586

COVRUTER OF LIMIT THEOREMVS

W. W. Bledsoe, Robert S. Boyer,
William H. Henneman

Massachusetts Institute of Technology
and the University of Texas

ABSTRACT. Sore relatively simple concepts have
been developed which, when incorporated into
existing automatic theorem proving programs
(including those using resolution), enable them
to prove efficiently a number of the limit
theorems of elementary calculus, including the
theorem that differentiate functions are con-
tinuous. These concepts include: (1) A limited
theory of types, to designate whether a given
variable belongs to a certain interval on the
real line, (2) An algebraic simplification
routine, (3) A routine for solving linear in-

equalities, applicable to all areas of analysis,

and (4) A "limit heuristic", designed especially
for the limit theorems of calculus.

jL Introduction. In this paper we describe
some relatively simple changes that have been
made to an existing automatic theorem proving
program to enable it to prove efficiently a num-

ber of the limit theorems of elementary calculus.

These changes include subroutines of a general
nature which apply to all areas of analysis, and
a special "limit-heuristic" designed for the
limit theorems of calculus.

These concepts have been incorporated into
an existing LISP program and run on the PDP-10
at the A.l. Laboratory, M.l.T., to obtain com-
puter proofs of many of the limit theorems,
including the theorem that the limit of the sum

of two real functions is the sum of their limits,

and a similar theorem about products. Also

computer proofs have been obtained (or are easily

obtainable) of the theorems that a continuous
function of a continuous function is continuous,
and that a function having a derivative at a
point is continuous there, as well as limit
results for polynomial functions.

The limit theorems of calculus present a
surprisingly difficult challenge for general
purpose automatic theorem provers. Orne reason

for this is that calculus is a branch of analysis,

and proofs in analysis require manipulation of

algebraic expressions, solutions of inequalities,
and other operations which depend upon the axioms

of an ordered field. It is in applying these
field axioms that automatic provers are usually
forced into long and difficult searches. On the
other hand, a human mathematician is often able
to easily perform the necessary operations of
analysis without being aware of the explicit use
of the field axioms. Ore purpose of this paper
Is to describe ways in which automatic provers
can also avoid the use of the field axioms and

Session No. 14 Theorem Proving

and speed up proofs in analysis. Section 2 ex-
plains how this is done using a limited theory
of types and routines for algebraic simplifica-
tion and solving linear inequalities.

In Section 3 we present the limit-heuristic,
give examples of its use, and discuss its
"forcing" nature which enables it to curtail
combinatorial searches.

The reader interested only in resolution
based programs should skip Sections 4 and 5 and
go directly to Section 6, where we explain how
resolution programs can be altered to make use
of the limit heuristic and other concepts.

In Section 5 we give a detailed description
of a computer proof of the theorem that the
limit of the product of two functions is the
product of their limits. This proof was made by
a program which is the same as that described
im LIJ, except that the subroutine, RESOLUTION,
im [1] has been replaced by a new subroutine
called IMPLY. We have thus eliminated resolution
altogether from our program,replacing it by an
"Implication method" which we believe is faster
and easier to use (though not complete). This
implication method is described briefly in
Section 4, and excerpts from actual computer
proofs using it are given there and in Section 5.

It appears that some of these ideas may
have wider implications than the limited scope
in which they were used here. This is discussed
in the comments of Section 7 and throughout the
paper.

2. Types and Inequalities. In the work des-
cribed in this paper we have used membership
types whereby the type A is assigned to x when-
ever it is known that (x ¢ A).

let <a b denote the open interval from a
tob, R=v-ww>, P=<0« , and
N= = (0>, We are primarily interested in
interval types, including the types R, P, and N.
Thus in trying to prove

(0 < x -+ Q(x))

we would assign the type P (or <0 «=.) to x and
then try to prove Q(x).
For example, suppose that we are to prove

(1) (0O« b - SOME x (0 - x & x <b)).d
One valid approach is to solve for x in

(2) (0 <b » 0 < x)

and then try to verify

(3) (0 <b » x < b)

for that same x. But using matching we would get

1. We use the words "SOME" and "ALL"as our exis-
tential and universal quantifiers. Thus

'SOME x P{x)" means "for some x P(x)", and

"ALL x P(x)" means "for all x P(x)".

Session No. 14 Theorem Proving

as a solution of (2) the substitution [b/x],?
and require (0 <b -> b <Db) In (3), which
Is impossible. Of course (1) is unprovable with
out further hypotheses (or axioms) but it can be
easily handled by the use of types (which im-
plicitly assumes certain axioms). Our approach
in proving (1) is to assign type <0 »> to b,
and then try to prove

(4) SOME x (0 < x A x <b) .

We first solve

(5) (0 < x)

by assigning type <0 => to x and then solve
(6) (x <b)

by assigning the type <0 b* to x. The resulting
type of x, <0 b>, was derived as the inter-
section of its initial type <0 <> gotten from
(5), and the interval <-« b-, which would have
been the type gotten from (6) alone. Since this
intersection is not empty (because b has type
<0 <*>), it is assigned as the resulting type of
X. Even though the variable x had already been
"solved for" in (5) (typed), it remains a vari-
able in the solution of (6) (though limited in
scope) and therefore could be "solved for" again
(retyped). In the examples of Section 5 some of
the variables are retyped two or three times,
and this greatly simplifies the proofs.

Types are used by the routines SOLVE< and
SET-TYPE which are described below.

2.1 SOLVE<

This is a routine for solving linear in-
equalities. (SOLVE< A B) chooses a variable
from A or from B and attempts to solve the
inequality (A < B) in terms of that variable.
If this fails it then chooses another variable
and tries again. Since the terms and variables
of A and B may be typed, this routine must take
iInto consideration such types and reset the type
of the variable when the solution is obtained.
In fact the answer is completely given by the
new types. The examples below best illustrate
this point. If it can show that A is less than
B, then the routine will return the answer "T"
whether or not A and B have any variables.

Examples.
INPUT New Tz%e of x given
_y <
A B
1. X 1 <eoo]>
2 X] <0 1>

.Type x 18 <0 o>

2. We follow the usual practice of denoting

a substitution by a 11st [b!/as by/ay»... ,b,/an]
Wher%,each al is to be replaced by the correspond-
ing Bi.

587

3 0 1 (the value T is
returned)
4. x-a+c (-x+d) <-= (d _ <)>
: J+a = T+a

Type a 15 <0 =>

5 X D

. (intersection <0 Dle l%)
Type x is <0 02>

]

Type D.I 18 <0 =>

Type 02 is <0 o>

In this example the type of D in the answer
could have been given as <0 (minimum DjD.)> but
we find the intersection form more convenient.

d

X <—r
b

6.
Type x is <0 »>
Type a is <-« 0>

Type bis <0 *>

In the actual theorem proving process,
SOLVE< is applied to formulas that have been
converted to quantifier free form by the intro-
duction of skolem expressions.® Precautions are
taken by SOLVE< to insure that it does not solve
for a variable x in terms of a skolem expression
iIn which x occurs. This is essentially the same
precaution taken by J. A. Robinson in his
Unification Algorithm [2].

For example, consider the false statement
ME x ALL v (y < Xx) .
The skolem form of this is
(y x) < x .
The result of a call to (SOLVE< (y X) X) is

NIL, since x occurs in the skolem expression

(y Xx).
On the other hand, the theorem

IME x ALy SME z (y < x+2)
which has skolem form
(y X) < x+z

can be proved by a call to (SOLVE< (y x) (x+z2))
which correctly assigns type <(y X)-x => to z.
Actually, the routine SOLME< just retypes
a variable in a way that guarantees the solution
of the desired inequality.
More extensive routines could easily be
written (indeed have been written by others) to

3. A skolem expression is a term whose main
function symbol is a skolem function, cf. foot-
note 11 in Section 4 which describes the elimina-
tion of quantifiers by the introduction of
skolem functions.

588

solve nonlinear inequalities, but these were not
found necessary for proving the examples
reported here.

2.2 SOLVE=. This is a routine for solving
linear equations. Given two arithmetic expres-
sions A and B, it selects a variable x from A
or B and trys to solve the equation (A = B) in
terms of x. If it succeeds, with answer vy, it
returns the substitution, [y/X] Otherwise it

selects another variable and trys again, return-
ing NIL if all fail.

2.3 SEI-TYPE. This is a subroutine which
assigns types to certain skolem expressions. |If
a formula of the form (A B) is in a con-
junctive position of E (i.e., E can be expressed
as ((A B D) for some D), and if A is a
skolem expression which does not occur in B,
then (SET-TYPE E) assigns the type B to A and
returns D, the formula gotten by removing (A € B)
from E. If A already has type C, then SET-TYPE
assigns the intersection (BN C) as the type of
A, if (BO C) is non-empty. If (B n C) is empty
it returns E. If (B N C) is not empty, but
cannot be given specifically then the formula
(intersection B C) is given as the type of A.
For example, if E is the formula

A A (xeP A B - ycR))
then (SET-TYPE E), assigns F" as the type of x,
and returns
(1) A A B >y, R)

If, in this example, x already had type F*, then
PA is assigned as the new type of x; if it already

had type <-1 1> then it assigns type <0 1> to x;
if it already had type <<«am -1> then it returns
A A XeP v B - vyv: R)).

In a similar way, it assigns types to skolem
expressions which satisfy certain inequalities.
For example, if E is

A<0 A B<1 V O)

then (SET-TYPE E) assigns type <-» 0- to A and
returns

(B<] \ 4 C)s
and if E 1is
(AR < B A ()

then (SET-TYPE E) assigns type <- B> to A, and
type <A <*™>> to B and returns C. Similarly,
(SET-TYPE (A f 0)) can be made to assign type
(union <-. 0><0 *>) to A, but this sort of typing
was not used in any of the examples given in this
paper.

2.4 SIMPLIFY. This is an algebraic simplifica-
tion routine which converts algebraic expressions
into a canonical form, sorts its terms, and

cancels complementary terms of the form (a+(-a))

and (a--). It is used in all of our routines

which manipulate algebraic expressions. Such

Session No. 14 Theorem Proving

routines are not new to the literature.

Examples.
INPUT OUTPUT
(a-(b+c)) (a:b + a-c)
]
(a'b'a-) b

(-(a%h) - (bsc) + cra) (=(asb)+(-1)+(-(c+})))

(|b+c-b] + a) (lc| + a)

(-](a3) - 1)) 0

2- Limit Heuristic. The limit heuristic rule
defined below, in conjunction with the routines
described in Section 2, is used to help prove

limit theorems. LIMIT-HEURISTIC: When trying
to use a hypothesis of the type

A| < E'

(and possibly other hypotheses) to establish a
conclusion of the type

B <E,

first try to find a substitution o which will
allow Bo to be expressed as a non-trivial com-
bination® of Ay, (B = KA + L)o, and then try to
establish the three new conclusions:

A. (I|K] < M) _, for some M,
q

B. ([A] < E/2:M) ,

C. (L] <E/2),

Such a procedure is valid because if we can
find such a o and prove A, B, and C, then we
would have

B K-A + L
0 o)

TUKIHAL LD
< ME2M + E/2

=E .

Of course, this is based on the triangle inequal-
ity, and uses the fact that 12 + 1/2
=1, M-IM =1 for M > 0 , etc.

As an example, in proving the theorem that
the limit of the product of two functions of real
variables is the product of their limits, we find
ourselves trying to establish a conclusion of

4. The notation By denotes the result of ap-
plying the substitution o to B.

5. The routine EXTRACT, described in
Section 3.1 below, is used to express B in terms
of A.

Session No. 14 Theorem Proving

the type

(1) [f(x)-9(x) - Ly-Ly| < E .
Among our hypotheses 1is

(2) [f(x") - Ly| < E',

which can be used to help establish (1) (provided
that we satisfy the conditions for (2)). If we
apply the limit heuristic to (2) and (1) we find
that for a = [x/x']

(f{x)-g(x) - L,-L,)

can be expressed as a combination of
(f(x*) - L])n ’
viz.,
g(x)+(F(x) - Ly) +Ly-(g(x) - L),

and are able to establish the three subgoals:
A. |g(x)| - M, for some M,

B. f(x) - L]) < Ef2-M .

C. L]-(g(x) - L2)] - E/2 .

Subgoal A follows from the hypothesis

(3) lg{x"") - L,| -~ B

(which also has conditions that must be satis-
fied). Subgoal B follows from (2), and subgoal
C follows from (3).

The complete proof of the limit product
theorem is given in Section 5 in great detail.
The limit heuristic is used there not only to
set up the three subgoals A, B, and C, but also
to establish A and C, by proposing further
subgoals.

Because the |imit heuristic enables our
program to prove many theorems about limits, we
regard it as a rather interesting trick. But
more interesting and important than the fact
that it works some problems is the principle
behind it. That principle might be stated:

To establish a conclusion C from
several hypotheses, among which is
H, force H to contribute all it can
towards establishing C and leave a
remainder to be established with
the help of the other hypotheses.

The value of such a "forcing" technique is
twofold. First, if one can truly make H con-
tribute all it can towards C, then H is not
needed to establish the remainder. That is, a
reduction in the number of hypotheses is achieved
while a significant step in the proof is made.

Second, it is implicit in the notion of
"force" that certain facts are used to make an
inference in a computational manner. For
example, the limit heuristic "uses" many facts
about algebra, such as the triangle inequality;

589

but these facts are used to compute something,
not to make random inferences. This strongly
inhibits the generation of subgoals that occurs
if one freely permits the application of axioms
to his goals. We comment further on this "com-
putational” aspect of the limit heuristic In
Section 7.

We feel that such a forcing technique has
applications in other areas of theorem proving
where two or more hypotheses H,, Ho,...H, are
needed to establish one conclusion C that cannot
be loqgically divided. In such applications the
user must provide a heuristic which will enable
the computer to determine how to get a partial
result from Hj and leave a reaminder C to be
proved by the other hypotheses.

The limit heuristic uses the routine
EXTRACT described below, which in turn uses the
simplification routine described in Section 2.

3.1 EXTRACT. If there is a substitution o for
which B, can be expressed as a non-trival com-
bination of Ay ,

B = KA + L),

then EXTRACT A B) returns (K L n), where o is
the most general such substitution. Otherwise
NIL is returned.

A more precise definition follows the ex-
amples .

Examples. In the following, the symbols x, t,
and h represent variables while all other
symbols represent constants.

1. (EXTRACT A (K-A+L)) = (K L T).b
2. (EXTRACT A(t) A(ty)) = (1 0 [to/t]).

3. (EXTRACT (f(x)-L,) (f(xp)*a(xy) - (Ly+L5)))
= (1 (3(xp) - L) [xyx]).

4. (EXTRACT (f(x)-L;) (f(xg)-g(xq) - Ly-L»)
= (g(xy) (Ly-g(xp) - Ly-L.) [xp/x]).

5. (EXTRACT (f(x)-L,) (?T?T" E%—))7

]
= (- f{x)-L, 0 T).

6. (extract (Flathl = fla) ey re(x) - £(a))

= ((x-a) (x-a)-F' [h/(x-a)]).
7. (EXTRACT ((xgp-a) (xp? - a?)) = ((xqo+a) O T).

6. Throughout this paper we use the letter
"T" to denote both "truth", and the empty sub-
stitution. This reserves "NIL" for denoting
"falsp".

7. In this example, the second argument is
first converted to (Ly+ 1 -f(x)- T),
by use of a least common denominator.

590

8. (EXTRACT (a-xp+c) (b-xp+d))
= (2 (d-29).
9. (EXTRACT (a-xg+c) (be-yg+d)) = NIL.

Examples 3, 4, 5 are useful in proving
limit theorems about the sum of two functions,
the product of two functions (see Section 5), and
the quotient of two functions. Example 6 is used
in proving that a differentiate function is
continuous.

Suppose there is a substitution a and an
expression x such that, Aa and Ba are poly-
nomials in x, and B iIs linear in x. Then there
are expressions a, ¢, b and d such that x does
not occur in ¢, b, or d, and A, and By can be re-
expressed as

A= ax +c ,
a

BU= bex + d ,
and (EXTRACT A B) returns the value
(%— (d - EéEJ). If no such o and x exist

then EXTRACT returns NIL.
4. The Implication Method

At the heart of the program is a subroutine
called IMPLY whose essential purpose is to
handle logical deductions in the predicate cal-
culus. It is a replacement for resolution in [1],
We offer here a cursory description of its
operation, sufficient to an understanding of the
proofs in Section 5.

The operation of IMPLY bears a closer
resemblance to the proof techniques of the
mathematician than does resolution. In general
IMPLY examines the connectives in the formulas;
given as arguments to it,and creates one or two
subgoals. These subgoals are usually calls to
IMPLY with new arguments which are closely
related to but simpler than the original arguments
The resulting analysis of the formula to be
proved is easy to follow.

This rather natural operation bears some
responsibility for the development of the Ilimit
heuristic and the other techniques of this paper.
In comparing the subgoals called by IMPLY with
the methods of proof used in elementary calculus
we established new subroutines and subgoals,
such as the limit heuristic, sufficient to prove
a number of theorems.

The subroutine IMPLY has two arguments:
E (the current formula under
examination)
R (a reserve),
Usually E is of the form

H ™ C)

The answer to a call to IMPLY is either a sub-
stitution or NIL. The latter indicates failure
to establish the subgoal. IMPLY attempts to

Session No. 14 Theorem Proving

find and return the most general substitution o
such that (R -+ E) is true. |If o Is the empty
substitution then®lMPLY returns T.

Table 1 gives rules describing some of the
operations of IMPLY. These rules are applied
in the order of their occurence in the table;
If one fails, the next is tried; if all fail,
IMPLY returns NIL. IMPLY returns the value
given by the first rule which does not give NIL.
In the following we use the shorter notation
[E,R] for (IMPLY E R).

INPUT OUTPUT
1. [H » C, R]
If H=C , then T

If there is a substitution o
which unifies H and C,

(i.e., H, = C,) then o
2. [A aAB, R]
2.1 J’[A,R] yields ¢l
If] and then (ol o oZ)8
2.2} [861,R] yields 02
3. [Av B, R]
I1f [A,R] yields o1, then ol
If [B,R] yields o2, then 02
4. [A - B) -~ C, R]
4.1 [[B + C, R] yields ol
then
I f¢ and (0] o 02)
4.2° | [R~A ., NIL] yields o2

Th1s rule is commonly known as backwards
chaining.

5. [H » (A~ B), R) [Ha A > B, R]

6. [AvB-~+C, R]
6.1 [[A ~ C, R] yields ol
I f4 and
6.2 [BU] + C, R] yields o2

o

then (ol o 02)

Table 1
Some of the rules defining IMPLY.

8. When we use an expression like "[A,R]
yields o", it is to be understood that we also
mean than o is not NIL. (o) © o2) denotes
(0102 o 02).

9. If 4.2 fails but [R » A v C, NIL) yields
o3 oc [(A*B)AR~-*A 13 NIL] ylelds 03, then
IMPLY returns (01 o 033.

Session No. 14 Theorem Proving

7. [H - Av B, R]
If [H » A, R] yields o1 then o]

If [H > 8, R] yvields 02 then a2

8. [H » AA B, R]
8.1 [[H » A, R] yields ol
Ifﬁ and then
8.210 | [H » B, . R] yields v2

9. [AAB ~+ C, R]
If [A » C, RA B] yields ol then ol
If [B »+ C, RAA] yields 02 then o2

(O] C (12)

10. [H ~ ~Av B, R] [HA A +» B, R]

1. [AAB » C,R] (B » Awv C, R]
12. [H » C, R] [R » Cwv H, NIL]
13. [H » ~C, R) HA C - NIL, R)
14. [A=8 - C, R] R » C', NIL]

whereR' and C' are gotten by replacing
B by Ain R and in C.

15. [H - A =B, R] (SOLVE= A B)

(i.e., if there is a substitution aq,
which unifies A and B, then return a)

Table 1 (concluded)

Before a formula E is sent to IMPLY it is
first converted to a quantifier free form, but

without converting it first to prenex normal form.

The quantifier free form is achieved by using
skolem functions, and |s essentially the same as
that used by Wang [3]."" A call is then made

to IMPLY E NIL).

10. It is possible for IMPLY to yield a substi-
tution which assigns to a variable x more than
one value: a/x, b/x, a #b. If this happens and
if IMPLY tries to substitute for x in another

expression (as it might do using Rule 8.2, 6.2,
2.2, or 4.2), then IMPLY returns NIL.

If Rule 8.2 fails on the #I| given by Rule 8.1

(i.e., if [H -» B , R] returns NIL), then the
program "backs up" and recomputes 8.1 trying to
find another solution ol' of [H -+ A, R] for
which [H -* B .i,R] can succeed. A similar back-
Ing up proceeaure is used in Rules 2, 4, and ©.

11. Specifically, if "positive" and "negative”
are given the meaning as in Wag [3] pp. 9-10,
then the elimination of quantifiers consists of
deleting each quantifier and variable immediately
after it, and replacing each variable v bound

by a positive quantifier with a list whose first
member is v and whose other members are those
variables bound by negative quantifiers whose
scope Includes v. This list which replaces v is

591

For example the formula

(1) (P(y) A ALL x (P(x) - Q(x)) =+ Q{y))

1s first converted to the skolem form

(Ply,) A (P(x) ~Q(x)) - Qly,)),

where y 1s a skolem constant and x is a var1ab]e,
and proged as follows.

1. (ImMeLy (P(y,) A (P(x) ~ Q(x)) » Qly.))

NIL)
1.7 (IMPLY (P(y) ~ Q(y)) ~ (P(x) » Q(x)))
(by Rule 8). This®fails.

1.2 (IMPLY ((P(x) - Q(x)) ~ Q(y,
(by Rule 9).

1.2.1 (IMPLY (Q(x) ~ Qy_)) Ply))
(by Rule 4.1).

This yields ¢ = [yo/x] by Rule 1.
1.2.2 (IMPLY (P(yo) ’ P(x)o) NIL) Rule 4.

This yields T by Rule 1.
So the final answer to 1. is [yo/x], and the
theorem is proved.

) Ply,))

For the example

(SOME x (ALL y P(x,y))
~ ALL s (SOME t P(t,s)))

the skolem form is

(Plx,, ¥) > P(t, s).
A call is made to IMPLY

(IMPLY (P(x . ¥) - P(t, s)) NIL)
which yields [xo/t, sofy] by Rule 1. QED.

In trying to prove the non-theorem

(ALL y (SOME x P{x, y))
» SOME t (ALL s P(t, s))),
the skolem form is

(P((x y), y) - P(t, (s t))

where (x y) and (s t) are skolem expressions.
A call to IMPLY

(IMPLY (P((x y), y) » P(t, (s t))) NIL)

fails; Rule 1. cannot be applied because the
formulas P((x y), y) and P(t, (s t)) cannot be
unified. A partial unification is given by

[(x y)/t], but the resulting pair

P((x y), ¥), ((y), (s (x y)))

cannot be unified by [{))/y] because the
variable y occurs in (s(x y))

When attempting to prove an express1on £
with the help of axioms, A
(where all free variables 1n %he A haUe been
universally quantified), a call is %ade to
(IMPLY E' NIL) where E' is the -skolem form of

(A]AAZA.. .AAn + E).

In the operations described in Table 3, a
resemblance can be seen between the method of

simply the licatio f a skplem function to
cerPa¥n argurﬁgnts wnltrP no a b?gm ty, but as an

aid to memory, the skolem function is named v.

592

Gentzen sequents (cf. Kleene's G3 [4]) and the
subgoals which IMPLY sets up. The technique of
of finding a most general unifier is the unifica-
tion algorithm of Robinson [2]. On the whole,
IMPLY is closer to the system of Prawitz [6] than
to resolution.

5. Examples of Computer Proofs.

Here we give excerpts from the proofs of
five theorems, which were made by the program
R using IMPLY as its principal subroutine.
R i1s explained in [1] and IMPLY is described
briefly in Section 4 above, but the reader famil-
lar with Sections 2 and 3 should be able to
follow these descriptions with no reference to [1]
and little to Section 4.

In order to use the |limit heuristic described
in Section 3, we must add the following rule
to Table 1.

16. [|A| <E' > |B] < E, R]
If
16.0 (EXTRACT AB) is (K L
(i.e., (B = K- :
and 1f F
16.1 [R » (K| < M)O, NIL] yields o112,
for some variable M!3 and if

a)
A+L).),

16.2 [|A] -« E' Al < E/2-M, R](uo<31)9
yields o2, and if
16.3 [R » (IL| < E/2) , NIL]

(uc; 0l © o?)

yields o3,
then return the value (voolg o020 o3)¥®

Also, we need two additional rules for solv-
iIng inequalities, one rule for types, and one
for equations.

17. [H > a -° bs R:I
18. f[a<b ~» a'-«

(SOLVE< a b)

C,
[{(b<c) v (b=c), , R]
if there 15 a substitution for

which (a = a') .

]
19. (H » A¢ B, R]
If A has type B then return T.

20. a=b ~» c=4d, R]

These five reles are placed at the beginning
of Table 1 (Section 4), in the order 17, 18, 19,
20, 16.

Also, a provision is made for assigning a
type to an expression A when it appears in the
form (A > B) or (A » B) in the hypothesis of the
theorem being proved. This is accomplished when
IMPLY is proving a subgoal of the form [H -> C, R]
by replacing H by (SET-TYPE H). Such calls to
SET-TYPE need only be made in Rules 5, 10, 13,

12. In case K = 1, Step 16.1 is omitted, and M
s set to 1 In 16.2.

13. M is given type 0 - and also M is made an
additional argument of all skolem functions
which already have at least one argument.

14. In case L = 0, Step 16.3 is omitted.

(SOLVE= (a-b) {(c-d))

Session No. 14 Theorem Proving

and before the first call to IMPLY, i.e., when
new material is added to H. (See Section 2.3).
In what follows, R denotes the real numbers,

P denotes the positives, and denotes the
Functions on R to R. We use (Lim f a L) to
denote Iim f(x) = L. The standard definition

X>a
of limit is:

(Limfal) <->
(@ac R) A (LeR) A (fe FRR) A
ALL ¢ (O <« ¢ -+ SOME 6 (0 <8 A
ALL x (x e R A x#a A |x - a]| <&
) - L] <))

Example 1 (Limit of a product).
The program PROVER is given the formula

(LimfaL] A L1"rngaL2

> Lim (f-g) a (L]°L2))

The definition of limit i1s used to obtain

((a c R A L]rBAfEFRR/\

ALL E] (0 < E'I +» SOME D] (0 - D] A
ALL X (x]eg A x1#a/\|x]-a <D1
> f(x) = Lyl Ep)))
/\(aL_R_AchB_,\ngRR/\
ALL E2 (0 - E2 + SOME 02 (0 < D2 A
ALL X, (x2 ¢ R A X, F a A |x2-a| < B2

i Ig(xz) - L2' < Ez))))

(a « R A (L-I'Lz) ¢ R A (f-g) ¢ FRRA
ALL E (0O - E » SOME D (0 <D A

ALL x (x ¢ R A~ x# aA [x -al] <D

CH(Fg) () - Lyl | < £)))))

The first three parts of the conclusion,
(@ L R), (U-Lp) e R, and (f-g) t are proved
by the program using the hypotheses of the
theorem and the closure properties of R and FRR

The remainder of the theorem is prepared for
IMPLY by replacing (f-g)(x) by (f(x)-g(x))
and by eliminating the quantifiers and introduc-
Ing skolem expressions.

((@) 7 (R) n (L) (R) A (F) ¢ (FRR) A
(0 - E1 r (0 < (D] E-])A
(X] 2 (B_) N X] #(a) A lx]" (a)l < (D]E])
- 10 xg) = ()] < E)))

AL(a) s (R) A (L) e (R) A (9) ¢ (FRR) A

(0 « E, -~ (0 < (D2 E2) A
(x, ¢ (R) A x#(a) A [y - (2)] < (D,E,)
) - 19)(xy) - (L] < E,)))
—

Session No. 14 Theorem Proving

(0 < (E) - (0 <D A
((x D) « (R) A (x D) #(a) A |(x D)-(a)]
» 1(F)((x D)) (g) ((x D)) - (Ly)-(L,)

- £)))

For readability and brevity, the skolem
expressions are abbreviated in the following.
Thus x is used in place of (x D), L, in place of
(L]), f(x) in place of (f)((x D)), and so on.
Thus we write the above expression as

((a c R A Lyt R A f o FRR A

— ——

b (X1 ¢ R A X faA |x] - a| D,
g - |f(x'|) - l—‘ll ‘ E]))))
/\((aE_R_ALzr:B_AgEFRRA
v < (0 - E2 » (0 - D, A
(XZLBAx2#aAlx2-a|«DZ
(i) = 9lx) - Lyl < E5))))
— (0<€E ~»(0-DN
\ (x ¢« R A x7#fa A |x- a] -
IR g(x) - Ll | E)))

But the computer continues to use the full skolem
notation throughout its proof.

Before we follow the proof procedure for
this theorem in great detail, we first sketch the
proof that the computer will produce.

Given £ > 0, choose M, M', E]. and E2 so that
M 2L,
L1,
E] < £/2°M,
E2 < min (M/2, £E/4-M") .
By hypothesis, there exist D]and 02 such that

0 - D] and 0 - 02 , and for all x, if x # a and
X - a] < min (D1, 02) , then
1f(x) - L1| <E] and |g(x) - L21 £, .

Furthermore, for all x, if x # a, and |x - al =«
min (D], 02), then since

g(x) - L2| « E2 < M2,
1t follows that
9(x)] < M/2 + |L,]
< M/2 + M/2 =
S0 let D be a number such that
0 <D« min (D]. DZ) :

If x 1is any number such that x # a and
|x - al < D, then

[f(x)-g(x) - L;-L,]
= |g(x)-(f(x) - L]) + L]‘(Q(X) - LZ)I
< Jg(x) - (F(x) - L]+ 1Ly (g(x) - Ly)]

593

9GO () = Lyl + 1L fg(x) - L)
M - E/2M + M'-min (M/2, E/4°M")
CE/2 + M . E/4M . E QED.

The key to this proof i1s the proper selec-
tion of M, M' , and 0. The computer
makes prec1se]y lhesé same selections through
1ts handling of types.

We now resume the description of the compu-
ter's procedure in finding its proof. A call is
made to

(IMPLY (a A ¢+ y) NIL)

where u, 1, and y are given in (i1) above.
SET-TYPE is app1led to (u A), assigning
type R to a, , and t pe FRR to f and g,
and the subfor*u]ag ¢ R), (L R),
(f . FRR), (g ¢ FRR), are remov$d From o 4nd .
Rule 5 is applied, converting the formula to

(u AN 0 < E -+ 0 - D A
(x ¢ R A x#a A |x- al
1 (x)e(x) - LytL, s

SET-TYPE 1s applied to the hypothes1s,
signed type <0Ox- and (0 « E) is removed.
Rule 8 calls IMPLY on the two formulas

(a A+ 0 < D)

E 1s as-

and
(ulA # o+ (xR A X#t a A IX - al < D

» fOalx) - LyeL, |-

The first call is satisfied by Rule 17,
which uses SOLVE-< to assign type -0 =- to D.
The second results in an application of Rule 5,
so the current subgoal 1s

(o ABEA X R A x#a A |[x-a] <D

S0 g0 - Lyl

SET-TYPE is applied to the hypothesis; X s
assigned type R and (x ¢« R) is removed.
By Rule 9, the reserve R is set to

(R A x#a A |x-a| = D),
and

(o ; 1f(x)-g x) - L,-L,| < E)

] 2‘

becomes the current goal.

Rule 4 (backward chaining) is now applied.
That is, the program tries first to establish the
conclusion |f(x?' (x) - L,-L | < £ from a.
This is subgoal (1? When th?s subgoal 1is es-
tablished, the program tries to satisfy the
hypothesis of o, namely subgoal (2) below.

(1) (0 <Dy A
(x; e Raxy #an |x - al <D
+ Jf(x) - Lyl < Ey)
s [f(x)-g(x) - Ly-Ly | < E)

SET-TYPE assigns type <0oo> to D, and

!

594

(x] e R A xyFa A Ix - al <D
- If(x]) = L]I . E1)

- JF(x)g(x) - LyoL,| < E
becomes the current goal. (From now on we shall
not mention those subgoals which are tried but
not established.)

Again the program "chains backward" using
Rule 4. The current subgoal becomes (11) and the

hypothesis
(x; ¢ R A x; #a A [xy - a]| <D)

is satisfied later at (12).
(11) (lf(x]) - L]l < E] = If(x)'g(x) 'L]'Lz'*E)

The program now tries to apply Rule 16, the
limit heuristic. First

(EXTRACT (f(x]) - L]) (f(x)-g(x) -L]-Lz))

is computed to be (g(x) (g(x)'L] - L]-Lz) g)
where o = [x/x]]. This follows from the equation
(f(x)-g(x) - L;-L,) =
((g0x)- (F(x) - L}) + (g(x) Ly - LyLy)).

Because the result of the call to EXTRACT 1s not
NIL, Rule 16 is applicable. The program tries to
establish the three subgoals (111), (112), (113),
in accordance with Rules 16.1, 16.2, and 16. 3.
The current subgoal 1is

(111) (eA x#a A |x-a] <D - |g(x)| < M)

where M 1s a new variable which 15 assigned type
<0 »>. (Also M is made an additional argument in

the skolem expressions (D]]), (D2 E2), and (x D),

in accordance with Footnote 13 above. Although
these new skolem expressions (D] E]), (D2 E2),

and (x D M), will not appear in our descriptions
since we are abbreviating them to Dy, D,, and x,
they nevertheless play a crucial ro1e. For ex-
ample, in Step (111 1) below the M in (x D M)
prevents Rule 17 and SOLVE < from assigning

type < |g(x D M)| . as the answer to (111 1).

(See Section 2.1).
By Rule 9, the reserve R 15 set to

(x # a A |x - a|] - D) and

(8~ |g(x)| < M)

becomes the current subgoal. Rule 4 is applied.
The current subgoal becomes (111 1) and the hy-
pothesis of g is satisfied later at (111 2).

(111 1) (0 < D2/\
(xzag_,\ xzy‘a Alxz-a|<'02
> lg(xz) - L2| « Ez)
> g{x)| < M).
By Rule 9 the program tries
(xzf_B_/\xZ;‘aAlxz-a]-Dz
g |g(X2) = L2| * E2)
g |g(X)‘ ‘ M)s
after assigning type < 000 > to D, .-

Session No. 14 Theorem Proving

Another application of Rule 4 sets up the
two subgoals (111 11) and (111 12).

(111 1) (lg(xz) = L2| < E2 - IQ(X)| < M)
Since (EXTRACT (g(xz) - L2) g(x)) yields (1 L2

[x/xz]) the limit heuristic is applicable

to “(111 11). Because 1 is returned as the val-
ue of K from EXTRACT, only subgoals (111 111)

and (111 112) are tried, in accordance with

Rule 16. The current subgoal becomes

(111 111) ({g(x) - L2| < E2
- 19(x) - Ly < M/2).
By Rule 18, the program tries to establish

(E, < M/2) v (E, = M/2)

The first half of the disjunction is satis-
fied by a call to (SOLVE< E, M/2), giving type
c-a M2~ to E.. Thus subgo&1 (111 111) is estab-
lished and thg program tries to prove

(111 112) (x # a) A |x - a|] <D - L2| < M/2).
Rule 17 is applied; (SOLVE< L2 M/2) is

called, resulting in the type <« 2 L2 «> for M.

Hence both subgoals of (111 11) are established.
The program now returns to the subgoal

(111 12) (x#a A |x - a] <D >
XZLBA xZ?a o) lxz—al < DZ)U'
where o = [x/xz]. That is

(x fa A |x-a <D -
x «c RN x#a A |x - al - 02).

—tp—

This subgoal 1s established by several subcalls.
The conclusion (x « R) follows since x has type
R. (x # a) occurs in the hypothesis. And finally

(Ix -al <D - [x-af- D)

1S established through Rules 18, 17, and a call
to SOLVE-. As a result, the type of D 1s changed

tO ‘-O Dz e

(1117 2) (x#a A |x-al D - 0- E2)

15 established by Rule 17. SOLVE< types E2

as <0 M/2-. Recall that E2 was given

type «-« M/2- at (111 111°). Thus both sub-
goals of (111) have been established and the
program returns to the second subgoal of the
first use of the limit heuristic

(112) (1F(x) - Ly} By - 1) - Ly] < E/2M).

This subgoal is quickly established using
Rules 17, 18 and(SOLVE- E] £/2M), which assigns
type <«-- E/2M- to E].

The third subgoal "of the first use of the
limt heuristic is

(113) (¢ A x#a A [x-a] <D
~ !g(x)'L] - L]-LZI « £/2).

By Rule 9, the reserve R is set to (x # a A
'x - al - D), and the current subgoal becomes

Session No. 14 Theorem Proving

(# ' |9(X)'L] - L Lz\ E/2).
The program chains backward twice.
(1131) (0 D, ,
(x + R A x#a A |x-a]: D,
- |g(x) - Lz‘ ‘ Ez)
- lglx)-Ly - L - E/2)
(1g(x) - Lzl i Ez
v |g(x)'L] - L]'L2| < £E/2)
Since (EXTRACT (g(x) - L2) (g(x)-L -LyL))
yields (L, 0 T), the limit heuristic is aga1n

applicabld, and subgoals (113 111), (113 112),
and (113 113) are tried.

(113 111) (x+¥a A |x-a|l <D . IL]I c M

becomes the current subgoal, where M' is a new
vartable of type <0 =~. This goal is established
by assigning type f|L]| -+ to M', by Rule 17.

(M3 112) (lg(x) - L] - E,

- lg(x) - Ly| < (E/2)/2:M")

This subgoal i1s established by use of Rules
17, 18, and a call to (SOLVE- E2 E/4-M'). E2 is
retyped as (intersection <0 M/2%> «-u E/4-M'“:),
Recall that t had been given type <0 M/2- to
establish 11? Since the program does not
know which of M/2 and £/4-M' is the smaller, the
intersection is given as the answer, after it has
checked that the intersection is non-empty.

The formula

(113 113) (x#a A |x-al-D » |0] < E/4)

is the last subgoal of the last use of the limit
h euristic. It is satisfied since £ already has
type <0 =,

The program now returns to

(11312) (x#a A |x-al <D -

X e RA x#ta A |x-al-<D,),
which is the same as (111 12). Also
(113 2) (x #a A |x-a] <D » 0« E2)

is t he same as (111 2).

Al1 of the subgoals of the first application
of the 1imit heuristic at (11) have been estab-
lished, giving as an answer to (11) the substitu-

tion ¢ = [x/x1 . x/xz].
The program now tries to satisfy
(12) (8 A x¥aA|x-al <D -
XpeR Ax;#a A [x,-af <D).

The substitution [x/x,] establishes the first two
parts of the conclusion. To prove the third part,
th e program tries

(Ix - al <D =+ |x- a] < D]).

which results in the retyping of D as
(intersection <0 D,> <-= D]>). Recall that

D previously had typé <0 Dz>

1Lyl
(113 11)

595

Finally the subgoal
(R A XxXF#a Nlx-23a] <D -

is established by Rule 17 and a call to
(SOLVE- O E]) which retypes E, as <0 E/2-M>.
E] previously had type <-« E/2.M>. QED.

The proof is complete. We list here the
final types assigned to the variables. Note that
the program has made just those "choices" describ-
ed in the sketch of the proof which was given
earlier,

0 « E])

E, 0 E/2-M>
E2 (1nter59Ct10n 0 M/Z; - - E/4'M'})
D (intersection <0 sz c—a D]>)

M (Z'IL2| w >

M' .:IL]’ a>

This proof may seem long and drawn out but
these are essentially the steps a human prover
would have to follow in finding and exhibiting a

proof.

In the following examples we proceed directly
to skolem form and consider only the proof of the
main conclusions., Many steps in each proof are
omitted. Rule reference numbers are sometimes
given to the right of formulas along with new
type assignments.

(Composite continuous function theorem).

Example 2.

1. (g is continuous at a)
A (f is continuous at g(a))
» (f:g is continuous at a).

2. Limg a g(a) A Lim f g(a) f(g(a))
~ Lim f:q a f(g(a)).
(x] .t R A X, Fa A |x] - al| « D1

(0 <E, » (0 <D, A
X, # g(a)A|x, - 9(a)| <D,
~ |f(xy) - f(g(a))] < E,)))

(X2 £ B_‘N

(0 <E » (0 <DA
(x e R A x#a A |x-a| <D
+ |f(a(x)) - f(g(a))| < E)))
In 3. the variables are E], X1 E2. Xo s D,

and the skolem expressions are (D E,), (02 E2),
(E), (x D), (a), etc.
RULE NO. and
CURRENT SUBGOAL NEW TYPE ASSIGNMENTS

4. (H315 > 0 < D) 5, 8

E <0 o>
5. (SOLVE< 0 D) 17

D <0 Qao >

15. The notation Hl is used to denote the
hypothesis of Step

596

6. (Hyaxta Alx-al <D 8.2
+ [f(g(x)) - f(g(a))| -

7. (If(x)) - fla(a))] < E,
» | f(g(x)) - f(qg(a))| <E)

8. (E2 < E v E2 = E) 18
g. (SOLVE- E, E) 7, 17

2 £ cece F .
10. (H6 » 0 - E2), a cond?tion from Step 7.
11. (SOLVE- O E2) 17

F.2 0 E-

12. (He = x, ¢ R A X, #a A [x,-a] D),
where o = [g(x)/x2]. A condition from Step 7

13, (Hg - lg(x) - af - D,) 8

14. (ig(xy) - g(a)| - Ey)

= [9(x) - g(a)| - D,)

15. (SOLVE- E 02) 18, 17, ~» = x/x]]

1 F. -x D

] 2
16. (H6 > |x - al - Dy). A condition
from Step 14.
17. (lx-a] <D -~ Ix-a] - D]) 9
18. (SOLVE. D D]) 18, 17
D -0 Dy QED.

]

Example 3. (Differentiable functions are
continuous).

f(ath) - f(a)

[f Tm = F'
h 0 h
then lim f(x) = f(a).
X *a

1. (Derivative f a F' Continuous f a)

2. (Limq 0 F' » Lim f a f(a)),
where q(h) is the difference quotient
flath) - f(a)
; ,

3. (OfE] (O-D]/\

(h - B Ah#0 A 'hl ‘ D]
f(at+h) - f{ :
. ! (a lh a) _ F'l . E])))

(0 E - (0-DA
(x R AXxX#anan |x-al- 0D
- If(x) - f(a)| - E)))

In 3. the variables are E], h, D, and the
skolem expressions are (D]]), (E), (x D),(F'),etc

s (Hy, A x#a A |x-al-D

- If(x) - f(a)| < E)
(x has been given type R)

Session No. 14 Theorem Proving

(flath) - f(a) _ ¢ . ¢

5. A
using Rule 4
+ |f(x) - f(a)| < E) and others
The limit heuristic (Rule 16) is applied,
(EXTRACT (f(a+“)h“ fla) F') (f(x) - f(a)))
yields ({(x - a) (x - a)<F' o), where
g = [(X - a)/h].
6. (H, ~ |x - a] < M) Rule 16.1
7. (|x-a] - D =+ |x - al < M)
8. (SOLVE- D M) 18, 17
" D 0 M
f(x) - f(a) .
9. (|Hxl-fla) ¢ | 3
. lf(xi - :ia) i F'l . E/2°M), Rule 16.2
10. (SOLVE- E E/2-M) 18, 17
E, <-n E/2M>
1. (H4 + |(x - a)-F'| <« E/2) Rule 16.3

12. (|x-a] - D - |(x-a)F'| - E/2)

The 1imit heuristic is again used, EXTRACT
yields (F' 0 T).
13. (H4 F'| - M) Rule 16.1

14. (SOLVE- |F'| M) 17
15, (|x-al -D » Ix-al - E/4-M), 16.2

etc.
6. (x7a A [x-al-D

~ hi R Ah#O0A |h] -0y, 4.2
a condition for Step 5. o = [{x - a)/h].
17, (Hyg > (x-a)R) 8
True by Rule 19 since both x and a
have type R.
18. (x#a - x-a#0), from Step 16. 8, 9
19. (x -a=0 - x = a) 12, 13
20. (SOLVE= (x - a - 0) (x - a)) 20, TRUE
21. {(|x -a] - D - |x - al « D]) 8
from Step 16
22. (SOLVE< D D]) 17, 18
D 1s "assigned type
(intersection <0 E/4-M'- .-u D]J). QED.
Example 4. (1im x2 = a2).
X—+a

1. (f=xrx (x-x) - Limf a (a-a))
2. (0- £ - (0D A
(x r R A x#a A [x-al <D
+ |x'x - a-al < E)))

In 2. D is a variable and (E), (x D), and
(a) are skolem expressions.

First SET-TYPE assigns type <0 =- to E. Then
3. (0 - D) Rule 8.1

Session No. 14 Theorem Proving

4. (SOLVE. 0 D) Rule 17

5. (x#a A |x-al - D
~ |x'x - a-al - t) 8.2,5
from Step 2. x is assigned type R.
6. (|x -a] - D Ix-x - a*al - E) 9

The 1imit heuristic¢ 1s used, (EXTRACT (x-a)
(x-x - a-a)) yields ((x+a) 0 T).

/. (H5 » [x+a| - M) 16 .1
The 1imit heuristic 1s used again,
(EXTRACT (x-a) (x+a)) yields (1 2-a T).

8 (ix-al <D » |x- al M/2) 16.1
from Step /.
9. (SOLVE- D M/2) 18, 17
D 0 M/2
10. (H7 + |2+a) < M/2) 16.7
from Step 7.
11. (SOLVE- [2-a] M/2) 17
M <2-'2-al -
12. (|x -al - D - |[|x - al ‘E/2-M) 16.7
from Step 6.
13. (SOLVE- D [/2-M) 17

D 1s assigned type

(intersection -0 M/2- .-« [/2-M:). QELD.

Example 5. (Limit of a quotient).
The proof of this example 1s not complete.

1. (Limfal A L#DO Lym (1/f) a (1/L)).
2. (O'E] *(DfD]/\
(x;e R-A xj# a A lxy - af - D,
C) - L ED))

+

A L#D -
(0 E - (0-DA
(x e R A x7#a A (x-al <D

-t o

3. (1f(x;) - L] - E; -

He
The 1imit heuristic (Rule 1
]]
(EXTRACT (f(x) -L) (g7 - T))
0 o), where o = [x/x]].

We are required by Rule 16 to establish the
subgoals

-1
IR
and
(2) (|f(x) - L] « Ey » [|f(x) - L] - E/2°M),16.2

Subgoal (2) is easily established by assign-
ing type E2-M> to E,, but (1) presents
difficulty. In fact the program is unable to give
a proof of (1) without some axioms or a change in
the program. See Section 7 for further comments
on this example.

< M), 16.1

597

6. Resolution.

In this section we show how the limit heur-
istic and the theory of types expldined above can
be used in resolution based programs. This is
done by giving some additional rules for resolu-
tion. These are-

6.1 SEI-TYPE Rule.

Tor each unit clause of the form (x m A),
where X is a skoleni expression which does not oc-
cur in a, assign the type A to x. Also for each
unit clause of the form (x . a), where x is a
skolem function which does not occur in a, assign
the type m--a to x. Similarly for unit
clauses of the form (b x) assign type -b -
to x. In each of these cases, remove the unit
clause. If x already has a type B and we are try
iIng to assign it a new type A, then assign the
type (A N B) if it is non-empty; if (AN B) is
empty, add the empty clause (i.e., the proof is
finished); if it cannot be determined whether
(A N B) is empty, leave the original type as is
and do not remove the unit clause. This SET-TYPE
rule need only beapplied at the beginning and
after each new unit clause is generated.

6.2 MEMBER Rule.
for a clause of the form

D v (x ¢ A)

(1) 1f x has type A then add D to the list of
clauses, (2) 1f x is a variable and x does not
occur in A, then assign the type A to x and add
D to the 1ist of clauses.

6.3 TRANSITIVEL Rule.

When attempting to resolve two clauses of
the form ((a - b) v A) and ((a' / c) Vv B),
where a = a'_ for some substitution o, 1f
(SOLVE-"b c)“”yie1ds o', then add the resolvent

(AV B)chw.a to the list of clauses.

6.4 SOLVE< Rule.
For a clause of the form

D v (A g8B),

if (SOLVE- A B) yi1elds the value », then add D
to the list of clauses.

6.5 SUBTRACTION Rule.
When attempting to resolve two clauses of the
form

((a = b))y A) and ((c # d) v B),

if (SOLVE= (a-c) (b-d)) yields value 5, then add
(A vB)O to the 1ist of clauses.

6.6 S0LVE= Rule.
For a clause cf the form

D v (A ¥ B),

if (SOLVE= A B) yields the value ., then add D
to the list of clauses. i

Before going to our limit heuristic rule, we
give some examples using the above six rules.

598

Example 1. (0 <a - SOME x (0 < x A x < a)).

Clauses Clause Rule and
Reference new Type Assignments

1. 0 < ao
2. 04 x v X/ a, From Theorem
] SET-TYPE
ao <0 w>
4. x ¢ 3 2 SOLVE<
X (0 a0 >
5. QA 4 SOLVE«<
X <0 a0>.
We could have removed x ¢ a5 first,
4. 0 ¢ x 2 SOLVE«<
X < -uu ao}
5. 0O 4 SOLVE-<
X <0 a0>
Example 2.
(0 < D, A 0 <D,
- SOME D (0 < D A D<D] A Dch))
1. 0 <D,)
2. 0 <D " From
2 Theorem
3. 04Dy D/ D] v D £ D2
4.] SET-TYPE
D_| <} wx
5 2 SET-TYPEL
02 <0 wo
6. D £D, v D£D 3 SOLVE <«
1 Vi
D <0 o>
/7. D {f 02 6 SOLVE<
D <0 D]»
8. O / SOLVE-
D

(intersection <0 D> <0 D,)

At Steps 7 and 8 SOLVE< required the knowledge
that D]and D2 both had type <0 «».

Example 3. (x e P A x ¢ N - x ¥ x)
1. xeP

2. xeN From Theorem

3. x = X (x is a skolem constant)

4. 1 SET-TYPE
X <0 >

5. B 2 SET-TYPE

Examp]e 4.

(0 caAO0<b - (SOME z (0<z A(c<z » c-a)

A (d<z + d-b)))

1,From Theorem.
a, b, ¢, d are skolem

constants. 2z is a variable.

Session No. 14 Theorem Proving

J. 04z y C<Z v d<2
4. 0fz v c<czv dFD 5 erom Theorem
5. 0tz v ctav dc«<z
6. 0 fzyv ctav dib .
7.] SET-TYPE
a <0 =
8. 2 SET-TYPE
b <0 o>
9. c <2 v d <2 3 SOLVE <
z2 Q =
10. ¢c <z v d £ Db 4 SOLVE <
11. ¢ <2 9,10 Rule 6.3
z O b>
12. c fa v d <2 5 SOLVE <
13. cta vdib 6 SOLVE <
14. ¢ / a 12,13 Rule 6.3
z <0 b>
15. G 11,14 Rule 6.3
2

(intersection <0 b><0 a>).

By ordinary resolution Example 4 would re-
quire at least two axioms,

Al. (0 < ada A 0 <« b
+ SOME 2 (0 <« 2 A Z <aaA Z <Db))
A2. (x <y A Yy <W X < W),

and a long and difficult sequence of resolution
steps. This very example occurs as a disquised
part of the proofs of most of the limit theorems,
and therefore it is important to have an easy
proof for it requiring no axioms.

We now give the LIMIT-HEURISTIC Rule.
6.7 LIMIT-HEURISTIC Rule.

When attempting to resolve two clauses of the
form

(Al <€) v C)
(m(lB! ‘ E) v Cz) ’

try to find a substitution o which will allow B

to be expressed as a non-trivial combination of A,
(B = K-A + L)d

and, 1f this is possible for some substitution .s,

then add the following new "resolvent” clause to

the clause list

(1) (K] < M) v (|A] « E/2:M)
v (L] < E/2) v C v C

where M is a new variable with type < «--'',

The first part of 6.7 can be done by
(EXTRACT A B). See Section 3.1. EXTRACT produc-
es the desired K, L, and ., where -~ is the most
general such substitution,

,)

16. Also the variable M is made an additional
argument of all skolem functions appearing in (1)
which already have at least one argument.

Session No. 14 Theorem Proving

Example 5. Given the clauses

1. f(x]) - Lll < E,

2. g(xz) - LZI < 52

3. f(x) + g(x) - L] - L2| i E,

where E]. EZ’ Xys X5, are variables, and E, E

'l!
E2 each has type <0 «>,

Rule 6.7 is used on clauses 1 and 3;
(EXTRACT (f(x])-L]) (f(x)+g(x)—L]-L2))

yields (1 (g(x) - L2) [x/x1]) (see Section 3.1);

and the following resolvent is produced
4. (V] < M) v (1)) - L] < E72eM)
v 2(lg(x) - Lyl < E/2)).

5. F(x) - Lyl < £/2M)

Voa(lglx) - Ll < g2) t 0 JORVEC

6. ~(|g(x) - L2| < £/2) 1,5 Rule 6.3
E, <0 E/2M>

7. 2,6 Rule 6.3

Example 6. (From the theorem that a function hav-
ing a derivative at a point is continuous there).
Given the clauses

1 fLa+h)h- fla) _ p| . ¢

1
2. |f(x) - f(a)| ¢ E
3. |x - a] <D

w here h, D,and E] are variables, and the other
terms have type R,

In attempting to resolve 1 and 2, the limit
heuristic Rule 6.7 employs EXTRACT to express

(f(x) - f(a))
(h - (f(a+h)h- f(a) Fr) + h_F.)O

as

where o is the substitution [(x-a)/h]. It there-
fore produces the resolvent

0. fx-alrm oy |HXL=T@) _pl g

vi(x - a)-F'| £ E/2

where M is a new variable of type <0 o~
applied to 3 and 4 gives

f(x) - f(a) .
5. — - F'| £ E/2M

Rule 6.3

|[(x - a)-F'| ¢ E/2

and D is assigned type <-- M>, Rule 6.3 applied
tol and 5 gives
6. |(x - a)-F'| ¢ E/2

and E] is assigned type <-- E/2-M-.

Again the limit heuristic Rule 6.7 is used on

C lauses 3 and 6. EXTRACT yields
(x - a)-F' = F'-(x-2a)+0

599

and the new clause
7. |F'| £ M v |x - al £ E/4-M

is produced, where M' is a new variable of
type <0 »>, Rule 6.4 is applied to 7 to obtain

8. |x - a] £ E/4W

and M' is assigned type <|F'| >,

Finally, Rule 6,3 is applied to 3 and 8 to
yield O . QED.
This final step also assigned to D the type
(intersection <-= E/4-M'> <0 M>),

Ordinary resolution would require several
axioms for this nroof and a very long deduction,

The clause (1) which is added by the Limit-
heuristic Rule 6.7 can be thought of as a kind of
"catalyst" clause, because it speeds up the der-
ivation of [(without the necessity for addition-
al axioms). It might be useful to produce similar
catalyst clauses in other situations where diffi-
cult proofs are required.

7. Comments.

Ore remark is that, except for the example
on quotients, (mentioned again below) these limit
theorems were proved without the inclusion of
axioms (reference theorems). This is desirable
because,for most automatic theorem proving pro-
grams, the axioms have to be selected by humans
for each theorem being proved. Of course, we had
to include the limit heuristic itself which acts
like some axioms, but it does not hinder the proof
of other theorems not requiring it, because it
does not release its action unless its need is
detected. This is in the spirit of the "Big
Switch" mentioned by Newall, Feigenbaum, and
others.

It was surprising to us that so many theorems
would follow from one heuristic. Will this happen
in other areas of mathematics? Can we provide a
series of heuristics with big switches which will
handle many areas of mathematics without excess-
ive irrelevant computing? We doubt that it can
be so simple, but nevertheless feel that such
heuristics should be sought for other areas of
mathematics. The success of such a collection
of heuristics will depend in great part on the
cleverness of the overseer program which directs
the use of these heuristics. Hewitt's program-
ming language PLANNER [5] or the Stanford Research
Institute language QA4 might be well suited for
writing such overseer programs, or for improving
existing ones.

CALCUATE VEHRSUS

Ore thing that contributed to the success of
this effort was the use of the routines SOLVE<,
SOLVE*, and SIMPLIFY. The point is that these
routines were used to calculate something rather
than prove something. Since proving is inherent-
ly harder than calculation, we feel that such
routines should be employed as much as possible.
Think how difficult it would be in our proofs to
employ a set of algebraic simplification axioms

600

iIn place of the routine SIMPLIFY. Or suppose that
instead of using EXTRACT to give a decomposition,

we tried to prove that such a decomposition exists.

This suggests that more use ought to be made of
calculation procedures within the proving mechan-
isms of automatic theorem provers. For example ,

In proving theorems

about we might calculate
den vati ves 1innts
1Imits solutions to equations

and inequalities

differential equations derivatives

real functions solutions to equations

measure theory that two sets are equal

algebraic topology group theoretic results

anything a most general unifier

The unification algorithm is such an example, and
it revolutionized automatic theorem proving when
J. A. Robinson defined its role in resolution.

A source of power to a mathematician is his abil-
ity to leave to calculation those things that can
be calculated and thereby free his mind for the
harder task of finding inferences.

VBEVBERSHP TYPES

The use of membership types also helped con-
siderably in proving these limit theorems. It is
as if in proving,

(2) ME x (P(x) A Q(x))

we first find A, the set of all x for which P(x)
is true and assign A as the type of x, and then
find B the set of all x for which Q(x) is true
and if (AAB) is not empty, assign it as the type
of X, and declare (2) to be true. This allows a
maximum amount of freedom in the proving of Q(x)
after P(x) has been proved; indeed x remains a
variable, even though restricted, in the proof of
Q(x). This idea is somewhat related to constraint
methods used by Fikes in [7].

This procedure worked well in our examples
because linear inequalities are so easy to solve.
We do not recommend that such a procedure should
be used in all other situations, when theorems of
type (2) are being proved, because it may be too
difficult (or unnecessary) to solve for A, the
set of all x for which P(x) is true, before prov-
ing Q(x). We d suggest however that a procedure
be followed that leaves x as a variable, though
restricted, after P(x) has been proved and while
Q(x) is being proved. Type theory might help
attain such an objective.

Our present program will not prove limit
theorems involving quotients, such as

(3) Tim f(x) _ o Tlim 1]
X-+a =LALYO x+a f({x) LD’

without the help of some axioms (see Example 5,
Section 5). However, no axioms are needed for the
proof of (3) If we add another heuristic to the
program which is similar to the limit heuristic,

Session No. 14 Theorem Proving

but which is based upon the inequality

[x] =yl < [x -yl

instead of the triangle inequality

x +yl o= dx] o+ yl,
upon which the limit heuristic is based. In fact,
it might be desirable to develop a more general
heuristic, which not only encompasses both ideas,
but also tries to attain such objectives as
bounding an expression, e.g.,

lg(x)| < M, for some M,
and making an expression small, e.g.,

If(x) - LI < E, for a given E.

Finally, it should be mentioned that the
routines described in Section 2 are meant for
general use In analysis and not just as an aid iIn
proving limit theorems. It is hoped that routines
of this kind can be used to make an analysis
prover in which relatively simple heuristics can
be added for great effect.

8. Acknowledgement. The work reported herein
was conducted at the Artificial Intelligence Lab-
oratory, a Massachusetts Institute of Technology
research program supported by the Advanced Re-
search Projects Agency of the Department of De-
fence, and was monitored by the Office of Naval
Research under Contract Number N00014-70-A-0362-
0002, and was also supported by National Insti-
tutes of Health Grant GM 15769-03.

References.

1. W. W. Bledsoe, "Splitting and Reduction
Heuristics in Automatic Theorem Proving,”
Artificial Intelligence 2 (1971) pp 55-77.

2. J. A. Robinson, "A Machine-Oriented Logic
Based on the Resolution Principle," Jour.
AM 12 (January 1965) pp.23-41.

3. Hao Wang, "Toward Mechanical Mathematics,"
IBM Jour. Res. Dev., 4, pp. 2-22.

4. S. C. Kleene, Introduction to Metamathematics,,
D. van Nostrand, New York, 1952.

5. Carl Hewitt, "Planner," M.I.LT A.l. Maro No.
168, August 1970.

6. Dag Prawitz, "An Improved Proof Procedure,”
Theoria, 26, pp. 102-39.

/. R. E. Fikes, "REF-ARF:. a system for solving
problems stated as procedures," Artificial
Intelligence 1 (1970) pp.27-120.

