
586 Session No. 14 Theorem Proving

COMPUTER PROOFS OF LIMIT THEOREMS

W. W. Bledsoe, Robert S. Boyer,
William H. Henneman

Massachusetts Inst i tu te of Technology
and the University of Texas

ABSTRACT: Some re lat ive ly simple concepts have
been developed which, when incorporated into
existing automatic theorem proving programs
(including those using resolut ion), enable them
to prove e f f i c ien t l y a number of the l im i t
theorems of elementary calculus, including the
theorem that d i f f e r e n t i a t e functions are con­
tinuous. These concepts include: (1) A l imited
theory of types, to designate whether a given
variable belongs to a certain interval on the
real l i ne , (2) An algebraic s impl i f icat ion
routine, (3) A routine for solving linear i n ­
equal i t ies, applicable to a l l areas of analysis,
and (4) A " l im i t heur is t ic" , designed especially
for the l im i t theorems of calculus.

jL Introduction. In this paper we describe
some re lat ive ly simple changes that have been
made to an existing automatic theorem proving
program to enable it to prove e f f i c ien t l y a num­
ber of the l im i t theorems of elementary calculus.
These changes include subroutines of a general
nature which apply to a l l areas of analysis, and
a special " l im i t -heur is t ic " designed for the
l im i t theorems of calculus.

These concepts have been incorporated into
an existing LISP program and run on the PDP-10
at the A . I . Laboratory, M.I.T., to obtain com­
puter proofs of many of the l im i t theorems,
including the theorem that the l im i t of the sum
of two real functions is the sum of their l im i t s ,
and a similar theorem about products. Also
computer proofs have been obtained (or are easily
obtainable) of the theorems that a continuous
function of a continuous function is continuous,
and that a function having a derivative at a
point is continuous there, as well as l im i t
results for polynomial functions.

The l im i t theorems of calculus present a
surprisingly d i f f i c u l t challenge for general
purpose automatic theorem provers. One reason
for this is that calculus is a branch of analysis,
and proofs in analysis require manipulation of
algebraic expressions, solutions of inequal i t ies,
and other operations which depend upon the axioms
of an ordered f i e l d . It is in applying these
f i e l d axioms that automatic provers are usually
forced into long and d i f f i c u l t searches. On the
other hand, a human mathematician is often able
to easily perform the necessary operations of
analysis without being aware of the exp l i c i t use
of the f i e l d axioms. One purpose of this paper
is to describe ways in which automatic provers
can also avoid the use of the f i e l d axioms and

and speed up proofs in analysis. Section 2 ex­
plains how this is done using a l imited theory
of types and routines for algebraic s impl i f ica­
t ion and solving l inear inequal i t ies.

In Section 3 we present the l im i t -heur is t i c ,
give examples of i t s use, and discuss i t s
"forcing" nature which enables it to cur ta i l
combinatorial searches.

The reader interested only in resolution
based programs should skip Sections 4 and 5 and
go d i rect ly to Section 6, where we explain how
resolution programs can be altered to make use
of the l im i t heuristic and other concepts.

In Section 5 we give a detailed description
of a computer proof of the theorem that the
l im i t of the product of two functions is the
product of their l im i t s . This proof was made by
a program which is the same as that described
in
in
n LI J, except that the subroutine, RESOLUTION,
n [1] has been replaced by a new subroutine

called IMPLY. We have thus eliminated resolution
altogether from our program,replacing it by an
"implication method" which we believe is faster
and easier to use (though not complete). This
implication method is described br ie f l y in
Section 4, and excerpts from actual computer
proofs using it are given there and in Section 5.

It appears that some of these ideas may
have wider implications than the l imited scope
in which they were used here. This is discussed
in the comments of Section 7 and throughout the
paper.

Session No. 14 Theorem Proving 587

as a solution of (2) the substi tut ion [b / x] , 2

and require (0 < b -> b < b) in (3) , which
is impossible. Of course (1) is unprovable with
out further hypotheses (or axioms) but it can be
easily handled by the use of types (which im­
p l i c i t l y assumes certain axioms). Our approach
in proving (1) is to assign type <0 »> to b,
and then t ry to prove

by assigning the type <0 b^ to x. The result ing
type of x, <0 b>, was derived as the in ter­
section of i t s i n i t i a l type <0 <*> gotten from
(5) , and the interval <-« b-, which would have
been the type gotten from (6) alone. Since this
intersection is not empty (because b has type
<0 <*>), it is assigned as the result ing type of
x. Even though the variable x had already been
"solved for" in (5) (typed), it remains a va r i ­
able in the solution of (6) (though l imited in
scope) and therefore could be "solved for" again
(retyped). In the examples of Section 5 some of
the variables are retyped two or three times,
and this greatly simpli f ies the proofs.

Types are used by the routines SOLVE< and
SET-TYPE which are described below.

2.1 SOLVE<
This is a routine for solving l inear i n ­

equal i t ies. (S0LVE< A B) chooses a variable
from A or from B and attempts to solve the
inequality (A < B) in terms of that variable.
If this f a i l s it then chooses another variable
and t r ies again. Since the terms and variables
of A and B may be typed, this routine must take
into consideration such types and reset the type
of the variable when the solution is obtained.
In fact the answer is completely given by the
new types. The examples below best i l l us t ra te
this point. If it can show that A is less than
B, then the routine w i l l return the answer "T"
whether or not A and B have any variables.

2. We follow the usual practice of denoting
a subst i tut ion by a 11st [b ! / a l f b 2 /a 2 ». . . ,bn /an]
where each ai is to be replaced by the correspond­
ing B i .

In this example the type of D in the answer
could have been given as <0 (minimum DjD.)> but
we f ind the intersection form more convenient.

6. x
a

<.— oo>
b

Type x is <0 »>

Type a is <-« 0>

Type b i s <0 °°>

In the actual theorem proving process,
S0LVE< is applied to formulas that have been
converted to quant i f ier free form by the in t ro­
duction of skolem expressions.3 Precautions are
taken by S0LVE< to insure that it does not solve
for a variable x in terms of a skolem expression
in which x occurs. This is essential ly the same
precaution taken by J. A. Robinson in his
Unification Algorithm [2] .

For example, consider the false statement
SOME x ALL y (y < x) .

The skolem form of this is
(y x) < x .

The result of a cal l to (S0LVE< (y x) x) is
NIL, since x occurs in the skolem expression
(y x) .

On the other hand, the theorem
SOME x ALL y SOME z (y < x+z)

which has skolem form
(y x) < x+z

can be proved by a cal l to (S0LVE< (y x) (x+z))
which correctly assigns type <(y x)-x to z.

Actual ly, the routine SOLVE< just retypes
a variable in a way that guarantees the solution
of the desired inequal i ty.

More extensive routines could easi ly be
wri t ten (indeed have been wri t ten by others) to

3. A skolem expression is a term whose main
function symbol is a skolem function, cf. foot­
note 11 in Section 4 which describes the elimina­
t ion of quantif iers by the introduction of
skolem functions.

588 Session No. 14 Theorem Proving

solve nonlinear inequal i t ies, but these were not
found necessary for proving the examples
reported here.

2.2 SOLVE=. This is a routine for solving
l inear equations. Given two arithmetic expres­
sions A and B, it selects a variable x from A
or B and trys to solve the equation (A = B) in
terms of x. If it succeeds, with answer y, it
returns the subst i tu t ion, [y /x] . Otherwise it
selects another variable and trys again, return­
ing NIL i f a l l f a i l .

2.3 SET-TYPE. This is a subroutine which
assigns types to certain skolem expressions. If
a formula of the form (A B) is in a con­
junctive position of E (i . e . , E can be expressed
as ((A ε B D) for some D), and if A is a
skolem expression which does not occur in B,
then (SET-TYPE E) assigns the type B to A and
returns D, the formula gotten by removing (A ε B)
from E. If A already has type C, then SET-TYPE
assigns the intersection (B∩ C) as the type of
A, if (BO C) is non-empty. If (B n C) is empty
it returns E. If (B ∩ C) is not empty, but
cannot be given speci f ica l ly then the formula
(intersection B C) is given as the type of A.

For example, if E is the formula
(A A (x ε P, A (B - y c R)))

then (SET-TYPE E), assigns F^ as the type of x,
and returns
(1) (A A (B > y , R)) .
I f , in this example, x already had type F*, then
P^ is assigned as the new type of x; if it already
had type <-l 1> then it assigns type <0 1> to x;
if it already had type <-«■ -1> then it returns
(A A (X ε P v (B - y r R))) .

In a simi lar way, it assigns types to skolem
expressions which sat isfy certain inequal i t ies.
For example, if E is

(A < 0 A (B < 1 V O)
then (SET-TYPE E) assigns type <-» 0- to A and
returns

then (SET-TYPE E) assigns type < B> to A, and
type <A <*>> to B and returns C. S imi lar ly ,
(SET-TYPE (A f 0)) can be made to assign type
(union < -. 0><0 *>) to A, but th is sort of typing
was not used in any of the examples given in this
paper.

2.4 SIMPLIFY. This is an algebraic s impl i f ica­
t ion routine which converts algebraic expressions
into a canonical form, sorts i t s terms, and
cancels complementary terms of the form (a+(-a))
and (a - -) . It is used in a l l of our routines
which manipulate algebraic expressions. Such

2- Limit Heurist ic. The l im i t heur ist ic rule
defined below, in conjunction with the routines
described in Section 2, is used to help prove
l im i t theorems. LIMIT-HEURISTIC: When t ry ing
to use a hypothesis of the type

(and possibly other hypotheses) to establish a
conclusion of the type

f i r s t t r y to f ind a substi tut ion o which w i l l
allow Bo to be expressed as a non- t r iv ia l com­
binat ion5 of A0, (B = K-A + L)o, and then t ry to
establish the three new conclusions:

Such a procedure is val id because if we can
f ind such a o and prove A, B, and C, then we
would have

B
0

K-A + L
o

o
1 (|K|-|A| + |L|)

< M-E/2M + E/2

= E .
Of course, this is based on the tr iangle inequal­
i t y , and uses the fact that 1/2 + 1/2
= 1, M-l/M = 1 for M > 0 , etc.

As an example, in proving the theorem that
the l im i t of the product of two functions of real
variables is the product of thei r l i m i t s , we f ind
ourselves t ry ing to establish a conclusion of

4. The notation B0 denotes the result of ap­
plying the subst i tut ion o to B.

5. The routine EXTRACT, described in
Section 3.1 below, is used to express B in terms
of A.

Session No. 14 Theorem Proving 589

which can be used to help establish (1) (provided
that we sat isfy the conditions for (2)) . If we
apply the l im i t heurist ic to (2) and (1) we f ind
that for α = [x / x ']

(which also has conditions that must be sat is­
f i ed) . Subgoal B follows from (2) , and subgoal
C follows from (3).

The complete proof of the l im i t product
theorem is given in Section 5 in great de ta i l .
The l im i t heurist ic is used there not only to
set up the three subgoals A, B, and C, but also
to establish A and C, by proposing further
subgoals.

Because the l i m i t heurist ic enables our
program to prove many theorems about l i m i t s , we
regard it as a rather interesting t r i c k . But
more interesting and important than the fact
that it works some problems is the principle
behind i t . That principle might be stated:

To establish a conclusion C from
several hypotheses, among which is
H, force H to contribute a l l it can
towards establishing C and leave a
remainder to be established with
the help of the other hypotheses.

The value of such a "forcing" technique is
twofold. F i r s t , if one can t ru ly make H con­
t r ibute a l l it can towards C, then H is not
needed to establish the remainder. That i s , a
reduction in the number of hypotheses is achieved
while a s igni f icant step in the proof is made.

Second, it is impl ic i t in the notion of
"force" that certain facts are used to make an
inference in a computational manner. For
example, the l im i t heurist ic "uses" many facts
about algebra, such as the tr iangle inequal i ty;

but these facts are used to compute something,
not to make random inferences. This strongly
inhib i ts the generation of subgoals that occurs
if one freely permits the application of axioms
to his goals. We comment further on this "com­
putational" aspect of the l im i t heurist ic in
Section 7.

We feel that such a forcing technique has
applications in other areas of theorem proving
where two or more hypotheses H,, Ho,. . .Hn are
needed to establish one conclusion C that cannot
be loqical ly divided. In such applications the
user must provide a heurist ic which w i l l enable
the computer to determine how to qet a part ia l
result from Hj and leave a reaminder C to be
proved by the other hypotheses.

The l im i t heurist ic uses the routine
EXTRACT described below, which in turn uses the
s impl i f icat ion routine described in Section 2.

3.1 EXTRACT. If there is a substitut ion o for
which Bn can be expressed as a non-tr ival com­
bination of A0 ,

(B = K-A + L)0

then (EXTRACT A B) returns (K L n) , where o is
the most general such subst i tut ion. Otherwise
NIL is returned.

A more precise def in i t ion follows the ex­
amples .

Examples. In the fol lowing, the symbols x, t,
and h represent variables while a l l other
symbols represent constants.

6. Throughout this paper we use the le t te r
"T" to denote both " t r u th " , and the empty sub­
s t i t u t i on . This reserves "NIL" for denotinq
" fa lsp" .

590 Session No. 14 Theorem Proving

Examples 3, 4, 5 are useful in proving
l im i t theorems about the sum of two functions,
the product of two functions (see Section 5) , and
the quotient of two functions. Example 6 is used
in proving that a d i f f e r e n t i a t e function is
continuous.

Suppose there is a substi tut ion α and an
expression x such that , Aα and Bα are poly­
nomials in x, and B is l inear in x. Then there
are expressions a, c, b and d such that x does
not occur in c, b, or d, and Aa and B0 can be re-
expressed as

then EXTRACT returns NIL.

4_. The Implication Method
At the heart of the program is a subroutine

called IMPLY whose essential purpose is to
handle logical deductions in the predicate cal ­
culus. It is a replacement for resolution in [1],
We offer here a cursory description of i t s
operation, suf f ic ient to an understanding of the
proofs in Section 5.

The operation of IMPLY bears a closer
resemblance to the proof techniques of the
mathematician than does resolution. In general
IMPLY examines the connectives in the formulas;
given as arguments to i t ,and creates one or two
subgoals. These subgoals are usually cal ls to
IMPLY with new arguments which are closely
related to but simpler than the or iginal arguments
The result ing analysis of the formula to be
proved is easy to fol low.

This rather natural operation bears some
responsibi l i ty for the development of the l im i t
heurist ic and the other techniques of this paper.
In comparing the subgoals called by IMPLY with
the methods of proof used in elementary calculus
we established new subroutines and subgoals,
such as the l im i t heur is t ic , suf f ic ient to prove
a number of theorems.

The subroutine IMPLY has two arguments:
E (the current formula under

examination)
R (a reserve),
is of the form Usually E
(H * C)

The answer to a cal l to IMPLY is ei ther a sub­
s t i tu t ion or NIL. The la t te r indicates fa i lure
to establish the subgoal. IMPLY attempts to

f ind and return the most general substi tut ion o
such that (R -+ E) is t rue. If 0 Is the empty
substi tut ion thenaIMPLY returns T.

Table 1 gives rules describing some of the
operations of IMPLY. These rules are applied
in the order of the i r occurence in the table;
i f one f a i l s , the next is t r i e d ; i f a l l f a i l ,
IMPLY returns NIL. IMPLY returns the value
given by the f i r s t rule which does not give NIL.
In the following we use the shorter notation
[E,R] for (IMPLY E R).

Session No. 14 Theorem Proving 591

(i . e . , i f there is a substi tut ion α,
which unif ies A and B, then return a)

Table 1 (concluded)

Before a formula E is sent to IMPLY it is
f i r s t converted to a quant i f ier free form, but
without converting it f i r s t to prenex normal form.
The quant i f ier free form is achieved by using
skolem functions, and is essential ly the same as
that used by Wang [3] . 1 1 A cal l is then made
to (IMPLY E NIL).

10. It is possible for IMPLY to y ie ld a subst i­
tut ion which assigns to a variable x more than
one value: a/x, b/x, a ≠b. If this happens and
if IMPLY t r ies to substitute for x in another
expression (as it might do using Rule 8.2, 6.2,
2.2, or 4 .2) , then IMPLY returns NIL.

If Rule 8.2 f a i l s on the ≠l given by Rule 8.1
(i . e . , if [H -► B , R] returns NIL), then the
program "backs up" and recomputes 8.1 t ry ing to
f ind another solution o l ' of [H -+ A, R] for
which [H -* B . i ,R] can succeed. A similar back­
ing up proceeaure is used in Rules 2, 4, and 6.
11. Speci f ica l ly , if "posi t ive" and "negative"
are given the meaning as in Wang [3] pp. 9-10,
then the elimination of quanti f iers consists of
deleting each quant i f ier and variable immediately
after i t , and replacing each variable v bound
by a posit ive quant i f ier with a l i s t whose f i r s t
member is v and whose other members are those
variables bound by negative quantif iers whose
scope Includes v. This l i s t which replaces v is

simply the application pf a skplem function to
certain arguments, with no ambiguity, but as an
aid to memory, the skolem function is named v.

592 Session No. 14 Theorem Proving

Gentzen sequents (cf . Kleene's G3 [4]) and the
subgoals which IMPLY sets up. The technique of
of f inding a most general un i f ie r is the uni f ica­
t ion algorithm of Robinson [2] . On the whole,
IMPLY is closer to the system of Prawitz [6] than
to resolut ion.

5. Examples of Computer Proofs.
Here we give excerpts from the proofs of

f ive theorems, which were made by the program
PROVER using IMPLY as i t s principal subroutine.
PROVER is explained in [1] and IMPLY is described
b r ie f l y in Section 4 above, but the reader fami l ­
iar with Sections 2 and 3 should be able to
follow these descriptions with no reference to [1]
and l i t t l e to Section 4.

In order to use the l im i t heurist ic described
in Section 3, we must add the following rule
to Table 1.

Also, we need two additional rules for solv­
ing inequal i t ies, one rule for types, and one
for equations.

These f ive reles are placed at the beginning
of Table 1 (Section 4) , in the order 17, 18, 19,
20, 16.

Also, a provision is made for assigning a
type to an expression A when it appears in the
form (A > B) or (A • B) in the hypothesis of the
theorem being proved. This is accomplished when
IMPLY is proving a subgoal of the form [H -> C, R]
by replacing H by (SET-TYPE H). Such calls to
SET-TYPE need only be made in Rules 5, 10, 13,

12. In case K = 1, Step 16.1 is omitted, and M
is set to 1 in 16.2.
13. M is given type 0 - and also M is made an
additional argument of a l l skolem functions
which already have at least one argument.
14. In case L = 0, Step 16.3 is omitted.

and before the f i r s t call to IMPLY, i . e . , when
new material is added to H. (See Section 2.3).

In what fol lows, R denotes the real numbers,
P denotes the posi t ives, and FRR denotes the
Functions on R to R. We use (Lim f a L) to
denote lim f (x) = L. The standard def in i t ion

x->a
of l im i t i s :

The f i r s t three parts of the conclusion,
(a L R), (U-Lp) e R, and (f-g) t FRR are proved
by the program using the hypotheses of the
theorem and the closure properties of R_ and FRR.

The remainder of the theorem is prepared for
IMPLY by replacing (f -g) (x) by (f (x) -g(x))
and by eliminating the quanti f iers and introduc­
ing skolem expressions.

Session No. 14 Theorem Proving 593

594 Session No. 14 Theorem Proving

Session No. 14 Theorem Proving 595

596 Session No. 14 Theorem Proving

Session No. 14 Theorem Proving 597

Subgoal (2) is easily established by assign­
ing type E/2-M> to E, , but (1) presents
d i f f i c u l t y . In fact the program is unable to give
a proof of (1) without some axioms or a change in
the program. See Section 7 for further comments
on this example.

6. Resolution.
In this section we show how the l imi t heur­

i s t i c and the theory of types expldined above can
be used in resolution based programs. This is
done by giving some additional rules for resolu­
t ion. These are-
6 .1 SET-TYPE Rule.

Tor each unit clause of the form (x ■ A),
where x is a skoleni expression which does not oc­
cur in a, assign the type A to x. Also for each
unit clause of the form (x . a) , where x is a
skolem function which does not occur in a, assign
the type ■ - - a to x. Similarly for unit
clauses of the form (b x) assign type -b -
to x. In each of these cases, remove the unit
clause. If x already has a type B and we are try
ing to assign it a new type A, then assign the
type (A ∩ B) if it is non-empty; if (A ∩ B) is
empty, add the empty clause (i . e . , the proof is
f in ished); if it cannot be determined whether
(A ∩ B) is empty, leave the original type as is
and do not remove the unit clause. This SET-TYPE
rule need only beapplied at the beginning and
after each new unit clause is generated.

Before going to our l im i t heurist ic ru le , we
give some examples using the above six rules.

598 Session No. 14 Theorem Proving

Session No. 14 Theorem Proving 599

One remark is that , except for the example
on quotients, (mentioned again below) these l im i t
theorems were proved without the inclusion of
axioms (reference theorems). This is desirable
because,for most automatic theorem proving pro­
grams, the axioms have to be selected by humans
for each theorem being proved. Of course, we had
to include the l im i t heurist ic i t s e l f which acts
l ike some axioms, but it does not hinder the proof
of other theorems not requiring i t , because it
does not release i ts action unless i t s need is
detected. This is in the s p i r i t of the "Big
Switch" mentioned by Newall, Feigenbaum, and
others.

It was surprising to us that so many theorems
would follow from one heur ist ic . Wil l this happen
in other areas of mathematics? Can we provide a
series of heuristics with big switches which w i l l
handle many areas of mathematics without excess­
ive irrelevant computing? We doubt that it can
be so simple, but nevertheless feel that such
heuristics should be sought for other areas of
mathematics. The success of such a col lect ion
of heuristics w i l l depend in great part on the
cleverness of the overseer program which directs
the use of these heur ist ics. Hewitt's program­
ming language PLANNER [5] or the Stanford Research
Inst i tu te language QA4 might be well suited for
wr i t ing such overseer programs, or for improving
exist ing ones.
CALCULATE VERSUS PROVE

One thing that contributed to the success of
this e f fo r t was the use of the routines S0LVE<,
SOLVE*, and SIMPLIFY. The point is that these
routines were used to calculate something rather
than prove something. Since proving is inherent­
ly harder than calculat ion, we feel that such
routines should be employed as much as possible.
Think how d i f f i c u l t it would be in our proofs to
employ a set of algebraic s impl i f icat ion axioms

600 Session No. 14 Theorem Proving

in place of the routine SIMPLIFY. Or suppose that
instead of using EXTRACT to give a decomposition,
we t r ied to prove that such a decomposition exists.
This suggests that more use ought to be made of
calculation procedures within the proving mechan­
isms of automatic theorem provers. For example ,

in proving theorems
about

den vati ves
1 lmi ts

we might calculate
1 inn ts
solutions to equations
and inequalit ies

di f fe rent ia l equations derivatives
real functions
measure theory
algebraic topology
anything

solutions to equations
that two sets are equal
group theoretic results
a most general uni f ier

The uni f icat ion algorithm is such an example, and
it revolutionized automatic theorem proving when
J. A. Robinson defined i t s role in resolution.
A source of power to a mathematician is his ab i l ­
i t y to leave to calculation those things that can
be calculated and thereby free his mind for the
harder task of f inding inferences.
MEMBERSHIP TYPES

The use of membership types also helped con­
siderably in proving these l im i t theorems. It is
as if in proving,
(2) SOME x (P(x) A Q(x))
we f i r s t f ind A, the set of a l l x for which P(x)
is true and assign A as the type of x, and then
f ind B the set of a l l x for which Q(x) is true
and if (AAB) is not empty, assign it as the type
of x, and declare (2) to be true. This allows a
maximum amount of freedom in the proving of Q(x)
after P(x) has been proved; indeed x remains a
variable, even though res t r i c ted , in the proof of
Q(x). This idea is somewhat related to constraint
methods used by Fikes in [7] .

This procedure worked well in our examples
because l inear inequal i t ies are so easy to solve.
We do not recommend that such a procedure should
be used in a l l other s i tuat ions, when theorems of
type (2) are being proved, because it may be too
d i f f i c u l t (or unnecessary) to solve for A, the
set of a l l x for which P(x) is t rue, before prov­
ing Q(x). We dp_ suggest however that a procedure
be followed that leaves x as a var iable, though
res t r i c ted , after P(x) has been proved and while
Q(x) is being proved. Type theory might help
attain such an objective.

Our present program w i l l not prove l im i t
theorems involving quotients, such as

without the help of some axioms (see Example 5,
Section 5). However, no axioms are needed for the
proof of (3) if we add another heurist ic to the
program which is simi lar to the l im i t heur is t ic ,

upon which the l im i t heurist ic is based. In fac t ,
it might be desirable to develop a more general
heur is t ic , which not only encompasses both ideas,
but also t r ies to at tain such objectives as
bounding an expression, e .g . ,

|q(x) | < M, for some M,
and making an expression small, e .g . ,

! f (x) - L! < E, for a gi ven E.

F inal ly , it should be mentioned that the
routines described in Section 2 are meant for
general use in analysis and not just as an aid in
proving l im i t theorems. It is hoped that routines
of this kind can be used to make an analysis
prover in which re la t ive ly simple heuristics can
be added for great ef fect .

8. Acknowledgement. The work reported herein
was conducted at the A r t i f i c i a l Intell igence Lab­
oratory, a Massachusetts Inst i tu te of Technology
research program supported by the Advanced Re­
search Projects Agency of the Department of De­
fence, and was monitored by the Office of Naval
Research under Contract Number N00014-70-A-0362-
0002, and was also supported by National I ns t i ­
tutes of Health Grant GM 15769-03.

References.
1. W. W. Bledsoe, "Sp l i t t ing and Reduction

Heuristics in Automatic Theorem Proving,"
A r t i f i c i a l Intell igence 2 (1971) pp 55-77.

2. J. A. Robinson, "A Machine-Oriented Logic
Based on the Resolution Pr inc ip le," Jour.
ACM 12 (January 1965) pp.23-41.

3. Hao Wang, "Toward Mechanical Mathematics,"
IBM Jour. Res. Dev., 4, pp. 2-22.

4. S. C. Kleene, Introduction to MetamathematicsL,
D. van Nostrand, New York, 1952.

5. Carl Hewitt, "Planner," M.I.T A . I . Memo No.
168, August 1970.

6. Dag Prawitz, "An Improved Proof Procedure,"
Theoria, 26, pp. 102-39.

7. R. E. Fikes, "REF-ARF: a system for solving
problems stated as procedures," Art i f i c i a l
Intell igence 1 (1970) pp.27-120.

