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Abstract 

The problem of clustering multivariate obser­
vations is viewed as the replacement of a set of 
vectors with a set of labels and representative 
vectors. A general c r i ter ion for clustering is 
derived as a measure of representation error. 
Some special cases are derived by simplifying the 
general c r i te r ion . A general algorithm for f ind­
ing the optimum classi f icat ion with respect to a 
given cr i ter ion is derived. For a part icular 
case, the algorithm reduces to a repeated applica­
t ion of a straightforward decision rule which be­
haves as a valley-seeking technique. Asymptotic 
properties of the procedure are developed. 
Numerical examples are presented for the f i n i t e 
sample case. 

I. Introduction 

It is not d i f f i c u l t to imagine a col lect ion 
of objects whose members can be classif ied into 
two or more categories simply on the basis of 
their observable characterist ics. It is not 
always necessary to rely on a similar col lect ion 
of labeled objects as a basis for c lass i f icat ion. 
For example, biological taxonomists have classif ied 
l i v ing things into a large number of meaningful 
categories. Yet at no time in history did any 
plant or animal bear a label. Rather, categories 
have been established without supervision. 

Recently, methods for automatic unsupervised 
c lass i f icat ion, or clustering, have been proposed. 
A machine algorithm for clustering can be a valu­
able tool in 

i) pattern recognition - Often, a training 
set of labeled objects is d i f f i c u l t or 
impossible to obtain. Further, a known 
class of objects may contain unknown 
subclasses, 

and 
i i ) s ta t i s t i ca l analysis - Cluster analysis 

may be used to expose the detailed 
structure of a large volume of data. 

We w i l l present and discuss a family of clustering 
algorithms. 

Our approach involves the use of a clustering 
c r i te r ion . This cr i ter ion assigns a numerical 
value to every possible c lassi f icat ion of the 
objects. Meaningful classif icat ions are assumed 
to correspond to extreme values of the c r i te r ion . 
The optimum classi f icat ion in the sense of a given 
cr i te r ion is determined by means of a clustering 
algorithm. An ef f ic ient clustering algorithm is 
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necessary because an exhaustive check of a l l 
possible classif icat ions is usually impractical. 
Thus, for our purposes, the clustering problem 
consists of two basic elements: 

1) def in i t ion of a clustering cr i te r ion 
and 

11) construction of a clustering algorithm. 

The idea of using a clustering c r i te r ion is 
not new. Many procedures reported in Bal l 's 
survey (1) are based on c r i t e r i a . Friedman and 
Rubin (2) present a class of c r i te r ia and discuss 
the property of transformation invarlance. 
Fukunaga and Koontz (3) show conditions where the 
c r i te r ia of (2) become equivalent to a simpler 
c r i te r ion . Watanabe (4) proposes a c r i te r ion , 
which he cal ls cohesion, which can detect more 
subtle relationships among objects than palrwlse 
s imi la r i t ies . 

Presently, no universal clustering cr i ter ion 
has been defined. This is simply a consequence 
of the lack of a precise mathematical def in i t ion 
of a cluster. That i s , the clustering problem 
is one whose solution cannot be characterized in 
a def ini te way. Thus, in order to derive a 
mathematical c r i te r ion , we must postulate a 
rigorous def in i t ion or clustering. This postulate 
can then be tested by experiments with objects 
whose class structure is known and well defined. 

The remainder of this paper consists of 
four sections and a summary. In the next section, 
(section I I ) we present our characterization of 
the clustering problem and compare it with other 
notions. We w i l l then use this characterization 
to derive a c r i te r ion . In the following section 
we w i l l state and discuss a general algorithm 
for finding the c lassi f icat ion which extremizes 
our c r i te r ion . Section IV concerns the asympto­
t i c behavior of the procedure, i . e . , what happens 
when the number of objects is very large. Re­
sults of computer experiments are given in section 
V. 

I I . A Clustering Criterion 

The cr i te r ion derived in this section is 
based on the notion that information is lost 
when objects are represented only by class labels. 
Suppose that each member of a col lect ion of N 
objects is represented by an L-dlmenslonal vector. 
Then the set of N vectors, [X1. XN}, contains 
a l l of the available Information concerning the 
objects. The clustering operation replaces this 
set of vectors with a set of labels, {w1, . . . ,wN}. 
The i - th label , w1, is an integer between 1 and 
M (M < N), and denotes the class to which X1 is 
assigned. The label set contains less informa­
t ion about the objects than does the vector set. 
Therefore, clustering is viewed here as a data 
reduction algorithm which destroys information. 
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measure of this error can serve as a clustering 
cr i ter ion to be minimized. There are at least two 
ways to derive a numerical measure of representa­
t ion error. The method which has been used most 
often in the past is to measure the error commit­
ted by using a representative vector, C(w1), aa 
an estimate of Xi. An error vector can be de­
fined as 

Then a measure of distance representation error, 
which w i l l be used as a clustering c r i te r ion , is 

where f(X i, Xi ) is a set of weighting coefficients. 
This kind of c r i te r ion is often used to measure 
mapping error and clustering is a kind of mapping. 
However, some special considerations are import­
ant in i t s use as a clustering c r i te r ion . First 
of a l l , not a l l of the distances are euclidean. 
A more important point, however, is the fact that 
the wi's are variables and the X i ' s are f ixed. 
Due to the discrete and unordered nature of the 
w i ' s , ordinary gradient methods cannot be used 
to minimize J. 

Cr i ter ia of the same form as J have been 
used in hierarchical cluster ing. In hierarchical 
c luster ing, objects are classi f ied according to 
a diverging tree structure. A tree metric is 
defined which numerically defines the distance 
between two objects according to their posit ion 
on the tree. The degree of f i t between the 

a measure of va l id i ty of the c lassi f icat ion tree 
(5,6). 

The general c r i te r ion , J is too cumbersome 
to use in practice. The summation contains N2 

terms in general. Therefore, we would l ike to 
assign zero weight to most of the terms. Suppose 
f sat isf ies 

is implied. 
JIP assigns a nonzero penalty for each pair of 
vectors closer together than R and classi f ied 
into di f ferent classes. 

If [6 ] is taken as the def in i t ion of d , the 
following special cases of Ji and JIR resul t : 

J2R is the simplest c r i ter ion we w i l l derive. It 
is equal to the tota l number of d is t inct pairs 
of vectors separated by a distance less than R 
and assigned to di f ferent classes. We w i l l some­
times refer to J2R as the fixed neighborhood 
penalty ru le. The remainder of this paper mainly 
concerns J2R. 

The following properties of J2R support i t s 
use as a clustering c r i te r ion . 

1) Comnut tion For ific tion 

where N i. is the population of class j, then W is 
the to ta l intragroup scatter matrix. Several 
c r i te r ia which are functions of W are discussed 
in (2) and (3). 

An alternate def in i t ion of representation 
error is used in the present development. We 
w i l l concern ourselves with the error committed 
in estimating distances between pairs of vectors. 
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J2R is evaluated by a counting process 
rather than by complex calculations. 
Since the vectors are f ixed, the neigh­
boring pairs need be determined only 
once. 

i i ) Storage When R is suf f ic ient ly small, 
the number of neighboring pairs of 
vectors is moderate. The storage 
requirement is governed primarily by 
this number, 

i i i ) Classif ication Contributions to JOD 
come from pairs of vectors near the 
boundaries separating classes. Thus, 
It is preferable for the boundary to 
pass through a region of low vector 
concentration. This kind of classif ica 
t ion is quite reasonable when there is 
no supervision available. 

At this point, the reader may wonder if a 
K nearest neighbor penalty rule can be defined. 
The answer is yes, since we can write 

Notice that fk is not symmetric. Although the K 
nearest neighbor penalty rule has a valuable 
counterpart in supervised pattern recognition, it 
is unsuitable in the present case. The K nearest 
neighbor rule does not favor one region over an­
other because of density. Therefore, it may well 
prescribe a boundary through a mode in the vector 
d is t r ibu t ion . 

At this point, we have a family of nonpara-
metric c r i te r ia with three levels of complexity. 
The parent c r i te r ion , J, is the most complex 
and is in the closest accord with our or ig inal 
concept of clustering (distance preservation). 
I t s descendants are J1 followed by J2, with 
special cases JIR and J2R. Cri ter ia at the J1 
level are more general in that they allow the 
penalty to be class dependent, but J2R is easier 
to implement and admits an interpretat ion which 
seems very suitable. Unfortunately, c r i te r ia 
of the J1 level and below have an absolute mini­
mum of zero when a l l vectors are assigned to the 
same class. This is not a serious problem in 
practice because there w i l l be local minima 
corresponding to more interesting c lassi f ica­
t ions. The degenerate case is easily detected. 

We have not specified how to choose either 
the number of classes, M, or the region size, R. 
We have no rigorous theory to rely on here, and 
we can only offer suggestions based on experi­
mental resul ts. Therefore, we postpone discus­
sion of these points un t i l section V. 

I I I . The Clustering Algorithm 

The algorithm for f inding the optimum 
assignment with respect to a given cr i te r ion is 
the second essential ingredient of c luster ing. 
Although clustering need not take place in real 
time, there are s t i l l pract ical constraints 
which rule out inef f ic ient procedures, such as 
exhaustive searching. We have made use of a 
general type of algorithm. This algorithm can 
be applied to a wide variety of c r i t e r i a , but 
in the special cases of J2R it becomes part icu­
lar ly easy to implement. 

Ties involving wr(k) are resolved in i t s 
favor. Other t ies are resolved arbitrari ly. 

Step 4: If any vector is placed in a new 
class, return to Step 2 and repeat. 
Otherwise, stop. 

Note that a l l computation occurs in step 2 and 
the vectors are reclassif ied simultaneously in 
step 3. 

There is no guarantee that this algorithm 
w i l l converge. Even if i t does, there is l i t t l e 
we can say about the strength of the minimum 
obtained. Fortunately, empirical evidence seems 
to favor this procedure. Fukunaga and Koontz 
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This procedure, which follows from applica­
t ion of the general algorithm to a specific 
c r i t e r ion , J2R, is a valley seeking technique. 
To see th is , consider vectors along the boundary 
separating class S1 from class S2 at the kth 
i te ra t ion . Suppose there is a heavier concentra­
t ion of vectors on the s? side of the boundary. 
Then vectors near the boundary are reclassif ied 
into class S?. Hence, the boundary moves into 
the region previously assigned to class s j . 
Therefore, the boundary moves away from the higher 
concentrations and toward valleys in the d i s t r i ­
bution. 

Two kinds of d i f f i cu l t y may arise when the 
fixed neighborhood decision rule is used. First 
of a l l , the algorithm may get stuck with the 
boundary passing through a region of re lat ive ly 
sparse population when better boundaries exist . 
Secondly, the boundary may diverge, leaving a l l 
of the vectors in a single class. Both of these 
d i f f i cu l t i e s are combatted by al ter ing the 
i n i t i a l assignment, (0), and adjusting the con­
t ro l parameter, R. 

The clustering algorithm and the clustering 
cr i te r ion together make up a clustering proce­
dure . The clustering procedure has become the 

The behavior of the decision rule corresponding 
to [29] is easily i l lus t ra ted when the dimension, 
L, is two. Figure 1 shows a region around the 
boundary separating classes S1 and S2. For the 
value of R shown, Y1 clearly remains in class 
S1. However, if the probabil i ty mass within R 
of Y2 and to the r ight of the boundary is larger 
than that to the le f t of the boundary, then Y2 
is reassigned to class S2. If [29] reassigns 
no vectors, then the boundary is said to be 
stationary. 

If R is suf f ic ient ly small, we can charact­
erize a stationary boundary rather nicely. 
Figure 2 shows a small region about a point on 
the boundary between classes s1 and s2. The 
boundary has unit normal vector w and is 
the gradient of the mixture density evaluated 
at Y, i . e . , 

i terat ive application of the fixed neighborhood 
decision ru le. We can easily apply it to 
numerical examples, and we do this in section V. 
F i rs t , however, let us see how the procedure 
behaves when N is very large. 

IV. Asymptotic Behavior 

The performance of the clustering algorithm 
developed in sections II and I I I can be studied 
analyt ical ly when N is very large. In this 
section, we w i l l derive the asymptotic version 
of D2R and discuss i t s properties. The asympto­
t i c properties provide some insight into the 
general behavior of our procedure. They also 
suggest how the procedure can be expected to 
perform with f i n i t e data sets. 

Let us f i r s t rewirte the expression for D2R, 
normalizing bv a factor of 1/N. 
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where V. is the volume of Q. SR (Y) and the 
superscript T denotes transposition. Agein 
noting that R is small, we assume that the 
boundary sp l i ts SR(Y) into two L dimensional 
hemispheres so that V1 = V2. The integrals in 
[32] are given by 

Suppose the le f t hand side of [35] is posi t ive. 
Then Y w i l l be assigned to s1. Further, a l l 
vectors within a small neighborhood of the 
boundary w i l l also go to s1. Thus the boundary 
shi f ts to the r ight (see Fig. 2). Similarly, 
if the r ight hand side of [35] is negative, the 
boundary moves to the l e f t . The condition for 
stat ionari ty of the boundary is 

[36 1 

A f ina l boundary between two classes must be 
stable as well as stationary. This means that 
if the boundary is perturbed it must not tend to 
move farther away from the stationary point. We 
can establish a condition for unstabi l i ty as 
follows. Figure 3 is an exagerated i l l us t ra t ion 
of a small perturbation of a stationary boundary. 
The vector Y' is a point on the new boundary 
such that 

where w is the new unit normal vector. If the 
component of (Y ) along w is negative, then 
the boundary w i l l tend to move farther away from 
the stationary posit ion. Hence the boundary is 
unstable i f 

Tn conclusion, the f ina l boundary must 
satisfy two conditions. 

i) The component of the gradient of the 
density normal to the boundary must be 
zero. 

i i ) The boundary may not pass through 
regions where is negative seraide-
f i n i t e . 

This development shows that our algorithm 
leads to reasonable classif icat ions in the 
asymptotic case. Hopefully, it also provides 
insight into the behavior of the algorithm in 
the f i n i te sample case as wel l . 

V. Examples 

The algorithm has been tested on a r t i f i c a l l y 
generated bivariate data. There is no additional 
d i f f i cu l t y in the multivariate case. 

The value of R has considerable effect on 
the performance of the algorithm. We found 
that the procedure works best when R is such that 
the number of distances less than R is 10 to ?0 
times the sample size. 

The choice of M is more d i f f i c u l t . In one 
case, a large value of M resulted in most of the 
vectors being placed in one of two classes, but 
we cannot guarantee that this would always be 
the resul t . 

Figure 4 show the results of one example 
with M=2. The i n i t i a l boundary is random. Note 
that the data are not l inear ly separable. 

The number of i terat ions required in the 
experiments ranged from 4 to 10. Total computa­
t ion time was-under 10 seconds on a CDC 6500. 
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VI. Sumnary 

A clustering procedure consists of a criterion 
and an algorithm. We have developed a general 
clustering procedure of which the fixed neighbor­
hood decision rule is a special case. The 
asymptotic behavior of the procedure was studied 
and computer experiments testif ied to i ts 
practical value. 

The procedure has been shown to be suitable 
even for non ellipsoidal clusters. It has modest 
storage requirements and the computational loop, 
which involves only counting, is very rapid. 
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Figure 2. 
Classification of a boundary point. 
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Figure 3. 
Perturbation of a stationary boundary 

Figure A. 
Classification of nonlinearly separable data 


