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Abstract

The problem of clustering multivariate obser-
vations is viewed as the replacement of a set of
vectors with a set of labels and representative
vectors. A general criterion for clustering is
derived as a measure of representation error.
Sore special cases are derived by simplifying the
general criterion. A general algorithm for find-
iIng the optimum classification with respect to a
given criterion is derived. For a particular
case, the algorithm reduces to a repeated applica-
tion of a straightforward decision rule which be-
haves as a valley-seeking technique. Asymptotic
properties of the procedure are developed.
Numerical examples are presented for the finite
sample case.

| Introduction

It is not difficult to imagine a collection
of objects whose members can be classified into
two or more categories simply on the basis of
their observable characteristics. It is not
always necessary to rely on a similar collection
of labeled objects as a basis for classification.
For example, biological taxonomists have classified
living things into a large number of meaningful
categories. Yet at no time in history did any
plant or animal bear a label. Rather, categories
have been established without supervision.

Recently, methods for automatic unsupervised
classification, or clustering, have been proposed.
A machine algorithm for clustering can be a valu-
able tool In

1) pattern recognition - Often, a training

set of labeled objects is difficult or
Impossible to obtain. Further, a known
class of objects may contain unknown
subclasses,

and
1) statistical analysis - Cluster analysis
may be used to expose the detailed
structure of a large volume of data.
We will present and discuss a family of clustering
algorithms.

Our approach involves the use of a clustering
criterion. This criterion assigns a numerical
value to every possible classification of the
objects. Meaningful classifications are assumed
to correspond to extreme values of the criterion.
The optimum classification in the sense of a given
criterion is determined by means of a clustering
algorithm. An efficient clustering algorithm is
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necessary because an exhaustive check of all
possible classifications is usually impractical.
Thus, for our purposes, the clustering problem
consists of two basic elements:

1) definition of a clustering criterion
and

11) construction of a clustering algorithm.

The idea of using a clustering criterion is
not new. Many procedures reported in Ball's
survey (1) are based on criteria. Friedman and
Rubin (2) present a class of criteria and discuss
the property of transformation invarlance.
Fukunaga and Koontz (3) show conditions where the
criteria of (2) become equivalent to a simpler
criterion. Watanabe (4) proposes a criterion,
which he calls cohesion, which can detect more
subtle relationships among objects than palrwise
similarities.

Presently, no universal clustering criterion
has been defined. This is simply a consequence
of the lack of a precise mathematical definition
of a cluster. That is, the clustering problem
IS one whose solution cannot be characterized in
a definite way. Thus, in order to derive a
mathematical criterion, we must postulate a
rigorous definition or clustering. This postulate
can then be tested by experiments with objects
whose class structure is known and well defined.

The remainder of this paper consists of

four sections and a summary. In the next section,
(section 1) we present our characterization of
the clustering problem and compare it with other
notions. We will then use this characterization
to derive a criterion. In the following section
we will state and discuss a general algorithm
for finding the classification which extremizes
our criterion. Section IV concerns the asympto-
tic behavior of the procedure, i.e., what happens
when the number of objects is very large. Re-

sults of computer experiments are given in section
V.

1. A Clustering Criterion

The criterion derived Iin this section is
based on the notion that information is lost
when objects are represented only by class labels.
Suppose that each member of a collection of N
objects is represented by an L-dlmenslonal vector.
Then the set of N vectors, [X4....Xy}, contains
all of the available Information concerning the
objects. The clustering operation replaces this
set of vectors with a set of labels, {wq, ... ,wn}.
The i-th label, w4, is an integer between 1 and
M (M < N), and denotes the class to which X; is
assigned. The label set contains less informa-
tion about the objects than does the vector set.
Therefore, clustering is viewed here as a data
reduction algorithm which destroys information.

This loss of information can be viewed as
the representation error committed by replacing
[51,...,§N] with {uh,...,uh]. A quantitative
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measure of this error can serve as a clustering
criterion to be minimized. There are at least two
ways to derive a numerical measure of representa-
tion error. The method which has been used most
often in the past is to measure the error commit-
ted by using a representative vector, C(w1), aa
an estimate of X,. An error vector can be de-

fined as

e, = X - C(uw), (1]
and a cumulative error matrix is given by
N
T
o 1::15121 2]
I1f C(j) is the mean of class }, i.e.,
1
c()) = I X, (3]
) w =y

where N;. is the population of class j, then W is
the total intragroup scatter matrix. Several
criteria which are functions of W are discussed

in (2) and (3).

An alternate definition of representation
error is used in the present development. We
will concern ourselves with the error committed
in estimating distances between pairs of vectors.
Let 4 (xi,xj) be the euclidean distance between

X, an xj

2 1/?2
(&, X)) = [):()(“-x“)]1 (4]

Further, let d (w W ) be a suitably defined

J

metric of {ntercldss)distances. For example
dy(@, ) = dylete),clwp ], (57
or
D>0 w # w
- S
NORPER| — (6
i h

Then a measure of distance representation error,
which will be used as a clustering criterion, is
N N

. x5 ]
. I T e, X [dulwy, )y (K X)) (71

where f(X;, X; ) is a set of weighting coefficients.

This kind of criterion is often used to measure

mapping error and clustering is a kind of mapping.

However, some special considerations are import-
ant in its use as a clustering criterion. First
of all, not all of the distances are euclidean.
A more important point, however, is the fact that
the wi's are variables and the X;'s are fixed.
Due to the discrete and unordered nature of the
w;'s, ordinary gradient methods cannot be used

to minimize J.

Criteria of the same form as J have been
used in hierarchical clustering. In hierarchical
clustering, objects are classified according to
a diverging tree structure. A tree metric is
defined which numerically defines the distance
between two objects according to their position
on the tree. The degree of fit between the
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a measure of validity of the classification tree
(5,6).

The general criterion, J is too Cumbersome
to use Iin practice. The summatlon contains N?
terms in general. Therefore, we would like to

assign zero weight to most of the terms. Suppose
f satisfies
= > >

If R is sufficiently small, then J can be approx-
imated as

N N :
Js L I fX ) d (w w ) £ J 9]
{m1 §=1 1 ) 1

A specific example of J1 follows when f is
defined by

d(x x)

{.o (x xj) [10]

O
= fplayx,.x)7 .

Since fp is symmetric with respect to X, and gj
and since d, (w;,w;) = 0, i=],

,N (a property
of any metric), we can write Jl as

A\
Iy =2 j Eif [dx(x X )}d AU =230 (11)
where the notational equivalence
N 1-1
I = I L (12]
j<qi =2 §m=l
IS implied.

JIP assigns a nonzero penalty for each pair of
vectors closer together than R and classified
into different classes.

If [6] is taken as the definition of d , the
following special cases of Ji and Jr result:

N N
3, - z ji.lf(g(_i xj) p%[1 - 6(wi,w )], (13]
A 2
=D J,,
- 2
J,, = £ ld_(X ,X 1-6(w : 14
IR : ; R[ ( '"j)] D" [ (wi WJ)] (14 ]
A 2
=D Jop
where
1 W = W,
b(w, ,w,) = { Lo [15]
i 0 wi g ua.

J2R is the simplest criterion we will derive. It
Is equal to the total number of distinct pairs
of vectors separated by a distance less than R
and assigned to different classes. We will some-
times refer to J2R as the fixed neighborhood
penalty rule. The remainder of this paper mainly

concerns JoR.

The following properties of J,r support its
use as a clustering criterion.
1) Comnut tion Far ific tion
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Jor IS evaluated by a counting process
rather than by complex calculations.
Since the vectors are fixed, the neigh-
boring pairs need be determined only
once.
1) Storage When R is sufficiently small,
the number of neighboring pairs of
vectors is moderate. The storage
requirement is governed primarily by
this number,
Classification Contributions to JOD
come from pairs of vectors near the
boundaries separating classes. Thus,
It is preferable for the boundary to
pass through a region of low vector
concentration. This kind of classifica
tion Is quite reasonable when there is
no supervision available.

i)

At this point, the reader may wonder if a
K nearest neighbor penalty rule can be defined.
The answer is yes, since we can write

N N
Tog = b LG X)[-0(uw, 0] [16]
2K (=] {=1 =1 i’
where
1, {f X, 18 one of the K nearest
_ nelghbors
Eg (X Xy) { of X,, [17]

0, otherwise.

Notice that fk is not symmetric. Although the K
nearest neighbor penalty rule has a valuable
counterpart in supervised pattern recognition, it
Is unsuitable in the present case. The K nearest
neighbor rule does not favor one region over an-
other because of density. Therefore, it may well
prescribe a boundary through a mode in the vector
distribution.

At this point, we have a family of nonpara-
metric criteria with three levels of complexity.
The parent criterion, J, is the most complex
and is in the closest accord with our original
concept of clustering (distance preservation).
Its descendants are J1 followed by J2, with
special cases Jir and Jog. Criteria at the J1
level are more general in that they allow the
penalty to be class dependent, but J,r is easier
to implement and admits an interpretation which
seems very suitable. Unfortunately, criteria
of the J1 level and below have an absolute mini-
mun of zero when all vectors are assigned to the
same class. This is not a serious problem in
practice because there will be local minima
corresponding to more interesting classifica-
tions. The degenerate case is easily detected.

We have not specified how to choose either
the number of classes, M, or the region size, R.
We have no rigorous theory to rely on here, and
we can only offer suggestions based on experi-
mental results. Therefore, we postpone discus-
sion of these points until section V.

|I1. The Clustering Algorithm
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The algorithm for finding the optimum
assignment with respect to a given criterion is
the second essential ingredient of clustering.
Although clustering need not take place in real
time, there are still practical constraints
which rule out inefficient procedures, such as
exhaustive searching. We have made use of a
general type of algorithm. This algorithm can
be applied to a wide variety of criteria, but
in the special cases of J,r it becomes particu-
larly easy to implement.

Congider a criterion of the form

VLN [CHEPPU D TR & (189
= J(0; X),
where
0= lu, ..,meT : [19]
and
X =[x ... 500 [203

The assignment, (), is variable and the configura-
tion, X, is fixed. We are seeking an assignment,
(*_  such that

J(*,X) = min J(Q;X) . [21]
O

Because of the discrete and unordered nature of
{), ordinary gradient methods cannot be used.
Still, 1t is possible to specify an iterative
search based on first order variations in J with
respect to {I. Let (¥k) the assignment at the
kth step. If the rth vector is reclassified
from its present class, w (k), to class s, then
the change in J, AJ(r,s 10 is given by

M(rls!k) = erl(k)""’ _1(k)rsiu’r+1(k)i""‘“(k);,£]
- J[Q(k);}g'l . [22]
The succeeding classification of X, w (k+1)

should be the one which yields the most neggtive
change in J. Therefore, the following clustering
algorithm is proposed.

Step 1: Choose an initial classification,
0(0) .

Step 2: Having determined the kth classi-
fication, calculate AJ(r,s,k) for re=1,..N
and s=1,...,M.

Step 3: The kt+lst classification is deter-
mined by

AJ(r,w,.(k+1) k) = min &V(r,s,k), r=1,...,N [23]

8
Ties involving w.(k) are resolved in its

favor. Other ties are resolved arbitrarily.
Step 4: If any vector is placed in a new
class, return to Step 2 and repeat.

Otherwise, stop.
Note that all computation occurs in step 2 and

the vectors are reclassified simultaneously in
step 3.

There i1s no guarantee that this algorithm
will converge. Even if it does, there is little
we can say about the strength of the minimum
obtained. Fortunately, empirical evidence seems
to favor this procedure. Fukunaga and Koontz
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This procedure, which follows from applica-
tion of the general algorithm to a specific
criterion, J2R, is a valley seeking technique.
To see this, consider vectors along the boundary
separating class S1 from class S2 at the kth
iteration. Suppose there is a heavier concentra-
tion of vectors on the s, side of the boundary.
Then vectors near the boundary are reclassified
into class S7. Hence, the boundary moves into
the region previously assigned to class sj.
Therefore, the boundary moves away from the higher
concentrations and toward valleys in the distri-
bution.

Two kinds of difficulty may arise when the
fixed neighborhood decision rule is used. First
of all, the algorithm may get stuck with the
boundary passing through a region of relatively
sparse population when better boundaries exist.
Secondly, the boundary may diverge, leaving all
of the vectors in a single class. Both of these
difficulties are combatted by altering the
initial assignment, (0), and adjusting the con-
trol parameter, R.

The clustering algorithm and the clustering
criterion together make up a clustering proce-
dure. The clustering procedure has become the
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iterative application of the fixed neighborhood
decision rule. We can easily apply it to
numerical examples, and we do this in section V.
First, however, let us see how the procedure
behaves when N is very large.

V. Asymptotic Behavior

The performance of the clustering algorithm
developed in sections Il and |Il can be studied
analytically when N is very large. In this
section, we will derive the asymptotic version
of Do,r and discuss its properties. The asympto-
tic properties provide some insight into the
general behavior of our procedure. They also
suggest how the procedure can be expected to
perform with finite data sets.

Let us first rewirte the expression for D3R,
normalizing bv a factor of 1/N.

1 N

D,p(r,8) = ¢ 1f1fa[dx(§r’§1)]
N

1
- = L 16
- i_lfR[dx(Er’Ei)' (s,w) [26]
The first term of (261 is independent of s.
Therefore, choosing the minimum of Dyp 18 equiva-

lent to choosing the maximum of

N
Dy (r,8) = % 1f1fa[dx(5r*51)]°(s'“i) [27]

Let Q; be the set of all vectors assigned to
class s. Then, as N becomes large, D2R approaches
an integral.

D;R(r.s) - fQ

8

A *

= D2R(§T,s) (28]
where p(X) is the mixture probability density
function of the X,'s. Let Y be an arbitrary
point to be reclassified and let Sp(Y) be the set
of all vectors separated from Y by a distance
less than R, Then

%
D, (X, 8) = J@s Vs (p) PO X [29]

£ Ly (X, X) Jp(X) dX

The behavior of the decision rule corresponding
to [29] Is easily illustrated when the dimension,
L, is two. Figure 1 shows a region around the
boundary separating classes Sy and S2. For the
value of R shown, Y, clearly remains in class
S4. However, if the probability mass within R
of Y, and to the right of the boundary is larger
than that to the left of the boundary, then Y2
IS reassigned to class S,. If [29] reassigns
no vectors, then the boundary is said to be
stationary.

If R is sufficiently small, we can charact-
erize a stationary boundary rather nicely.
Figure 2 shows a small region about a point on
the boundary between classes s; and s,. The
boundary has unit normal vector w and 9p(Y) is
the gradient of the mixture density evaluated
at 'Y, l.e.,
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... %R_
x=y L
Since R is small, p(X) can be approximated

closely with a truncated Taylor expansion about
Y. The decision rule then becomes

- T
Vl P(!) + rvb(x)] j&s N SR(X)(E'X) di

]T (31]

-
(D) = |3 )
A=Y

1

1
5]
V. p(Y) + [© (Y)]Tj (X-Y) dx [32]
< "2PR2 PR2 1 ns (v & 2
S R'—
S 2
2
where V. is the volume of Q. 8g (Y) and the

superscript T denotes transposition. Agein
noting that R is small, we assume that the
boundary splits Si(Y) into two L dimensional
hemispheres so that V; = V,. The integrals in
[32] are given by

r || -
g Nsg (y) &Y dx aw 13
s R'—
1
and
- = r
j& N g (!)(E 1) dﬂ AW 133]
5 R
2
where
RL+1 TT2
s ) ' [34]
’ I‘(-2-+1)
Thus, the final form of the decision rule is
S
]
T >
-d[Vp(Z)] w 0. (35]

<

8

2
Suppose the left hand side of [35] is positive.
Then Y will be assigned to s4. Further, all
vectors within a small neighborhood of the
boundary will also go to sy. Thus the boundary
shifts to the right (see Fig. 2). Similarly,
if the right hand side of [35] is negative, the
boundary moves to the left. The condition for
stationarity of the boundary is

“'p(Y) w = 0.

36 1

A final boundary between two classes must be
stable as well as stationary. This means that
if the boundary is perturbed it must not tend to
move farther away from the stationary point. We
can establish a condition for unstability as
follows. Figure 3 is an exagerated illustration
of a small perturbation of a stationary boundary.
The vector Y' is a point on the new boundary
such that

’

y'-y=8w", 8>o0.

where w is the new unit normal vector. If the
component of Vp(Y ) along w is negative, then
the boundary will tend to mowe farther away from

the stationary position. Hence the boundary is
unstable if

(37]
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)] W <o [38)

for any small perturbation.
We can express Yp(Y ) using a Taylor series about
Y 4as

. T
P E @+ e @w,  [39]
"
where 9" p(Y) is a matrix
2 3 b (X)
7° -~ P\ L0
i ]
x=Y
Using [377 and {397 in [38] wve can write
(9p(y ) " w ot (7p(¥) )T W'
-9 .
b V@ T w L1 ]

"
Suppose YV p(Y) is uegitive semidefinite. Then
the second term of (élT’Ls nonpositive for all
w . Tae dirgction of w is arbitrary so that we
can choose w such that the first term of [41)]

ic negative. Hence, {f v2p(Y) is negative semi-
definite, then for some g' TlBW holds and the

boundary is therefore unstable,

Tn conclusion, the final boundary must
satisfy two conditions.

1) The component of the gradient of the
density normal to the boundary must be
Zero.

i) The boundary may not pass through
regions where VZp is negative seraide-
finite.

This development shows that our algorithm
leads to reasonable classifications in the
asymptotic case. Hopefully, it also provides
insight into the behavior of the algorithm in
the finite sample case as well.

V. Examples

The algorithm has been tested on artifically
generated bivariate data. There is no additional
difficulty in the multivariate case.

The value of R has considerable effect on
ne performance of the algorithm. We found
nat the procedure works best when R is such that
ne number of distances less than R is 10 to ?0
iImes the sample size.

~ ~ o~ —

The choice of M is more difficult. In one
case, a large value of M resulted in most of the
vectors being placed in one of two classes, but
we cannot guarantee that this would always be
the result.

Figure 4 show the results of one example
with M=2. The initial boundary is random. Note
that the data are not linearly separable.

The number of iterations required in the
experiments ranged from 4 to 10. Total computa-
tion time was-under 10 seconds on a (IC 6500.
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VI. Sumnary

A clustering procedure consists of a criterion
and an algorithm. We have developed a general

Qs, | Qs,

clustering procedure of which the fixed neighbor-
hood decision rule is a special case. The
asymptotic behavior of the procedure was studied
and computer experiments testified to its
practical value.

The procedure has been shown to be suitable
even for non ellipsoidal clusters. It has modest

storage requirements and the computational loop,
which involves only counting, is very rapid.
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Figure 3.
Perturbation of a stationary boundary
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Figure A.
Classification of nonlinearly separable data
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