. A., "The 
Computer Representation of Simply Described 
Scenes", Stanford Artificial Intelligence 
Project Memo AI-101, Stanford University, 
Stanford, California. 

Uicker, J. J., Jr., "On the Dynamic Analysis 
of Spatial Linkages Using A X 4 Matrices", 
Ph.D. Dissertation, Northwestern University, 
Evanstan, Illinois, August 1965. 

4. 

5. 

6. 


