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Abstract

Using formal logic, many problems from the
general area of linear inequalities can be ex-
pressed Iin the elementary theory of addition on
the real numbers (EAR). We describe a method for
eliminating quantifiers in EAR which has been
programmed and demonstrate its usefulness in
solving some problems related to linear pro-
gramming.

In the area of mechanical mathematics this
kind of approach has been neglected in favor of
more generalized methods based on Herbrand ex-
pansion. However, in a restricted area, such as
linear inequalities, the use of these specialized
methods can increase efficiency by several orders
of magnitude over an axiomatic Herbrand approach,
and make practical problems accessible.

1. Introduction

As is common in artificial intelligence, the
work reported here is of an interdisciplinary
nature. It involves mathematical logic, linear
iInequalities, and symbolic mathematics on a com-
puter .

For the sake of argument, let us distinguish
two kinds of workers in the area of linear in-
equalities. There is the theoretician, who is
developing new methods and discovering new theo-
rems. Then there is the user, who is faced with
a practical problem which can be expressed in
some way at least piecewise linearly. As a

simple-minded distinction between the theoretician

and the user we can say that the latter is in-
terested in questions involving a fixed number of
variables, while the former is concerned with
questions involving an arbitrary number of
variables. Using terminology from logic to be
made more precise below this means that the

user is generally working within the elementary
theory of addition on the reals while the theo-
retician is generally working on a higher level.

In this paper we are concerned mainly with
the user at the stage where he has formulated
his problem in symbolic terms. This may or may
not be the first stage in formulating the prob-
lem. For example, he may first have developed
a model as a mathematical idealization of his
problem. Indeed, if he is very lucky, the model
may be of a standard type, for example, flow
networks, for which there are known efficient
solution methods. In that case he would bypass
a symbolic formulation.
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Suppose, now, In one way or another the user
has arrived at a symbolic formulation of the
problem. We assume that the size of the problem
IS such that he would want to use a computer.
Again, he may have a perfectly standard problem
such as to find a solution to a set of simulta-
neous inequalities. Then he can use the relaxa-
tion method or another numerical approach. Oir,
if he can formulate his problem as an optimiza-
tion problem, he may conveniently be able to ex-
press it in linear programming format and use
the famous simplex algorithm.

Problems can arise, however, which do not fit
too easily into the standard molds. Furthermore,
one may require a solution in symbolic form. For
example in n-person game theory the set of solu-
tions can be described as a union of convex poly—
hedra, each of which is an intersection of half
spaces, represented by linear inequalities.

Using formal logic one can often represent
one's problem conveniently in the lower predi-
cate calculus under the interpretation of addi-
tion on the real numbers. In that case, there
are simple methods for eliminating quantifiers
and simplifying expressions, often resulting In
the solution of various problems. Such methods
were first programmed by the author at IBM in
1962 (A) and further elaborated with a game
theory application (5). Since then some modifi-
cations and improvements have been made. The
complete methods are described here since the
earlier papers were never formally published.

Although the author has been addressing him-
self to workers in linear inequalities, the work
reported here may also be categorized as mechan-
ical mathematics or equivalently applied logic
on computers. In this field such work has been
neglected in favor of more generalized methods
based on Herbrand expansion. The effort on
these general methods |s, of course, worthwhile
and productive, but the neglect is unfortunate
since restricted specific theories (like addi-
tion on the real numbers) often allow the use of
direct, specialized methods which Increase effi-
ciency by several orders of magnitude over an
axiomatic Herbrand approach.

2. BER

We now describe the elementary theory of
addition on the reals (EAR), or, more precisely,
the elementary theory of ordered dense Abelian
groups without endpoints. "Elementary" means
that all formulas in EAR belong to the lower
predicate calculus, i.e., quantification occurs
only over variable symbols, and not, for example,
over sets of variables. The formulas in EAR
to be defined more precisely below, are just
those formulas of the lower predicate calculus
with two binary predicates, < and =, the opera-
tor +, and at least two constant symbols,
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Oand 1.

We refer the uninitiated reader to Rogers

(7) expository paoer which, without presupposing
ay kowedge of formal logic, develoos the

elementary theory of dase linear order together
with a methad due to Langford for deciding sen-
tenoces within that theory. This melhod exiends
b EAR as pointed out © me by A Robinson, ad
IS desaibed below. EFR hes an unlimited set of
vanable symbadls. x,y,z,x ,y ,z, ... , ad real

nunbas as constant symmbols, of which we will nesc
only O ad 1.

A termm In R is either a constant symbod or
a variable symbbd or of the fom t4. + ... + t |

wee thety, 1 <i1<n, ae temms. Thexe are
the only temms.

We write x + . .. + X, n times, as nx ad
1+ ...+ 1, ntmes, as n, so the following are

eanes of terms.

(1) X+ 3y +x
2) 4+Xx

Using the commutativity of addition we see
that there is a canonical fom for temms where
eadh varnable symbd gooeas once. Thus,
eantke (1) aow could be written 3x + 3y.

An gomic formmula, or atom, s awy expression
of the fom ti = t, or of the fom t, < t, weae

t ad L ae termms. Thae is a canonical fom

for aons where eedh variable symbd gopeas on
a ot ae side of awy aom. For eanye

3X + 3y < 2x woud be written x + 3y < 0. We

also allow wwo constant atoms. TIR.E ad FALSE

Abns are the simplest formulas. Nonatomic
fomulas are built rom aons by neas of the
propositional connectives; negation, , and”,
&, "or", V, "implies”, =, "if ad only if",*",
as well as the universal ad existential quanti-
fiers, "for all X", (¢x), ad "there is an X
such that”, (Jx),, where X is awy variable symbd

Bardes of formulas are:

(1) x <y Vx=yVy<x
(2) (%) (x <y & 2y < x + 5)
(3) (Vx) (Ax) T 2x +y < 0

Fomally, we say that an aom is a fomula
ad if f; ad b are fomulas then

T (8 f), (B V), (F > f)),

(le fz), (%Y x) fl’ ( A x) fl are all formulas.,

BEvay fomula s so denved. VWe delete paren-
theses to mprove readability, being careful not
to introduce undesirable ambiguities. BEarye (1)
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aoowe illustrates desirable ambiguity.

For convenience, we use t; > t, as an abbre-
viation Of "Tf t; <t,

<t.

As a further example of a formula in EAR we
represent the statement that the real numbers

Xyo soes X minimize the sum s €y Xy subject to
1
the conditions
n
I a X, =b for j=1, ... , m
a1 111
X >0 fori=1, ... , n

This is a statement of the linear poganmming

problem, ad says that x4, ..., X yield an op-

timal solution. We assume, for simplicity, that
the aii,, b. ad c. are all integers.

We allow the use o the ninus sign by con-
sidering any occurence of -t in an aom as a
convenient notation for +H on the opposite side
of the atom.

The linear poganing problem is stated In
R as follows:

m n
& L a,,Xx, =b
1 gep 11T
n
& & x 0
] i
m n n
& (Vxl)...(b/yn)((jél Zaijyi= bj&&yif_O)
i=1 1
n n
s Wi Zop 4% (1)

i=] i=1

Hom the point of view of people working in
linear inequalities the nost novel feature of
ER is the fomal use of quantifiers. In fact,
the elimination of quantifiers, together with
their boud variables, is the nan content of the
algornthm desarbed below.

3. A Decasion Algornthm for EFR

Qo= Fx , ..., X)) is a fomula in EER
in whidh x4, ... , X are the only free (hot

quantified) variables. Then the following
algorithm yields a quantifier-free fommuia
G(Xq, ... , X)) inwhidwxj, ... , X are the

N
only variables, with the following property.
Llet a,, ... , a be awy n real r’urgers Then

Fa@a, ... ,a)ad Ga, ... , a) are equiv-
alent in the sarse that they are both true or
are both false. Foa exampe, it F(X) is the
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formula ( 3y)(y < X + 4 & 2x < y + 5) then G(x)
would be the formula x < 9.

Since EAR is a subset of elementary algebra,
Tarski's algorithm (8) provides a method for elim-
inating quantifiers. When applied to formulas in
EAR, however, Tarski's method is exceedingly cum-
bersome. Furthermore, no one has reported a com-
puter program for any algorithm to eliminate quan-
tifiers in elementary algebra except for some be-
ginnings in that direction by Collins (2). On the
other hand, EAR has a simple method and seems to
be in the unique position of having such a simple
algorithm along with a wide range of application.

The elimination of quantifiers is achieved by
systematically replacing selected subformulas by
equivalent formulas. The equivalence may be pure-
ly logical or may be a property of +, =, < in the
reals, as we used, for example, in establishing a
canonical form for atoms.

Step 1. If F(xy , ... , x ) is quantifier-free,

let G = F., Otherwise, choose a subformula of the
form (E.] y) £ (xl, ey X y) where f is quan-

tifier-free, i.e., (_:)y) 1s an innermost exis-
tential quantifier. If all innermost quantifiers
are universal quantifiers then use the identity

(V¥ x) g = 1( 3 x)T g, 8o that (3 X) Vg yields
the required subformula (F x) £, with f =] 8.

Step 2. We use steps 3-8 to find a quantifier-
free formula g(xl, ces xn) equivalent to

(j] y) f (xl, oo s X, y). We replace (ij y) f
by g in F, then return to Step 1.

Step 3. Eliminate all occurrences of equivalence,
(<> ), and implication, (+) in the formula ( -] y)f
by the use of identities

f1¢ikf2 = (f1 > f2) & (f2 -+ fl)

f. » f 5-'1f1 V §

1 2 2

Step 4. The only connectives in f are &, V, 7] .
Use the identities

TV(Ey &£ 2 (T, VOTE)

e, V) = (T f, & (E,)

to eliminate all occurrences of negation save
those appearing directly before atoms.

Step 5. The remaining negations are eliminated
by using the mathematical identities:

2 t1<t2Vt2<t1

"Ttl-t

"\t1<t2 Etl-tZVt2<t1

Call the new formula (By) f.
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Step 6. Now f has connectives &, V only. Use
the distributive law

fi & V)= (f%f) V (f & f;) to expand
f into disjunctive normal form

n

where each f, is a conjunction of atoms.
|

Step 7. The existential quantifier distributes
over disjunction. So

(Jy) f=(3Fy) £, V..V £

(Fy) £,V .oV (QAy) £

Each f, can be written f| & " where fj is a

(possibly empty) conjunction of all the atoms
which contain y. Since " doesn't contain v,

(Jy) (£} & £ = £] 6 (Fy) £

or ( Jvy) fi = fi 1f fi is empty.

Step 8, We must now eliminate the quantifier

from each formula ( 3J y) fi. Each such formula
must be of the form

(-j )(t(l) _ S(i) & t(i)' S(i)

vy 1 1 . e Ji ji
& qii) < rii) & ...qéi) < réi))
i i

For 1< i < n, j > 0 is the number of atoms of
the type ty = t, and ki is the number of atoms
of the type t < t,. We can assume
j1 +k >0, i.e., fi is non-empty. In each atom
y appears on the right or on the left, but not
both, since the atoms are in canonical form.

We now consider the case ji >0, i.e., there
is at least one equality. If Ji = ] and k, = 0

i
then we replace ( qy) (tii) = sii)) by the

constant atom TRUE. Otherwise, we solve
t 1+ s for y and substitute this expression

for y in the remaining j. + k -1 atoms. Let g
be the conjunction of these j, + k. -1 atoms,

restored to canonical form. We replace (-] y) £
by g4, thereby eliminating the quantifier.

Now we consider the case |, = 0. We have
(:3 y) fi of the form

Ty @ Vs el on )

Suppose y appears always on the right, i.e.,
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(1)

in every r
(:3 y) fi by TRUE.

on the left, i.e., in every gq

replace (j} y) fi by TRUE.

,» 1 <p< ki' Then we replace

Similarly, if y appears always
(1)

In the remaining case, for eedh m, p sudch that
y occurs on opposite sides In the aos

qr(n)< r énb q Q) r \X/Q eliminate vy fr9m

P P
the pair of iInequalities by forming the weighted

am ¢ . Each such m, p pair foms a rewv in-
equality ad finally we get

" - (1), 1) (1) (1)
(By)fi-& q < @q <rp
m,p
Note: Let C, be the coefficient of y in the i

iInequality, 1 - 1,2. Then the weighted sm is
C, tmes the first inequality added to C, tmes
the secod inequality. In the resultant inequal-

ity y hes coefficient C; C,. on both sides ad thus
vanishes.

Hom Skep 8 we return to Skep 2 to complete
the algornthm.

To see that Sep 8 aways produces an equiv-
alent fomula we first maintain that in the case
i =0, l.e. there is at least ae equality, the

equivalence is obvious. When j; = 0 then eadh
aobmic fomula g <r , 1< p <Kk, by mathe-

matical identity, coresponds to a linear inequal-
ity y <ft, (z4,...,2zy) (or f (z4,...,2y) <Yy, de-

pending on which side of the atomic formula y
appears) whee f is a linear fom ad z4.,...,z

P 1 \Y;
are all the vanables occurring in formula f;
excluding y. We separate the atomic formulas into

t liti
%o s1e,_§ oq@p%n% i() |n?caua I !_e,s >, ) W
the respective index sets S ad S, where m
ranges over Sq, p ranges over S , fom a partition

Sk} affn thenlftrPET 8, BeTRY S I

( 3y)f'1 can be satisfied for ay z ...

,Z by a
sufficiently small y if S1 is enpy or a suffi-
ciently large y if S, is enply. Therefore the
algorithm replaces ( 3 y)f] by TRIE

In the remaining case, the algorithm, by

taking weighted sums, produces a oonjunction
comresponding  to the simultaneocus inequalities
fn (Z4,-.. zn?)< f(z., z)forallrr?&S ad

all peS,, To dow eguivalence we first notice-

that for ay z ,...,z if there is a y satisfying
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fi then for each pair m,p there are

fm(zl,...,zv) < yand y < fp(zl....,zv). Hence
fm(zl""’zv) < fp(zl,...,zv).

direction, for any ZyveeesZ oy if all fm(zl"'°'zv)’

In the other

m € S1 are less than all fp(zl,...,zv),

2
denseness of the ordering.

then there is a y between them by the
Thus (23:?)fi holds.

pesS

We can ndee two observations before giving
soTe eanykes of the algorithm.

1. If the original foormula were closed, i.e.,
all its varniables were quantified, then the al-
gonthm produces a quantifier-free formula with
Nno variables. In that case the only a&brs are of
the fom 0<0, 0=0,0<n,nNn<0,0 = n,n = 0.
These can be replaced by the constant aons
FALSE, TRLE TRUE FALSE FALSE, FALSE,
respectively. Then the propositional identities
TRE & FASE = FALSE etc., can be repeatedly
used as the last step of the algorithm to an-
plete the reduction of the formula to a single
atom, either IRE o FASE 3uh an exiended
algornthm provides a decision procedure for EAR
I.e., a nelad for determining the truth or
falsity of any sentence expressible in EAR

2. With slight modifications of the algornthm
we ccanoonsder i, > b adeent # L as ans

iInstead of as abreviations of \ t1 < t2 ad

ty = tb. In this case the only steps of the

algornthm which can increase the length of a
formula are expansion into disjunctive nommal

fom (Step 6) ad Skep 8 as we will see from
further consideration of the linear pogamming

example.
A. Applications

Let s row see fow ae ey apply the algonthm
to linear progamming. \We rewrite a portion of
the fomula (1) but instead of the cost > ¢ %

we use the varnable z

n n
(¢ yi)(j&l i-l ij 1 bj & i vy 2 0)
n
+ I c,¥y 2 2 (2)

1

The algorthm can be used on formula (2),
eliminating all the vanables y; 1<i<n. The
formula equivalent to (2), with z as the only
variable, must exoress the sare mathematical
staternent eqressed In (2), namay that z is
less than or equal to the nmimum cost, c, |if it
exists. If no solution exists there are 2 possi-
bilities: The constraints nay be inconsistent,
or else they nay include sudh values of y so
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that the sum ) ¢ y; is unbounded below. Tn the

former case, formula (2) will reduce to TRIE and
in the latter case to FALSE.

Let us perform some of the algorithm on
formula (2). Eliminating %, we get

m n n
Wy 7V gy g2y = by 8 £y 20
n
V I c,y, > z
!

Changing universal quantifiers to existential
quantifiers and eliminating negations we then get
n n

m
“\(jyi)(jgl 1Ly aijyi = bj & i. y, >0

n
& LI ¢
1

Yy © z) (3)

Fomula (3) has the form: negation followed
by a string of n existential quantifiers followed
by a kernel consisting of a conjunction of m
equalities ad nt+1 inequalities. Allowing
y > 0 as an abm according to observation (2)

above, we see that the kernel is trivially in
disjunctive nomal foorm as a pure conjunction.
Also, when ane quantifier, (3 y_) is eliminated

according to the modified algorithm, the result-
ing formula is still a pure conjunction. Thus,

there is never ay need to eqpand Into disjunctive

nomal form, as eadch quantifier is eliminated in
turn.

We give an example, which Is given as an exer-
cise on the simplex algorithm in Gass (3).

A. Minimize 2x1 - 3x, + 6x, subject to the

2 3
constraints
3xl - sz - 6x3 < 2
2x1 + X, + 2x3 > 11
xl + 3x2 - 2x3 < 5
x >0 =].2,3
y 2 ]

To set up this example for the simplex algo-
rithm, according to the reasonably standard
version given in Gass, we convert A to the
following equivalent problem.

B. Minimize 2x1 - 3x2 + 6x3 + WX subject to

the constralints

3x1 - 4x2 - 6x3 + X, = 2

2xl + x2 + 2x3 -xS + x6 = 1]

xl + 3x2 - 2x3 + x7 = 5
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xi >0 j=1,2,3,4,5,6,7.

Here we require two slack variables, x, and
X7, an excess variable, x , and an auxiliary
variable, x . Also, the weight w in the object-
tive function, 2x; - 3x, + 6X3 + Wxg., must be
larger than any fixed number so that Xé will

vanish in the so-called phase 1 of the simplex
algorithm. We observe here that it is unnecess-
ary to go from statement A of the example to
form B when using our algorithm to determine the
minimum cost. Statement A can be used directly
in formula (3) as follows:

MYy NI y) By, - by, - 6y,

2y1 + Y, + 2y3 > 11 & Y4 + 3y2 - 2y3 < 5 &

2 &

I A

y1>0&y2>0&y330

& 2y1 - 3y2 + 6y3 < z)

Note that the order of the three quantifiers
Is irrelevant so any of the variables y4,y,,y3

can be eliminated first. We can therefore choose
a y; that will lead to the minimum number of

resulting atoms. We do this by counting the
number of times each y; appears positively on

either side of an inequality. We thus get
Table 1.

L EFT RIGHT
"1 3 2
Yo 1 4
%
y3 1 4

TABLE 1
We see that the choice of y; will yield
3x2=6 atoms from 3+2=5 atoms. Either y, or ys;

will yield only A atoms from 5 atoms. So, at
least at the first elimination, the formula will
expand less if we choose Yy, or Yys.

Let us pick y,. The only inequality in which
yo appears positively on the left is
yi + 3y, - 2y3 < 5. We eliminate y, between
this inequality and the others containing y»
to obtain the new formula:
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Ay (dyy) vy -2y, < 26 5y, + 8y, > 28

Yy -2y3 <5 & Y, >0 & 3y + &y3 < z + 5)

1

The same considerations as above lead to the
choice of y to be eliminated next:

‘1(3y1)(5y1<z+9&y1<22—18
& ¥y 2 0 &

Syl <z + 15 & 3y1 <z+5
Finally, eliminating Y » we get

—7( O <z+9 & 0< 2z~ 18
& 0 <+ 15 & 0 < z + 5)

which reduces to

1 (2>-982>96&z>=1562> ~5)

or 7](z>9 ) or z <9, Therefore the minimum
cost exists and is equal to 9.

We emphasize here that the linear programming
example is used as a familiar problem for illus-
trative purposes. There are two drawbacks in
using this method on typical linear programming
problems.

1. The formulation given above is used to
determine the minimum cost but not the complete
solution. Of course, the minimum cost can be
used to verify an optimal solution or to deter-
mine, exactly how far from optimal any feasible
solution is.

2. The main drawback is the lack of efficiency
especially compared to the high efficiency of
the simplex algorithm. The low efficiency of
our algorithm is due to the expansion of the
formula upon eliminating quantifiers.

Let us consider formula (3) above. The kernel
IS a conjunction of m equalities and n+1 in-
equalities. As seen in Step 8 of the algorithm,
when a quantifier is eliminated such that one
of the conjuncts is an equality containing the
gquantified variable, there is no increase in the
number of conjuncts. On the contrary there is a
decrease of one. So, in general, m quantifiers
can be eliminated using the equalities and re-
sulting in a formula with mm quantifiers and
n+1 inequalities. Now each successive elimina-
tion of a quantifier from a formula with k in-

e_aualitiesz'can lead to a formula with
(.15_) (l(.) . k"inequalities in the worst case, when
27 2 4

the occurrences on the left and right are bal-
anced. It appears that the worst case is also
the most likely case and deviations of a few
iInequalities do not help much.
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So, if n=8 and m=4 then we could end up with
1,562,500 inequalities. This seems the largest
size that can be handled with this method in its
present form.

We tried the algorithm on a dairy-feed diet
problem due to Waugh (9) and presented in Gass (3).
Here there were 10 variables and four inequalities;
l.e., 10 feeds were combined to meet A minimum
requirements at a minimum cost. The problem as
initially stated proved too big for the program.
However, conversion to the dual problem, which
had A variables and 1A inequalities, allowed de-
termination of the minimum cost. Even so, it
took 12 hours on the PDP-10 under a LISP compiled
version of the algorithm.

The use of a linear programming example, thus,
IS not to advocate use of this algorithm for
linear programming, but to show that it can be
used on practical problems.

The point we would like to emphasize to skep-
tical readers is that although the EAR algorithm
may not be efficient in given areas, its general-
ity allows application to various problems with
no programs specific for each problem area.

For example, we can do non-linear programming
whenever it is actually piecewise linear. Let
us take the case of a piecewise linear objective
function. These problems are not direct appli-
cations of the simplex algorithm. The optimal
solutions may not even occur at the extreme points
of the constraints. For example, suppose we
wish to minimize the maxmum of x4 and X, under

the constraints x4 + X2 =1, x4 > 0, x» > 0.

Here, the optimum value of the objective function
s 1/2 as opposed to a value of 1 at the extreme
points.

Piecewise linear functions can not only be ex-
pressed in terms of maxmum and minimum as above,
but also, equivalently, in terms of & and V. The
above example can be stated in EAR as follows.

(Vy])(\f Yz)(yl + y2 -
-+ (y] <z k& Y, < z)

This is of course equivalent to z > 1/2 which can
be verified by the algorithm,

1 & Y, > 0 & Yo 2 0

General non-linear programming can also be
approximated by using Chang (1). He shows how to
do piecewise linear curve-fitting in n-d linens ions.
After using Chang's method to determine piecewise
linear approximations, one can express the prob-
lem in EAR
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