Session No. 14 Theorem Proving

HEURISTIC SEARCH VS. BEXHAUSTIVE SEARCH
Laurent Siklossv and Vesko MannoV'
Department of Computer Sc i ences

University ol Texas at Austin
Austin, Texas U.S.A.

ABSTRACT

A theorem proving system embodying a systema-
tic search procedure is de sen bed . Al though the
search spaces are usually infinite, and not even
locally finite, the asymmetric way in which thev
are generated results in a speed that is es 11ma-
ted to be one to two orders of magnitude faster
than the theorem provers of Quinlan and Hunt, ad
Chang and the problem-solver of Kikes, to whic h
this systern has been compared extenslvely.
Descriplive terms:. search, heuristic search, ex-
haustive seare h, seareh space, 1ocallv inilnite
search space, rewriting rule, expansion rule,
theorem proving, problem-so1ving.

1. INTRODUCTION

Heuris tic programming technlque s have been
developed to make it posslble to solve problems
whose solutions each constitute just one point or
a small set of points in a very large, and possi-
bly infinite, space, the search space. Many pro-
blems in artificial intelligence are difficult,
and require "intelligene e" from the problem sol-
ver, precisely because of the size of the search
space. A 1though heuristic search does not guaran-
tee a solution, the size of the search space pre-
cludes an alternative technique such as exhaustive
search. Any method that would artempt to search
unselee ti vely the whole search spate ior a solu-
tion would qu Ickly exhaust avaliable resources of
time and memory and would be bound to failure,
except in some rare, "lucky" cases.

The statements in the above paragraph seem so
"obvi ous" that few would diSagree with them. The
present study shows that, in fact, they are false
in regards to severa1 artificial intelligence
systerns that have been bullt. First, the search
space is very s in many problems, often less
than even a few dozen nodes. Second, although tte
search spaces may be infinite in principle, in
reality only very small parts of this space need
to be generated, in a systematic way, until the
solution is found. Finally, a simple program,
embodying a systematic, blind and "dumb' (?) pro-
cedure, was written- This program has solved
over sixty problems that are typically considered
as requiring heuristic search. The vast majority
of these problems have a potentially infinite
search space. An estimate of the relative speeds
of different computers and programming languages
ind icates that our program is from one to two
orders of magnitude faster, on the average, than
the most powerful problem solvers with which it
has been compared.

The reader should not conclude, either now or
af ter reading the additional evidence that we
present, that hcuristic programming has no value.
The success of our program, however, has impor-
tant methodological and practical consequences.
Exhaus tive search appears as a derided, yet
powerful technique to solve many problems that

GO1

are very hard lor humans and that seemed to
necessitate heurls tcs for their solution In a
powerful problem-solver, an exhaust ive Search
component might have an important func tion in
so lving efficiently large classes of prob1ems,
a1though a1one it certainly cannot solve all
problems

1. PROBLAM DOVAN

Points in the prob1em sp«ci are expressions
deflnedrecursLvel1yasvariab]es (atars) or zero,
one - and two-p1ace functlon symbols (operators)
having expresslous as arguments; Constants are
Zero-place functions. New points in the prob1em
space can be obtained by applying a rewrite rule
to an expression that is a1ready in the problem
spate. A rewrlte ruleis of thi' form*
<fle ft-hand-side/ :* “right-hand-sid<y where
both sides are expressions. A rewrite rule can
be applied to an expression |1 the expresslon,
or one of its subexpressions, is a substitution
instance ol the 1cft-hand-side of the rewrite
rule. We say that the rewrite rule operates on
the (sub)expression.'lhe(sub)e xp T e s sion that is
operated on is transfomed by appiving the same
substitution to the right-hand-side oi the re-
write rule. For example, if the binary operator
+ is used with the variables A, B and C; and if
the expression (A+R)+C is in the problem space,
a slnglc applicarlon of the rewrite rule AtB* =
B+A can produce two new expressions: C+A+B) and
(B+A)+C, depending on whether the rule is applied
at the top level or not The rules are seen as
having one input and produclng one output Thls
Is not general, and in resolution, for example ,
rewrite rules have two inputs for one output

A theorem is in the form of a rewrite rule,
for example (A+B)+C:=A+(B+C). A proof of the
theorem consists in showing that, by a succession
of appllcations of rewrlLe rules, the lett-hand
side can be transformed into the right-hand side.
After having been proved, theorems can be consid-
ered as rewrlte rules.

This problem domain is identical to that con-
sidered extensively by Quinlan* (7) and Quinlan
and Hunt*™ (8). Qod show results of their learn-
ing programs, FDS1 and FOS 2, on 59 theorems
grouped in 5 different areas (see Tables T
through V). Q includes much addltiona1 informa-
tion on the programs' performance. HXS Is con-
sidered the most powerful theorem-prover of its
type. Ernst and Newel11 (i) consider the results
of QW "quite impressive." (p. 27.) The same
version of our program has proved all 59 theoiens
in the tables in Qod.

Chang (2) has also proved some of the theoans
in QW using a resolution-based system, and a
comparison of his results with ours is given.
Kesolutlon is best viewed as a systern utl1izing
a single two-input, one-output rewrite rule.
Firial ly, Fikes (4) has documented proofs of four
heuristic search problems. Although stated in a
programming language, these four problems in
Fikes can be easily rewritten as problems Iin a

*To be abbreviated Q.
**To be abbreviated Q&H.

602

rewrite rule formulation. Two of them were solved
by the same program that proved the theorems in
Q&H. The addition of some numerical capabilities
to our program would allow it to solve the other
two problems. (See Siklossy and Marinov (10) for
a hand-simulation and addi tional information on
our system.) Some of the problems that can be
easily expressed for Chang's system are awkward
to express in our system of rewrite rules. Our
system lacks the constraint mani pulation tech-
nigues and numerical capabilities of Fikes' REF-
ARF. On the other hand, it is doubtful that

e ither Chang's or Fikes' system could prove al1
the theorems in Table |11- In this article,

the ir systerns are compared on problems on an
Intersection of their respective domains of
expertise with the domain of application of our
system.

111, SYSTEMATIC SEARCH
A. Non-Expansion Rules

A theorem is of the form L:=R, where L and R
are the left and right expressions of the theorem.
A systematic search for the proof of the theorem
starts with the search space consisting of the
expression L. From L, we build the next leve1
of the search tree- To this effect, we apply to
L all rewrite rules, one after the other. An
expression resulting from the application of a
rewrite rule to a node of the search tree is in-
serted in the tree if and only if it does not
already figure in the search tree. Figure 1 shows
the search tree for the proof of theorem 1 in
Table 1, using only the first two rewrite rules.
The third node of the search tree, (B+A)-K;, is
called a dead node since no new expressions can
be obtained by applying rewrite rules Rl or R2
to this node. The search terminates when the
expression A+B+C) is found at the fifth level
of the tree, as the 12th node.

B. Expansion Rules

The reader will notice that rule R4, A:=
(A+B)-B, in Table | could also be applied to try
to prove theorem 1. Any expression or subexpres-
sion is a substitution instance of the left-
hand -side of R4. Thus, any (sub)expression can
be rewritten, using RA, by first adding to it
any expression, then subtracting the same expres-
sion that had been added. There are clearly an
infinity of expressions that can be substituted
for B, so that the search space is locally in-
finite and, consequently, some recent results
In heuristic search by Pohl (6) on locally
finite search spaces are not applicable to the
problem domain considered here.

We call expansion rules those rules (such as
R4 in Table 1, or R6 in Table |IV) whose repeated
application could generate an infinite search
space for the problem domain considered. Some
ordered generation of the space is needed,
especially for those rules (such as R4 in Tablei)
which allow the introduction of arbitrary expres-
sions .

Since expansion rules play an important role
In our system they deserve a more detailed dis-
cussion. The rules are a sample of the different
types of expansion rules in the domains that we

Session No. 14 Theorem Proving

have considered:

1. A:=(A+B)-B R4 in Tables I and I1.
2. A/C-=(A/B)/C R16 in Table III.

3. 0:=A-A T4 in Table II.*

4. A:sA+0 Tl in Table T1T.

5. P:= P R6 in Table 1V.

6

. A®B:=(A-B)>0 Rl in Table V.

The first three rules generate a locally infin-
ite search space, while the other three gener-
ate an infinite space, which is locally finite.
For example, applying TI, Table Il to the node
X results in the node X+0. Another appl1 cation
of the same rewrite rule produces the three
nodes (X+0)+0, (X+0)+0 and X+(0+0).

We further distinguish between two types of
expansion rules. Atomic expansion rules have a
single variable as the left-hand-side. Rules
1, 4 and 5 are atomic. The other expansion rules
are called non-atomic. The search strategy is
slightly different for the two types of expan-
sion rules (see below)

It is undecidable in general whether a re-
write rule system has an infinite search space.
However, in the problem domains that we consid-
ered, a rule R is an expansion rule if it can be
applied to its om right-hand-side (i.e. if the
right-hand-side is a substitution instance of
the left-hand-side) and if the expression ob-
tained by applying R to its om right-hand-
side has more nodes (when considered as a tree)
than the right-hand-side of R. It is seen that
testing whether a rule is an expansion rule is
a simple matter in our problem domains.

Our sys tematic search procedure proceeds as
follows- first non-expansion rules are applied
to the left-hand side of the theorem to be
proved. If the right-hand side of the theorem
Is found, the system terminates. Otherwise, all
nodes of the search tree are eventually dead,
since non-expansion rules, by definition, can-
not generate an infinite search space. At that
point, nodes of the search tree are generated
in leve1 order (9). For each node so generated,
we apply all expansion rules (as will be
described below), adding any new nodes to the
search tree. We then shift to uslng on1y non-
expansion rules again. It is seen that expansion
rules are called in onlv when all else has
failed; and when they are ca1led in, they are
applied as sparsely as possible. The reason for
this is simply that expansion rules tend to
increase drastically the size of the search
space. It is interesting to notice the similar-
ity of our asymme trie use of rewrite rules to
the asymmetry in the use of the two classes of
axioms in the geometry theorem machine (5). In
this latter system, axioms of class (ii) are
used only when axioms of class (\) have failed
to prove a theorem

An example of the use of a 1ocally finite
expansion rule (R6 in Table V) is given in
Figure 2. After the application of Rl to the
left-hand side of theorem 1, Table |V, both
nodes of the search tree are dead. The (unique)
expans ion rule R6 is applied to the first node

*0 is a constant

Session No. 14 Theorem Proving

of the tree, namely (S«*rR).R, producing nodes
3,4 and 5. We switch back to non-expanBion rules
only, and the answer is quickly found at node 9.
Notice that nodes 2,6 and 7 are dead.

The situation is more complex for a locally
iInfinite expansion rule, which introduces arbi-
trary expressions, as, for example, R4 in Tables
| and Il. We have chosen to allow for such
expressions only those that can be constructed
legally from the atoms encountered in the theoien
to be proved, which is no real restriction. It
should be noted that here is the only case where
the right-hand side of the theorem is used for
purposes other than just checking for termina-
tion. Otherwise, the search is Indeed blind!

Our strategy is to grow the search space as
slowly as possible. We attain our goal by limit-
iIng both the expressions to which atomic expan-
sion rules are applied, and the expressions that
can be substituted for the arbitrary variables
in locally infinite expansion rules. The growth
of the search space takes place in several passes,
and in each successive pass there are fewer
limitations on the use of expansion rules.

In a first pass, atomic expansion rules (which
could be applied to any (sub)expression of a
node) are applied only to variables, constants
and unary functions. There is no restriction on
the (sub)expreBsions that non-atomic expansion
rules are allowed to match. During that same
first pass, we limit the expressions that will
be substituted for the arbitrary variables in
locally infinite rules. (If a certain expression
Is substituted for the arbitrary variable, wc
say that we are expanding with that expression.)
In the first pass, locally infinite expansion
rules expand only with variables, constants and
unary functions.

If the theorem is not proved during the first
pass, the restrictions described above would be
successively loosened. We did not need to pro-
gram passes beyond the first since all theorems
could be proved during the first pass. Moreover,
we are now testing more sophisticated techniques
for expansion that render much of the above
scheme inefficient.

Ore might argue that we are using heuristics.
We Dbelieve though that we are only using a stra-
tegy, since the order in which the rules are
applied is predetermined and not modified during
proofs.

V. COVPARRONS WITH OTHER SYSTEVIS
A. Comparisons with Quinlan and Hunt

The theorem proverj of Q8H (there are two
versions of FDS) were written for a FORIRAN
compiler on the IBM 7094. Our system is written
for a LISP 1.5 interpreter on the (OC 6600. Com-
parisons between the speeds of the two systems
are awkward. A consensus of "experts" indicates
that we should expect our system to be about
ten times® slower than Q&H. (It was estimated
that the FORTRAN compiler is about 100 times
faster than our LISP interpreter, while the
(DC 6600 may be some eight to ten times faster
than the IBM 7094.) To facilitate compari-

603

sons, all our times (in seconds) were divided
by 10 in the results in Tables | through VI.

All rewrite rules, labelled Ri, were taken in
exactly the sarme order as given in Q&H, and all
theorems, labelled Ti, proved exactly in the
sare order. All the proofs mentioned in this
article were obtained with the same version of
our program. By contrast, the results mentioned
by @8H are for different, locally optimized
programs. The only exception is in Table V: the
rewrite rules in QBH are insufficient to prove
the theorems. (BH indicate that they used addi-
tional rewrite rules, without specifying which.
We added the four rewrite rules R12 through R15.
Because of these changes, the results of Table V
are not as meaningful as those of the first
four tables. (In the tables below, S8M label
our results.)

iy

, REWRITING RULES
Rl A+B:=B+A
R2 A+(B4C): =(A+B)+C
R3 (A+B)-B:m=j
R4 A:=(A+B)-B
RS (A-B)+C:=(A+C)-B
R6 (A+B)-C:=(A-C)+B

THE OREMS TIMES (Seconds) Nodes to

Solution

Q&H S&M/10 by S&M
Tl (A+B)+C:=A+(B+C) 5 0.062 11
T2 (A-B)+B:=A 0 0.021 4
T3 A:=(A-B)+B 0 0.027 5
T4 A+(B-C):=(A4+B)-C 1 0.020 3
TS (A-B)+C:=A+(C-B) 5 0.046 5
T6 (A-C)-(B-C):=A-B 215 1.799 87
T7 (A+C)-(B+C):=A-B 169 6.165 351
T8 A+(B-C):=(A-C)+B 7 0.037 5
TY9 (A+B)-C:=A+(B-C) 4 0.046 5
T10 (A-B)-C:=(A-C)-B 8 1.422 67
T11l A-(B+C):=(A-B)-C 8 2.560 146
T12 A+(B-C):=A-(C-B) 6 6.052 321
Ti13 A-(B-C):=A+(C-B) 7 1.372 84
Tl4 (A-B)+C:=A-(B-C) 5 0.090 7
Ti5 A-(B-C):=(A-B)+C 4 0.036 4
T16 A-(B-C):=(A+C)-B 6 0.033 4
T17 (A-B)-C:=A-(B4+C) 7 2.069 145
T18 (A+B)-C:=A-(C-B) 1 0.079 6

Average 25.444 1.219
TABLE 1

*It is not crucial that the reader agree with
our estimate.

604 Session No. 14 Theorem Proving

REWRITING RULES REWRITING RULES
R1 A+B:=B+A Rl (A+B)+C: =A+(B+C)
R2 A+(B+C):=(A4B)+C R2 A+(B+C): =(A+B)+C
R3 (A+B)-B:=A R3 TI+A:=A
R4 A:=(A+B)-B R4 A;=I4A
R5 (A-B)+C:=(A+C)~-B R5 A+] : =A
R6 (A+B)-C:=(A-C)+B R6 A:=A+1
R7 (A+B)+C: = A+ (B+C) R7 Z+A:=2Z
R8 (A-B)+B: =A R8 A+Z:=Z
R9 A:=(A-B)4B R9Y Z:=A+Z
R10 A+(B-C):=(A+B)-C RI0 Z:=Z4A
R11 (A-B)+C: =A+(C-B) R11 I/I:=I
R12 (A-C)-(B-C):=A-B R12 I1:=I/1
R13 (A+C)-(B4C):=A-B R13 (A+C)/(B4+C):=(A/B)+C
R14 A+(B-C):=(A-C)+B R14 (A/B)+C:=(A+C)/ (B4C)
R15 (A+B)-C:=A+(B-C) R15 (A/B)/C:=A/C
R16 (A-B)-C:=(A-C)-B Rl16 A/C:=(A/B)/C
R17 A-(B+C):=(A-B)-C R17 A/(B/C):=A/C
R18 A+(B-C):=A-(C-B) R18 A/C:=A/(B/C)
R19 A-(B-C):=A+(C-B) R19 SIG(A): =(A+SIG(A)) /I
R20 (A-B)+C:=A-(B-C) R20 (A+SIG(A))/1:=SIG(A)
R21 A-(B-C):=(A-B)+C R21 SIG(A/B):=SIG(A)
R22 A-(B-C):=(A+C)-B R22 SIG(A):=STG(A/B)
R23 (A-B)-C:=A-(B+C) R23 SIG(A)+B/C:=SIG(A)+C
R24 (A+B)-C:=A-(C-B) R24 SIG(A)+C:=SIG(A)+BR/C
R25 A+0:=A R25 SIG(T):=Z/1
R26 A-0:=A R26 Z/1:=S1G(1)

R27 NEG(A):=0-A
R28 0-A:=NEG(A)

THEOREMS TIMES(Seads) Nodes to THE OREMS TIMES (Seconds) Nodes th

Solutio Solutim

Q&H S&M/10 by S&M QuH S&M/10 by S&M
Tl A:=A+0 5 0.112 11 T1 A/A:=A 1 0.560 17
T2 A:=A-0 8 0.112 11 T2 A:=A/A 2 0.323 11
T3 A-A:=0 21 2.046 58 T3 ((A/B)+C)/D:=(A+C) /D 2 0.058 2
T4 0: =A-A 6 0.256 13 T4 A/ ((B/C)+D): =A/ (C+D) 2 0.061 2
T5 A+4NEG(A): =0 5 0.124 8 T5 (A+B)/C:=((A/D)+B)/C 10 12.830 192
T6 0:=A+NEG(A) 58 1.095 ;A T6 A/(B+C):=A/((D/B)+C) 21 12.714 193
T7 A+4NEG(B):=A-B 5 0.201 10 T7 SIG(Z):=2/1] 0.186 7
T8 A-NEG(B):=A+B 6 0.124 6 T8 Z/1:=SIG(Z) 1 0.410 14
T9 NEG(A)+NEG(B):=NEG(A+B) 125 2.136 50 T9 S1G(A)/1:=SIG(A) 13 0.352 7
T10 NEG(A)-NEG(B):=NEG(A-B) 47 1.712 51 T10 SIG(A):=SIG(A)/I 11 4.457 73
T1l NEG(NEG(A)):=A 105 0.489 13 T11 SIG(A)+SIC(B):=SIG(A) 36 0.713 14
T12 SIG(A):=SIG(A)+SIG(R) 596 4.832 74
Average 35.545 0.764 T13 SIG(A)/SIC(B):=SIG(A) 2 0.724 13
TABLE 11 T14 SIG(A):=SIG(A)/SIG(B) 1334 13.885 198
T15 SIG(SIG(A)):=SIG(A) 108 0.957 18

Average 142 .667 3.680

TABLE 111

Session No. 14 Theorem Proving 805

Ac tually, the eomparison between Ql ad our
IS misleading. Not only are their results
obtained wi th two different versions of HDS, but

REWRITING RULES

Rl P:Q:=Q'P

R2 P-(Q-R):=(P-Q)-R
R3 P-(P=Q):=Q

R& rQ-(P2Q):= P

their results for eech Table arc obf

opttimizat ion of the average t e to
theorems of a particular table.
the particular version of HB that

ained after
prove the

In other words,
proves nod

RS rrePp:=P
R6 P:=—cP
THE OREMS TIME S (Scoands) Nodes to
Solution
Q&H S&M/10 by S&M
Tl (§*~R)‘R:= § 1 0.085 8
T2 B- (—A=—B):=A 1 0.034 3
T3 rB-(A—=2B)* (—A-3C):=C 2 0.090 7
T4 r C-(B—C): (mB?cA):= 2 0.184 12
TS (PrQ)-Q-(P>(ReS):=R:S 6 0.171 11
Average 2,400 0.113
TABLE 1V

REWRITING RULES

R1 A~B:=(A-B)>0
R? (A-B)>0: =A™B
RY A~0:=0"NEG(A)
R4 O~NEG (A) : =A™0

RS A IS REAL:=(A~0)| (A=0) | (NEG(a)>0)
R6 (A 1S REAL)- (B IS REAL):=(A-B) IS REAL
R7 (A [S REAL)- (B 1S REAL):=(A+B) IS RFEAL

R8 (A-B)=0:=A=B

R9 A=B:=(A-B)=0

R10 (A>B) (B>0):=(A+B)>0
R11 (A™~0) (B™0):=(A*B)~0
R12 NEG(A):=0-A

R13 O-A:=NEG(A)

R14 A-B:=NEGC(B-A)

R15 NEG(B-A):=B-A

THE OREMS TTMES (Seands) Nodes to
Salution
Q& S&M/10 by S&aM
T 0 A:=NEG(A)=0 10 0.049 3
T2 NEG(A):-0:=0-A 10 0.055 6
T3 O (A-B):=B>A 55 0.137 5
T4 A B:=0>(B-A) 163 0.07? A
TS5 (A-B)>0:=0"(B-A) 32 0.061 4
TG (O (B-A)-=(A-B)-0 50 0.055 5
T7 NLG(A-B)>~0:=B>A 1 0.136 10
T8 H>A:=NEG(A-B)>0 11 0.078 4
T9 (A IS RFAL)*(B 1S REAL):= 10 0.250 14
((A-B)>0)} (A-B)=0f (NEGA-B>0
T10 (A IS REAJ)«(B 1S REAL):= 143 8.112 179
(A>B) | (A=B) | (B>A
Average 49.900 0.901

TABLE V

efficiently the theoems of Table |l perfoms
miserably when proving the theorems of Table |.
In Table VI, we list, wen ava | lable, the bes t
ad wost tmes to prove theoems In the
various tables (as collected from (7)) as wo 11
as the results N (&1 ad our own.

A proof terminates when the (right-hand side
of a) theoem is found. The level at which the
theorem is encountered is fixed, but the number
of nodes seardhed at that level can vary if we
daxe the order in which the rewrite rules are
applied. 1t woud be straightforward to imple-
met a sys Eem tha t would dage the order of
application of rewrite rules to minimize the
average tme per proof in a given table. We can-
not estmate the gains In goeed that would
result. As we mentioned previously, we have kept
the order of the rules ad t lie or ars that we
found in C8H

p—

Best in Q Worst in Q@ Q&H SM/10
Table I 25 (FDS2) 136 (FDS2) 25 1.22
Table 11 36 (FDS2 1221 (FDS1) 36 0.76
Table 1711 137 (FDS1) 600 (FDS1) 143 3.68

TABLE IV Average times (in s) per theorem,.

B. Cormpai son with F ikes

Fikes (4) describes four heuristic search
problems: mokey and bananas; water]ug; a pro-
garmng problem; ad the missionanes axd can
bals. The statements of these are not
reproduced here. These problems in Vlkes are
written in a pogamming language, but each of
fhem can be translated easily into a rewrite
rule systom. Sudh a translation for the flrst
problem iIs gven In Figure 3. In eadh triple,
the first element Indicates the monkeys position
the second element the monkeys height ad the
last element the position of the box. Eadh of
the rewrite rules corespods to an a 1lowable
activity of the mokey, in exactly the ssre order
as found in Fikes. The translation of the pro-
ganming problem is doan In Figure 4. The sex-
tuple represents the Wwo regi sters put side by
side. The rewrite rules comrespond to the alowed
shi ft operatlons

Fikes' system was poganmmed on an BM 360/67
for an IPL-V interpreter. His computer mey be
slightly s1 one r than the 3T 6600, whlle we
eqoec t 1 PL to have a speed comparable to our
LISP. Tre real tmes to solution, also listed in
Figures 3 ad 4, are therefore comparable as
given.
lhe water jug problem ad the missionaries ad
canni bals problem necessi tate sare ari thmetic
capabilities that our system lacks. Both problems

606

can be easily translated into a system for re-
write rules (see (10)). For example, in the
waterjug problem the rewrite rule corresponding
to pouring from the large jug into the small
Jug would be:

(a,b) := (a=-min(5,a+b), b'=b-(a'-a))

where the first and second element of the ordered
pair represent the amounts of water in the small
and large jugs, respectively.

The missionaries and cannibals problem has a
total search space of 16 nodes (1) while our
hand simulation (10) shows that our system would
solve the waterjug problem in a total of seven
nodes. We would estimate our system to use less
than 2 seconds for each of these problems. These
(hypothesized) times should be compared to 491
seconds and 83 seconds for Fikes' REF-ARF. More-
over, the particular way in which the missionaries
and cannibals problem is stated in REF has a
strong influence on the time needed to solve it
Fikes mentions that a particular statement of
the problem would require more than 1800 seconds
of 360/67 time.

C. Comparisons with Chang.

Chang (2) reports on a very efficient theorem
prover based on the resolution principle. He has
proved some of the theorems from Q&H. Table VII
compares his times with ours. Chang's program is
written in LISP 1.6 for the FDP-10. We do not
know whether a compiled or interpreted version
of LISP 1.6 was used.

L e

REWRITE RULES
6 Rules as in Table 1.

THEOREMS TIMES (Seconds)

Chang S&M
Tl (A+B)+C: =A+(B+C) 24 .55 0.632
T2 (A-B)+4+C:=A+(C-B) 9.37 0.330
T3 A+(B-C):=(A-C)+B 6.92 0.335
T4 (A+B)-C:=A+(B-C) 7.32 0.275
Average 12.04 0.353

TABLE VII. Comparative Results of Chang and S&M.

i i i

The results described in this section could
be improved substantially, especially those of
the long proofs. A newly generated node is added
to the search space only if it is not already in
the space. At present, the space is searched
linearly for the existence of the node. A hash-
coding scheme would cut down dramatically on the
time needed for such a search.

In spite of such improvements, our system
would perform poorly in potentially large search
spaces which could be reduced significantly by
the manipulation of constraints.” We have repor-
ted results on problems for which few or no con-
straints can be used.

*Fikes' system has solved several constraint
satisfaction problems.

Session No. 14 Theorem Proving

V. OCONCLUSONS

The research reported here is part of a
larger, continuing investigation into the cost
of overhead In a theorem prover. It appears
intuitive (but it may not be true) that, as a
theorem prover applies more sophisticated tech-
nigues to reduce its search space, it will
expend more time for computation per node con-
sidered. The total number of nodes considered
IS an inadequate measure of the efficiency of a
theorem prover, since this number does not take
iInto account the cost per node. Total time to
solution still appears as the only reasonable
criterion for comparing different systems with
similar domains.

It may come as a surprise to many that our
systematic, blind, search procedure performs at
least one to two orders of magnitude faster than
the most powerful existent theorem provers to
which it has been compared. The result is even
more surprising when it is stressed that the
problem domains considered have infinite search
spaces that are often not even locally finite
The results can be explained by noticing that
the proofs of the theorems are very short. The
deepest proofs in (BH (tied by the theorem in
Figure 1) have a depth of only 5. Many of the
proofs in Q&H, and all four problems in Fikes,
are found after generating at most a few dozen
nodes.” Consequently, the problems considered
should not tax the capabilities of a sophisti-
cated heuristic program (although they certainly
seem to have done so.'). These problems do not
represent adequate tests for such a program.

An informal investigation into the problems
solved by artificial intelligence systems using
heuristic search indicates that many of the
tasks have, in fact, very small search spaces.
If these problems are representative of many of
the future problems to be solved by these systems,
then it is apparent that a very powerful problem
solver can be built by combining heuristic and
systematic search procedures that would time-
share available resources. The systematic search
procedure could solve very rapidly a large
number of the easy problems. The cooperation,
inside a large system, of subsystems of various
degrees of sophistication will be a fascinating
area of research.

VI. REH

(1) Amarel, S. On Representations of Problems
of Reasoning about Actions, in: Michie, D.
(Ed.), Machine Intelligence 3. American
Elsevier, N. Y., 1968, 131-171.

(2) Chang, C.L. The Unit Proof and the Input
Proof in Theorem Proving, JACM. 17, 4,
1970, 698-707.

(3) Ernst, GW. and Newell, A. GPS: a Case
Study in Generality and Problem Solving.
Academic Press, N.Y., 19609.

(4) Fikes, R.E. REF-ARF. A System for Solving
Problems Stated as Procedures, Artificial
Intelligence, i, 1970, 27-120.

*A more thorough discussion of the size of search
spaces will be reported subsequently.

Session No. 14 Theorem Proving

(5) Gilmore, P.C. An Examination of Che Geometry
Theorem Machine, Artificial Intelligence,
J, 3, 1970, 171-187.

(6) Pohl, I. Heuristic Search Viewed as Path

Finding in a Graph, Artificial Intelligence.

607

J., 3, 1970, 193-204.

(7) Quinlan, J.R. FORTRAN Deductive System:
Experiments with two Implementations,
Technical Report -68-5-03, Computer Science
Group, University of Washington, Seattle,
1968.

(8) Quinlan, J.R. and Hunt, E.B. A Formal Deduc-
tive Problem-Solving System, J.ACM, 15, 4,
1968, 625-646.

(9) Salton, G. Manipulation of trees in informa-
tion retrieval, C. ACM., 5, 2, 103-114,
1962.

(10) Siklossy, L. and Marinov, V. Experiments
iIn search, Technical Report TSN-20, Com-
putation Center, University of Texas at
Austin, 1971.

Oass

+C
letf/ L\\\\\%ér\
C+(A+B) (B+A)+C
/g
Bt (Ben) (C+A)+B

[R1

@7+B) +A . ®B+ (C+A @M—C) +B
Ril R R

Q+(C+B) }Q}C)M 61’B+ A+C)

+ (B+C)

FIGURE 1. Proof of (A+B)+C:=A+(B+C) in TABLE 1,

- A .

%*rf{)- R
R1 T
PR h__--—"f R6 R
R- (S~ rR) ~S—*R)-R ¥(S5*—r—R)-R $>~R)~rR
_ R1 R1 R1
Cg’)R- (rr$*rR) Cz)R» ($r~R) LR (S9~R)
M

s

FIGURE 2. Proof of ($rR)-R:=~S in Table 1V.

i

R1 (A, onfloor, B):=(C, onfloor, B)

R2 (A, onfloor, A):=(C, onfloor, C)

R3 (A, onfloor, A):=(A, onbox, A)

R4 (A, onbox, A):=(A, onfloor, A)

RS (underbananas, onbox, underbananas):=
(withbananas, onbox, underbananas)

Variables: A,B,Cs Range: X1,X2, underbananas.
TI (X1, onfloor, X2):=
(withbananas, onbox, underbananas)
Times for proof: Fikes: 36s; S&M 2.027s.
FIGURE 3. Monkey and Bananas Problem.

i A i A —— P

R1 (a,b,c,d,e,f):=(0,a,b,d,e,f)
R2 (a,b,c,d,e,f):=(b,c,0,d,e,f)
R3 (a,b,c,d,e,f):=(0,a,b,c,d,e)
R4 (a,b,c,d,e,f):=(b,c,d,e, f,0)
R5 (a,b,c,d,e,f):=(a,b,c,a,b,c)

Tl (2,3,4,0,0,0):=(2,3,0,0,0,0)
Times for proof: Fikes 143s; S&M 0.931s.
FIGURE 4, Programming Problem

I

. One of the investigators (VM) was supported
by the National Institute of Health Grant
GM15769-04.

