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ABSTRACT 
A theorem proving system embodying a systema­

tic search procedure is de sen bed . Al though the 
search spaces are usually i n f i n i t e , and not even 
locally f i n i t e , the asymmetric way in which thev 
are generated results in a speed that is es 11ma­
ted to be one to two orders of magnitude faster 
than the theorem provers of Quinlan and Hunt, and 
Chang and the problem-solver of Kikes, to whi c h 
this systern has been compared extenslvely. 
DescripIive terms: search, heuristic search, ex­
haust ive seare h , sea re h space, 1ocal1v i n i I n i te 
search space, rewri t ing ru1e, expans ion ru le, 
theorem provi ng, problem-so1ving. 

1. INTRODUCTION 
Heuris t i c programmi ng technl que s have been 

developed to make i t posslble t o solve problems 
whose solutions each constitute just one point or 
a small set of points in a very large, and possi­
bly i n f i n i t e , space, the search space. Many pro­
blems in a r t i f i c i a l intell igence are d i f f i c u l t , 
and requi re "intell igene e" from the problem sol­
ver, precisely because of the size of the search 
space. A 1 though heuris t ic search does not guaran­
tee a solut ion, the size of the search space pre­
cludes an alternative techni que such as exhaustive 
search. Any me thod that would a r tempt to search 
unselee ti vely the whole search spat e i or a sol u-
tion would qu lckly exhaus t avaliable resources of 
time and memory and would be bound to fa i lu re , 
except in some rare, "lucky" cases. 

The statements in the above paragraph seem so 
"obvi ous" that few would diSagree with them. The 
present study shows tha t, in fac t, they are false 
in regard s to severa 1 a r t i f i c i a l intell igence 
systerns that have been bu l l t . F i r s t , the search 
space is very small in many problems, often less 
than even a few dozen nodes. Second, although tte 
search spaces may be in f in i te in pr inc ip le, in 
real i ty only very small parts of this space need 
to be generated, in a systematic way, un t i l the 
solution is found. Final ly , a s imple program, 
embodying a sys tematic, blind and "dumb" (?) pro­
cedure , was wri t ten - This program has solved 
over sixty problems that are typical ly considered 
as requiring heuris t ic search. The vas t majority 
of these problems have a potent ial ly i n f i n i t e 
search space. An estimate of the re lat ive speeds 
of d i f ferent computers and programming languages 
ind icates that our program is from one to two 
orders of magnitude faster, on the average, than 
the most powerful problem solvers with which it 
has been compared. 

The reader should not conclude, either now or 
af ter reading the additional evidence that we 
present, that hcuri st ic programmi ng has no value. 
The success of our program, however, has impor­
tant methodological and prac t ica l consequences. 
Exhaus tive search appears as a derided, yet 
powerful technique to solve many problems that 
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are very hard lor humans and that seemed to 
necessitate heurls t c s for their solut ion In a 
powerful problem-solve r, an exhaus t ive Search 
component might have an impor tan t func t ion in 
so Iving e f f i c ien t l y I arge classes o f prob1 ems, 
a 1 though a 1 one it certainly cannot solve a l l 
problems 
I I . PROBLFM DOMAIN 

Points in the prob 1 em sp,«c i are expressions 
de f l ned recur s L ve 1 y a s va r i ab ] e s (at oms ) or zero-, 
one - and two-p1 ace func tIon symbols (ope ra t ors) 
hav ing expressIous as argument s # Cons tant s are 
Zero-place func tions. New points in t he prob1 em 
space can be obtained by applying a rewrite rule 
to an expression that is a 1 ready in the problem 
spat e. A r ewr l te rule i s of t hi1 form* 
<fle f t-hand- s ide / : * ^right-hand-sid<y where 
both sides are expressions. A rewr i te rule can 
be applied to an expression l i the expre ssIon, 
or one of i ts subexpressions, is a substitution 
instance ol the 1cft-hand-side of the rewrite 
ru le. We say that the rewrite rule opera t es on 
the (sub)expression. 'I h e (s u b)e xp T e s sion that is 
ope ra ted on is t rans f ormed by app1ving t he same 
substitut ion to t he r i gh t-hand-side oi the re-
write rule. For example, if the binary operator 
+ is used with the variables A, B and C; and if 
the expre ssion (A+R)+C is in the problem space, 
a s l ng lc appli c a r Ion of the rewr i t e rule A+B* = 
B+A can produce two new expressions: C+(A+B) and 
(B+A)+C, depending on whether the rule is applied 
at t he top level or not The rules are seen as 
havi ng one i nput and produclng one out put Thls 
is not general, and in re solut ion, for example , 
rewr i te rules have two inputs for one out pu t 

A theorem is in the form of a rewrite ru le, 
for example (A+B)+C:=A+(B+C). A proof of the 
theorem consists in showing that, by a succession 
of applIcat ions of rewrlLe rules, the lett-hand 
side can be transformed into the right-hand side. 
After having been proved, theorems can be consid­
ered as rewrlte rules. 

This problem domain is identical to that con­
sidered extensively by Quinlan* (7) and Quinlan 
and Hunt** (8). Q6dl show results of their learn­
ing programs, FDS1 and FDS 2, on 59 theorems 
grouped in 5 di f ferent areas (see Tables T 
through V). Q includes much addItiona 1 informa­
tion on the programs' performance. FDS Is con­
sidered the most powerful theorem-prover of i ts 
type. Ernst and Newe11 ( i ) consider the results 
of QMf "qui te impressive.M (p. 27.) The same 
version of our program has proved a l l 59 theoiens 
i n the tables in Q6dl. 

Chang (2) has also proved some of the t heorans 
in QM1 using a resolution-based system, and a 
comparison of his results with ours is given. 
Kesolutlon is best viewed as a systern u t I1 i zing 
a single two-input, one-output rewrite rule. 
Fi rial l y , Fikes (4) has documented proofs of four 
heurist ic search problems. Although s ta ted in a 
programming language, these four problems in 
Fikes can be easily rewritten as problems in a 
*To be abbreviated Q. 
**To be abbreviated Q&H. 
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rewrite rule formulation. Two of them were solved 
by the same program that proved the theorems in 
Q&H. The addition of some numerical capabi l i t ies 
to our program would allow it to solve the other 
two problems. (See Siklossy and Marinov (10) for 
a hand-simulation and addi t ional information on 
our system.) Some of the problems tha t can be 
easily expressed for Chang's system are awkward 
to express in our system of rewrite rules. Our 
system lacks the cons t ra in t mani pulation tech­
niques and numerical capabi l i t ies of Fikes' REF-
ARF. On the other hand, it is doubtful that 
e ither Chang's or Fikes' sys tern could prove al1 
the theorems in Table I I I - In this a r t i c l e , 
the ir systerns are compared on problems on an 
intersection of their respective domains of 
expertise with the domain of application of our 
system. 
I I I . SYSTEMATIC SEARCH 
A. Non-Expans ion Rules 

A theorem is of the form L:=R, where L and R 
are the le f t and r ight expressions of the theorem. 
A systematic search for the proof of the theorem 
starts with the search space consisting of the 
expression L. From L, we build the next leve1 
of the search tree- To this e f fec t , we apply to 
L a l l rewrite rules, one after the other. An 
expression result ing from the application of a 
rewrite rule to a node of the search tree is i n ­
serted in the tree if and only if it does not 
already figure in the search tree. Figure 1 shows 
the search tree for the proof of theorem 1 in 
Table 1, using only the f i r s t two rewrite rules. 
The third node of the search tree, (B+A)-K;, is 
called a dead node since no new expressions can 
be obtained by applying rewrite rules Rl or R2 
to this node. The search terminates when the 
expression A+(B+C) i s found at the f i f t h level 
of the tree, as the 12th node. 
B. Expansion Rules 

The reader w i l l notice that rule R4, A:= 
(A+B)-B, in Table I could also be applied to try 
to prove theorem 1. Any expression or subexpres­
sion is a substi tut ion instance of the l e f t -
hand -side of R4. Thus, any (sub)express ion can 
be rewri t ten, using RA, by f i r s t adding to it 
any express ion, then subtrac ting the same expres­
sion that had been added. There are clearly an 
i n f i n i t y of expressions that can be substituted 
for B, so that the search space is local ly in ­
f i n i t e and, consequently, some recent resul ts 
in heuristic search by Pohl (6) on local ly 
f i n i t e search spaces are not applicable to the 
problem domain considered here. 

We ca l l expansion rules those rules (such as 
R4 in Table 1, or R6 in Table IV) whose repeated 
application could generate an i n f i n i t e search 
space for the problem domain considered. Some 
ordered generation of the space is needed, 
especially for those rules (such as R4 in Tab lei) 
which allow the introduction of arbi t rary expres­
sions . 

Since expansion rules play an important role 
in our system they deserve a more detailed dis­
cussion. The rules are a sample of the different 
types of expansion rules in the doma ins that we 

The f i r s t three rules generate a local ly i n f i n ­
i te search space, while the other three gener­
ate an i n f i n i t e space, which is local ly f i n i t e . 
For example, applying T l , Table II to the node 
X results in the node X+0. Another appl1 cat ion 
of the same rewrite rule produces the three 
nodes (X+0)+0, (X+0)+0 and X+(0+0). 

We further distinguish between two types of 
expansion rules. Atomi c expansion rules have a 
single variable as the left-hand-side. Rules 
1, 4 and 5 are atomic. The other expansion rules 
are called non-a tomic. The search strategy is 
s l igh t ly di f ferent for the two types of expan­
sion rules (see below) 

It is undecidable in general whether a re­
write rule system has an i n f i n i t e search space. 
However, in the problem domains that we consid­
ered, a rule R is an expansion rule if it can be 
applied to i ts own right-hand-side ( i . e . if the 
right-hand-side is a substitut ion instance of 
the lef t-hand-side) and if the expression ob-
tained by applying R to i ts own r ight-hand-
side has more nodes (when considered as a tree) 
than the right-hand-side of R. It is seen that 
testing whether a rule is an expansion rule is 
a simple matter in our problem domains. 

Our sys tematic search procedure proceeds as 
follows- f i r s t non-expansion rules are applied 
to the left-hand side of the theorem to be 
proved. If the right-hand s ide of the theorem 
is found, the system terminates. Otherwise, a l l 
nodes of the search tree are eventually dead, 
since non-expansion rules, by de f in i t i on , can­
not generate an in f i n i t e search space. At that 
point, nodes of the search tree are generated 
in leve1 order (9). For each node so generated, 
we apply a l l expansion rules (as w i l l be 
described below), adding any new nodes to the 
search tree. We then shi f t to usIng on 1y non-
expansion rules again. It is seen that expan si on 
rules are called in onlv when a l l else has 
fa i led ; and when they are ca 1 led in , they are 
applied as sparsely as possible. The reason for 
this is s imply tha t expansion rules tend to 
increase drast ical ly the size of the search 
space. It is interesting to notice the similar­
i ty of our asymme t r ie use of rewrite rules to 
the asymmetry in the use of the two classes of 
axioms in the geometry theorem machine (5). In 
this la t ter system, axioms of class ( i i ) are 
used only when axioms of class (\) have fai led 
to prove a theorem 

An example of the use of a 1 oca 1ly f i n i t e 
expansion rule (R6 in Table IV) is g iven in 
Figure 2. After the application of Rl to the 
left-hand side of theorem 1, Table IV, both 
nodes of the search tree are dead . The (unique) 
expans ion rule R6 is appli ed to t he f i r s t node 

*v0 is a constant 
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of the tree, namely (S«*rR).R, producing nodes 
3,4 and 5. We switch back to non-expanBion rules 
only, and the answer is quickly found at node 9. 
Notice that nodes 2,6 and 7 are dead. 

The situation is more complex for a local ly 
i n f i n i t e expansion ru le , which introduces arb i ­
trary expressions, as, for example, R4 in Tables 
I and I I . We have chosen to allow for such 
expressions only those that can be constructed 
legally from the atoms encountered in the theoien 
to be proved, which is no real res t r i c t ion . It 
should be noted that here is the only case where 
the right-hand side of the theorem is used for 
purposes other than just checking for termina­
t ion. Otherwise, the search is Indeed bl ind! 

Our strategy is to grow the search space as 
slowly as possible. We attain our goal by l im i t ­
ing both the expressions to which atomic expan­
sion rules are applied, and the expressions that 
can be substituted for the arbi trary variables 
in local ly i n f i n i te expansion rules. The growth 
of the search space takes place in several passes, 
and in each successive pass there are fewer 
l imitat ions on the use of expansion rules. 

In a f i r s t pass, atomic expansion rules (which 
could be applied to any (sub)expression of a 
node) are applied only to variables, constants 
and unary functions. There is no rest r ic t ion on 
the (sub)expreBsions that non-atomic expansion 
rules are allowed to match. During that same 
f i r s t pass, we l im i t the expressions that w i l l 
be substituted for the arbitrary variables in 
local ly i n f i n i te rules. ( I f a certain expression 
is substituted for the arbitrary variable, wc 
say that we are expanding with that expression.) 
In the f i r s t pass, local ly i n f i n i te expansion 
rules expand only with variables, constants and 
unary functions. 

If the theorem is not proved during the f i r s t 
pass, the restr ict ions described above would be 
successively loosened. We did not need to pro­
gram passes beyond the f i r s t since a l l theorems 
could be proved during the f i r s t pass. Moreover, 
we are now testing more sophisticated techniques 
for expansion that render much of the above 
scheme inef f ic ient . 

One might argue that we are using heurist ics. 
We believe though that we are only using a stra­
tegy, since the order in which the rules are 
applied is predetermined and not modified during 
proofs. 
IV. COMPARISONS WITH OTHER SYSTEMS 
A. Comparisons with Quinlan and Hunt 

The theorem proverj of Q&H (there are two 
versions of FDS) were writ ten for a FORTRAN 
compiler on the IBM 7094. Our system is writ ten 
for a LISP 1.5 interpreter on the CDC 6600. Com­
parisons between the speeds of the two systems 
are awkward. A consensus of "experts" indicates 
that we should expect our system to be about 
ten times* slower than Q&H. ( I t was estimated 
that the FORTRAN compiler is about 100 times 
faster than our LISP interpreter, while the 
CDC 6600 may be some eight to ten times faster 
than the IBM 7094.) To fac i l i t a te compari-
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sons, a l l our times ( in seconds) were divided 
by 10 in the results in Tables I through VI . 
A l l rewrite rules, labelled Ri , were taken in 
exactly the same order as given in Q&H, and a l l 
theorems, labelled T i , proved exactly in the 
same order. A l l the proofs mentioned in this 
ar t ic le were obtained with the same version of 
our program. By contrast, the results mentioned 
by Q&H are for d i f ferent , locally optimized 
programs. The only exception is in Table V: the 
rewrite rules in Q&H are insuff ic ient to prove 
the theorems. Q&H indicate that they used addi­
t ional rewrite rules, without specifying which. 
We added the four rewrite rules R12 through R15. 
Because of these changes, the results of Table V 
are not as meaningful as those of the f i r s t 
four tables. (In the tables below, S&M label 
our resul ts.) 

* I t is not crucial that the reader agree with 
our estimate. 
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Ac tually, the eomparison between QfcJl and our 
system is misleading. Not only are their results 
obtained wi th two d ifferent vers ions of FDS, but 
their results for each Table arc obtained after 
opttimizat ion of the average t ime to prove the 
theorems of a particular table. In other words, 
the particular version of FDS that proves most 
efficiently the theorems of Table I I I performs 
miserably when proving the theorems of Table I. 
In Table VI, we list, when ava i lable, the bes t 
and wors t average t imes to prove theorems in the 
various tables (as collected from (7)) as wo 11 
as the results in Q&H and our own. 

A proof terminates when the (right-hand side 
of a) theorem is found. The level at which the 
theorem is encountered is fixed, but the number 
of nodes searched at that level can vary if we 
change the order in which the rewrite rules are 
applied. 1t would be straightforward to imple­
ment a sys tern tha t would change the order of 
application of rewrite rules to minimize the 
average time per proof in a given table. We can­
not estimate the gains in speed that would 
result. As we mentioned previously, we have kept 
the order of the rules and t lie or cms that we 
found in Q&H. 

B. Compari son with F ikes 
Fikes (4) describes four heuristic search 

problems: monkey and bananas; water]ug; a pro­
gramming problem; and the mi ssi onaries and cann i-
bals . The sta tements of these problems are not 
reproduced here. These problems in VIkes are 
written in a programming language, but each of 
them can be translated easily into a rewrite 
rule systorn. Such a translation for the fIr st 
problem is given in Figure 3. In each triple, 
the first element Indicates the monkey's position 
the second element the monkey's height and the 
last element the position of the box. Each of 
the rewrite rules corresponds to an a 1lowable 
ac tivi ty of the monkey, in exac tly the same order 
as found in Fikes. The translation of the pro­
gramming problem is shown in Figure 4. The sex­
tuple represents the two regi sters put side by 
side. The rewrite rules correspond to the allowed 
shi ft operations. 

Fikes1 system was programmed on an IBM 360/67 
for an IPL-V interpreter. His computer may be 
slightly s1 owe r than the CDC 6600, wh11e we 
expec t 1 PL to have a speed comparable to our 
LISP. The real times to solution, also listed in 
Figures 3 and 4, are therefore comparable as 
gi ven. 

The water jug problem and the missionaries and 
canni baIs problem necessi tate some ari thmetic 
capabilities that our system lacks. Both problems 
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can be easily translated into a system for re­
write rules (see (10)). For example, in the 
waterjug problem the rewrite rule corresponding 
to pouring from the large jug into the small 
Jug would be: 

(a,b) := (a=-min(5,a+b), b'=b-(a'-a)) 
where the f i r s t and second element of the ordered 
pair represent the amounts of water in the small 
and large jugs, respectively. 

The missionaries and cannibals problem has a 
tota l search space of 16 nodes (1) while our 
hand simulation (10) shows that our system would 
solve the waterjug problem in a to ta l of seven 
nodes. We would estimate our system to use less 
than 2 seconds for each of these problems. These 
(hypothesized) times should be compared to 491 
seconds and 83 seconds for Fikes' REF-ARF. More­
over, the part icular way in which the missionaries 
and cannibals problem is stated in REF has a 
strong influence on the time needed to solve it 
Fikes mentions that a part icular statement of 
the problem would require more than 1800 seconds 
of 360/67 time. 
C. Comparisons with Chang. 

Chang (2) reports on a very e f f ic ient theorem 
prover based on the resolution pr inciple. He has 
proved some of the theorems from Q&H. Table VII 
compares his times with ours. Chang's program is 
wri t ten in LISP 1.6 for the FDP-10. We do not 
know whether a compiled or interpreted version 
of LISP 1.6 was used. 

The results described in this section could 
be improved substantial ly, especially those of 
the long proofs. A newly generated node is added 
to the search space only if it is not already in 
the space. At present, the space is searched 
l inearly for the existence of the node. A hash-
coding scheme would cut down dramatically on the 
time needed for such a search. 

In spite of such improvements, our system 
would perform poorly in potent ial ly large search 
spaces which could be reduced s igni f icant ly by 
the manipulation of constraints.* We have repor­
ted results on problems for which few or no con­
straints can be used. 
*Fikes' system has solved several constraint 
satisfaction problems. 
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V. CONCLUSIONS 
The research reported here is part of a 

larger, continuing investigation into the cost 
of overhead in a theorem prover. It appears 
in tu i t i ve (but it may not be true) that, as a 
theorem prover applies more sophisticated tech­
niques to reduce i t s search space, it w i l l 
expend more time for computation per node con­
sidered. The tota l number of nodes considered 
is an inadequate measure of the eff iciency of a 
theorem prover, since this number does not take 
into account the cost per node. Total time to 
solution s t i l l appears as the only reasonable 
cr i ter ion for comparing dif ferent systems with 
similar domains. 

It may come as a surprise to many that our 
systematic, b l ind, search procedure performs at 
least one to two orders of magnitude faster than 
the most powerful existent theorem provers to 
which it has been compared. The result is even 
more surprising when it is stressed that the 
problem domains considered have in f i n i t e search 
spaces that are often not even local ly f i n i t e 
The results can be explained by noticing that 
the proofs of the theorems are very short. The 
deepest proofs in Q&H (tied by the theorem in 
Figure 1) have a depth of only 5. Many of the 
proofs in Q&H, and a l l four problems in Fikes, 
are found after generating at most a few dozen 
nodes.* Consequently, the problems considered 
should not tax the capabil i t ies of a sophist i­
cated heuristic program (although they certainly 
seem to have done so.1). These problems do not 
represent adequate tests for such a program. 

An informal investigation into the problems 
solved by a r t i f i c i a l intell igence systems using 
heuristic search indicates that many of the 
tasks have, in fact, very small search spaces. 
If these problems are representative of many of 
the future problems to be solved by these systems, 
then it is apparent that a very powerful problem 
solver can be bu i l t by combining heuristic and 
systematic search procedures that would time-
share available resources. The systematic search 
procedure could solve very rapidly a large 
number of the easy problems. The cooperation, 
inside a large system, of subsystems of various 
degrees of sophistication w i l l be a fascinating 
area of research. 
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