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ABSTRACT

Ore reason for changing the representation
of a gare is to make it similar to a previously
solved one. As a definition of similarity,
people have previously often proposed homomor-
phism-like structures. Ore such structure, the
"s -homomorphism"”, is defined and studied in this
paper.

It is indicated that a useful winning stra-
tegy exists for any game in a general class
called, "positional games". A set of sufficient
conditions is derived which a game has to fulfill
to have an sg-homomorphism with a positional
game. The conditions are exemplified by applying
it to a class of games shown by Newell to be
representable as tic-tac-toe.
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1. Introduction

It- has been known for some time that the
ease with which a problem can be solved is
heavily dependent on the manner in which the
problem is stated. To enable a serious study of
this phenomenon, (which we shall call represen-
tation dependence), it is necessary to have a
well-defined model of what a problem is. Three
such models are available in the literature,
Green[6], Amare] [1] and Ernst and Newell [5],
The latter two have been used to study repre-
sentation dependence. In the third one any
problem is considered to be that of proving a
statement in a first order predicate calculus.

It is our belief that the study of representation
dependence is possible in this model also In
terms of what is known as the extension of
theories by definition [10].

Any of these existing models can thus be
used for the study of representation dependence.
Indeed, some day we may be able to consider the
relationship between the three models in terms
of such a study. Meanwhile, studies on repre-
sentation dependence will have to continue
separately along these three different avenues.
This paper will use a formal variant- of the
"state space" model of GBS [5] and study certain
issues of representation dependence.

The reason for changing the representation
of a problem is not always to make the problem
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"simpler" (although Iin the examples of Amarel
[1] the problem space is shrunk). In many cases
changing the representation of a problem in-
creases its search space, and yet makes the
problem easier by allowing previously learned
problem solving methods to be used in the
problem. Polya [9] argues as follows: When

a person is given a problem if he notices
sufficient similarities between the given pro-
blem and a problem which he knows how to solve,
then he can solve the given problem in the same
way that he solved the known problem. In gen-
eral, the two problems will have different,
abstract- structures (in our case different
state spaces), but they are sufficiently similar
that the same strategies, heuristics, etc., can
be used on both.

As a definition of this similarity we pro-
pose different kinds of homomorphism-like
relationships between two problems which pre-
serves certain strategies, heuristics, etc., for
solving the problems. Por instance, Amarel [1 ]
has suggested that what is a single transfor-
mation in one problem may correspond to a
sequence of transformations in another problem.
Other kinds of homomorphisms have also been
described in the literature. For example, there
is a well knowmn similarity between the strategies
for playing the games of staircase nim and nim.
This similarity is a rather unusual homomor-
phism between the two gomes. This led some to
develop general methods to determine if a given
gare is homomorphic to nim. The resulting
methods led to the discovery of a homomorphism
between the eight pawns garme and nim (and
several other homomorphisms [2,3]).

Encouraged by these results, we decided to
study the conditions under which a game could
have a tic-tac-toe-like gamne as a homomorphic
Image. Previous to this investigation, a gen-
eralized class of games, called positional
games, had been studied by Koffman [71. This
class included such games as Go-Moku, Hex,
Bridgit and two and three dimensional tic-tac-
toe. Koffman developed a game-independent
learning technique which was effective for any
positional game. The development of methods for
recognizing homomorphisms with positional games
would enable wider application of Koffman's
method for playing these games.

Another reason for studying homomorphisms
with positional games is to try to answer some
of the questions raised by Simon [11] and by
Newell [8], They claimed that the four games in
Fig. 1 (one of which is tic-tac-toe) are
"iIsomorphic” to one another in some very non-
obvious ways. We found that a few of these
games were not even obviously positional,
although most- of them were. Therefore, we felt-
that a deeper analysis of game structures was
needed before homomorphisms with positional games
could be studied.

During our investigation, it also became
evident, that the homomorphisms one should be
looking for are certainly not one-one maps or
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not even maps. In fact, they turned out to be
genera] relstions between the game spaces under
consideration, Moreover, we found that. whether
two games were homomorphic or not depended
heavily on ihe starting position of the game,
In the interest of axiomatie simplicity, the
slate space of a formalized pame, cof'ten has many
more states than one needs for the purpose at
haund, These illepal states cof'ten do not get
mapped properly by homomorphisms By restric-
ting onets discussions only to states reached
from & Jegal initial state, one can avoid this
difficulty.

A formal definition of a game is given and
discussed in the next section, Then we intro-
duce the homomorphism that will form the central
theorem of the paper, Next, the ideca of o
winning strategy is introduced, and it is shown
that if # homomorphism exists between twoe games,
then one can congstruct a winning strategy in
one from s winning strategy in the other, 1In
section 2 positional games ure discussed, A nel
of sufficient conditions are developed {or s
game to have s poslitional game ng a homomorphic
imape,

In 41l of thecse sectlons, exumplen are
friven for all formal definitionsg for motivation,
The Jast section containe some concludirg re-
marke.

e A Homomorphism Between umnes

In this section we define a homomorphl sm
between fFames which, 1n some sense, preserves
winning stratepies, However, {first we must
define gFames; this 1v the purposzsc of the first
subsection., Next, the homomorphism is desceribed
and in the Jast subsection we prove that 1t
preserves winniry strategles,

:’.1 Definiiinn of & Gzimn

Ly 1

A game G is o4 5-tuple, (S, K, P, W, L), S
is the sct of game situstions, R 1s the legal
move rclation. Thut 1sg, sHt 11 and only 1f t
is the result of making & lepal move 1n the
game situation s, P is the sel of game situa-
t.ions in which the f'irst player is on move, (We
ure assuming that the pame is & ftwo person game,)
W is the set of winning positions and L ig the
sct of lasses,

We assume that any game satislies Lhe fol-
lowing set. of postulates:

G1:  Dom(R)MN(WUI) - ¢
ar: L € P

G3: WP = ¢

Gh: sRt = (ceP = t 1)

G1 indicates that there ure no legul moves from
& winning or losing positlion., G requires the
first pluayer Lo be on move when he loses; (3
reguires the second player to be on move when
the first player wins. Note thal 5-FV is the set
nf" situstions in which the second player is on
move, G4 indicates that there is strict alter-
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nation between players. Although these postu-
lutes rule oul certain games, Lhey are sstisfied
by the games described in thls paper and many
other games, also,

Race (see Fip, 1) fits this definition of
g game quite nicely, Rkach game situation con-
sists of three parts: the board; who 1s on
move; and whieh tickets are unbought, F 1s the
set of situations in which the first player is
on move, R ls the legal move relation, Each
situation in W has one of the first player’'s
harases on the third renk; a situstion 4n L has
nne of the second player's horses on the third
rank,

The reader wil]l] note that it is not possible
to have a horse of both players on the third
runk, Although such positions are elements of
S (see discussions in Sec, ?), they can never
be obtained due to G171, That 1ls, after the
'irst player moves s horse to the third rank,
he lesves the second player with a situation in
which there are no legal moves; thus, the second
player never has the opportunity to subsequently
move one of his horses to the third rank also.

e Lefinition of s -morphlsm

Given two pames G und G', a s —morphism h,
i+ 4 homomorphi mekﬂmlgumE, G = (5 F, W, L),
teo pame G o= (S, K, bty Wr, LU ] Unllke moet.
homomorphisms, it is not a map but a relation
between S und 5', In other wordeo, o situstion
in ¢ may have scveral images in S5S'; h is only
concerned with those situatione in 5 that can be
reached by applying o cequence of lepal moves to
somc starting situation, s,. We define T to be
the set of situgtions that are reachable from
tqy t.e., T = R(n“) where'ﬁ is the transitlive
closure of B (R = TURUR-UR3 ...).

An s, -morphism, h, ls a subset of 5x5' that

sntisfies the following postulates

H1: eeT&cetgh(a) &Rt =dt(t ¢ h(t) & sRt )

1 seT&sRt&s! eh(s) =3t (t' ¢eh(t)&s'R i)
H3: seT&s'gh(s)=(ceWearteW' )&(sel.as ¢l.')
Hi: seT&s'eh(s) »(sgP=stel!)

According to HZ, whenever there is un arc from

s to t in G, there must also be an arc from every
imagre of & to some image of ¢ in G', H?1 is
similar te H2 except the roles of G and G' are
reversed, H3 requires every image of & win
(loss) to be a win (loss); conversely every
reachable ejtuation that has an image which ls a
win (loss), must be o win (loss)., H4 requires
Lhe same player to be on move in a situation

and lts image,

An exnmple will help clurify the properiles
of" & 5,-morphism. Racec is sy-morphic to tic-tac-
toe., (See Fip. 1.) Buch tic-tac-toe square,

1, corresponds lo the ticket Mi where the
tic-tac-toc syuares are amssigned the followling

numbers:

SANL N
— 1O
oG o &~
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A tic-lac-toe situation is an image of u race
situation when

i. each unbought ticket is an unmarked
square and conversely;

ii, & tic-tac-toe syuarc marked by a player
corresponds to the ticket. bhought by a
player owning @ horse on the ticket.

Fig., ! shows & race position and scveral of its
tie~-tuce-toc images., The s -morphism requires
squares 7 und 3 to be unmarked; square 5 to be
marked with 0; and squares 2 and 6 to be marked
X. For this race position, it is casy to see
that all of the properties of an s -morphlsm are
gatisfied, In either of the tic-tec-toe posl-
tions in Fig, 2, the second player may mark sguare
7 or 3 with an X, while the corresponding move
of buying ticket M7 und M3 is legal in the racc
sizuation in Fig. 2, Thus, H1 is satisfied. HZ
is satisfied becnuse the second player buying a
tickel corresponds to marking one of the empty
squares in the tic-tac-toc positions,

T see that H3 is sstisfied, note that each
horse is affected by precisely three tickets
whose corregponding squares constitute o winning
line in tic-tuc-toe., Thus, in order for a player
to win at race, he must have bought one of Lhesc
sel.s ot three tickets., For example, if the first
player succeeds 1n moving horse d to the goal
rank, 1t follows that he hag bought ticketas, MI
M7 and M6, Any imuge of such o win must have Xt'o
on squares Z, 7 and O which 1¢ @ win in tic-tuc-
toe, A similar argument sliows that the losses
of ruace have imuges that are losges in tle-tac-
Lo,

Obviously, H4 is saticlicd because play is
strictly alternating in both pames,

)

<.3 Definition of a Strategy

Given u game, G, a stralegry, @, is o partial
map on F with 5 us ils range with the proviso
that Q(s) = t implies sRt.. Thal is, given a
playerts move, the strutegy determines the next
sltuation for the player to go to,

Given a stratepgy, @, and a situation, s1eP,
a U-sequence {or sq 1is SEQUENCE, Sq, Snyeae,
of situatinns such that for all i, si;Rsyyq:
Moreover, for a1l odd i, 5; .4 = Q(84), andif sy
is the last element! of the sequence, (i,e,, the
sequence is finite), then s, ¢dom(R)., Intui-
tively, each of the {irst player's moves in the
sequence is dictated by the strategy, Q, while
the second player's moves are arbitrary legal
moves,

A Q-sequence [or s4 is called winning if for
some finite n, s, eW. It is easy to see that in
such cases n 1s even,

A sirategy is a winning strategy for s if
every Q sequence for s 1s a winning sequence, It
can be shown without any difficulty that, if Q is
a winning sirategy ffor a situation s, then it is
a winning strategy for any situation s. € P which
occurs in a Q-sequence for s, Using tﬁe above
definitions we can now prove:
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Theorem 1, If there 1s an s_-morphism, h, from
came G, Lo game G', and there is a winning
strutegy, Q, {'or s €T, then there is a stratepy,
Q', which is winning for euach st ¢h(s). Con-
versely, if Q' is a winning stratepgy for o', then
Ltherc is o stratepy which is winning {for cvery ¢
auch that &' eh(s) and s e T,

The proof of this theorem appesrs in Banerji
& Ernst [4] and in Banerji [3]. For the immcd-
iate purposes of this paper, wc shall now show
how an s_ -morphism exists between certaln classes
of games,

3, Two Related Classes of GLamcs

Koffman [7] developed a power{ul method for
learning how to play any pame in a class of
vame s Which he called positiconal games, If we
had some way of recognizing when n game is
ennential ly positional, we could use Koffman's
mcthod for playing the gamce, In the first sub-
section we will defline positional games and in
the next subsection we will derive sufficient
conditions for & pame Lo be s -morphic to a
pasitional game, Theorem 1 shows thatl Koffman's
method 1s useful on any game that is s -morphic
tro &t poslitional gume,

3,17 Definiticon of « TFogitional Game

A positional game is defined ty a 3-tuple,
(N, A, B), wherc each eleoment of A and K are
subsets of N, Intuitively, one can view a
positional game sas beiny played on a board 1n
which the sel of squures is N, kach player on
his move occupice an uneccupied square, A and B
arce¢ Lhe scts of winning paths for the tirct and
second playere, respectively, 1f the first
player occupies all of the squures in a path
in A, he winsg, 'The second player wins upon
occupying a path in B,

We will represent euach situation by ((X, Y,
#), m) where X is the set of squarcs occupied by
the first player; Y is the set of squares
occupied by the second player; # is Lhe sct of
empty squarcs; and m is a 1 if the first playcr
is on move, and O otherwise. Given uny (N, A,
B), we can construct a game (S, R, P, W, I.)which
satiafies the following pestulates:

PO:s &S = {((X, Y,#),m)lmc{O, 13&”(, Y, ,ﬂ is a
partition on N

P1: ((X, Y, #), m) eWiffm=0 &3 u(a ¢A & a CX)

Po: ((X,Y,#),m) eLiff m=1 &3 b(beB& b (YY)

P3: ((X,Y,#),m) ¢ePiff m=1

Phe (X, Yoy # ) m RUX,, X, #5)y mo) 46T
( (

, Y‘],#.' ),m_')*NUL and either
. In(ne# &X,= X, U in}& #:#—in?&%ﬂ# m,

orT

1i. En(nc#,'& Y:,: 1(1 U{n}&#?:#.'—{n‘f&rrﬁ—();émz

It is casy to show that any (S, R, F, W, L) so
constructed satisfies G1-G4.
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PO gives the set of game situations. P1 and
P2 relate the wins and losses to A and B. P3
indicates that the first player is on movwe when
nm-1 . According to P4, the first player's mowe
consists of moving an element of # to X, while
the second player's move consists of moving an
element of # to Y. F4 also forbids moves from
a win or a loss.

Tic-tac-toe can be represented as a posi-
tional game. N is the set of nine squares on a
tic-tac-toe board. A is the set of horizontal,
vertical and diagonal lines, and B - A; I.e., the
set of winning paths are the same for both
players.

3.2 Definition of Reducible Games

(Often a game can be described, conveniently,
in terms of a set of properties. A chess posi-
tion, for example, can be described by consider-
Ing each square to be a property whose value is
the piece on the square (or empty). A property
then is a function which maps gare situations
iInto some set, e.g., chess pieces. Reducible
games are described in terms of such properties.

A reducible game (S, R, P, W, L) is des-
cribped in terms of n such properties, f,., fs,,

.., T, and two classes, A and B, of subsets of
these properties. For any position in S each

of the n properties has a value of 0, 1, ? or 3.
The postulates of a reducible game involve the
set T of positions that are reachable from some
starting position speS. Space does not allow
us to give a complete formal definition of the
postulates of a reducible game. Instead, we
give a brief informal description of a reducible
gare and a detail description of race, a typical
reducible game.

The A and B of a reducible game are analo-
gous to the A and [3 of a positional game. Each
element acA is a winning set of properties in
the sense that a reachable position s is a win
if f(s)-1 i'or each f ga. Similarly, a reachable
position, s is a loss if f(s)-? for each febeB.

Each legal move from a reachable position,
s, to a new position t(i.e., sRt) changes the
value of some properly f from 0 to non-zero.
That is, there is an f such that. f(s)-0 and
f(t)*0. In addition, once a property acquires
a non-zero value if wil 1 remain non-zero for the
remainder of the game. Due to these rules (and
other rules described below) about the way that
moves change the values of properties, a property
can become inessential to the play of the game.
An inessential property is one that can never
contribute to a win (or a loss-) because every
winning (losing) set containing it, contains at-
least, one property whose value cannot be changed
to a 1 (2), Moves affect the values of inessen-
tial properties in a different way than essential
properties.

If a reachable position s is not a win nor a
loss, and if f(s)-0 for some property, f, then
there is a legal movwe from s to a new position
t (i.e., sRt). In t all of the essential pro-
perties have the same values as they had in s
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except for f whose, value changes, i.e., f(1)=0.
If f is an inessential property of t, f(t)=3.

If f is an essential property of t, f(t)=1 if
the player made the mowe (i.e., sgP). If the
opponent, made the move and f is essential for t,
then f(t)-2. In addition, all of the inessen-
tial properties of t acquire a value of 3. Thus,
we see that a single movwe may change the values
of several properties.

An example, race, will help to clarify the
above description of reducible games. Orne way
to describe a race position is to tell the
players who is on move, what tickets are still
available for purchase, and how the horses stand,
I.e., to whom, if any, each horse belongs and
where it, stands on the track, which horses are
disqualified and which horses are unowned. Each
situation, then, has three components, and we
shall designate a situation by a triple (t, b, m)
where m is the usual mowe indicator, O or 1.

The first component, t, is the set of unbought
tickets. The second component,, b, is the board,
I.e., an assignment to each horse of P1, P.? P3,
E1, E2, E3, UO or DQ These values stand for
"owned by the first player and in position 1, 71
or 3", "owned bx the second player and in posi-
tion 1, ?, or 37, "unowned" and "disqualified",
respectively.

We may, at this point, make various con-
ventions about whether any combination of these
three components would be allowed. Should we,
for instance, accept a situation where no
tickets are bought, two horses (one owned by
each player) have already won, while three
others are disqualified? The answer, we believe,
is a matter of taste. In any case, it makes no
difference in the final analysis, because as
long as we take the proper initial situation
as the one where all the tickets are unbought
and all the horses are unowned, then the mowe
rules restrict T to exclude all such nonsense
states, since such states cannot be reached by
any sequence of legal moves. This exemplifies
the strong influence of the set T on all our
discussions and explains why it plays such an
import,ant role in our definitions.

Continuing with the example, let position
(t.,bg,my) be a legal movwe from position
(t'y ,b1,m:* ). Then t, contains all the tickets in
t1 except some specific ticket Mi. Also m=0 if
m4-1 and vice versa, b,, is obtained from b4 as
follows: the ownership and the position of all
the horses are the sare in by and b, except for
those whose columns contains an X in the Mi row
of the move table in Fig. 1. For these horses,
their values are advanced one step if they are
unowned or belong to the player on move. That
s, If m2=0, then a value of P, becomes P2, P,
becomes “P3 and UO becomes P1. If my=1 then
E1 becomes E, etc, and UO becomes E1% If the
horse belongs to the opponent of the player on
move, it is disqualified, i.e., if m=0 then
values of E1 and E2 become DQ and if my=1 then
P1 and V? become DQ. Disqualified horses on
the Mi list, remain disqualified.
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A situation (t,b,m) is winning if and only
if there is some horse h with a value P3 in b and
m=1 . Similarly (t,b,m)L if and only if m-0O and
there is a horse whose value is E3.

To see that this game is reducible, one sets
up one function f;for each ticket, Mi as follows.
The value of f; (1<i<?) for a situation is 0 if
and only if Mi is unbought, i.e., If Mi et. If
Mi is not in t, the value of f has to be sur-
mised from the values of the horse as given iIn
b. If at least one horse appearing in the row
of the ticket Mi has a value P1, P2 or P3, the
value of fi. is 1. |If at least one horse on the
row o f Mi ft as a value E1 , E2 or E3, the value
of f. is 2. (If the game is played legally from
a starting state where all the tickets arc on
the table and all the horses are unowned, then
these two rules will never contradict one
another). If all horses in the row Mi are dis-
qualified, then f. has the value 3 for the state.

It is clear that if any winning situation
Is reached from the usual starting situation,
then the table shows that there should be exactly
three tickets belonging to the winning player
which has the winning horse's name on it. So
there is a set of f's such that all their values
are 1 at that situation. Thus one can isolate a
class of sets of the f's such that a situation
is a win if and only if all the members of some
set in this class has the value 1. This shows
that the wins and losses of a race are specified
in the same way as the wins and losses of a
reducible game.

To see how the mowe rules of race fit the
above description of reducible games, let the
value of f be 0 for some situation. From what
has gone above it is clear that in this case Mi
will be an unbought ticket. If this is a reach-
able situation which is neither a win nor a loss,
then the player on movwe can buy this ticket. |If
all the horses on this ticket are either dis-
qualified or belong to the opponent, then after
buying this ticket all the horses on it will be
disqualified and the value of the ticket for the
new state will be 3. Otherwise the value of f
will be determined by the identity of the player,
which in turn, will be reflected by the owner-
ships of the horses in the next position. As far
as all the other tickets are concerned, the un-
bought ones will remain unbought, and the others
will either retain their values (since horses do
not change hands, nor do 'the tickets
bearing the horses names) or some tickets take
on the value 3 if their horses get disqualified
by the purchase.

3.3 A Homomorphism

In this section we define a relation h
between positional and reducible games. Theorem
2 proves that this relation is an sg-morphism.
Our reason for doing this is that we have power-
ful methods for playing positional games. Since
s -morphisms preserve winning strategies, we can
now apply these same methods to reducible games.
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Given G, i,e,, given n functions, ., for
1€1<€n and the subgets A and B conq‘fruc% a
positional game G' def'ined by the triple (N, A,
B) where Nf:{1, ey n?. Now construct. h C
S5xS' as follows: For euch s ¢S, the element
s'=((X, Y, #), m) will bhe related to s (i.e.,
s' eh(s)) if and only if

m=1 if s e¢P: elne m=0.

rJ

Every j such that f3(s)=1 is in X,

I Ve

je# it and only if I'j(s):

If £.(s)=73 and j epeAlUR, then there is
an 1“and a k in p such that 1 €X und keY,

The intent of (1)-(4) is clear. (%) indicates
that if fj is inessential then so is "square®
j in the positional game, A sguare is essen-
tial when all winning and losing paths con-
Luining it, contain a square occupied by the
player and a square occupied by the opponent,

We now can prove:

Thegrem ./, Given a s —redulele game G, a pos-
itional game, G, defined by (N, A, B), and a
relation h that satistied (1)- (5), h is a
so—morphism from G to G,

The proof of thls theorem, together with
the formal definition of & reducible guame is
riven in Banerji and Ernst [4) and in Banerji
[3].

1t is worthwhile pointing out here that
our invocation of i1hcorem 2 above has established
race only as homomorphic to a positional game
and not necessarily to tie-tac-toe. The
establishment, of the isomorphism (i.e., a one-
one onto homomorphism) between the resulting
persitional game and tic-tac-toe will need &
more detailed examination of the horse-ticket
tuble, However, this is really unnecessary as
ffar us the mechanical playing of the gsme is
concerned. The Koffman technique mentioned
earlier in section 1 ls designed to play any
positional game of moderate size and hence the
isomorphism with tic-tac-toe is & matter of
human visual convenience only. For instance,
the number scrabble game is clearly positional
since each chlp is either unowned or owned by
one of the two players and so the partitioning
o’ the chips at each game situsation 1s obvious,
Hence a good positional game playing program
could play the game whether the chips were
considered arranged in a maglc square or not.
In this sense iLthe jam game also is obviously
positional so that whether it is tic-tac-toe or
not is somewhat immateriml, With regard to
race, it could also have been remarked that it
is obviously positional since each situation
partitions the set of tickets into three subsets-
unbought, owned by the first player and owned
by the second player., 1f we do this then the
board showing the position of the horses is &
mere distraction, However, the way the Race
game is described, the board appears as important

(1)
(2)
(3) Every j such that fj(s)::s is in Y,
(4)
(5)
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as the tickets. Also, if the'image of a race
position in tic-tac-toe is to be determined, it-
has to be done, not in terms of the history of
the game, but only in terras of the position it-
self. As we have remarked before, the position
is adequately described in terms of the board ad
just the unbought tickets. An onlooker walking
in at the middle of the game is at no disadvan-
tage if he does not know who bought which ticket
in the past. Our method of formulation reflects

this fact. It also points out how theorem 2

Is capable of exhibiting the homomorphism even 1.
in this formulation. Our surmise is that theorem

2 would be able to recognize a positional game

no matter how it is formulated. The examples

in this paper have used only the games Iin Fig. 1,

However, more complicated games of race (i.e., .
more horses and tickets) would have throe
dimensional tic-tac-toe, Bridgit or other posi-
tional games as their images. We have used the
race in Fig. 1 to keep the examples simple. 3.

4. Concluding Remarks

Of the various ways in which one can change
the representation of games, we have considered
the case where the change takes the game to a
homomorphic image. Of course, the kind of
homomorphism considered in this paper (to wit,
the s -homomorphism), is not the only kind of
homomorphism that can be studied. The various
examples studied by Amarel [1] and the graph 5.
homomorphism studied by Banerji [], are examples
of other kinds of homomorphisms. Whether all
these can ultimately be unified to a general ¢
class of relations between representations or .
whether we will have to remain satisfied with a
number of special cases, remains to be seen.

If is our belief that some of the results
in this paper, together with other work on
homomorphisms, is a first step towards the 7.
automatic change of representation. Theorem 1,
for instance, <would lead to the automatic veri-
fication of a "hunch" that a given gare may have
e strategy similar to that of a previously
known game. Given a repertoire of previously
understood games, the theorem may lead to on
exhaustive search for possible changes of
representation. 9.

Although much less general, theorem 2 lends
greater strength to this search since jt allows
one to establish the fact that a given game is
homomorphic to one of a wide class of games (in
this case the positional games), thus reducing
the search space. If the search produces an
affirmative answer, it, also allows one to con-
struct a specific homomorphic image as opposed
to searching for one.

Needless to say, such theorems do not
obviate the need for heuristics. They merely add
to our stock of applicable heuristics or render
previously known heuristics more widely applic-
able. In the absence of a generally efficient
problem solving technique (it is not hard to see
that given any such technique, a problem can be
devised which renders it inefficient), one can

10.

11.
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at present only hope for a larger arsenal of
applicable ideas,
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(a) Tic-tac-toe: Played on the following square
board:

Al his turn, each player puts a characteristiic
mark 1n any empty square, X for player 1 and O
for player 2. The first player to mark an entire
row, column or diagonal wins,

(b) Number Scrabble: The nine digits, 1, 2

y “
eesy 9, are used to label s set of nine blocks,
which constitute the initial pool as follows:

N (=[]
(@] [2] []
Lo] [] [«1]

At his turn each player draws & block f{rom the
pool. The first player able to miake a set of
three blocks that sum to 1% is the winner,

(c) Jam: Play takes place upon a nelwork of
roads, as follows:

Each straight llne constitutes a road, and each
junction of roads 1s a town., At his turn each
player can occupy a road (all of it) and thus
jam (i.e., block) access to the towns on the
road, Note thal, there are up to 4 towns on a
single road. The first person who succeeds in
isolating a lLown, in the sense of jamming all
roads leading to the town, wins.
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(d) Race: Played on the rectangular board:

gomm
start a b ¢ d e f

There are eight race horses in the starting row,
and the first player to get a horse in the goal
row wins, At his turn esch player buys a ticket,
The players select from the same setl of tickets
but. each ticket may only be purchased once, The
cffects of buylng a ticket is shown in the matrix,
below, An X means the purchase affects the
horse; a blank means it doesn't, 1{ there is an
X one of three things occurs:

if the horse belongs to the purchaser, then
it 18 advanced onc square toward the goal;

1f the horse belongs to the opponent, then
11 is disgualified from the race;

if the horse doesn't belong to either player,
then it becomes part of the purchaser's
stable by moving it onto the bottom rank,

ab cd e f ¢

m IIIIIIII

.IIIIII

HENEE
HERE
X

X

X| XX
.IIIIIIII
wel X X[ [ [ ]
el | IX1 [ IXIX]
wolX| [ [ IX[ ] ]

Figure 1., Four games that are homomorphic to
one annother. This fipgure is taken with minor
modifications from Newell [81].
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start a b ¢ d e f g h

Player O is on move.
M7 and M3 are unbought.

x |x |0 x]o x
0
X Ho¥ X X X|o

Figure 2. A race position and two of its tio-
tac-toe images. In the rare position the shaded
areas are disqualified horses; an X indicates the
position of a horse belonging to player X; an O
indicates the position of a horse belonging to

player O.
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