
Session No. 14 Theorem Proving

HEURISTIC SEARCH VS. EXHAUSTIVE SEARCH
Laurent Siklossv and Vesko Mannov'

Department of Computer Sc i ences
Univers i ty oi Texas at Austin

Aust1n, Texas U.S.A.

ABSTRACT
A theorem proving system embodying a systema­

tic search procedure is de sen bed . Al though the
search spaces are usually i n f i n i t e , and not even
locally f i n i t e , the asymmetric way in which thev
are generated results in a speed that is es 11ma­
ted to be one to two orders of magnitude faster
than the theorem provers of Quinlan and Hunt, and
Chang and the problem-solver of Kikes, to whi c h
this systern has been compared extenslvely.
DescripIive terms: search, heuristic search, ex­
haust ive seare h , sea re h space, 1ocal1v i n i I n i te
search space, rewri t ing ru1e, expans ion ru le,
theorem provi ng, problem-so1ving.

1. INTRODUCTION
Heuris t i c programmi ng technl que s have been

developed to make i t posslble t o solve problems
whose solutions each constitute just one point or
a small set of points in a very large, and possi­
bly i n f i n i t e , space, the search space. Many pro­
blems in a r t i f i c i a l intell igence are d i f f i c u l t ,
and requi re "intell igene e" from the problem sol­
ver, precisely because of the size of the search
space. A 1 though heuris t ic search does not guaran­
tee a solut ion, the size of the search space pre­
cludes an alternative techni que such as exhaustive
search. Any me thod that would a r tempt to search
unselee ti vely the whole search spat e i or a sol u-
tion would qu lckly exhaus t avaliable resources of
time and memory and would be bound to fa i lu re ,
except in some rare, "lucky" cases.

The statements in the above paragraph seem so
"obvi ous" that few would diSagree with them. The
present study shows tha t, in fac t, they are false
in regard s to severa 1 a r t i f i c i a l intell igence
systerns that have been bu l l t . F i r s t , the search
space is very small in many problems, often less
than even a few dozen nodes. Second, although tte
search spaces may be in f in i te in pr inc ip le, in
real i ty only very small parts of this space need
to be generated, in a systematic way, un t i l the
solution is found. Final ly , a s imple program,
embodying a sys tematic, blind and "dumb" (?) pro­
cedure , was wri t ten - This program has solved
over sixty problems that are typical ly considered
as requiring heuris t ic search. The vas t majority
of these problems have a potent ial ly i n f i n i t e
search space. An estimate of the re lat ive speeds
of d i f ferent computers and programming languages
ind icates that our program is from one to two
orders of magnitude faster, on the average, than
the most powerful problem solvers with which it
has been compared.

The reader should not conclude, either now or
af ter reading the additional evidence that we
present, that hcuri st ic programmi ng has no value.
The success of our program, however, has impor­
tant methodological and prac t ica l consequences.
Exhaus tive search appears as a derided, yet
powerful technique to solve many problems that

G01

are very hard lor humans and that seemed to
necessitate heurls t c s for their solut ion In a
powerful problem-solve r, an exhaus t ive Search
component might have an impor tan t func t ion in
so Iving e f f i c ien t l y I arge classes o f prob1 ems,
a 1 though a 1 one it certainly cannot solve a l l
problems
I I . PROBLFM DOMAIN

Points in the prob 1 em sp,«c i are expressions
de f l ned recur s L ve 1 y a s va r i ab] e s (at oms) or zero-,
one - and two-p1 ace func tIon symbols (ope ra t ors)
hav ing expressIous as argument s # Cons tant s are
Zero-place func tions. New points in t he prob1 em
space can be obtained by applying a rewrite rule
to an expression that is a 1 ready in the problem
spat e. A r ewr l te rule i s of t hi1 form*
<fle f t-hand- s ide / : * ^right-hand-sid<y where
both sides are expressions. A rewr i te rule can
be applied to an expression l i the expre ssIon,
or one of i ts subexpressions, is a substitution
instance ol the 1cft-hand-side of the rewrite
ru le. We say that the rewrite rule opera t es on
the (sub)expression. 'I h e (s u b)e xp T e s sion that is
ope ra ted on is t rans f ormed by app1ving t he same
substitut ion to t he r i gh t-hand-side oi the re-
write rule. For example, if the binary operator
+ is used with the variables A, B and C; and if
the expre ssion (A+R)+C is in the problem space,
a s l ng lc appli c a r Ion of the rewr i t e rule A+B* =
B+A can produce two new expressions: C+(A+B) and
(B+A)+C, depending on whether the rule is applied
at t he top level or not The rules are seen as
havi ng one i nput and produclng one out put Thls
is not general, and in re solut ion, for example ,
rewr i te rules have two inputs for one out pu t

A theorem is in the form of a rewrite ru le,
for example (A+B)+C:=A+(B+C). A proof of the
theorem consists in showing that, by a succession
of applIcat ions of rewrlLe rules, the lett-hand
side can be transformed into the right-hand side.
After having been proved, theorems can be consid­
ered as rewrlte rules.

This problem domain is identical to that con­
sidered extensively by Quinlan* (7) and Quinlan
and Hunt** (8). Q6dl show results of their learn­
ing programs, FDS1 and FDS 2, on 59 theorems
grouped in 5 di f ferent areas (see Tables T
through V). Q includes much addItiona 1 informa­
tion on the programs' performance. FDS Is con­
sidered the most powerful theorem-prover of i ts
type. Ernst and Newe11 (i) consider the results
of QMf "qui te impressive.M (p. 27.) The same
version of our program has proved a l l 59 theoiens
i n the tables in Q6dl.

Chang (2) has also proved some of the t heorans
in QM1 using a resolution-based system, and a
comparison of his results with ours is given.
Kesolutlon is best viewed as a systern u t I1 i zing
a single two-input, one-output rewrite rule.
Fi rial l y , Fikes (4) has documented proofs of four
heurist ic search problems. Although s ta ted in a
programming language, these four problems in
Fikes can be easily rewritten as problems in a
*To be abbreviated Q.
**To be abbreviated Q&H.

602 Session No. 14 Theorem Proving

rewrite rule formulation. Two of them were solved
by the same program that proved the theorems in
Q&H. The addition of some numerical capabi l i t ies
to our program would allow it to solve the other
two problems. (See Siklossy and Marinov (10) for
a hand-simulation and addi t ional information on
our system.) Some of the problems tha t can be
easily expressed for Chang's system are awkward
to express in our system of rewrite rules. Our
system lacks the cons t ra in t mani pulation tech­
niques and numerical capabi l i t ies of Fikes' REF-
ARF. On the other hand, it is doubtful that
e ither Chang's or Fikes' sys tern could prove al1
the theorems in Table I I I - In this a r t i c l e ,
the ir systerns are compared on problems on an
intersection of their respective domains of
expertise with the domain of application of our
system.
I I I . SYSTEMATIC SEARCH
A. Non-Expans ion Rules

A theorem is of the form L:=R, where L and R
are the le f t and r ight expressions of the theorem.
A systematic search for the proof of the theorem
starts with the search space consisting of the
expression L. From L, we build the next leve1
of the search tree- To this e f fec t , we apply to
L a l l rewrite rules, one after the other. An
expression result ing from the application of a
rewrite rule to a node of the search tree is i n ­
serted in the tree if and only if it does not
already figure in the search tree. Figure 1 shows
the search tree for the proof of theorem 1 in
Table 1, using only the f i r s t two rewrite rules.
The third node of the search tree, (B+A)-K;, is
called a dead node since no new expressions can
be obtained by applying rewrite rules Rl or R2
to this node. The search terminates when the
expression A+(B+C) i s found at the f i f t h level
of the tree, as the 12th node.
B. Expansion Rules

The reader w i l l notice that rule R4, A:=
(A+B)-B, in Table I could also be applied to try
to prove theorem 1. Any expression or subexpres­
sion is a substi tut ion instance of the l e f t -
hand -side of R4. Thus, any (sub)express ion can
be rewri t ten, using RA, by f i r s t adding to it
any express ion, then subtrac ting the same expres­
sion that had been added. There are clearly an
i n f i n i t y of expressions that can be substituted
for B, so that the search space is local ly in ­
f i n i t e and, consequently, some recent resul ts
in heuristic search by Pohl (6) on local ly
f i n i t e search spaces are not applicable to the
problem domain considered here.

We ca l l expansion rules those rules (such as
R4 in Table 1, or R6 in Table IV) whose repeated
application could generate an i n f i n i t e search
space for the problem domain considered. Some
ordered generation of the space is needed,
especially for those rules (such as R4 in Tab lei)
which allow the introduction of arbi t rary expres­
sions .

Since expansion rules play an important role
in our system they deserve a more detailed dis­
cussion. The rules are a sample of the different
types of expansion rules in the doma ins that we

The f i r s t three rules generate a local ly i n f i n ­
i te search space, while the other three gener­
ate an i n f i n i t e space, which is local ly f i n i t e .
For example, applying T l , Table II to the node
X results in the node X+0. Another appl1 cat ion
of the same rewrite rule produces the three
nodes (X+0)+0, (X+0)+0 and X+(0+0).

We further distinguish between two types of
expansion rules. Atomi c expansion rules have a
single variable as the left-hand-side. Rules
1, 4 and 5 are atomic. The other expansion rules
are called non-a tomic. The search strategy is
s l igh t ly di f ferent for the two types of expan­
sion rules (see below)

It is undecidable in general whether a re­
write rule system has an i n f i n i t e search space.
However, in the problem domains that we consid­
ered, a rule R is an expansion rule if it can be
applied to i ts own right-hand-side (i . e . if the
right-hand-side is a substitut ion instance of
the lef t-hand-side) and if the expression ob-
tained by applying R to i ts own r ight-hand-
side has more nodes (when considered as a tree)
than the right-hand-side of R. It is seen that
testing whether a rule is an expansion rule is
a simple matter in our problem domains.

Our sys tematic search procedure proceeds as
follows- f i r s t non-expansion rules are applied
to the left-hand side of the theorem to be
proved. If the right-hand s ide of the theorem
is found, the system terminates. Otherwise, a l l
nodes of the search tree are eventually dead,
since non-expansion rules, by de f in i t i on , can­
not generate an in f i n i t e search space. At that
point, nodes of the search tree are generated
in leve1 order (9). For each node so generated,
we apply a l l expansion rules (as w i l l be
described below), adding any new nodes to the
search tree. We then shi f t to usIng on 1y non-
expansion rules again. It is seen that expan si on
rules are called in onlv when a l l else has
fa i led ; and when they are ca 1 led in , they are
applied as sparsely as possible. The reason for
this is s imply tha t expansion rules tend to
increase drast ical ly the size of the search
space. It is interesting to notice the similar­
i ty of our asymme t r ie use of rewrite rules to
the asymmetry in the use of the two classes of
axioms in the geometry theorem machine (5). In
this la t ter system, axioms of class (i i) are
used only when axioms of class (\) have fai led
to prove a theorem

An example of the use of a 1 oca 1ly f i n i t e
expansion rule (R6 in Table IV) is g iven in
Figure 2. After the application of Rl to the
left-hand side of theorem 1, Table IV, both
nodes of the search tree are dead . The (unique)
expans ion rule R6 is appli ed to t he f i r s t node

*v0 is a constant

Session No. 14 Theorem Proving

of the tree, namely (S«*rR).R, producing nodes
3,4 and 5. We switch back to non-expanBion rules
only, and the answer is quickly found at node 9.
Notice that nodes 2,6 and 7 are dead.

The situation is more complex for a local ly
i n f i n i t e expansion ru le , which introduces arb i ­
trary expressions, as, for example, R4 in Tables
I and I I . We have chosen to allow for such
expressions only those that can be constructed
legally from the atoms encountered in the theoien
to be proved, which is no real res t r i c t ion . It
should be noted that here is the only case where
the right-hand side of the theorem is used for
purposes other than just checking for termina­
t ion. Otherwise, the search is Indeed bl ind!

Our strategy is to grow the search space as
slowly as possible. We attain our goal by l im i t ­
ing both the expressions to which atomic expan­
sion rules are applied, and the expressions that
can be substituted for the arbi trary variables
in local ly i n f i n i te expansion rules. The growth
of the search space takes place in several passes,
and in each successive pass there are fewer
l imitat ions on the use of expansion rules.

In a f i r s t pass, atomic expansion rules (which
could be applied to any (sub)expression of a
node) are applied only to variables, constants
and unary functions. There is no rest r ic t ion on
the (sub)expreBsions that non-atomic expansion
rules are allowed to match. During that same
f i r s t pass, we l im i t the expressions that w i l l
be substituted for the arbitrary variables in
local ly i n f i n i te rules. (I f a certain expression
is substituted for the arbitrary variable, wc
say that we are expanding with that expression.)
In the f i r s t pass, local ly i n f i n i te expansion
rules expand only with variables, constants and
unary functions.

If the theorem is not proved during the f i r s t
pass, the restr ict ions described above would be
successively loosened. We did not need to pro­
gram passes beyond the f i r s t since a l l theorems
could be proved during the f i r s t pass. Moreover,
we are now testing more sophisticated techniques
for expansion that render much of the above
scheme inef f ic ient .

One might argue that we are using heurist ics.
We believe though that we are only using a stra­
tegy, since the order in which the rules are
applied is predetermined and not modified during
proofs.
IV. COMPARISONS WITH OTHER SYSTEMS
A. Comparisons with Quinlan and Hunt

The theorem proverj of Q&H (there are two
versions of FDS) were writ ten for a FORTRAN
compiler on the IBM 7094. Our system is writ ten
for a LISP 1.5 interpreter on the CDC 6600. Com­
parisons between the speeds of the two systems
are awkward. A consensus of "experts" indicates
that we should expect our system to be about
ten times* slower than Q&H. (I t was estimated
that the FORTRAN compiler is about 100 times
faster than our LISP interpreter, while the
CDC 6600 may be some eight to ten times faster
than the IBM 7094.) To fac i l i t a te compari-

603

sons, a l l our times (in seconds) were divided
by 10 in the results in Tables I through VI .
A l l rewrite rules, labelled Ri , were taken in
exactly the same order as given in Q&H, and a l l
theorems, labelled T i , proved exactly in the
same order. A l l the proofs mentioned in this
ar t ic le were obtained with the same version of
our program. By contrast, the results mentioned
by Q&H are for d i f ferent , locally optimized
programs. The only exception is in Table V: the
rewrite rules in Q&H are insuff ic ient to prove
the theorems. Q&H indicate that they used addi­
t ional rewrite rules, without specifying which.
We added the four rewrite rules R12 through R15.
Because of these changes, the results of Table V
are not as meaningful as those of the f i r s t
four tables. (In the tables below, S&M label
our resul ts.)

* I t is not crucial that the reader agree with
our estimate.

604 Session No. 14 Theorem Proving

Session No. 14 Theorem Proving 605

Ac tually, the eomparison between QfcJl and our
system is misleading. Not only are their results
obtained wi th two d ifferent vers ions of FDS, but
their results for each Table arc obtained after
opttimizat ion of the average t ime to prove the
theorems of a particular table. In other words,
the particular version of FDS that proves most
efficiently the theorems of Table I I I performs
miserably when proving the theorems of Table I.
In Table VI, we list, when ava i lable, the bes t
and wors t average t imes to prove theorems in the
various tables (as collected from (7)) as wo 11
as the results in Q&H and our own.

A proof terminates when the (right-hand side
of a) theorem is found. The level at which the
theorem is encountered is fixed, but the number
of nodes searched at that level can vary if we
change the order in which the rewrite rules are
applied. 1t would be straightforward to imple­
ment a sys tern tha t would change the order of
application of rewrite rules to minimize the
average time per proof in a given table. We can­
not estimate the gains in speed that would
result. As we mentioned previously, we have kept
the order of the rules and t lie or cms that we
found in Q&H.

B. Compari son with F ikes
Fikes (4) describes four heuristic search

problems: monkey and bananas; water]ug; a pro­
gramming problem; and the mi ssi onaries and cann i-
bals . The sta tements of these problems are not
reproduced here. These problems in VIkes are
written in a programming language, but each of
them can be translated easily into a rewrite
rule systorn. Such a translation for the fIr st
problem is given in Figure 3. In each triple,
the first element Indicates the monkey's position
the second element the monkey's height and the
last element the position of the box. Each of
the rewrite rules corresponds to an a 1lowable
ac tivi ty of the monkey, in exac tly the same order
as found in Fikes. The translation of the pro­
gramming problem is shown in Figure 4. The sex­
tuple represents the two regi sters put side by
side. The rewrite rules correspond to the allowed
shi ft operations.

Fikes1 system was programmed on an IBM 360/67
for an IPL-V interpreter. His computer may be
slightly s1 owe r than the CDC 6600, wh11e we
expec t 1 PL to have a speed comparable to our
LISP. The real times to solution, also listed in
Figures 3 and 4, are therefore comparable as
gi ven.

The water jug problem and the missionaries and
canni baIs problem necessi tate some ari thmetic
capabilities that our system lacks. Both problems

606

can be easily translated into a system for re­
write rules (see (10)). For example, in the
waterjug problem the rewrite rule corresponding
to pouring from the large jug into the small
Jug would be:

(a,b) := (a=-min(5,a+b), b'=b-(a'-a))
where the f i r s t and second element of the ordered
pair represent the amounts of water in the small
and large jugs, respectively.

The missionaries and cannibals problem has a
tota l search space of 16 nodes (1) while our
hand simulation (10) shows that our system would
solve the waterjug problem in a to ta l of seven
nodes. We would estimate our system to use less
than 2 seconds for each of these problems. These
(hypothesized) times should be compared to 491
seconds and 83 seconds for Fikes' REF-ARF. More­
over, the part icular way in which the missionaries
and cannibals problem is stated in REF has a
strong influence on the time needed to solve it
Fikes mentions that a part icular statement of
the problem would require more than 1800 seconds
of 360/67 time.
C. Comparisons with Chang.

Chang (2) reports on a very e f f ic ient theorem
prover based on the resolution pr inciple. He has
proved some of the theorems from Q&H. Table VII
compares his times with ours. Chang's program is
wri t ten in LISP 1.6 for the FDP-10. We do not
know whether a compiled or interpreted version
of LISP 1.6 was used.

The results described in this section could
be improved substantial ly, especially those of
the long proofs. A newly generated node is added
to the search space only if it is not already in
the space. At present, the space is searched
l inearly for the existence of the node. A hash-
coding scheme would cut down dramatically on the
time needed for such a search.

In spite of such improvements, our system
would perform poorly in potent ial ly large search
spaces which could be reduced s igni f icant ly by
the manipulation of constraints.* We have repor­
ted results on problems for which few or no con­
straints can be used.
*Fikes' system has solved several constraint
satisfaction problems.

Session No. 14 Theorem Proving

V. CONCLUSIONS
The research reported here is part of a

larger, continuing investigation into the cost
of overhead in a theorem prover. It appears
in tu i t i ve (but it may not be true) that, as a
theorem prover applies more sophisticated tech­
niques to reduce i t s search space, it w i l l
expend more time for computation per node con­
sidered. The tota l number of nodes considered
is an inadequate measure of the eff iciency of a
theorem prover, since this number does not take
into account the cost per node. Total time to
solution s t i l l appears as the only reasonable
cr i ter ion for comparing dif ferent systems with
similar domains.

It may come as a surprise to many that our
systematic, b l ind, search procedure performs at
least one to two orders of magnitude faster than
the most powerful existent theorem provers to
which it has been compared. The result is even
more surprising when it is stressed that the
problem domains considered have in f i n i t e search
spaces that are often not even local ly f i n i t e
The results can be explained by noticing that
the proofs of the theorems are very short. The
deepest proofs in Q&H (tied by the theorem in
Figure 1) have a depth of only 5. Many of the
proofs in Q&H, and a l l four problems in Fikes,
are found after generating at most a few dozen
nodes.* Consequently, the problems considered
should not tax the capabil i t ies of a sophist i­
cated heuristic program (although they certainly
seem to have done so.1). These problems do not
represent adequate tests for such a program.

An informal investigation into the problems
solved by a r t i f i c i a l intell igence systems using
heuristic search indicates that many of the
tasks have, in fact, very small search spaces.
If these problems are representative of many of
the future problems to be solved by these systems,
then it is apparent that a very powerful problem
solver can be bu i l t by combining heuristic and
systematic search procedures that would time-
share available resources. The systematic search
procedure could solve very rapidly a large
number of the easy problems. The cooperation,
inside a large system, of subsystems of various
degrees of sophistication w i l l be a fascinating
area of research.

VI . REFERENCES
(1) Amarel, S. On Representations of Problems

of Reasoning about Actions, in : Michie, D.
(Ed.), Machine Intell igence 3. American
Elsevier, N. Y., 1968, 131-171.

(2) Chang, C.L. The Unit Proof and the Input
Proof in Theorem Proving, J.ACM. 17, 4,
1970, 698-707.

(3) Ernst, G.W. and Newell, A. GPS: a Case
Study in Generality and Problem Solving.
Academic Press, N.Y., 1969.

(4) Fikes, R.E. REF-ARF: A System for Solving
Problems Stated as Procedures, A r t i f i c i a l
Intel l igence, i, 1970, 27-120.

*A more thorough discussion of the size of search
spaces w i l l be reported subsequently.

Session No. 14 Theorem Proving 607

(5) Gilmore, P.C. An Examination of Che Geometry
Theorem Machine, A r t i f i c ia l In tel l igence,
J_, 3, 1970, 171-187.

(6) Pohl, I. Heuristic Search Viewed as Path
Finding in a Graph, A r t i f i c i a l Intell igence.
J., 3, 1970, 193-204.

(7) Quinlan, J.R. FORTRAN Deductive System:
Experiments with two Implementations,
Technical Report -68-5-03, Computer Science
Group, University of Washington, Seatt le,
1968.

(8) Quinlan, J.R. and Hunt, E.B. A Formal Deduc­
tive Problem-Solving System, J.ACM, 15, 4,
1968, 625-646.

(9) Salton, G. Manipulation of trees in informa­
tion re t r i eva l , C.A.C.M. , 5_, 2, 103-114,
1962.

(10) Siklossy, L. and Marinov, V. Experiments
in search, Technical Report TSN-20, Com­
putation Center, University of Texas at
Austin, 1971.

