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Abstract 

The statements in a program may be classi­
fied as "kernel statements" if they participate 
d i rect ly in the computation of some output and 
as "control statements" if they participate 
di rect ly in deciding the control path at branch 
points. Two programs are kernel equivalent if 
they always execute identical sequences of 
kernel statements given the same inputs. Kernel 
equivalence is defined formally and is shown 
to be pract ical ly decidable in many cases by a 
procedure of trying test cases. The concept of 
program kernel may also be used as a basis for 
proving correctness of programs. 

Descriptive Terms 

Equivalence, correctness, program analysis, flow 
of control, flow of data, theory of programming, 
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I. Introduction. 
The most general def in i t ion of the equiva­

lence of programs is the purely functional -- a 
program represents a mapping from input data 
sets to output data sets and two programs are 
equivalent if they represent the same function 
on the same domain of inputs. The other extreme 
of equivalence is the purely structural . One 
assumes a part icular representation of programs, 
e.g. as Algol programs, Turing machines, abstract 
flowchart graphs, or lambda-calculus expressions. 
Two programs arc then equivalent if they have 
identical representations, i .e. identical struc­
tures. Unfortunately, for any fa i r l y general 
representation of programs, structural ident i ty 
is too restr icted a form of equivalence. On the 
other hand, determining functional equivalence 
is usually undecidable in general, and at best 
requires a detailed knowledge of the properties 
of the primit ive operations and predicates 
involved. 

In this paper, we develop an intermediate 
def in i t ion of equivalence based on program 
"kernels" which requires only f a i r l y superf icial 
knowledge of the flow of control and data between 
statements in a program yet which may be used to 
prove functional equivalence of programs whose 
structures are quite d i f ferent . Proving the 
kernel equivalence of two programs may often be 
done by observing the results of executing each 
program on a f i n i t e number of test cases. 

*This work supported in part by NSF Grant GJ-778 

The def in i t ion of "kernel equivalence" is 
developed formally within the framework of the 
common directed graph representation of programs 
presented in the next section, (although the use 
of this part icular representation is not essen­
t i a l ) . Following sections develop the de f in i ­
t ion of kernel equivalence in terms of a dis­
t inct ion between kernel and control statements 
and between kernel and control variables. Some 
examples of equivalence proofs are given. In 
the concluding section we also argue the rela­
tionship of kernel equivalence to proofs of pro­
gram "correctness". 

11. Programs. 
As the basic formal model of a program we 

shall adopt a representation which has been 
widely used (see e.g. Luckham, Park and 
Paterson (1), Kaplan (2)). A program is repre­
sented by a f i n i t e directed graph (flowchart) 
with labeled nodes. Nodes may have zero (exi t 
nodes), one (assignment nodes) or two (branch 
nodes) exit ing arrows. There is a unique entry 
node with no entering arrow and every node l ies 
on a path from the entry node to an exit node. 
The arrows leaving a branch node are labeled 
true and false. Assignment nodes are labeled 
with assignment statements, branch nodes with 
branch statements. The entry node is labeled 
"ENTER" and each exit node is labeled "EXIT". 

Figure 1 is an example of a program. Execution 
of a program proceeds according to the usual 
rules. One begins at the entry node and follows 
a path through the graph executing assignment 
statements as they are encountered and choosing 
the appropriate branch at branch nodes on the 
basis of the value of the predicate. 

The part icular representation as a directed 
graph is not important. Al ternat ively, we could 
have used, e.g., an Algol - l ike program represen­
tat ion. The key items of information needed 



475 

from R to each variable of the program. We 
shall refer to the range of such a function as 
a value set. 
(1.3) The initial value assignments of H are 
the value assignments which represent valid 
initial assignments of values to the variables 
of 11. 
(1.4) The execution sequence of H for a 
given initial value assignment I is the sequence 
S1S2...S of statements executed when H is n 
executed with its variables initialized to the 
values specified by the initial value assign­
ment. If H does not terminate for 1 then 
may be infinite. 
(1.5) The result assignment Q. oi H for a given 
initial value assignment 1 is the value assign­
ment resulting from execution of the program 
with variables initialized to the values in I. 
Q is undefined if H does not terminate for I. 
We assume that the functions and predicates are 
properly defined so as to always give a value, 
so that Q is always defined if H does terminate 
for L. 

I I I . Approaches to Program Equivalence. 
The foregoing definitions give us two 

views of a program H as a function: (1) As a 
function from initial value assignments to 
result assignments, H (I)=Q (if 11 terminates 
on I) and (2) as a function from initial value 
assignments to execution sequences 11 (])-
Both views in fact may be used as a basis for 
definitions of program equivalence, as follows: 
(1) Functional equivalence. If H and H1 are 
programs then H = H' (H is functionally equiva­
lent to H') iff II and H' have the same variable 
sets and the same initial value assignments, 
and for every initial value assignment I, either 

both Hf(I) and H'f(l) are undefined (do not 
terminate) or if Hf(I) = Q and H' (I)=QI , then 
Q =Q' (similar to the "strong equivalence" of 
Luckham, Park, and Paterson (1)). 
(2) Structural equivalence. If H and H1 are 
programs then H = H' (H is structurally equiva­
lent to H') iff H and H' have the same variable 
sets and initial value assignments, and for 
every initial value assignment 1, II (1) - II' (1), 
(i.e. each program executes exactly the same 
sequence of statements given input values I), and 
at each branch node the branch statement returns 
the same value in each program (similar to the 
"strict equivalence" of Orgass (3)). Structural 
equivalence does not in fact imply that the 
graphs for H and H' are isomorphic. However, it 
is clearly a very narrow view of equivalence, 
requiring that each program execute the same 
sequence of statements and branches for each 
input assignment. Functional equivalence, on 
the other hand, is perhaps the broadest defini­
tion of equivalence, requiring only that each 
program produce the same output (or be undefined) 
for each input assignment. The following result 
follows immediately: 

Theorem 1. If H = H' then H - l l ' . 
It is fairly clear that any general scheme 

for proving functional equivalence immediately 
runs into basic undecidability results (see 
Luckham, Park, and Paterson (1)) due to the fact 
that programs may not terminate for some inputs. 
For the study of practical programs however, it 
is of interest to press past this roadblock and 
ask: Suppose wc assume termination, can we 
prove equivalence? This seems not unreasonable 
since for actual programs we can often use 
specialized arguments to show that particular 
programs terminate for the initial value assign­
ments of interest. Thus we now assume that the 
initial value assignments for each program 11 are 
restricted to those ior which 11 terminates. 

Is functional equivalence decidablc given 
termination? If the set R of possible initial 
values for variables is infinite, then it is not 
clear. Suppose that R is finite? Then immedi­
ately the brute force algorithm will suffice 
theoretically: execute each program on each 
possible initial value assignment; the programs 
are equivalent iff they have the same result in 
each case. But is such a brute force approach 
ever practical? (Clearly actual programs always 
have only a finite range oi values possible for 
each variable.) Unfortunately very seldom, ior 
although theoretically the set oi input value 
sets may be finite, it is ordinarily so large as 
to preclude exhaustive testing. We are unlikely 
to find testing equivalence by looking at the 
outputs of the programs for given inputs a 
practical possibility even when theoretically 
feasible. We may fall back on the standard 
debugging tool - try a small set of test cases -
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are: 
(1) The possible sequences of statements which 
may be executed by the program and (2) the flow 
of data information given by inspecting the 
variables occurring in the possible sequence of 
statements. 

Some auxiliary definitions are needed. 
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to gain some par t ia l evidence for equivalence, 
but no proof. 

What other poss ib i l i t ies besides this "black 
box" approach of matching inputs and outputs is 
feasible? Clearly, some analysis of program in­
ternal structure is indicated. At the extreme, 
isomorphism of programs is a clearly decidable 
but uninterestingly narrow def in i t ion of equiva­
lence. On the other end of the scale, we might 
go into the properties of the functions and pre­
dicates in each program, requiring a set of 
axioms which allow proving certain functions or 
sequences of statements to be equivalent. Figure 
1 is such a case in point. The program in 1(a) 
computes SUM:=((((0+l)+2)+3)+4)+5 while that of 
1(b) computes SUM:=((((Of5)+4)+3)+2)+l. We can 
only prove they are equivalent if we know that 
"+" is commutative and associative. 

Two Functionally Equivalent Programs. 

Proving equivalence in cases where detailed know­
ledge is needed of the functions and predicates 
requires a substantial theorem-proving apparatus. 

Are there any reasonable def ini t ions of pro­
gram equivalence which are fa i r l y broad yet re­
quire only the sort of information found in the 
abstract programs of the preceding section, name­
ly information about flow of control and data, 
but no detailed information about the functions 
and predicates involved? In the next section, 
we propose one such def in i t ion and then argue 
that not only is it decidable theoretical ly but 
in many cases pract ical ly . 

IV. Program Kernels and Kernel Equivalence 
The proposed approach to equivalence may be 

br ie f ly outl ined: 
(1) Assume that only certain variables contain 
signif icant "output values" on termination. Call 
these the kernel output variables. 
(2) By backtracing control paths through the 
program from exit nodes, identi fy and tag (as 
kernel statements) a l l program statements which 
participate in the computation of the i i na l 
values oi the kernel output variables. At the 
same time identi fy the kernel input variables, 
those variables which are used as arguments in 
some kernel statement but have no prior assign­
ment made to them. 
(3) By a similar backtracing from branch nodes, 
identi fy and tag (as control statements) a l l 
branch statements and a l l statements which pa r t i ­
cipate in the computation of the arguments to 
branch statements. At the same time identi fy 
control input variables, those variables which 
are used as arguments in some control statement 
but have no prior assignment made to them. 

It should be clear that given complete in ­
formation about flow of control and data in a 
program, the sets of kernel statements, kernel 
input variables, kernel output variables, control 
statements and control input variables may be 
readily determined (algorithms are given below 
for the model of the preceding section.) Note 
that neither the sets of statements nor the sets 
of variables need be d is jo in t . 

Two programs are said to be kernel equivalent 
i f f (a) they have the same kernel input, kernel 
output and control input variables sets and the 
same set of kernel statements, and (b) for each 
i n i t i a l value assignment 1 to kernel and control 
variables they execute the same sequence of ker­
nel statements (the kernel execution sequence 
for 1). 

We shall show that kernel equivalence implies 
functional equivalence relat ive to the kernel 
output variables. Moreover, the kernel execution 
sequence for a given i n i t i a l value assignment is 
dependent only on the values assigned to the con­
t ro l variables. Thus to determine kernel equiva­
lence of two programs we need only try as test 
cases each possible assignment of i n i t i a l values 
to the control variables and compare the kernel 
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execution sequences in each case. Finally we 
shall argue that this technique has a certain 
practical interest, for ordinarily control input 
variables in actual programs have only a small 
range of values, and there are relatively few 
control input variables at that. It is the ker­
nel input variables which will contain the real 
data which the program manipulates, and thus 
which will have a large range of possible values. 
We may expect often to find only a small number 
of possible initial assignments to control input 
variables, thus indicating only a small number of 
test cases to be tried to determine kernel equi­
valence which then in turn implies functional 
equivalence for the variables of interest. Kernel 
equivalence also has some implications for prov­
ing correctness of programs (see the conclusion). 

We will now show the rigorous development of 
these concepts in the model of the preceding sec­
tion : 
Kernel Output Variables. We may assume that the 
set of kernel output variables (the variables 
whose linal values are of interest) is given. 
Alternatively, we may identify such a set by 
tracing iorward from nodes containing assignment 
statements. It the assignment statement has the 
form U:=F(V,,...,V ) and there is a path from the 

I n 
node to an exit node which contains no statement 
in which U is an argument, then U is a kernel out 
put variable (since U is assigned a value which 
in some cases is never later used). 
Kerne1 Statements and Kernel Input Variables. 
First tag as a kernel statement each statement in 
the step above which computes a kernel output. 
Now begin to iterate: Pick an argument variable 
V in some kernel statement U:=F(...,V,...). Trace 
back along each path trom the node containing 
that kernel statement until an assignment node 
containing the assignment V := . . . is reached. 'Jag 
that statement as a kernel statement. If the 
entry node is reached and no such assignment has 
been found, then V is a kernel input variable. 
Repeat the process until all argument variables 
in all kernel statements have been tested. 
Control Statements and Control Input Variables. 
First tag as control statements all branch state­
ments contained in branch nodes. Now iterate 
exactly as for kernel statements: Pick an argu­
ment variable in a control statement and trace 
back along each path to a statement which assigns 
a value to that variable and tag that statement 
as a control statement. If the entry node is 
reached then the variable is a control input 
variable. Clearly all these procedures terminate 
in a finite number of steps. 
Ke mel Execution Sequence. Given an initial 
value assignment I for the variables of a program 
H, the kernel execution sequence Ki of H for 1 is 
the ordinary execution sequence &T with all but 
kernel statements deleted. I 

Kernel Equivalence. Two programs H and H' arc 
kernel equivalent, H = H, i ff 

(1) H and ll1 have identical sets of kernel state­
ments, kernel input variables, kernel output 
variables and control input variables, and 
(2) for every initial value assignment 1, H and 
H1 have the same kernel execution sequence. 
Kernel Equivalence Implies Functional Equivalence, 
The following theorem follows easily: 

k Theorem 2. If H and H' are programs and H = H1, 
f 

then H = H' considered as a function only from 
the control and kernel input variables to the 
kernel output variables. 
Proof Outline: Since the control statements are 
the only statements which participate in deter­
mining the execution sequence followed for a 
particular initial value assignment, the initial 
values for the control input variables uniquely 
determine a kernel execution sequence. H = H' 
implies, for a given initial value assignment 1, 
that K = S,S„ . . . S = K' But these kernel 

1 1 2 n I 
statements S, . . . S arc the only statements 

I n 
which participate in determining the values of 
the kernel outputs, and the initial values of 
the kernel input variables completely determine 
the results of executing the statement sequence 
S. . . . S . Thus for the same initial values of 

1 n k 
kernel and control input variables, H - H' 
implies that execution of H and H1 will produce 
the same result values in the kernel output 
variables. H = H' also implies that H terminates 
on a given initial value set I iff 11' terminates 
on 1 also. // 
Now the following result justifies the use of a 
set of test cases for deciding kernel equivalence, 
Theorem 3. If H and H1 are programs with identi­
cal sets of kernel statements and control input, 
kernel input and kernel output variables, then 
H - H* iff II and H1 have identical kernel execu­
tion sequences for each initial value assignment 
to the control input variables. 
Proof Outline: The control statements are the 
only statements which affect the path taken 
through the program graph during execution. A 
given initial value assignment to the control 
input variables determines a unique execution 
sequence and thus a unique kernel execution 
sequence. Therefore, if I and I., are two H ' o 1 
distinct initial value assignments with identi­
cal assignments to the control variables then 
K = K regardless of the values assigned the 

lo l l 
other variables.// 
by the preceding theorem if we restrict the 
possible initial values oi the control input 
variables to be finite sets, then kernel equiva­
lence is decidable by simply trying each possible 
combination of initial value assignments and 
looking at the kernel execution sequences which 
result; The set of possible value assignments 
to kernel input variables may be Infinite or 
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very large without increasing the number of test 
cases to be t r ied . 
Example 1. 

Consider the three programs of Figure 2. 
Each has a single kernel output variable, OUTPUT, 
a single kernel input variable, INPUT, no control 
input variables, and kernel statements: 

X . 
OUTPUT , 

SUM : 
SUM : 

:= 
:= 
■= 
: = 

Read(INPUT) 
Print(SUM) 
0 
SUM+X 

In Figure 2, nodes containing kernel statements 
are tagged with a "K11 and those containing con­
t ro l statements with a "C". 

Are the programs kernel equivalent? By 
Theorem 3, we need only look at the kernel execu­
tion sequence for each possible i n i t i a l assign­
ment of values to the control input variables. 
Since that set is empty, there is only one execu­
tion sequence, and thus only one kernel execution 
sequence for each program. Figure 3 shows the 
execution sequence for each program, with non-
kernel statements in parentheses. Since the ker­
nel execution sequences for each program are 
ident ical , the programs are kernel equivalent. 
Thus by Theorem 2 they are also functionally 
equivalent with respect to the input variable 
INPUT and the output variable OUTPUT. The impor­
tant point of this proof is that we have used 
only the simplest arguments to prove functional 
equivalence of three structural ly quite dissimi­
lar programs. 
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SUM 
(I 
(I 
X 

SUM 
(I 
(1 
X 

SUM 
(1 
(I 
X 

SUM 
(I 
(1 
X 

SUM 
( I 

OUTPUT 

:= 
:= 
:= 
:= 
:= 
> 
:= 
:= 
:= 

:= 
:= 
:= 
4. 
:= 
:= 
:= 
4 
• 

0 
0) 
I + 1) 
Read(INPUT 
SUM + X 
4?) 
1 + 1) 
Read(INPUT) 
SUM + X 
4?) 
1 + 1) 
Read(INPUT) 
SUM+ X 
4?) 
I + 1) 
Read(INPUT) 
SUM + X 
4?) 
Print(SUM) 

variable, INPUT, the single control input var i 
able MODE, and the kernel statements: 

3 (a) 

SUM 
X 

SUM 
X 

SUM 
X 

SUM 
X 

SUM 
OUTPUT 

= 0 
Read(INPUT) 
SUM + X 
Read(INPUT) 
SUM + X 
Read (INPUT) 
SUM + X 
Read(INPUT) 
SUM + X 
Print(SUM) 

3 (b) 

(K : 
SUM : 

X : 
SUM 

(K 
(K : 
X . 

SUM . 
(K 
(K 
X 

SUM 
(K 
(K 
X 

SUM 
(K 

OUTPUT 

:= 
:= 
,= 
:= 
= 

:= 
:= 
:= 

= 
:= 
:= 
:= 
:= 
:= 
:= 

:= 
= 

4) 
0 
Read(INPUT) 
SUM + X 
1?) 
K - 1) 
Read(INPUT) 
SUM + X 
1?) 
K - 1) 
Read(INPUT) 
SUM + X 
1?) 
K - 1) 
Read(INPUT) 
SUM -I- X 
1?) 
Print(SUM) 

Figure 3. 

3 (c) 

Execution Sequences for Programs 
of Figure 2 with Non-kernel State 
ments in Parentheses. 

Example 2. 
In Figure 4 two programs are given. It is 

readily verified that each has a single kernel 
output variable, OUTPUT, a single kernel input 

X : 
OUTPUT : 

RES . 
RES 
RES 
RES . 

=: 
:= 
:= 
:= 

:= 
:= 

Read(INPUT) 
Print(RES) 
RKS+X 
RES*X 
0 
1 

If we assume the range of values for MODE to be 
the set {'ADD','MULT'), then we have two possible 
initial assignments of a value to the control 
variable MODE. Looking at the kernel execution 
sequences of each program for each assignment to 
MODE, it is readily verified that they are identi­
cal in both cases. Thus the programs are kernel 
equivalent and also functionally equivalent with 
respect to the input variables INPUT and MODE and 
the output variable OUTPUT. 
Keme ls and Proving Correctness of Programs. 
Studies of program equivalence are closely relat­
ed to studies of program correctness. How does 
the concept of kernel equivalence aid in proving 
a program correct? We may readily observe the 
similarity between the "test case" approach to 
proving kernel equivalence and the "case analy­
sis" approach to proving correctness discussed 
by London in his survey of techniques for proving 
correctness (4). If we look at the kernel execu­
tion sequence for each case of initial value 
assignments to the control input variables in a 
program, then we might reasonably argue that the 
program is "correct" if it has the "correct" 
kernel execution sequence in each case. Since 
each kernel execution sequence is a simple linear 
sequence of statements, it appears likely that 
one could more readily prove the "correctness" 
of such a statement sequence than the "correct­
ness" of the original program taken as a whole, 
and that thus this technique of proving correct­
ness by "case analysis" would often be useful 
(and might quite conceivably be mechanized). As 
a useful debugging tool also, one might envision 
a "kernel analysis system" which, given a program 
and a list of its control input variables with 
their ranges, would simply list the kernel execu­
tion sequence for each combination oi input 
assignments to the control variables. Inspection 
of the kernel execution sequences should often 
suffice to show the "correctness" of the program 
control structure, and thus the correctness of 
the program as a whole if one were convinced 
that the kernel execution sequences were correct. 

Conclusion 
Kernel equivalence is a rather elementary 

yet not uninteresting form of program equivalence. 
Because determination of kernel equivalence re­
quires only a superficial analysis of flow of 
control and data in a program, it lias some poten­
tial practical value for application to actual 
programs. 

The analysis of programs in terms of "kernel" 
versus "control" statements and variables which 
is used here in an elementary way seems a 
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powerful tool for studying programs. 
Clearly there arc many other aspects of 

programs which are also primarily concerned 
with control, such as subprograms, argument 
transmission, i terat ion statements, and block 
structure, which often may be radical ly di f ferent 
between two programs which make the same "kernel" 
computation. An extension of kernel equivalence 
to encompass these other structures seems feasi­
ble without greatly increasing the depth of pro­
gram analysis needed. 
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