474

KERNEL BEQUVALENCE OF AND PROVING
KERNE. BEQUNVALENCE AND OORRECTNESS BY TEST CASES®

Terrence W. Pratt
University of Texas
Austin, Texas, U.S.A.

Abstract

The statements in a program may be classi-
filed as "kernel statements" if they participate
directly in the computation of some output and
as "control statements" if they participate
directly in deciding the control path at branch
points. Two programs are kernel equivalent if
they always execute identical sequences of
kernel statements given the same inputs. Kernel
equivalence is defined formally and is shown
to be practically decidable in many cases by a
procedure of trying test cases. The concept of
program kernel may also be used as a basis for
proving correctness of programs.

Descriptive Temms

Equivalence, correctness, program analysis, flow
of control, flow of data, theory of programming,
graph model

|. Introduction.

The most general definition of the equiva-
lence of programs is the purely functional -- a
program represents a mapping from input data
sets to output data sets and two programs are
equivalent if they represent the same function
on the same domain of inputs. The other extreme
of equivalence is the purely structural. Ore
assumes a particular representation of programs,
e.g. as Algol programs, Turing machines, abstract
flowchart graphs, or lambda-calculus expressions.
Two programs arc then equivalent if they have
identical representations, i.e. identical struc-
tures. Unfortunately, for any fairly general
representation of programs, structural identity
Is too restricted a form of equivalence. On the
other hand, determining functional equivalence
Is usually undecidable in general, and at best
requires a detailed knowledge of the properties
of the primitive operations and predicates
iInvolved.

In this paper, we develop an intermediate
definition of equivalence based on program
"kernels" which requires only fairly superficial
knowledge of the flow of control and data between
statements in a program yet which may be used to
prove functional equivalence of programs whose
structures are quite different. Proving the
kernel equivalence of two programs may often be
done by observing the results of executing each
program on a finite number of test cases.

*This work supported in part by NSF Grant GJ-778

Session No. 11 Theoretioal Foundations

The definition of "kernel equivalence" is
developed formally within the framework of the
common directed graph representation of programs
presented in the next section, (although the use
of this particular representation is not essen-
tial). Following sections develop the defini-
tion of kernel equivalence in terms of a dis-
tinction between kernel and control statements
and between kernel and control variables. Some
examples of equivalence proofs are given. In
the concluding section we also argue the rela-
tionship of kernel equivalence to proofs of pro-
gram "correctness”.

11. Programs.

As the basic formal model of a program we
shall adopt a representation which has been
widely used (see e.g. Luckham, Park and
Paterson (1), Kaplan (2)). A program is repre-
sented by a finite directed graph (flowchart)
with labeled nodes. Nodes may have zero (exit
nodes), one (assignment nodes) or two (branch
nodes) exiting arrows. There is a unique entry
node with no entering arrow and every node lies
on a path from the entry node to an exit node.
The arrows leaving a branch node are labeled
true and false. Assignment nodes are labeled
with assignment statements, branch nodes with
branch statements. The entry node is l|abeled
"ENTER" and each exit node is labeled "EXIT".

Assignment and branch statements are con-
structed from a set of variables‘Lf={yl,V2,..:},

n

n
a set of single-valued functions 3:: iFll, F22, .]

specifies the number of arguments of

.
Fl) and a set of predicates(§>={P1 ,P2 ,...}
(where each m. specifies the number of arguments

of Pi' A branch statement has the form:

m
i
P1 (U

(where n,

m
(P

U) where each U 61/’, P
m, k i
and an assignment statement has the form:

n

k
Uo.—Fk (U

1’U2""

U) where each U Cv
nk i

U

1’ 2,-.-

n

and Fkk€ 3]

Figure 1 is an example of a program. Execution
of a program proceeds according to the usual
rules. Ore begins at the entry node and follows
a path through the graph executing assignment
statements as they are encountered and choosing
the appropriate branch at branch nodes on the
basis of the value of the predicate.

The particular representation as a directed
graph is not important. Alternatively, we could
have used, e.g., an Algol-like program represen-
tation. The key items of information needed

Session No. 11 Theoretical Foundations

are:

(1) The possible sequences of statements which
mey be executed by the progam ad (2) the flow
of data information given by inspecting the
variables occurring in the possible sequence of
statements.

Sre auxiliary definitions are needed.

Let R be the range of possible values for the
variables of V.

Definition (1,1) If H is a program, then the
variable set of H, QJh, is
c\/ {V[V C(I/ and V occurs as an argument
in some branch or assignment state-
ment or on the left of ":=" in an

assignment statement in H. }

(1.2) A value assignment for a program H is a

mapping of17; into R, which assigns a value

from R to eadh variable of the progam. We
shall refer to the range of sudh a function as
a value set.

(1.3) The initial value assgnments of H are
the value assignments which represent valid

initial assgnments of values to the variables
of 11.

(1.4) The execution sequence 31 of H for a

gven initial value assgnment | is the sequence
8182...Snof statements executed when H is

executed with its variables initialized to the
values specified by the initial value assign-
ment If H does not teminate for 1 then

mey be infinite.

(1.5) Thre result assgnment Q. oi H for a given

initial value assignment 1 is the value assign-
mert resulting from execution of the progam

with vanables initialized to the values In |.
Q is undefined if H does not terminate for |.

We a=aune that the functions ad predicates are
properly defined so as to aways give a value,
so that Q is aways defined if H does teminate
for L

[11. Apgooadhes to Pogam Equivalence.

The foregoing definitions give us o
views of a progam H as a function: (1) As a
function from initial value assgnments to
result assignments, H (I=Q (if 11 teminates

on |) ad (2) as a function from initial value
assignments to execution sequences 11 (])- ,81.

Both views in fact may be used as a basis for
definitions of progam equivalence, as follows:

(1) Functional equivalence. f H ad H' are

pogamns then H=H' (H is functionally equiva-
lent to H') iff Il ad H' have the sare variable
sets ad the smre initial value assignments,

ad for every initial value assignment |, either

475

both Hi«(l) axd H'«(l) are undefined (do not
teminate) or if Hi(l) = Q ad H' (1)=Q' , then
Q =Q (similar to the "strong equivalence" of
Ludkham, Park, ad Paterson (1)).

(2) Structural equivalence. f H ad H' are

pogams then H = H' (H is structurally equiva-
lent to H') iff H ad H' have the sare variable
sets ad initial value assignments, ad for
every initial value assgnment 1, Il (1) - II' (1),

(i.e. each progam executes exactly the sare
sequence of statements given input values 1), ad
at eedh branch node the branch statement retums
the ssre value in eech progam (similar to the
"strict equivalence" of Ogass (3)). Structural
equivalence does not in fact imply that the

gaphs for H ad H' are isomomphic. However, it

is clearly a very namow view of equivalence,
requiring that eadh progam execute the sare
sequence of statements ad branches for eadh
input assignment Functional equivalence, on
the other hand, is perhaps the broadest defini-
tion of equivalence, requiring only that eadh
progam produce the sare output (or be undefined)
for eech input assignment The following result
follows immediately:

Theoem 1. T H=H" then H- II".

It is fairly clear that awy general sdare
for proving functional equivalence immediately
runs into basic undecidability results (see
Luddam, Park, ad Paterson (1)) de to the fact
that progams nay not terminate for sore inputs.
For the study of practical pogams however, it
Is of interest to press past this roadblock ad
ask: Sugoose we asaune termination, can we
prove equivalence”? This ssars not unreasonable
since for actual progams we can often use
specialized agurments to dow that particular
pogamns terminate for the initial value assign-
menis of interest. Thus we rowv asaune that the
initial value assgnments for each progam 11 are
restricted to those ior which 11 terminates.

Is functional equivalence decidablc given
termination? If the set R of possible initial
values for variables is infinite, then it is not
clear. Sygpoose that R is finite? Then immedr
ately the brute force algornthm will suffice
theoretically: execute eedh progam on eadh
possible initial value assignment the progams
are equivalent iff they have the sare result in
eadh case. But is sudch a brute force approach
ever practical? (Clearly actual pogans aways
heve only a finite range oi values possible for
each variable.) Unfortunately very seldom, ior
although theoretically the set ol input value
sets ney be finite, it is ordinarily so large as
to preclude exhaustive testing. We are unlikely
to find testing equivalence by looking at the
outputs of the progams for given inputs a
practical possibility even when theoretically
feasible. We ney fall back on the standard
debuggng tool - try a small set of test cases -

476

to gain some partial evidence for equivalence,
but no proof.

What other possibilities besides this "black
box" approach of matching inputs and outputs is
feasible? Clearly, some analysis of program in-
ternal structure is indicated. At the extreme,
iIsomorphism of programs is a clearly decidable
but uninterestingly narrow definition of equiva-
lence. On the other end of the scale, we might
go into the properties of the functions and pre-
dicates in each program, requiring a set of
axioms which allow proving certain functions or
sequences of statements to be equivalent. Figure
1 is such a case in point. The program in 1(a)
computes SUM:=((((0+])+2)+3)+4)+5 while that of
1(b) computes SUM:=((((Of5)+4)+3)+2)+l. We can
only prove they are equivalent if we know that
"+" Is commutative and associative.

_

[I:=1

:

SUM:=0

_.‘| SLTM:%SUMH

l:=]41 |
| false
true
1 (a)

:5

1=
|
UM:=0

L

i

S

| 1:=1-1 |
| false@
rue
2
I:=5
1 (b)
Figure _1_

Two Functionally Equivalent Programs.

Session No. 11 Theoretical Foundations

Proving equivalence in cases where detailed know-
ledge is needed of the functions and predicates
requires a substantial theorem-proving apparatus.

Are there any reasonable definitions of pro-
gram equivalence which are fairly broad yet re-
quire only the sort of information found in the
abstract programs of the preceding section, name-
ly information about flow of control and data,
but no detailed information about the functions
and predicates involved? In the next section,
we propose one such definition and then argue
that not only is it decidable theoretically but
INn many cases practically.

V. Program Kernels and Kernel Equivalence

The proposed approach to equivalence may be
briefly outlined:

(1) Assume that only certain variables contain
significant "output values" on termination. Call
these the kernel output variables.

(2) By backtracing control paths through the
program from exit nodes, identify and tag (as
kernel statements) all program statements which
participate in the computation of the iinal
values oi the kernel output variables. At the
sare time identify the kernel input variables,
those variables which are used as arguments In
some kernel statement but have no prior assign-
ment made to them.

(3) By a similar backtracing from branch nodes,
identify and tag (as control statements) all
branch statements and all statements which parti-
cipate in the computation of the arguments to
branch statements. At the same time identify
control input variables, those variables which
are used as arguments in some control statement
but have no prior assignment made to them.

It should be clear that given complete in-
formation about flow of control and data in a
program, the sets of kernel statements, kernel
input variables, kernel output variables, control
statements and control input variables may be
readily determined (algorithms are given below
for the model of the preceding section.) Note
that neither the sets of statements nor the sets
of variables need be disjoint.

Two programs are said to be kernel equivalent
iff (a) they have the same kernel input, kernel
output and control input variables sets and the
sare set of kernel statements, and (b) for each
initial value assignment 1 to kernel and control
variables they execute the same sequence of ker-
nel statements (the kernel execution sequence
for 1).

We shall show that kernel equivalence implies
functional equivalence relative to the kernel
output variables. Moreover, the kernel execution
sequence for a given initial value assignment is
dependent only on the values assigned to the con-
trol variables. Thus to determine kernel equiva-
lence of two programs we need only try as test
cases each possible assignment of initial values
to the control variables and compare the kernel

Session No. 11 Theoretical Foundations

execution sequences In eadh case. Finally we
shall ague that this technique has a certain
practical interest, for ordinarily control input
variables in actual poganms have only a small
range of values, ad there are relatively few
control Input variables at that. It is the ker-
nel input variables which will contain the real
data which the progam manipulates, ad thus
which will hamMe a large range of possible values.
We neay expect often to find only a small nuntoer
of possible initial assignments to control input
variables, thus indicating only a small nunber of
test cases to be tried to detemmine kemel equi-
valence which then in turn implies functional
equivalence for the variables of interest. Kemel
equivalence also has sore implications for prov-
INg cormrectness of progams (see the conclusion).

We will rov dow the ngorous development of
these oconcepts In the moddl of the preceding sec-
tion :

Kemel Oulput Variables. We nmay assue that the
set of kemel output variables (the variables
whose linal values are of interest) is given.
Alternatively, we ney identify sudh a set by
tracmg iorward from nodes containing assignment
atements. it the assignment statement has the
1brmU =F(V,,...,V) ad there is a path from the
| n
node to an exit node which contains no statement
iIn which U is an argument, then U is a kemel out
put variable (since U is assigned a value which
IN STe cases Is never later used).
Kemel Statements axd Kemel Input VVariables.
First tag as a kemel statement eadh statement in
the step adowe which conpues a kemel output.
Nw begin o iterate: Pick an ag:nent variable
V in sore kemel statement U:=F(...). Trace
badk along eadch path tom the node Contalnlng
that kemel statement until an assgnment node
containing the assignment V.= ... is reached. Jag
that statement as a kemel statement. If the
entryrmbsreadedaﬁmsﬁwassgnmentms
been found, then V is a kemel input variable.

Repedd the prowss until all agument variables
IN all kemel statements have been tested.

Control Statements and Control Input VVariables.
First tag as control statements all branch state-
ments contained N branch nodes. Nw iterate
exactly as for kemel statements: Pick an argu-
mert variable In a control statement ad trace
bak along each path to a statement which assigns
a value to that variable ad tag that statement
as a control statement. If the entry noce is
reached then the variable is a control input
variable. Clearly all these procedures teminate
in a finite nurber of steps.

Ke mel Execution Sequence. Given an initial
value assgnment | for the variables of a progam
H, the kemel execution seaquene K, of H for 1 is

the ordinary executon sequence &IT with all but
kemel statements deleted.

Kemel Equivalence. ™o progams H ad H' arc

kemel equivalent, H = H, iff

477

(1) H ad 1II" have identical sets of kemel state-
ments, kemel input variables, kemel output
variables ad control input variables, ad

(2) for every initial value assgnment 1, H ad
H" have the sare kemel execution sequence.

Kemel Equivalence Implies Functional Equivalence,
The following theoem follows easily:

Thegem 2. If H and H' are progams ad H £ H',

.I’.'
then H = H' considered as a function only from
the control ad kemel input variables to the

kemel output variables.

Proof Outline: Since the control statements are
the only statements which participate in deter-
mining the execution sequace followed for a

particular initial value assignment, the initial
values for the control input variables uniquely

determine a kemel execution sequence. H=H'
implies, for a given initial value assgnment 1,
that K =SS, ... S = K Bu these kemel
11 2 N I
statements S, ... S arc the only statements
| n
which participate in determining the values of
the kemel outputs, ad the initial values of
the kemel input varnables completely determine
the results of executng the statement sequence
S1. ... S . Thus for the sare initial values of
: K
kermel ad control input variables{ H-H
iImplies that execution of H ad H' will produce
the sare result values in the kemel output
variables. H = H' also implies that H teminates
on a given initial value set | iff 11 teminates
on 1 also. //
Nw the following result justifies the use of a
set of test cases for deC|d|ng kemel equivalence,
Theaem 3. If H and H' are progams with identi-
cal sets of kemel statements ad control input,
kemel input axd kemel output variables, then

H - H* iff l add H' have identical kemel execu-
tion sequenoss for eadh initial value assignment
to the control input variables.

Proof Outline: The control statements are the
only statements which affect the path taken

through the progam gaph dunng execution. A
gven initial value assghment to the control
Input variables detemmines a unique execution

seguene ad thus a unique kemel execution

seguence. Therefore, I c)end I,1 are \wo

distinct initial value assgnments with identi-

cal assgnments to the control varnables then

K/ = PI< regardless of the values assigned the
O /

other variables.//

by the preceding theoem if we restrict the

possible initial values oi the control input

variables to be finite sets, then kemel equiva-

lence is decidable by S|mply trying eadh possible

combination of initial value assignments ad

looking at the kemel execution sequences which

result; The set of possible value assignments

to kemel input variables nay be Infinite or

478 Session No. 11 Theoretical Foundations

very large without increasing the number of test
cases to be tried.

Example 1.
Consider the three programs of Figure 2. SUM:=0 | K
Each has a single kernel output variable, OUTPUT, j‘

a single kernel input variable, INPUT, no control
iInput variables, and kernel statements

X :=Read (INPUT) K

X .= Read(INPUT) L
QUTPUT ;= Print(SUM) SUM:=SUM#X | K
M = 0 A .
M = UHX X:=Read (INPUT) | K
In Figure 2, nodes contalnlng kernel statements | v N
are tagged with a "K'" and those containing con- [SUM:=SUM+X] K
trol statements with a "C". T |
Are the programs kernel equivalent? By ! x:=Read(1NPU’f3ﬂ K
Theorem 3, we need only look at the kernel execu- T

tion sequence for each possible initial assign-

ment of values to the control input variables. | SUM:=SUM+X K

Since that set is empty, there is only one execu- } L

tion sequence, and thus only one kernel execution X :=Read (INPUT) K
sequence for each program. Figure 3 shows the -

execution sequence for each program, with non- Lo

kernel statements in parentheses. Since the ker- SUM::SUM*‘ﬂ K

nel execution sequences for each program are 4

identical, the programs are kernel equivalent. OUTPUT :=Print (SUM) K
Thus by Theorem 2 they are also functionally . ,.

equivalent with respect to the input variable g

INPUT and the output variable OUTPUI. The impor- @

tant point of this proof is that we have used

only the simplest arguments to prove functional 2 (b)
equivalence of three structurally quite dissimi-

lar programs.

f-X;Read(INPfIT) K

t rue

§ _
OUTPUT :=Print (SUM) l

OUTPUT PrinL(SUM)P} K f

2 (¢)

Z (a)
Figure 2,

Three Kernel Equivalent Programs,

Session No. 11 Theoretical Foundations

SM =0
(1 = 0)
I =1+1)
X = Read(INPUT
IM = SM+X
(1 > 4?)
1 =1+1)
X := Read(INPUT)
M = SM+ X
(1 47?)
I = 1+1)
X := Read(INPUT)
aM = SIM X
(1 4. 47
1 :=1+1)
X = Read(INPUT)
M =3 M+ X
(I 4 47)
QUIRUT « Print(SUM)
3(a)
IM =0
X Read(INPUT)
SM SM + X
X Read(INPUT)
amM 3M+X
X Read (INPUT)
M IM+ X
X Read(INPUT)
SM SM+ X
OUTRPUT Print(SUM)
3(b)
(K:=4)
M ;=0
X ;= Read(INPUT)
M =3 M+ X
(K = 1?)
K. K-1)
X ..= Read(INPUT)
M = IM+ X
K =17)
K = K-1)
X := Read(INPUT)
SM = SM+ X
K =17)
éK = K-1)
X = Read(INPUT)
SM = SM-- X
K =1?)
QUTRUT Print(SUM)
3 ()

Figure 3. Execution Seauenaes for Pogams
of Figure 2 with Nonkemel State

ments In Parentheses.

Barge 2.

In Figure 4 w\wo progams are given. It is
readily verified that eadh has a single kemel
output variable, QUIRUJI, a single kemel input

479

variable, INPUT, the single control input vari
able MODE, and the kernel statements:

X 1= Read(INPUT)
QUTRUT = Print(RES)
RES = RKGHX
RES .~ RESX
RES =0
RES .= 1

if we asaune the range of values for MRE t© be
the set {ADD''MULT’), then we have o possible
initial assignments of a value to the control
variable MLE Looking at the kemel execution
sequences of eeach progam for eedh assgnment to
MOE it is readily verified that they are identi-
cal in both cases. Thus the progams are kemel
equivalent ad also functionally equivalent with
respect o the input variables NFUT and M E ad
the output variable QJIRJIL

Kene Is ad Proving Correctness of Progams.
Studies of progam equivalence are closely relat-
ed o studies of progam correctness. Hw does
the concept of kermel equivalence aid In proving
a program correct? We ney readily ocbsernve the
similarity between the "test case" approach to
proving kemel equivalence ad the "case analy-
sis" approach to proving correctness discussed
by London in his survey of techniques for proving
correctness (4). If we look at the kemel execu
tion sequence for each case of initial value
assgnments to the control input variables In a
program, then we might reasonably argue that the
progam is "correct" if it has the "correct"
kemel execution sequence in each case. Since
eadh kemel execution sequence iIs a simple linear
sequence of statements, it appears likely that
ae could noe readily prove the "correctness”

of such a statement sequence than the "correct-
ness" of the original progam taken as a whole,
ad that thus this techniue of proving correct-
ness by "case analysis" would often be useful
(@and might quite conceivably be mechanized). As
a useful debuggng tool also, ae might envision
a "kernel analysis system"” which, given a progam
ad a list of its control input variables with
their ranges, would simply list the kemel execu-
tion sequence for eadh combination ol input
assignments to the control variables. Inspection
of the kemel execution sequenoss should often
suffice to dow the "correctness" of the progam
control structure, ad thus the comrectness of
the progam as a wihoke if ae were convinced
that the kemel execution sequenoes were correct.

Conclusion

Kemel equivalence is a rather elementary
yet not uninteresting fom of progam equivalence.
Because determination of kemel equivalence re-
quires only a superficial analysis of flow of
control ad data in a progam, it lias sore poten-
tial practical value for application to actual

programs.

The analysis of poganms in terms of "kernel”
versus "control” statements axd variables which

IS used here In an elementary way ssas a

480

powerful tool for studying programs.

Clearly there arc many other aspects of
programs which are also primarily concerned
with control, such as subprograms, argument
transmission, iteration statements, and block
structure, which often may be radically different
between two programs which make the same "kernel”
computation. An extension of kernel equivalence
to encompass these other structures seems feasi-
ble without greatly increasing the depth of pro-
gram analysis needed.

MODE='ADD

RES:=0 | K P=

|

L X :=Read (INPUT) K

> =
/ T C

tTUE-—«(”:f 0DE=IADLP>—- false

M
-x%\‘\/

RES:=RES+X | K | RES:=RES*X | K

\ =

-
Af/’
false o ¢

I OUTPUT :=Print (RES) K

——

EXIT

4 (a)

Session No. 11 Theoretical Foundations

ENTER
K:=4 C
’___,f"‘. ‘-\“‘--.q___‘ C
false . MODE= '"MULT' -~ true
RES:=0 | K RES:=1 | K
-,{ X :=Read (INPUT) | K A K:=K-1] ¢

J

[RES:=RES+X| K (X := Read (INPUT) |1<

fals

(1)

(2)

(3)

(4)

k| CJ‘ i

Ky C RES :=RES*X | K
T~Ttrue

™~

™

r()UTPUT:=I’rint (RES) | K

A

X I'1:>

S —

4 (b)

Figure 4 .

Two Kerne¢l Kquivalent Programs,

REH

Luckham, D. C., Park, M. R. and Patcrson,
M. S. "On formalized computer programs,”
Jour. Comp. and System Sciences, 4,3, June
1970.

Kaplan, D. M. "Regular expressions and
the equivalence of programs,” Jour. Comp.
and System Sciences, 3,4, Nov. 1969.
Orgass, R. J. "Some results concerning
proofs of statements about programs,"”
Jour. Comp. and System Sciences 4,1, Feb.
1970.

London, R. L., "Computer programs can be
proved correct,” in Hanerji and Mesarovic
(eds) Theoretical Approaches to Non-numeri
cal Prob. Solving, Springer-Vcrlag, 1970.

