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ABSTRACT: Some re lat ive ly simple concepts have 
been developed which, when incorporated into 
existing automatic theorem proving programs 
(including those using resolut ion), enable them 
to prove e f f i c ien t l y a number of the l im i t 
theorems of elementary calculus, including the 
theorem that d i f f e r e n t i a t e functions are con­
tinuous. These concepts include: (1) A l imited 
theory of types, to designate whether a given 
variable belongs to a certain interval on the 
real l i ne , (2) An algebraic s impl i f icat ion 
routine, (3) A routine for solving linear i n ­
equal i t ies, applicable to a l l areas of analysis, 
and (4) A " l im i t heur is t ic" , designed especially 
for the l im i t theorems of calculus. 

jL Introduction. In this paper we describe 
some re lat ive ly simple changes that have been 
made to an existing automatic theorem proving 
program to enable it to prove e f f i c ien t l y a num­
ber of the l im i t theorems of elementary calculus. 
These changes include subroutines of a general 
nature which apply to a l l areas of analysis, and 
a special " l im i t -heur is t ic " designed for the 
l im i t theorems of calculus. 

These concepts have been incorporated into 
an existing LISP program and run on the PDP-10 
at the A . I . Laboratory, M.I.T., to obtain com­
puter proofs of many of the l im i t theorems, 
including the theorem that the l im i t of the sum 
of two real functions is the sum of their l im i t s , 
and a similar theorem about products. Also 
computer proofs have been obtained (or are easily 
obtainable) of the theorems that a continuous 
function of a continuous function is continuous, 
and that a function having a derivative at a 
point is continuous there, as well as l im i t 
results for polynomial functions. 

The l im i t theorems of calculus present a 
surprisingly d i f f i c u l t challenge for general 
purpose automatic theorem provers. One reason 
for this is that calculus is a branch of analysis, 
and proofs in analysis require manipulation of 
algebraic expressions, solutions of inequal i t ies, 
and other operations which depend upon the axioms 
of an ordered f i e l d . It is in applying these 
f i e l d axioms that automatic provers are usually 
forced into long and d i f f i c u l t searches. On the 
other hand, a human mathematician is often able 
to easily perform the necessary operations of 
analysis without being aware of the exp l i c i t use 
of the f i e l d axioms. One purpose of this paper 
is to describe ways in which automatic provers 
can also avoid the use of the f i e l d axioms and 

and speed up proofs in analysis. Section 2 ex­
plains how this is done using a l imited theory 
of types and routines for algebraic s impl i f ica­
t ion and solving l inear inequal i t ies. 

In Section 3 we present the l im i t -heur is t i c , 
give examples of i t s use, and discuss i t s 
"forcing" nature which enables it to cur ta i l 
combinatorial searches. 

The reader interested only in resolution 
based programs should skip Sections 4 and 5 and 
go d i rect ly to Section 6, where we explain how 
resolution programs can be altered to make use 
of the l im i t heuristic and other concepts. 

In Section 5 we give a detailed description 
of a computer proof of the theorem that the 
l im i t of the product of two functions is the 
product of their l im i t s . This proof was made by 
a program which is the same as that described 
in 
in 
n LI J, except that the subroutine, RESOLUTION, 
n [1] has been replaced by a new subroutine 

called IMPLY. We have thus eliminated resolution 
altogether from our program,replacing it by an 
"implication method" which we believe is faster 
and easier to use (though not complete). This 
implication method is described br ie f l y in 
Section 4, and excerpts from actual computer 
proofs using it are given there and in Section 5. 

It appears that some of these ideas may 
have wider implications than the l imited scope 
in which they were used here. This is discussed 
in the comments of Section 7 and throughout the 
paper. 
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as a solution of (2) the substi tut ion [ b / x ] , 2 

and require (0 < b -> b < b) in (3 ) , which 
is impossible. Of course (1) is unprovable with 
out further hypotheses (or axioms) but it can be 
easily handled by the use of types (which im­
p l i c i t l y assumes certain axioms). Our approach 
in proving (1) is to assign type <0 »> to b, 
and then t ry to prove 

by assigning the type <0 b^ to x. The result ing 
type of x, <0 b>, was derived as the in ter­
section of i t s i n i t i a l type <0 <*> gotten from 
(5) , and the interval <-« b-, which would have 
been the type gotten from (6) alone. Since this 
intersection is not empty (because b has type 
<0 <*>), it is assigned as the result ing type of 
x. Even though the variable x had already been 
"solved for" in (5) (typed), it remains a va r i ­
able in the solution of (6) (though l imited in 
scope) and therefore could be "solved for" again 
(retyped). In the examples of Section 5 some of 
the variables are retyped two or three times, 
and this greatly simpli f ies the proofs. 

Types are used by the routines SOLVE< and 
SET-TYPE which are described below. 

2.1 SOLVE< 
This is a routine for solving l inear i n ­

equal i t ies. (S0LVE< A B) chooses a variable 
from A or from B and attempts to solve the 
inequality (A < B) in terms of that variable. 
If this f a i l s it then chooses another variable 
and t r ies again. Since the terms and variables 
of A and B may be typed, this routine must take 
into consideration such types and reset the type 
of the variable when the solution is obtained. 
In fact the answer is completely given by the 
new types. The examples below best i l l us t ra te 
this point. If it can show that A is less than 
B, then the routine w i l l return the answer "T" 
whether or not A and B have any variables. 

2. We follow the usual practice of denoting 
a subst i tut ion by a 11st [ b ! / a l f b 2 /a 2 ». . . ,bn /an ] 
where each ai is to be replaced by the correspond­
ing B i . 

In this example the type of D in the answer 
could have been given as <0 (minimum DjD.)> but 
we f ind the intersection form more convenient. 

6. x 
a 

<.— oo> 
b 

Type x is <0 »> 

Type a is <-« 0> 

Type b i s <0 °°> 

In the actual theorem proving process, 
S0LVE< is applied to formulas that have been 
converted to quant i f ier free form by the in t ro­
duction of skolem expressions.3 Precautions are 
taken by S0LVE< to insure that it does not solve 
for a variable x in terms of a skolem expression 
in which x occurs. This is essential ly the same 
precaution taken by J. A. Robinson in his 
Unification Algorithm [2 ] . 

For example, consider the false statement 
SOME x ALL y (y < x) . 

The skolem form of this is 
(y x) < x . 

The result of a cal l to (S0LVE< (y x) x) is 
NIL, since x occurs in the skolem expression 
(y x ) . 

On the other hand, the theorem 
SOME x ALL y SOME z (y < x+z) 

which has skolem form 
(y x) < x+z 

can be proved by a cal l to (S0LVE< (y x) (x+z)) 
which correctly assigns type <(y x)-x to z. 

Actual ly, the routine SOLVE< just retypes 
a variable in a way that guarantees the solution 
of the desired inequal i ty. 

More extensive routines could easi ly be 
wri t ten (indeed have been wri t ten by others) to 

3. A skolem expression is a term whose main 
function symbol is a skolem function, cf. foot­
note 11 in Section 4 which describes the elimina­
t ion of quantif iers by the introduction of 
skolem functions. 
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solve nonlinear inequal i t ies, but these were not 
found necessary for proving the examples 
reported here. 

2.2 SOLVE=. This is a routine for solving 
l inear equations. Given two arithmetic expres­
sions A and B, it selects a variable x from A 
or B and trys to solve the equation (A = B) in 
terms of x. If it succeeds, with answer y, it 
returns the subst i tu t ion, [ y /x ] . Otherwise it 
selects another variable and trys again, return­
ing NIL i f a l l f a i l . 

2.3 SET-TYPE. This is a subroutine which 
assigns types to certain skolem expressions. If 
a formula of the form (A B) is in a con­
junctive position of E ( i . e . , E can be expressed 
as ((A ε B D) for some D), and if A is a 
skolem expression which does not occur in B, 
then (SET-TYPE E) assigns the type B to A and 
returns D, the formula gotten by removing (A ε B) 
from E. If A already has type C, then SET-TYPE 
assigns the intersection (B∩ C) as the type of 
A, if (BO C) is non-empty. If (B n C) is empty 
it returns E. If (B ∩ C) is not empty, but 
cannot be given speci f ica l ly then the formula 
( intersection B C) is given as the type of A. 

For example, if E is the formula 
(A A (x ε P, A (B - y c R))) 

then (SET-TYPE E), assigns F^ as the type of x, 
and returns 
(1) (A A (B > y , R)) . 
I f , in this example, x already had type F*, then 
P^ is assigned as the new type of x; if it already 
had type <-l 1> then it assigns type <0 1> to x; 
if it already had type <-«■ -1> then it returns 
(A A (X ε P v (B - y r R))) . 

In a simi lar way, it assigns types to skolem 
expressions which sat isfy certain inequal i t ies. 
For example, if E is 

(A < 0 A (B < 1 V O) 
then (SET-TYPE E) assigns type <-» 0- to A and 
returns 

then (SET-TYPE E) assigns type < B> to A, and 
type <A <*>> to B and returns C. S imi lar ly , 
(SET-TYPE (A f 0)) can be made to assign type 
(union < -. 0><0 *>) to A, but th is sort of typing 
was not used in any of the examples given in this 
paper. 

2.4 SIMPLIFY. This is an algebraic s impl i f ica­
t ion routine which converts algebraic expressions 
into a canonical form, sorts i t s terms, and 
cancels complementary terms of the form (a+(-a)) 
and (a - - ) . It is used in a l l of our routines 
which manipulate algebraic expressions. Such 

2- Limit Heurist ic. The l im i t heur ist ic rule 
defined below, in conjunction with the routines 
described in Section 2, is used to help prove 
l im i t theorems. LIMIT-HEURISTIC: When t ry ing 
to use a hypothesis of the type 

(and possibly other hypotheses) to establish a 
conclusion of the type 

f i r s t t r y to f ind a substi tut ion o which w i l l 
allow Bo to be expressed as a non- t r iv ia l com­
binat ion5 of A0, (B = K-A + L)o, and then t ry to 
establish the three new conclusions: 

Such a procedure is val id because if we can 
f ind such a o and prove A, B, and C, then we 
would have 

B 
0 

K-A + L 
o 

o 
1 ( |K|-|A| + |L|) 

< M-E/2M + E/2 

= E . 
Of course, this is based on the tr iangle inequal­
i t y , and uses the fact that 1/2 + 1/2 
= 1, M-l/M = 1 for M > 0 , etc. 

As an example, in proving the theorem that 
the l im i t of the product of two functions of real 
variables is the product of thei r l i m i t s , we f ind 
ourselves t ry ing to establish a conclusion of 

4. The notation B0 denotes the result of ap­
plying the subst i tut ion o to B. 

5. The routine EXTRACT, described in 
Section 3.1 below, is used to express B in terms 
of A. 
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which can be used to help establish (1) (provided 
that we sat isfy the conditions for (2)) . If we 
apply the l im i t heurist ic to (2) and (1) we f ind 
that for α = [ x / x ' ] 

(which also has conditions that must be sat is­
f i ed ) . Subgoal B follows from (2) , and subgoal 
C follows from (3). 

The complete proof of the l im i t product 
theorem is given in Section 5 in great de ta i l . 
The l im i t heurist ic is used there not only to 
set up the three subgoals A, B, and C, but also 
to establish A and C, by proposing further 
subgoals. 

Because the l i m i t heurist ic enables our 
program to prove many theorems about l i m i t s , we 
regard it as a rather interesting t r i c k . But 
more interesting and important than the fact 
that it works some problems is the principle 
behind i t . That principle might be stated: 

To establish a conclusion C from 
several hypotheses, among which is 
H, force H to contribute a l l it can 
towards establishing C and leave a 
remainder to be established with 
the help of the other hypotheses. 

The value of such a "forcing" technique is 
twofold. F i r s t , if one can t ru ly make H con­
t r ibute a l l it can towards C, then H is not 
needed to establish the remainder. That i s , a 
reduction in the number of hypotheses is achieved 
while a s igni f icant step in the proof is made. 

Second, it is impl ic i t in the notion of 
"force" that certain facts are used to make an 
inference in a computational manner. For 
example, the l im i t heurist ic "uses" many facts 
about algebra, such as the tr iangle inequal i ty; 

but these facts are used to compute something, 
not to make random inferences. This strongly 
inhib i ts the generation of subgoals that occurs 
if one freely permits the application of axioms 
to his goals. We comment further on this "com­
putational" aspect of the l im i t heurist ic in 
Section 7. 

We feel that such a forcing technique has 
applications in other areas of theorem proving 
where two or more hypotheses H,, Ho,. . .Hn are 
needed to establish one conclusion C that cannot 
be loqical ly divided. In such applications the 
user must provide a heurist ic which w i l l enable 
the computer to determine how to qet a part ia l 
result from Hj and leave a reaminder C to be 
proved by the other hypotheses. 

The l im i t heurist ic uses the routine 
EXTRACT described below, which in turn uses the 
s impl i f icat ion routine described in Section 2. 

3.1 EXTRACT. If there is a substitut ion o for 
which Bn can be expressed as a non-tr ival com­
bination of A0 , 

(B = K-A + L)0 

then (EXTRACT A B) returns (K L n) , where o is 
the most general such subst i tut ion. Otherwise 
NIL is returned. 

A more precise def in i t ion follows the ex­
amples . 

Examples. In the fol lowing, the symbols x, t, 
and h represent variables while a l l other 
symbols represent constants. 

6. Throughout this paper we use the le t te r 
"T" to denote both " t r u th " , and the empty sub­
s t i t u t i on . This reserves "NIL" for denotinq 
" fa lsp" . 
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Examples 3, 4, 5 are useful in proving 
l im i t theorems about the sum of two functions, 
the product of two functions (see Section 5) , and 
the quotient of two functions. Example 6 is used 
in proving that a d i f f e r e n t i a t e function is 
continuous. 

Suppose there is a substi tut ion α and an 
expression x such that , Aα and Bα are poly­
nomials in x, and B is l inear in x. Then there 
are expressions a, c, b and d such that x does 
not occur in c, b, or d, and Aa and B0 can be re-
expressed as 

then EXTRACT returns NIL. 

4_. The Implication Method 
At the heart of the program is a subroutine 

called IMPLY whose essential purpose is to 
handle logical deductions in the predicate cal ­
culus. It is a replacement for resolution in [1], 
We offer here a cursory description of i t s 
operation, suf f ic ient to an understanding of the 
proofs in Section 5. 

The operation of IMPLY bears a closer 
resemblance to the proof techniques of the 
mathematician than does resolution. In general 
IMPLY examines the connectives in the formulas; 
given as arguments to i t ,and creates one or two 
subgoals. These subgoals are usually cal ls to 
IMPLY with new arguments which are closely 
related to but simpler than the or iginal arguments 
The result ing analysis of the formula to be 
proved is easy to fol low. 

This rather natural operation bears some 
responsibi l i ty for the development of the l im i t 
heurist ic and the other techniques of this paper. 
In comparing the subgoals called by IMPLY with 
the methods of proof used in elementary calculus 
we established new subroutines and subgoals, 
such as the l im i t heur is t ic , suf f ic ient to prove 
a number of theorems. 

The subroutine IMPLY has two arguments: 
E (the current formula under 

examination) 
R (a reserve), 
is of the form Usually E 
(H * C) 

The answer to a cal l to IMPLY is ei ther a sub­
s t i tu t ion or NIL. The la t te r indicates fa i lure 
to establish the subgoal. IMPLY attempts to 

f ind and return the most general substi tut ion o 
such that (R -+ E) is t rue. If 0 Is the empty 
substi tut ion thenaIMPLY returns T. 

Table 1 gives rules describing some of the 
operations of IMPLY. These rules are applied 
in the order of the i r occurence in the table; 
i f one f a i l s , the next is t r i e d ; i f a l l f a i l , 
IMPLY returns NIL. IMPLY returns the value 
given by the f i r s t rule which does not give NIL. 
In the following we use the shorter notation 
[E,R] for (IMPLY E R). 
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( i . e . , i f there is a substi tut ion α, 
which unif ies A and B, then return a) 

Table 1 (concluded) 

Before a formula E is sent to IMPLY it is 
f i r s t converted to a quant i f ier free form, but 
without converting it f i r s t to prenex normal form. 
The quant i f ier free form is achieved by using 
skolem functions, and is essential ly the same as 
that used by Wang [ 3 ] . 1 1 A cal l is then made 
to (IMPLY E NIL). 

10. It is possible for IMPLY to y ie ld a subst i­
tut ion which assigns to a variable x more than 
one value: a/x, b/x, a ≠b. If this happens and 
if IMPLY t r ies to substitute for x in another 
expression (as it might do using Rule 8.2, 6.2, 
2.2, or 4 .2 ) , then IMPLY returns NIL. 

If Rule 8.2 f a i l s on the ≠l given by Rule 8.1 
( i . e . , if [H -► B , R] returns NIL), then the 
program "backs up" and recomputes 8.1 t ry ing to 
f ind another solution o l ' of [H -+ A, R] for 
which [H -* B . i ,R ] can succeed. A similar back­
ing up proceeaure is used in Rules 2, 4, and 6. 
11. Speci f ica l ly , if "posi t ive" and "negative" 
are given the meaning as in Wang [3] pp. 9-10, 
then the elimination of quanti f iers consists of 
deleting each quant i f ier and variable immediately 
after i t , and replacing each variable v bound 
by a posit ive quant i f ier with a l i s t whose f i r s t 
member is v and whose other members are those 
variables bound by negative quantif iers whose 
scope Includes v. This l i s t which replaces v is 

simply the application pf a skplem function to 
certain arguments, with no ambiguity, but as an 
aid to memory, the skolem function is named v. 
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Gentzen sequents (cf . Kleene's G3 [4]) and the 
subgoals which IMPLY sets up. The technique of 
of f inding a most general un i f ie r is the uni f ica­
t ion algorithm of Robinson [ 2 ] . On the whole, 
IMPLY is closer to the system of Prawitz [6] than 
to resolut ion. 

5. Examples of Computer Proofs. 
Here we give excerpts from the proofs of 

f ive theorems, which were made by the program 
PROVER using IMPLY as i t s principal subroutine. 
PROVER is explained in [1] and IMPLY is described 
b r ie f l y in Section 4 above, but the reader fami l ­
iar with Sections 2 and 3 should be able to 
follow these descriptions with no reference to [1] 
and l i t t l e to Section 4. 

In order to use the l im i t heurist ic described 
in Section 3, we must add the following rule 
to Table 1. 

Also, we need two additional rules for solv­
ing inequal i t ies, one rule for types, and one 
for equations. 

These f ive reles are placed at the beginning 
of Table 1 (Section 4 ) , in the order 17, 18, 19, 
20, 16. 

Also, a provision is made for assigning a 
type to an expression A when it appears in the 
form (A > B) or (A • B) in the hypothesis of the 
theorem being proved. This is accomplished when 
IMPLY is proving a subgoal of the form [H -> C, R] 
by replacing H by (SET-TYPE H). Such calls to 
SET-TYPE need only be made in Rules 5, 10, 13, 

12. In case K = 1, Step 16.1 is omitted, and M 
is set to 1 in 16.2. 
13. M is given type 0 - and also M is made an 
additional argument of a l l skolem functions 
which already have at least one argument. 
14. In case L = 0, Step 16.3 is omitted. 

and before the f i r s t call to IMPLY, i . e . , when 
new material is added to H. (See Section 2.3). 

In what fol lows, R denotes the real numbers, 
P denotes the posi t ives, and FRR denotes the 
Functions on R to R. We use (Lim f a L) to 
denote lim f (x) = L. The standard def in i t ion 

x->a 
of l im i t i s : 

The f i r s t three parts of the conclusion, 
(a L R), (U-Lp) e R, and (f-g) t FRR are proved 
by the program using the hypotheses of the 
theorem and the closure properties of R_ and FRR. 

The remainder of the theorem is prepared for 
IMPLY by replacing ( f -g) (x) by ( f (x ) -g(x) ) 
and by eliminating the quanti f iers and introduc­
ing skolem expressions. 
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Subgoal (2) is easily established by assign­
ing type E/2-M> to E, , but (1) presents 
d i f f i c u l t y . In fact the program is unable to give 
a proof of (1) without some axioms or a change in 
the program. See Section 7 for further comments 
on this example. 

6. Resolution. 
In this section we show how the l imi t heur­

i s t i c and the theory of types expldined above can 
be used in resolution based programs. This is 
done by giving some additional rules for resolu­
t ion. These are-
6 .1 SET-TYPE Rule. 

Tor each unit clause of the form (x ■ A), 
where x is a skoleni expression which does not oc­
cur in a, assign the type A to x. Also for each 
unit clause of the form (x . a) , where x is a 
skolem function which does not occur in a, assign 
the type ■ - - a to x. Similarly for unit 
clauses of the form (b x) assign type -b -
to x. In each of these cases, remove the unit 
clause. If x already has a type B and we are try 
ing to assign it a new type A, then assign the 
type (A ∩ B) if it is non-empty; if (A ∩ B) is 
empty, add the empty clause ( i . e . , the proof is 
f in ished); if it cannot be determined whether 
(A ∩ B) is empty, leave the original type as is 
and do not remove the unit clause. This SET-TYPE 
rule need only beapplied at the beginning and 
after each new unit clause is generated. 

Before going to our l im i t heurist ic ru le , we 
give some examples using the above six rules. 
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One remark is that , except for the example 
on quotients, (mentioned again below) these l im i t 
theorems were proved without the inclusion of 
axioms (reference theorems). This is desirable 
because,for most automatic theorem proving pro­
grams, the axioms have to be selected by humans 
for each theorem being proved. Of course, we had 
to include the l im i t heurist ic i t s e l f which acts 
l ike some axioms, but it does not hinder the proof 
of other theorems not requiring i t , because it 
does not release i ts action unless i t s need is 
detected. This is in the s p i r i t of the "Big 
Switch" mentioned by Newall, Feigenbaum, and 
others. 

It was surprising to us that so many theorems 
would follow from one heur ist ic . Wil l this happen 
in other areas of mathematics? Can we provide a 
series of heuristics with big switches which w i l l 
handle many areas of mathematics without excess­
ive irrelevant computing? We doubt that it can 
be so simple, but nevertheless feel that such 
heuristics should be sought for other areas of 
mathematics. The success of such a col lect ion 
of heuristics w i l l depend in great part on the 
cleverness of the overseer program which directs 
the use of these heur ist ics. Hewitt's program­
ming language PLANNER [5] or the Stanford Research 
Inst i tu te language QA4 might be well suited for 
wr i t ing such overseer programs, or for improving 
exist ing ones. 
CALCULATE VERSUS PROVE 

One thing that contributed to the success of 
this e f fo r t was the use of the routines S0LVE<, 
SOLVE*, and SIMPLIFY. The point is that these 
routines were used to calculate something rather 
than prove something. Since proving is inherent­
ly harder than calculat ion, we feel that such 
routines should be employed as much as possible. 
Think how d i f f i c u l t it would be in our proofs to 
employ a set of algebraic s impl i f icat ion axioms 
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in place of the routine SIMPLIFY. Or suppose that 
instead of using EXTRACT to give a decomposition, 
we t r ied to prove that such a decomposition exists. 
This suggests that more use ought to be made of 
calculation procedures within the proving mechan­
isms of automatic theorem provers. For example , 

in proving theorems 
about 

den vati ves 
1 lmi ts 

we might calculate 
1 inn ts 
solutions to equations 
and inequalit ies 

di f fe rent ia l equations derivatives 
real functions 
measure theory 
algebraic topology 
anything 

solutions to equations 
that two sets are equal 
group theoretic results 
a most general uni f ier 

The uni f icat ion algorithm is such an example, and 
it revolutionized automatic theorem proving when 
J. A. Robinson defined i t s role in resolution. 
A source of power to a mathematician is his ab i l ­
i t y to leave to calculation those things that can 
be calculated and thereby free his mind for the 
harder task of f inding inferences. 
MEMBERSHIP TYPES 

The use of membership types also helped con­
siderably in proving these l im i t theorems. It is 
as if in proving, 
(2) SOME x (P(x) A Q(x)) 
we f i r s t f ind A, the set of a l l x for which P(x) 
is true and assign A as the type of x, and then 
f ind B the set of a l l x for which Q(x) is true 
and if (AAB) is not empty, assign it as the type 
of x, and declare (2) to be true. This allows a 
maximum amount of freedom in the proving of Q(x) 
after P(x) has been proved; indeed x remains a 
variable, even though res t r i c ted , in the proof of 
Q(x). This idea is somewhat related to constraint 
methods used by Fikes in [ 7 ] . 

This procedure worked well in our examples 
because l inear inequal i t ies are so easy to solve. 
We do not recommend that such a procedure should 
be used in a l l other s i tuat ions, when theorems of 
type (2) are being proved, because it may be too 
d i f f i c u l t (or unnecessary) to solve for A, the 
set of a l l x for which P(x) is t rue, before prov­
ing Q(x). We dp_ suggest however that a procedure 
be followed that leaves x as a var iable, though 
res t r i c ted , after P(x) has been proved and while 
Q(x) is being proved. Type theory might help 
attain such an objective. 

Our present program w i l l not prove l im i t 
theorems involving quotients, such as 

without the help of some axioms (see Example 5, 
Section 5). However, no axioms are needed for the 
proof of (3) if we add another heurist ic to the 
program which is simi lar to the l im i t heur is t ic , 

upon which the l im i t heurist ic is based. In fac t , 
it might be desirable to develop a more general 
heur is t ic , which not only encompasses both ideas, 
but also t r ies to at tain such objectives as 
bounding an expression, e .g . , 

|q(x) | < M, for some M, 
and making an expression small, e .g . , 

! f (x) - L! < E, for a gi ven E. 

F inal ly , it should be mentioned that the 
routines described in Section 2 are meant for 
general use in analysis and not just as an aid in 
proving l im i t theorems. It is hoped that routines 
of this kind can be used to make an analysis 
prover in which re la t ive ly simple heuristics can 
be added for great ef fect . 
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