
474 Session No. 11 Theoretioal Foundations

KERNEL EQUIVALENCE OF PROGRAMS AND PROVING
KERNEL EQUIVALENCE AND CORRECTNESS BY TEST CASES*

Terrence W. Pratt
University of Texas

Austin, Texas, U.S.A.

Abstract

The statements in a program may be classi­
fied as "kernel statements" if they participate
d i rect ly in the computation of some output and
as "control statements" if they participate
di rect ly in deciding the control path at branch
points. Two programs are kernel equivalent if
they always execute identical sequences of
kernel statements given the same inputs. Kernel
equivalence is defined formally and is shown
to be pract ical ly decidable in many cases by a
procedure of trying test cases. The concept of
program kernel may also be used as a basis for
proving correctness of programs.

Descriptive Terms

Equivalence, correctness, program analysis, flow
of control, flow of data, theory of programming,
graph model

I. Introduction.
The most general def in i t ion of the equiva­

lence of programs is the purely functional -- a
program represents a mapping from input data
sets to output data sets and two programs are
equivalent if they represent the same function
on the same domain of inputs. The other extreme
of equivalence is the purely structural . One
assumes a part icular representation of programs,
e.g. as Algol programs, Turing machines, abstract
flowchart graphs, or lambda-calculus expressions.
Two programs arc then equivalent if they have
identical representations, i .e. identical struc­
tures. Unfortunately, for any fa i r l y general
representation of programs, structural ident i ty
is too restr icted a form of equivalence. On the
other hand, determining functional equivalence
is usually undecidable in general, and at best
requires a detailed knowledge of the properties
of the primit ive operations and predicates
involved.

In this paper, we develop an intermediate
def in i t ion of equivalence based on program
"kernels" which requires only f a i r l y superf icial
knowledge of the flow of control and data between
statements in a program yet which may be used to
prove functional equivalence of programs whose
structures are quite d i f ferent . Proving the
kernel equivalence of two programs may often be
done by observing the results of executing each
program on a f i n i t e number of test cases.

*This work supported in part by NSF Grant GJ-778

The def in i t ion of "kernel equivalence" is
developed formally within the framework of the
common directed graph representation of programs
presented in the next section, (although the use
of this part icular representation is not essen­
t i a l) . Following sections develop the de f in i ­
t ion of kernel equivalence in terms of a dis­
t inct ion between kernel and control statements
and between kernel and control variables. Some
examples of equivalence proofs are given. In
the concluding section we also argue the rela­
tionship of kernel equivalence to proofs of pro­
gram "correctness".

11. Programs.
As the basic formal model of a program we

shall adopt a representation which has been
widely used (see e.g. Luckham, Park and
Paterson (1), Kaplan (2)). A program is repre­
sented by a f i n i t e directed graph (flowchart)
with labeled nodes. Nodes may have zero (exi t
nodes), one (assignment nodes) or two (branch
nodes) exit ing arrows. There is a unique entry
node with no entering arrow and every node l ies
on a path from the entry node to an exit node.
The arrows leaving a branch node are labeled
true and false. Assignment nodes are labeled
with assignment statements, branch nodes with
branch statements. The entry node is labeled
"ENTER" and each exit node is labeled "EXIT".

Figure 1 is an example of a program. Execution
of a program proceeds according to the usual
rules. One begins at the entry node and follows
a path through the graph executing assignment
statements as they are encountered and choosing
the appropriate branch at branch nodes on the
basis of the value of the predicate.

The part icular representation as a directed
graph is not important. Al ternat ively, we could
have used, e.g., an Algol - l ike program represen­
tat ion. The key items of information needed

475

from R to each variable of the program. We
shall refer to the range of such a function as
a value set.
(1.3) The initial value assignments of H are
the value assignments which represent valid
initial assignments of values to the variables
of 11.
(1.4) The execution sequence of H for a
given initial value assignment I is the sequence
S1S2...S of statements executed when H is n
executed with its variables initialized to the
values specified by the initial value assign­
ment. If H does not terminate for 1 then
may be infinite.
(1.5) The result assignment Q. oi H for a given
initial value assignment 1 is the value assign­
ment resulting from execution of the program
with variables initialized to the values in I.
Q is undefined if H does not terminate for I.
We assume that the functions and predicates are
properly defined so as to always give a value,
so that Q is always defined if H does terminate
for L.

I I I . Approaches to Program Equivalence.
The foregoing definitions give us two

views of a program H as a function: (1) As a
function from initial value assignments to
result assignments, H (I)=Q (if 11 terminates
on I) and (2) as a function from initial value
assignments to execution sequences 11 (])-
Both views in fact may be used as a basis for
definitions of program equivalence, as follows:
(1) Functional equivalence. If H and H1 are
programs then H = H' (H is functionally equiva­
lent to H') iff II and H' have the same variable
sets and the same initial value assignments,
and for every initial value assignment I, either

both Hf(I) and H'f(l) are undefined (do not
terminate) or if Hf(I) = Q and H' (I)=QI , then
Q =Q' (similar to the "strong equivalence" of
Luckham, Park, and Paterson (1)).
(2) Structural equivalence. If H and H1 are
programs then H = H' (H is structurally equiva­
lent to H') iff H and H' have the same variable
sets and initial value assignments, and for
every initial value assignment 1, II (1) - II' (1),
(i.e. each program executes exactly the same
sequence of statements given input values I), and
at each branch node the branch statement returns
the same value in each program (similar to the
"strict equivalence" of Orgass (3)). Structural
equivalence does not in fact imply that the
graphs for H and H' are isomorphic. However, it
is clearly a very narrow view of equivalence,
requiring that each program execute the same
sequence of statements and branches for each
input assignment. Functional equivalence, on
the other hand, is perhaps the broadest defini­
tion of equivalence, requiring only that each
program produce the same output (or be undefined)
for each input assignment. The following result
follows immediately:

Theorem 1. If H = H' then H - l l ' .
It is fairly clear that any general scheme

for proving functional equivalence immediately
runs into basic undecidability results (see
Luckham, Park, and Paterson (1)) due to the fact
that programs may not terminate for some inputs.
For the study of practical programs however, it
is of interest to press past this roadblock and
ask: Suppose wc assume termination, can we
prove equivalence? This seems not unreasonable
since for actual programs we can often use
specialized arguments to show that particular
programs terminate for the initial value assign­
ments of interest. Thus we now assume that the
initial value assignments for each program 11 are
restricted to those ior which 11 terminates.

Is functional equivalence decidablc given
termination? If the set R of possible initial
values for variables is infinite, then it is not
clear. Suppose that R is finite? Then immedi­
ately the brute force algorithm will suffice
theoretically: execute each program on each
possible initial value assignment; the programs
are equivalent iff they have the same result in
each case. But is such a brute force approach
ever practical? (Clearly actual programs always
have only a finite range oi values possible for
each variable.) Unfortunately very seldom, ior
although theoretically the set oi input value
sets may be finite, it is ordinarily so large as
to preclude exhaustive testing. We are unlikely
to find testing equivalence by looking at the
outputs of the programs for given inputs a
practical possibility even when theoretically
feasible. We may fall back on the standard
debugging tool - try a small set of test cases -

Session No. 11 Theoretical Foundations

are:
(1) The possible sequences of statements which
may be executed by the program and (2) the flow
of data information given by inspecting the
variables occurring in the possible sequence of
statements.

Some auxiliary definitions are needed.

476 Session No. 11 Theoretical Foundations

to gain some par t ia l evidence for equivalence,
but no proof.

What other poss ib i l i t ies besides this "black
box" approach of matching inputs and outputs is
feasible? Clearly, some analysis of program in­
ternal structure is indicated. At the extreme,
isomorphism of programs is a clearly decidable
but uninterestingly narrow def in i t ion of equiva­
lence. On the other end of the scale, we might
go into the properties of the functions and pre­
dicates in each program, requiring a set of
axioms which allow proving certain functions or
sequences of statements to be equivalent. Figure
1 is such a case in point. The program in 1(a)
computes SUM:=((((0+l)+2)+3)+4)+5 while that of
1(b) computes SUM:=((((Of5)+4)+3)+2)+l. We can
only prove they are equivalent if we know that
"+" is commutative and associative.

Two Functionally Equivalent Programs.

Proving equivalence in cases where detailed know­
ledge is needed of the functions and predicates
requires a substantial theorem-proving apparatus.

Are there any reasonable def ini t ions of pro­
gram equivalence which are fa i r l y broad yet re­
quire only the sort of information found in the
abstract programs of the preceding section, name­
ly information about flow of control and data,
but no detailed information about the functions
and predicates involved? In the next section,
we propose one such def in i t ion and then argue
that not only is it decidable theoretical ly but
in many cases pract ical ly .

IV. Program Kernels and Kernel Equivalence
The proposed approach to equivalence may be

br ie f ly outl ined:
(1) Assume that only certain variables contain
signif icant "output values" on termination. Call
these the kernel output variables.
(2) By backtracing control paths through the
program from exit nodes, identi fy and tag (as
kernel statements) a l l program statements which
participate in the computation of the i i na l
values oi the kernel output variables. At the
same time identi fy the kernel input variables,
those variables which are used as arguments in
some kernel statement but have no prior assign­
ment made to them.
(3) By a similar backtracing from branch nodes,
identi fy and tag (as control statements) a l l
branch statements and a l l statements which pa r t i ­
cipate in the computation of the arguments to
branch statements. At the same time identi fy
control input variables, those variables which
are used as arguments in some control statement
but have no prior assignment made to them.

It should be clear that given complete in ­
formation about flow of control and data in a
program, the sets of kernel statements, kernel
input variables, kernel output variables, control
statements and control input variables may be
readily determined (algorithms are given below
for the model of the preceding section.) Note
that neither the sets of statements nor the sets
of variables need be d is jo in t .

Two programs are said to be kernel equivalent
i f f (a) they have the same kernel input, kernel
output and control input variables sets and the
same set of kernel statements, and (b) for each
i n i t i a l value assignment 1 to kernel and control
variables they execute the same sequence of ker­
nel statements (the kernel execution sequence
for 1).

We shall show that kernel equivalence implies
functional equivalence relat ive to the kernel
output variables. Moreover, the kernel execution
sequence for a given i n i t i a l value assignment is
dependent only on the values assigned to the con­
t ro l variables. Thus to determine kernel equiva­
lence of two programs we need only try as test
cases each possible assignment of i n i t i a l values
to the control variables and compare the kernel

Session No. 11 Theoretical Foundations 477

execution sequences in each case. Finally we
shall argue that this technique has a certain
practical interest, for ordinarily control input
variables in actual programs have only a small
range of values, and there are relatively few
control input variables at that. It is the ker­
nel input variables which will contain the real
data which the program manipulates, and thus
which will have a large range of possible values.
We may expect often to find only a small number
of possible initial assignments to control input
variables, thus indicating only a small number of
test cases to be tried to determine kernel equi­
valence which then in turn implies functional
equivalence for the variables of interest. Kernel
equivalence also has some implications for prov­
ing correctness of programs (see the conclusion).

We will now show the rigorous development of
these concepts in the model of the preceding sec­
tion :
Kernel Output Variables. We may assume that the
set of kernel output variables (the variables
whose linal values are of interest) is given.
Alternatively, we may identify such a set by
tracing iorward from nodes containing assignment
statements. It the assignment statement has the
form U:=F(V,,...,V) and there is a path from the

I n
node to an exit node which contains no statement
in which U is an argument, then U is a kernel out
put variable (since U is assigned a value which
in some cases is never later used).
Kerne1 Statements and Kernel Input Variables.
First tag as a kernel statement each statement in
the step above which computes a kernel output.
Now begin to iterate: Pick an argument variable
V in some kernel statement U:=F(...,V,...). Trace
back along each path trom the node containing
that kernel statement until an assignment node
containing the assignment V := . . . is reached. 'Jag
that statement as a kernel statement. If the
entry node is reached and no such assignment has
been found, then V is a kernel input variable.
Repeat the process until all argument variables
in all kernel statements have been tested.
Control Statements and Control Input Variables.
First tag as control statements all branch state­
ments contained in branch nodes. Now iterate
exactly as for kernel statements: Pick an argu­
ment variable in a control statement and trace
back along each path to a statement which assigns
a value to that variable and tag that statement
as a control statement. If the entry node is
reached then the variable is a control input
variable. Clearly all these procedures terminate
in a finite number of steps.
Ke mel Execution Sequence. Given an initial
value assignment I for the variables of a program
H, the kernel execution sequence Ki of H for 1 is
the ordinary execution sequence &T with all but
kernel statements deleted. I

Kernel Equivalence. Two programs H and H' arc
kernel equivalent, H = H, i ff

(1) H and ll1 have identical sets of kernel state­
ments, kernel input variables, kernel output
variables and control input variables, and
(2) for every initial value assignment 1, H and
H1 have the same kernel execution sequence.
Kernel Equivalence Implies Functional Equivalence,
The following theorem follows easily:

k Theorem 2. If H and H' are programs and H = H1,
f

then H = H' considered as a function only from
the control and kernel input variables to the
kernel output variables.
Proof Outline: Since the control statements are
the only statements which participate in deter­
mining the execution sequence followed for a
particular initial value assignment, the initial
values for the control input variables uniquely
determine a kernel execution sequence. H = H'
implies, for a given initial value assignment 1,
that K = S,S„ . . . S = K' But these kernel

1 1 2 n I
statements S, . . . S arc the only statements

I n
which participate in determining the values of
the kernel outputs, and the initial values of
the kernel input variables completely determine
the results of executing the statement sequence
S. . . . S . Thus for the same initial values of

1 n k
kernel and control input variables, H - H'
implies that execution of H and H1 will produce
the same result values in the kernel output
variables. H = H' also implies that H terminates
on a given initial value set I iff 11' terminates
on 1 also. //
Now the following result justifies the use of a
set of test cases for deciding kernel equivalence,
Theorem 3. If H and H1 are programs with identi­
cal sets of kernel statements and control input,
kernel input and kernel output variables, then
H - H* iff II and H1 have identical kernel execu­
tion sequences for each initial value assignment
to the control input variables.
Proof Outline: The control statements are the
only statements which affect the path taken
through the program graph during execution. A
given initial value assignment to the control
input variables determines a unique execution
sequence and thus a unique kernel execution
sequence. Therefore, if I and I., are two H ' o 1
distinct initial value assignments with identi­
cal assignments to the control variables then
K = K regardless of the values assigned the

lo l l
other variables.//
by the preceding theorem if we restrict the
possible initial values oi the control input
variables to be finite sets, then kernel equiva­
lence is decidable by simply trying each possible
combination of initial value assignments and
looking at the kernel execution sequences which
result; The set of possible value assignments
to kernel input variables may be Infinite or

478 Session No. 11 Theoretical Foundations

very large without increasing the number of test
cases to be t r ied .
Example 1.

Consider the three programs of Figure 2.
Each has a single kernel output variable, OUTPUT,
a single kernel input variable, INPUT, no control
input variables, and kernel statements:

X .
OUTPUT ,

SUM :
SUM :

:=
:=
■=
: =

Read(INPUT)
Print(SUM)
0
SUM+X

In Figure 2, nodes containing kernel statements
are tagged with a "K11 and those containing con­
t ro l statements with a "C".

Are the programs kernel equivalent? By
Theorem 3, we need only look at the kernel execu­
tion sequence for each possible i n i t i a l assign­
ment of values to the control input variables.
Since that set is empty, there is only one execu­
tion sequence, and thus only one kernel execution
sequence for each program. Figure 3 shows the
execution sequence for each program, with non-
kernel statements in parentheses. Since the ker­
nel execution sequences for each program are
ident ical , the programs are kernel equivalent.
Thus by Theorem 2 they are also functionally
equivalent with respect to the input variable
INPUT and the output variable OUTPUT. The impor­
tant point of this proof is that we have used
only the simplest arguments to prove functional
equivalence of three structural ly quite dissimi­
lar programs.

Session No. 11 Theoretical Foundations 479

SUM
(I
(I
X

SUM
(I
(1
X

SUM
(1
(I
X

SUM
(I
(1
X

SUM
(I

OUTPUT

:=
:=
:=
:=
:=
>
:=
:=
:=

:=
:=
:=
4.
:=
:=
:=
4
•

0
0)
I + 1)
Read(INPUT
SUM + X
4?)
1 + 1)
Read(INPUT)
SUM + X
4?)
1 + 1)
Read(INPUT)
SUM+ X
4?)
I + 1)
Read(INPUT)
SUM + X
4?)
Print(SUM)

variable, INPUT, the single control input var i
able MODE, and the kernel statements:

3 (a)

SUM
X

SUM
X

SUM
X

SUM
X

SUM
OUTPUT

= 0
Read(INPUT)
SUM + X
Read(INPUT)
SUM + X
Read (INPUT)
SUM + X
Read(INPUT)
SUM + X
Print(SUM)

3 (b)

(K :
SUM :

X :
SUM

(K
(K :
X .

SUM .
(K
(K
X

SUM
(K
(K
X

SUM
(K

OUTPUT

:=
:=
,=
:=
=

:=
:=
:=

=
:=
:=
:=
:=
:=
:=

:=
=

4)
0
Read(INPUT)
SUM + X
1?)
K - 1)
Read(INPUT)
SUM + X
1?)
K - 1)
Read(INPUT)
SUM + X
1?)
K - 1)
Read(INPUT)
SUM -I- X
1?)
Print(SUM)

Figure 3.

3 (c)

Execution Sequences for Programs
of Figure 2 with Non-kernel State
ments in Parentheses.

Example 2.
In Figure 4 two programs are given. It is

readily verified that each has a single kernel
output variable, OUTPUT, a single kernel input

X :
OUTPUT :

RES .
RES
RES
RES .

=:
:=
:=
:=

:=
:=

Read(INPUT)
Print(RES)
RKS+X
RES*X
0
1

If we assume the range of values for MODE to be
the set {'ADD','MULT'), then we have two possible
initial assignments of a value to the control
variable MODE. Looking at the kernel execution
sequences of each program for each assignment to
MODE, it is readily verified that they are identi­
cal in both cases. Thus the programs are kernel
equivalent and also functionally equivalent with
respect to the input variables INPUT and MODE and
the output variable OUTPUT.
Keme ls and Proving Correctness of Programs.
Studies of program equivalence are closely relat­
ed to studies of program correctness. How does
the concept of kernel equivalence aid in proving
a program correct? We may readily observe the
similarity between the "test case" approach to
proving kernel equivalence and the "case analy­
sis" approach to proving correctness discussed
by London in his survey of techniques for proving
correctness (4). If we look at the kernel execu­
tion sequence for each case of initial value
assignments to the control input variables in a
program, then we might reasonably argue that the
program is "correct" if it has the "correct"
kernel execution sequence in each case. Since
each kernel execution sequence is a simple linear
sequence of statements, it appears likely that
one could more readily prove the "correctness"
of such a statement sequence than the "correct­
ness" of the original program taken as a whole,
and that thus this technique of proving correct­
ness by "case analysis" would often be useful
(and might quite conceivably be mechanized). As
a useful debugging tool also, one might envision
a "kernel analysis system" which, given a program
and a list of its control input variables with
their ranges, would simply list the kernel execu­
tion sequence for each combination oi input
assignments to the control variables. Inspection
of the kernel execution sequences should often
suffice to show the "correctness" of the program
control structure, and thus the correctness of
the program as a whole if one were convinced
that the kernel execution sequences were correct.

Conclusion
Kernel equivalence is a rather elementary

yet not uninteresting form of program equivalence.
Because determination of kernel equivalence re­
quires only a superficial analysis of flow of
control and data in a program, it lias some poten­
tial practical value for application to actual
programs.

The analysis of programs in terms of "kernel"
versus "control" statements and variables which
is used here in an elementary way seems a

480 Session No. 11 Theoretical Foundations

powerful tool for studying programs.
Clearly there arc many other aspects of

programs which are also primarily concerned
with control, such as subprograms, argument
transmission, i terat ion statements, and block
structure, which often may be radical ly di f ferent
between two programs which make the same "kernel"
computation. An extension of kernel equivalence
to encompass these other structures seems feasi­
ble without greatly increasing the depth of pro­
gram analysis needed.

REFERENCES

Luckham, D. C., Park, M. R. and Patcrson,
M. S. "On formalized computer programs,"
Jour. Comp. and System Sciences, 4,3, June
1970.
Kaplan, D. M. "Regular expressions and
the equivalence of programs," Jour. Comp.
and System Sciences, 3,4, Nov. 1969.
Orgass, R. J. "Some results concerning
proofs of statements about programs,"
Jour. Comp. and System Sciences 4 ,1 , Feb.
1970.
London, R. L., "Computer programs can be
proved correct," in Hanerji and Mesarovic
(eds) Theoretical Approaches to Non-numeri
cal Prob. Solving, Springer-Vcrlag, 1970.

