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Abstract 

Using formal logic, many problems from the 
general area of linear inequalities can be ex­
pressed in the elementary theory of addition on 
the real numbers (EAR). We describe a method for 
eliminating quantif iers in EAR which has been 
programmed and demonstrate i ts usefulness in 
solving some problems related to linear pro­
gramming. 

In the area of mechanical mathematics this 
kind of approach has been neglected in favor of 
more generalized methods based on Herbrand ex­
pansion. However, in a restr icted area, such as 
linear inequal i t ies, the use of these specialized 
methods can increase efficiency by several orders 
of magnitude over an axiomatic Herbrand approach, 
and make practical problems accessible. 

1. Introduction 

As is common in a r t i f i c i a l intel l igence, the 
work reported here is of an interdiscipl inary 
nature. It involves mathematical logic, l inear 
inequal i t ies, and symbolic mathematics on a com­
puter . 

For the sake of argument, le t us distinguish 
two kinds of workers in the area of linear i n ­
equali t ies. There is the theoretician, who is 
developing new methods and discovering new theo­
rems. Then there is the user, who is faced with 
a practical problem which can be expressed in 
some way at least piecewise l inear ly . As a 
simple-minded dist inct ion between the theoretician 
and the user we can say that the la t ter is i n ­
terested in questions involving a fixed number of 
variables, while the former is concerned with 
questions involving an arbitrary number of 
variables. Using terminology from logic to be 
made more precise below this means that the 
user is generally working within the elementary 
theory of addition on the reals while the theo­
ret ic ian is generally working on a higher leve l . 

In this paper we are concerned mainly with 
the user at the stage where he has formulated 
his problem in symbolic terms. This may or may 
not be the f i r s t stage in formulating the prob­
lem. For example, he may f i r s t have developed 
a model as a mathematical idealization of his 
problem. Indeed, if he is very lucky, the model 
may be of a standard type, for example, flow 
networks, for which there are known ef f ic ient 
solution methods. In that case he would bypass 
a symbolic formulation. 
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Suppose, now, In one way or another the user 
has arrived at a symbolic formulation of the 
problem. We assume that the size of the problem 
is such that he would want to use a computer. 
Again, he may have a perfectly standard problem 
such as to f ind a solution to a set of simulta­
neous inequali t ies. Then he can use the relaxa­
t ion method or another numerical approach. Or, 
if he can formulate his problem as an optimiza­
t ion problem, he may conveniently be able to ex­
press it in linear programming format and use 
the famous simplex algorithm. 

Problems can arise, however, which do not f i t 
too easily into the standard molds. Furthermore, 
one may require a solution in symbolic form. For 
example in n-person game theory the set of solu­
tions can be described as a union of convex poly— 
hedra, each of which is an intersection of half 
spaces, represented by linear inequal i t ies. 

Using formal logic one can often represent 
one's problem conveniently in the lower predi­
cate calculus under the interpretation of addi­
tion on the real numbers. In that case, there 
are simple methods for eliminating quantif iers 
and simplifying expressions, often result ing in 
the solution of various problems. Such methods 
were f i r s t programmed by the author at IBM in 
1962 (A) and further elaborated with a game 
theory application (5). Since then some modif i­
cations and improvements have been made. The 
complete methods are described here since the 
earl ier papers were never formally published. 

Although the author has been addressing him­
self to workers in linear inequal i t ies, the work 
reported here may also be categorized as mechan­
ica l mathematics or equivalently applied logic 
on computers. In this f ie ld such work has been 
neglected in favor of more generalized methods 
based on Herbrand expansion. The ef fort on 
these general methods I s , of course, worthwhile 
and productive, but the neglect is unfortunate 
since restr icted specific theories ( l ike addi­
t ion on the real numbers) often allow the use of 
d i rect , specialized methods which Increase e f f i ­
ciency by several orders of magnitude over an 
axiomatic Herbrand approach. 

2. EAR 

We now describe the elementary theory of 
addition on the reals (EAR), or, more precisely, 
the elementary theory of ordered dense Abelian 
groups without endpoints. "Elementary" means 
that a l l formulas in EAR belong to the lower 
predicate calculus, i . e . , quantif ication occurs 
only over variable symbols, and not, for example, 
over sets of variables. The formulas in EAR, 
to be defined more precisely below, are just 
those formulas of the lower predicate calculus 
with two binary predicates, < and =, the opera­
tor +, and at least two constant symbols, 
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0 and 1. above illustrates desirable ambiguity. 

We refer the uninitiated reader to Rogers' 
(7) expository paper which, without presupposing 
any knowledge of formal logic, develops the 
elementary theory of dense linear order together 
with a method due to Langford for deciding sen­
tences within that theory. This method extends 
to EAR, as pointed out to me by A. Robinson, and 
is described below. EAR has an unlimited set of 
variable symbols. x,y,z,x ,y ,z , . . . , and real 
numbers as constant symbols, of which we will need 
only 0 and 1. 

A term in EAR is either a constant symbol or 
a variable symbol or of the form t1. + . . . + t , 
where the t1 , 1 < i < n, are terms. These are 
the only terms. 

We write x + . . . + x, n times, as nx and 
1 + . . . + 1, n times, as n, so the following are 
examples of terms. 

(1) 2x + 3y + x 
(2) 4 + x9 

Using the commutativity of addition we see 
that there is a canonical form for terms where 
each variable symbol appears once. Thus, 
example (1) above could be written 3x + 3y. 

An atomic formula, or atom, is any expression 
of the form t1 = t2 or of the form t1 < t2, where 
t, and t2 are terms. There is a canonical form 
for atoms where each variable symbol appears on 
at most one side of any atom. For example 
3x + 3y < 2x would be written x + 3y < 0. We 
also allow two constant atoms: TRUE and FALSE. 

Atoms are the simplest formulas. Non-atomic 
formulas are built from atoms by means of the 
propositional connectives; negation, , "and", 
&, "or", V, "implies", ->, "if and only if",**, 
as well as the universal and existential quanti­
fiers, "for all x", , and "there is an x 
such that", , where x is any variable symbol 

Examples of formulas are: 

For convenience, we use t1 > t2 as an abbre­
viation Of "Tf t1 <t2 

< t . 

This is a statement of the linear programming 
problem, and says that x1, . . . , x yield an op­
timal solution. We assume, for simplicity, that 
the aii,, b. and c. are all integers. 

We allow the use of the minus sign by con­
sidering any occurrence of -t in an atom as a 
convenient notation for +t on the opposite side 
of the atom. 

The linear programming problem is stated in 
EAR as follows: 

From the point of view of people working in 
linear inequalities the most novel feature of 
EAR is the formal use of quantifiers. In fact, 
the elimination of quantifiers, together with 
their bound variables, is the main content of the 
algorithm described below. 

3. A Decision Algorithm for EAR 

Suppose F(x , . . . , x ) is a formula in EAR 
in which x1, . . . , x are the only free (not 
quantified) variables. Then the following 
algorithm yields a quantifier-free formula 
G(x1, . . . , x ) in which x1, . . . , x are the 

J n 
only variables, with the following property. 
Let a,, . . . , a be any n real numbers. Then 
F(a , . . . , a ) and G(a , . . . , a ) are equiv­
alent in the sense that they are both true or 
are both false. For example, if F(x) is the 

Formally, we say that an atom is a formula 
and if f1 and f2 are formulas then 

Every formula is so derived. We delete paren­
theses to improve readability, being careful not 
to introduce undesirable ambiguities. Example (1) 
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formula (y < x + 4 & 2x < y + 5) then G(x) 
would be the formula x < 9. 

Since EAR is a subset of elementary algebra, 
Tarski's algorithm (8) provides a method for elim­
inating quant i f iers. When applied to formulas in 
EAR, however, Tarski's method is exceedingly cum­
bersome. Furthermore, no one has reported a com­
puter program for any algorithm to eliminate quan­
t i f i e r s in elementary algebra except for some be­
ginnings in that direction by Collins (2). On the 
other hand, EAR has a simple method and seems to 
be in the unique position of having such a simple 
algorithm along with a wide range of application. 

The elimination of quantif iers is achieved by 
systematically replacing selected subformulas by 
equivalent formulas. The equivalence may be pure­
ly logical or may be a property of +, =, < in the 
reals, as we used, for example, in establishing a 
canonical form for atoms. 

Step 1. If F(x1 , . . . , x ) is quant i f ier- f ree, 

to eliminate a l l occurrences of negation save 
those appearing direct ly before atoms. 

Step 5. The remaining negations are eliminated 
by using the mathematical ident i t ies : 

Step 6. Now f has connectives &, V only. Use 
the d is t r ibut ive law 

f1 &(f2 V f3 ) = ( f1 & f2 ) V (f1 & f3 ) to expand 
f into disjunctive normal form 

n 
where each f, is a conjunction of atoms. 

i 
Step 7. The existent ia l quantif ier distr ibutes 
over disjunction. So 

For 1< i < n, j > 0 is the number of atoms of 
the type t1 = t2 and k1 is the number of atoms 
of the type t 1< t2. We can assume 
j1 + k > 0, i . e . , f'i is non-empty. In each atom 
y appears on the r ight or on the l e f t , but not 
both, since the atoms are in canonical form. 

constant atom TRUE. Otherwise, we solve 
t 1 s for y and substitute this expression 
for y in the remaining j. + k -1 atoms. Let g I 

be the conjunction of these j, + k. -1 atoms, 

restored to canonical form. We replace 
by g1 , thereby eliminating the quant i f ier. 

Now we consider the case j, = 0. We have 

Suppose y appears always on the r ight , i . e . , 

Each fI can be wr i t ten f'I & fI" where fj is a 
(possibly empty) conjunction of a l l the atoms 
which contain y. Since f" doesn't contain y, 
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In the remaining case, for each m, p such that 
y occurs on opposite sides in the atoms 
(i) (i) (i) (i) qm < r and q < r we eliminate y from 

m p p J 

the pair of inequalities by forming the weighted 
sum, . Each such m, p pair forms a new in­
equality and finally we get 

Note: Let C1 be the coefficient of y in the i 
inequality, i - 1,2. Then the weighted sum is 
C2 times the first inequality added to C1 times 
the second inequality. In the resultant inequal­
ity y has coefficient C1 C2. on both sides and thus 
vanishes. 

From Step 8 we return to Step 2 to complete 
the algorithm. 

To see that Step 8 always produces an equiv­
alent formula we first maintain that in the case 
jI > 0, i.e. there is at least one equality, the 
equivalence is obvious. When j i = 0 then each 
atomic formula q < r , 1 < p < k., by mathe-

matical identity, corresponds to a linear inequal­
ity y < fp (z1,...,zv) (or f (z1,...,zv) < y, de­
pending on which side of the atomic formula y 
appears) where f is a linear form and z1.,...,z 

p 1 v 
are all the variables occurring in formula f'i 
excluding y. We separate the atomic formulas into 
two sets, corresponding to inequalities {f (z1,...,z ) < y} and {y < f (z1,...,zv )} where 

the respective index sets S1 and S2, where m 
ranges over S1, p ranges over S , form a partition 
of {1 ki }. If y appears on the same side in every atom then either S1 or S2 is empty and 

can be satisfied for any z ,...,z by a 
sufficiently small y if S1 is empty or a suffi­
ciently large y if S2 is empty. Therefore the 
algorithm replaces by TRUE. 

In the remaining case, the algorithm, by 
taking weighted sums, produces a conjunction 
corresponding to the simultaneous inequalities 
fm (z1,...,zv ) < f (z.,...,z ) for all m & S1 and 

all p ε S2 , To show equivalence we first notice-
that for any z ,...,z if there is a y satisfying 

We can make two observations before giving 
some examples of the algorithm. 

1. If the original formula were closed, i.e., 
all its variables were quantified, then the al­
gorithm produces a quantifier-free formula with 
no variables. In that case the only atoms are of 
the form 0<0, 0 = 0 , 0 < n , n < 0 , 0 = n,n = 0. 
These can be replaced by the constant atoms 
FALSE, TRUE, TRUE, FALSE, FALSE, FALSE, 
respectively. Then the propositional identities 
TRUE & FALSE ≡ FALSE, etc., can be repeatedly 
used as the last step of the algorithm to comp-
plete the reduction of the formula to a single 
atom, either TRUE or FALSE. Such an extended 
algorithm provides a decision procedure for EAR, 
i.e., a method for determining the truth or 
falsity of any sentence expressible in EAR. 

2. With slight modifications of the algorithm 
we can consider t1 > t2 and even t1 ≠ t2 as atoms 

instead of as abreviations of \ t < t and 
1 2 

t1 = t2. In this case the only steps of the 
algorithm which can increase the length of a 
formula are expansion into disjunctive normal 
form (Step 6) and Step 8 as we will see from 
further consideration of the linear programming 
example. 

A. Applications 

Let us now see how one may apply the algorithm 
to linear programming. We rewrite a portion of 
the formula (1) but instead of the cost ∑ ci xi 

we use the variable z. 

The algorithm can be used on formula (2), 
eliminating all the variables yi' 1<i<n. The 
formula equivalent to (2), with z as the only 
variable, must express the same mathematical 
statement expressed in (2), namely that z is 
less than or equal to the minimum cost, c, if it 
exists. If no solution exists there are 2 possi­
bilities: The constraints may be inconsistent, 
or else they may include such values of y so 
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that the sum ∑ ci yi is unbounded below. Tn the 
former case, formula (2) w i l l reduce to TRUE and 
in the la t ter case to FALSE. 

Let us perform some of the algorithm on 
formula (2). Eliminating -►, we get 

Changing universal quantifiers to existent ial 
quantifiers and eliminating negations we then get 

Formula (3) has the form: negation followed 
by a string of n existential quantifiers followed 
by a kernel consisting of a conjunction of m 
equalities and n+1 inequalities. Allowing 
y > 0 as an atom according to observation (2) 
above, we see that the kernel is trivially in 
disjunctive normal form as a pure conjunction. 
Also, when one quantifier, is eliminated 
according to the modified algorithm, the result­
ing formula is s t i l l a pure conjunction. Thus, 
there is never any need to expand into disjunctive 
normal form, as each quantifier is eliminated in 
turn. 

We give an example, which is given as an exer­
cise on the simplex algorithm in Gass (3). 

To set up this example for the simplex algo­
r i thm, according to the reasonably standard 
version given in Gass, we convert A to the 
following equivalent problem. 

xi > 0 j= l ,2 ,3 ,4,5,6,7. 

Here we require two slack variables, x4 and 
x7 , an excess variable, x , and an auxil iary 
variable, x . Also, the weight w in the object-
t ive function, 2x1 - 3x2 + 6x3 + wx6., must be 
larger than any fixed number so that x6 w i l l 

6 
vanish in the so-called phase 1 of the simplex 
algorithm. We observe here that it is unnecess­
ary to go from statement A of the example to 
form B when using our algorithm to determine the 
minimum cost. Statement A can be used direct ly 
in formula (3) as follows: 

Note that the order of the three quantifiers 
is irrelevant so any of the variables y1 ,y2 ,y3 

can be eliminated f i r s t . We can therefore choose 
a yi that w i l l lead to the minimum number of 
result ing atoms. We do this by counting the 
number of times each yi appears posit ively on 
either side of an inequality. We thus get 
Table 1. 

LEFT RIGHT 

TABLE 1 
We see that the choice of y1 w i l l yield 

3x2=6 atoms from 3+2=5 atoms. Either y2 or y3 

w i l l yield only A atoms from 5 atoms. So, at 
least at the f i r s t elimination, the formula w i l l 
expand less if we choose y2 or y3. 

Let us pick y2. The only inequality in which 
y2 appears posit ively on the le f t is 
y1 + 3y2 - 2y3 < 5. We eliminate y2 between 
this inequality and the others containing y2 

to obtain the new formula: 
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The same considerations as above lead to the 
choice of y to be eliminated next: 

We emphasize here that the linear programming 
example is used as a famil iar problem for i l l u s ­
t rat ive purposes. There are two drawbacks in 
using this method on typical l inear programming 
problems. 

1. The formulation given above is used to 
determine the minimum cost but not the complete 
solut ion. Of course, the minimum cost can be 
used to ver i fy an optimal solution or to deter­
mine, exactly how far from optimal any feasible 
solution i s . 

2. The main drawback is the lack of efficiency 
especially compared to the high efficiency of 
the simplex algorithm. The low efficiency of 
our algorithm is due to the expansion of the 
formula upon eliminating quant i f iers. 

Let us consider formula (3) above. The kernel 
is a conjunction of m equalit ies and n+1 i n ­
equali t ies. As seen in Step 8 of the algorithm, 
when a quantif ier is eliminated such that one 
of the conjuncts is an equality containing the 
quantified variable, there is no increase in the 
number of conjuncts. On the contrary there is a 
decrease of one. So, in general, m quantif iers 
can be eliminated using the equalit ies and re­
sult ing in a formula with n-m quantif iers and 
n+1 inequal i t ies. Now each successive elimina­
t ion of a quantif ier from a formula with k i n -
eaualit ies can lead to a formula with 

inequalities in the worst case, when 

the occurrences on the l e f t and r ight are bal ­
anced. It appears that the worst case is also 
the most l i ke ly case and deviations of a few 
inequalit ies do not help much. 

So, if n=8 and m=4 then we could end up with 
1,562,500 inequal i t ies. This seems the largest 
size that can be handled with this method in i t s 
present form. 

We tr ied the algorithm on a dairy-feed diet 
problem due to Waugh (9) and presented in Gass (3). 
Here there were 10 variables and four inequal i t ies; 
i . e . , 10 feeds were combined to meet A minimum 
requirements at a minimum cost. The problem as 
i n i t i a l l y stated proved too big for the program. 
However, conversion to the dual problem, which 
had A variables and 1A inequal i t ies, allowed de­
termination of the minimum cost. Even so, it 
took 12 hours on the PDP-10 under a LISP compiled 
version of the algorithm. 

The use of a l inear programming example, thus, 
is not to advocate use of this algorithm for 
linear programming, but to show that it can be 
used on pract ical problems. 

The point we would l i ke to emphasize to skep­
t i ca l readers is that although the EAR algorithm 
may not be ef f ic ient in given areas, i t s general­
i t y allows application to various problems with 
no programs specific for each problem area. 

For example, we can do non-linear programming 
whenever it is actually piecewise l inear. Let 
us take the case of a piecewise linear objective 
function. These problems are not direct appl i ­
cations of the simplex algorithm. The optimal 
solutions may not even occur at the extreme points 
of the constraints. For example, suppose we 
wish to minimize the maximum of x1 and x2 under 
the constraints x1 + x2 = 1, x 1 > 0, x2 > 0. 
Here, the optimum value of the objective function 
is 1/2 as opposed to a value of 1 at the extreme 
points. 

Piecewise linear functions can not only be ex­
pressed in terms of maximum and minimum as above, 
but also, equivalently, in terms of & and V. The 
above example can be stated in EAR as follows. 

General non-linear programming can also be 
approximated by using Chang (1). He shows how to 
do piecewise linear curve- f i t t ing in n-d linens ions. 
After using Chang's method to determine piecewise 
linear approximations, one can express the prob­
lem in EAR. 
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