LOCK, LINEAR A-PARAMODULATION IN OPERATOR FUZZY LOGIC

Liu XuHua

Dept. of Comp. Scie.
Jilin University
Changchun, PRC.

ABSTRACT

The author proposed concepts of Operator Fuzzy Logic and **\(\lambda\)**-Resolution in 1984. He and his cooperaters have obtained some theoretical results. This paper introduces λ -paramodulation to handle a set of clauses with the predicate of equality, and thus the equality substitution can be used in fuzzy reasoning. Then the λ -paramodulation method is proved to be complete with A-lock-semantic method. Finally, Yang Fengjie and I have improved the $oldsymbol{\lambda}$ -paramodulation, and proved that the linear **\(\Lambda_-**paramodulation is complete too.

I . NTRODUCTION

The author proposed concepts of Operator Fuzzy Logic(or OFL for short) and K~Resolution in 1984. During the past few years (1985-1987), he and H. Xiao, then he, K.Y.Fang, Carl.K.Chang and Jeff. J-P Tsai working together on **λ**-resolution method obtained a series of results. We proved that a λ-resolvent of two fuzzy clauses Ci and C2 is a λ -logical concequence of C1 and C2, and that λ -resolution method is for **入** −inconsistent set complete o f clauses. We explained the practical meaning of fuzzy reasoning based on **\(\lambda_-**resolution method in OFL. From the above results, we can see that some theorems which can not be proved with the traditional logic, can be proved fuzzily by using λ -resolution method in our logic system.

Equality relation is a very important relation in mathematics. This equality relation lias some important special properties: it is transitive and can substitute equals for equals. Thus it is natural that the transitive and substitutive properties of fuzzily equality are needed in proving fuzzy theorems.

This paper proposed a λ -paramodulation to handle fuzzy equality. In conjunction with λ -resolution, λ -paramodulation can be used to prove fuzzy theorems in OFL. We proved that λ -paramodulation is complete for the λ -inconsistent set of clauses in conjunction with λ -resolution.

II . FUNDAMENTAL CONCEPTS AND PROPERTIES

From [1-3], we know that Operator Fuzzy Logic is built on operator lattice and interval [0,1] is an operator lattice if we define:

x*y=min{x,y},
xΦy=max{x,y},
x•y=(x+y)/2,
x'=1-x.

for any x,y [0,1].

These concepts such as operator lattice, fuzzy literal, formula, interpretation, truth-value T1(G) of formula G under 1, λ -complemented literal, λ -identical literal, can be found in Refs. [1-3].

Definition 1. Choose arbitrarily $\lambda \in [0,1]$.

Formula G is called λ -valid if and only if for every I there exists T1 (G) λ ; G is called λ -inconsistent if and only if for every 1, there exists T1(G) λ .

Obviously, Formula G is λ -valid if and only if Formula (\sim G) is $\{1-\lambda\}$ -inconsistent .

Definition 2. Let C1 and C2 be two clauses without the same variables and $\lambda_1 \, L_1$ and $\lambda_2 \, L_2$ be two literals of Ci and C2 respectively. If L1 and L2 have a Most General Unifier (MGU for short) σ , and $\lambda_1 \, L_1$ and $\lambda_2 \, L_2$ are λ -complemental, then $\{ \, C_1 \, - \, S_1 \, \} \, U \, (\, C_2 \, - \, S_2 \,)$

is the binary λ -resolvent for C1 and C2, denoted by $R_A(C1, C2)$, where

435

 $S_1 = \{ \lambda * L' \mid (\lambda * L' \in C_1) \land (\lambda * L' \text{ and } \lambda_1 L_1' \}$ are λ -identical)}, S₂={ λ *L {(λ *L ∈ C₂) Λ (λ *L and λ 2L2 are λ -identical)}.

The* following properties are simple, and so their proofs are omitted. Property 1. Let P be an atom, then

4(1P)=0P. Property 2. Let P be an atom, then -(0P)=1P.

Henceforth, IP can be denoted by P in

Property 3. Let P be an atom, then $\sim (\lambda P) = (1-\lambda)P$.

Property 4. Let P be an atom, then $\sim (\lambda_1 \dots \lambda_n P) = (1 - \lambda_1) \dots (1 - \lambda_n) P$. Property 5. Let G be formula, then $\ll G \ge 0G$.

For example, Let G=0.3P, 1={P}, then $T_1(\sim G)=T_1(0.7P)=0.7$.

 $T_{I}(0G)=T_{I}(0(0.3P))=0.15.$

Property 6. Let G be a formula, then $\sim \lambda G = (1 - \lambda) (\sim G)$.

Property 7. Let G be a formula, then $\sim (\lambda_1 \ldots \lambda_n G) = (1 - \lambda_1) \ldots (1 - \lambda_n) (\sim G)$.

Property 8. Let P be an atom, then **λ1 λ2** P‡ (λ1 • λ2) P

For example, 0.8(0.6P) \$ (0.8*0.6)P=0.7P. Property 9. Let G be a formula, then እ1 እ2 G #(እ1 ላ**/**2) G .

De fin it ion 3. Let G and H be two formulas, I be any interpretation. If Ti(H) for Ti(G)>1-1, then it is said that G λ-implies H, denoted by G⇒H.

Definition 4. Let G and H be two formulas and I be any interpretation.

If $T_1(H) > \lambda$ for $T_1(G) > \lambda$, then it is said that G λ -strong implies H, denoted by $R_{\text{rep}} = 1$ A \Rightarrow A for $\lambda \le 0.5$, formula, then 2) A 3 A.

Property 11. Let A,B and C be formulas.

Then 1) if A > B, B > C then A > C for \(\lambda > 0.5\);

2) if A⇒B.B⇒C then A⇒C.

Property 12. Let Ci and C2 be two clauses and R_x(Ci, C2) be a A-resolvent of C1 and C2. Then

1) $C_1 \wedge C_2 \Rightarrow R_{\lambda}(C_1, C_2)$ for $\lambda = 0.5$;

2) C1 ΛC2 ⇒ R (C1, C2) for λ>0.5.

The proof of this property will be given by another paper (to appear). Property 13. Let A,B and C be three

Then 1) if $A \Rightarrow B, A \Rightarrow C$, then $A \Rightarrow (BAC)$;

2) if AspB,AspC, then Asp(BAC).

Definition 5. A clause C is called a λ -empty clause (denoted by λ - \square), if for any literal $\lambda * L \in C$, it satisfies the condition:

1-እፋእ*ፋእ

for $\lambda \geqslant 0.5$.

Property 14. Let \$\(\lambda\).5. A set of clauses is A-inconsistent if and only if there is a resolution deduction of the **እ-**empty clause from S.

This property is an important theorem in Ref. [1] and another paper is

waiting for publishing. Its proof omitted here.

III. THE SET OF FULLY EMBALITY AXIONS

Definition 6. An E-interpretation IE of set S of clauses is an interpretation of satisfyingthe four following conditions. Let **໕**, **∮** and **જ** be any terms in the Herbrand universe of S, and let **\P**(.....) be any fuzzy literal in S. Then

1. Tir((d=d))=T;

2. if $Tre((d=\beta))=T$, then Tir((β=d))=T;

3. if $T_{IE}((\alpha=\beta))=T$, if $T_{IE}((\beta=\gamma))=T$, then $Tie((\mathbf{x}=\mathbf{Y}))=T$;

4. if $T(E((\alpha = \beta)) = T$, then

...)).

Definition 7. Let S be a set of clauses, **le (0.1)** and $1 \ge 0.5$. Then the set K_K of 1 - equality axioms for S is the set consisting of the following clauses: for any 1, \(\lambda^* \);

2. (1-λ*)(x=y) V λ*(y=x);

3. $(1-\lambda^*)(x=y)V(1-\lambda^*)(y=z)V\lambda^*(x=z) >$

4. $(1-x^2)(x_1=x_0)V(1-x^2)P(...x_3...)$ $V \mathbf{A}^k P(\dots x \mathbf{0} \dots)$

for any atom $P(x_1, ..., x_n)$ occurring in S, j=1,...n;

5. $(1-x^*)(x_0=x_0)$

 $V\lambda^*(f(\ldots x_j \ldots)=f(\ldots x_0 \ldots)),$

for any function symbol $\{(x_1, \ldots, x_n)\}$ occurring in S, j=1,...,n.

Definition 8. A set S of clauses

called **AE**-inconsistent if and only TiE(S) < ↑ for any E-interpretation IE; S is called $\lambda \mathbf{E}$ -valid if and only if $\mathbf{T}_{IE}(S) \lambda \lambda$, for any IE.

1f IE is an E-interpretation of S, we can obtain results obviously as follows

1. $T_{IB}(\lambda^*(x=y))=\lambda^* > \lambda$.

2. $T_{IB}((1-\lambda^*)(x=y)V\lambda^*(y=x))=\lambda^*>\lambda$.

3. $T_{1E}((1-\lambda^*)(x=y)V(1-\lambda^*)(y=z)V$ $\lambda^*(x=z))=\lambda^*>\lambda$.

4. If $T_{iz}((x_j=x_0))=T$, because IE is an E-interpretation, then $Tir(P(\dots x_j \dots))=Tir(P(\dots x_0 \dots)),$ and

therefore. $T_{1} \mathfrak{g} \left((1-\lambda^*)(x_1-x_0) \vee (1-\lambda^*) P(\ldots x_1 \ldots) \right)$ VX*(P...xo...))=χ*>λ.

5. If $T_{1E}((x_j=x_0))=T$, because l_E is an E-interpretation, then

 $T_{1E}(f(...x_{j}...))=T_{1E}(f(...x_{j}...))$

 $=T_{1} = (f(...x_{j}...) = f(...x_{0}...)).,$ and

since Tir((d=d))=T for any d, we have $Tie(f(\cdot \cdot \cdot x_j \cdot ...) = f(\cdot \cdot ... x_0 \cdot ...)) = T.$

 $Tim((1-X^*)(x_j=x_0)$ VX^{\bullet} (f(...x_J...)=f(...x₀...)) = እ* > ኢ.

From the above discussion, we can easily see that $T_{11}(K_{\lambda}) > \lambda$, where K_{λ} is a set of A-equality axioms of S.

If I is an interpretation of S and $T_{I}(K_{A}) > \lambda_{I}$ we can obtain results obviously as follows:

- 1. Tr((d=d))=T for any term din S.
- 2. If $T_1((\alpha=\beta))=T$, because $T_1(K_{\lambda})>\lambda$, thus

 $T_1((1-\lambda^*)(\alpha=\beta)V\lambda^*(\beta=\alpha))>\lambda$, therefore, there must be T1 (#=⊄))=T.

3. Let $T_1(\{\alpha = \beta\}) = T$, $T_1(\{\beta = \gamma\}) = T$. According to $T_1(K_{\lambda}) > \lambda$, thus $T_1((1-\lambda^*)(d=\beta)$) $V(1-\lambda^*)(\beta=\Upsilon)V\lambda^*(\alpha=\Upsilon))>\lambda$, there must be $T_\Gamma((\alpha=\Upsilon))=T$

> 4. Suppose $T_{i}((\alpha = \beta)) = T_{i}$ $Tr(\dot{P}(\dots,\alpha\dots))=T$. Since $Tr((1-\lambda^*)(\alpha=\beta)V(1-\lambda^*)P(\dots,\alpha\dots)$ $V \lambda^* P(\ldots \beta \ldots)) > \lambda$,

there must be T_1 ($P(\ldots, \beta, \ldots)$)=T. Similarly we can easily see that if $T_1((\mathbf{d} = \boldsymbol{\beta})) = T, T_1(P(\ldots \boldsymbol{\beta} \ldots)) = T,$ then there must be

 $TI(P(\dots \alpha\dots))=T$, namely,

 $TI(P(\ldots,\alpha,\ldots))=TI(P(\ldots,\beta,\ldots)).$

From the above discussion, we can easily see that 1 is an E-interpretation

Therefore, we can obtain a theorem as follows:

Theorem 1. Let S be a set of clauses and K_{λ} be the set of λ -equality axioms S. For any interpretation I of S, I is an E-interpretation if and only if Ti (k_እ)>ኢ.

Theorem 2. Let S be a set of clauses and $K_{\pmb{\lambda}}$ be the set of $\pmb{\lambda}$ -equality axioms for Then S is $\pmb{\lambda} E$ -inconsistent if and only S. \- inConsistent. $16SUK_{\mathbf{k}}$)

(⇒) Suppose S is **λE**-inconsistent, but (SUK $_X$) is not λ -inconsistent. Then there exists an interpretation I such that Tr(SUK,) > λ.

Thus Ti(S)> A and Ti(KA)> A.

From theorem 1, we know that I must be an E-interpretation. From $T_1(S) > \lambda$, we know that S is not λE -inconsistent, which contradicts the assumption that S is **AE** -inconsistent.

). Suppose (SUK,) λ -inconsistent, but S is (🚐). not **AE** -inconsistent. Then there exists an E-interpretation IF such $T_{1E}(S) > \lambda$. Clearly, $T_{1E}(K_{\lambda}) > \lambda$. Hence Tir((SUK,))> A. This contradicts the (SUK » assumption that } is **\(\lambda\)** - inconsistent.

IV.PARAMODULAT10N

Definition 9. Let $^{\circ}$ O.5 and C1 , C2 be two clauses without any variables in common such that

Ki L[t]VC , XJ >x or x <1-x,

x2 (r=s)VC2', x2>x, x1L[t] is a fuzzy literal containing the term t and C1' and C2' are clauses. If t and r have MGU <r, then

is called a binary **\(\lambda-\)**paramodulant of C1 and C2, $\lambda_1 L[t]$ and $\lambda_2 (r=s)$ are called λ -paramodulated literals where $l^*[s]$] denotes the result obtained by replacing one single occurrence of t^r in

 $\lambda^* = \int (\lambda_1 + \lambda_2)/2$ when $\lambda_1 > \lambda$, 10. $[A\lambda\lambda - bexan)/62$ when $\lambda_1 < \lambda_1$, Definition C2 is a binary λ -paramodulant of C1 or a x -factor of Ci and C2 or a A-factor of C2, denoted by $P_{\lambda}(C_1,C_2)$.

Definition 11. Let S be a set of clauses; G and H be two clauses in S. [f Tir(H)>A when $T_{1E}(G) > \lambda$ for every E-interpretation 1E of S, then it is said that G AE-strongly implies H, denoted by G=>H.

Theorem 3. Let C1 and C2 be two clauses,) >0- 5, and suppose P_{λ} (C1 ,C2) is a λ paramodulant. Then

 $(C_1AC_2) \Rightarrow P_A(C_1, C_2).$

Without loss of generality, we may assume that C1 is $\lambda_1 L[1]VC_1$, C2 is $\lambda_2 (r=s)VC_2$, $P_{\lambda} (C_1, C_2)$ is a binary λ -paramodulant, w i $\lambda_2 > \lambda$. Let MGU of t and r be σ , IE be any one of E-interpretation such that

Tig(Ci)>A and Tig(C2)>A.

Then, Obviously, we have

Trz (Ci)> λ and Tra (Cz)> λ.

(Notice: every variable in Ci and C2 is considered to be governed by a universal quantifer). Choosing an arbitrarily ground instance of c1 and a ground instance of C2, we have the following considerations:

1. For $\lambda_i > \lambda$

If Tiz(L*[t*])=F, Then TiE(Ci*)>> , thus $\operatorname{Tir}(P_{\chi}(C_1,C_2))/\chi$. If $\operatorname{Tir}(L^{\sigma}[t^{\sigma}])=T$, we have $\operatorname{Tir}(L^{\sigma}[s^{\sigma}])=T$; because $t^{\sigma}=r^{\sigma}$ and $r^{\sigma}=s^{\sigma}$, we know $\lambda^{\sigma}>0$ know λ*>λ (A occurring in the definition of R(C1, C_2)), therefore $T_{1E}(P_{\lambda}(C_1,C_2))>\lambda$.

2. For \1<\

similarly to the above proof, we can also obtain

TIE (Px (Ci , C2))>X.

According to the above proof, we have the following fact:

 $\{C_1AC_2\} \Rightarrow P_A(C_1, C_2)$.

Q.E.D.

Definition 12. Let C1 and C2 be two clauses, where every literal is locked with an integer and $\lambda \geqslant 0.5$ and let PA(C1, C2) be a A-paramodulant. Suppose

- 1. C1 and C2 are A-positive clause, namely, every fuzzy literal A*L in clauses satisfies λ* > l-λ.
- 2. the paramodulated literal of Ci contains the smallest lock in Ci(i=1,2). P_{λ} (C1, C2) is called Then λ-lock-hyperparamodulant, a \-LH-paramodulant for short. Definition 13. Let \$20.5. A finite set of clauses {E1,...,Eq,N} where every literal is locked with an integer is called a \u2213-lock-hypersemantic clash (or \lambda-LH-Clash for short) if and only if

E1 , . . . , Eq **s**atisfies the following conditions:

1. E_1, \ldots, E_q are λ -positive clauses.

2. Let $R_1=N$. For each i(1 < i < q), there is a λ -resolvent R_{i+1} of E_i and R_i . 3. The resolved literal of Ei

contains the smallest lock in Ei.

4. R_{q+1} is a $\lambda\text{-positive}$ clause, where R_{q+1} is called a $\lambda\text{-LH-resolvent}$. Theorem 4. let S be a set of clauses, where every literal is locked with an integer and $\lambda \geqslant 0.5.$ If S is λ inconsistent, then there is a deduction of λ -empty clause from S by the λ -LH-resolution method.

proof. see [3]. Definition 14. Let S be a set of clauses and $\lambda > 0.5$. The set F_{λ} of λ -functionally reflexive axioms for S is the set defined

 $F_{\lambda} = {\lambda^* (f(x_1, ..., x_n) = f(x_1, ..., x_n))},$ where $\lambda^* \in [0,1]$ and $\lambda^* > \lambda$ and f is any function symbol occurring in S. Definition 15. Let >>0.5. The fuzzy

literal A"L is called a A-irrelevant

literal if 1-X(X" ().

Definition 16. let C1 and C2 be two clauses. If we can build the one-to-one correspondence between the literals of C1 and of C2 such that the two corresponding literals are either \(\lambda\)-identical or A-irrelevant, then Ci is called Aidentical with C2.

Theorem 5. Let $\lambda \geqslant 0.5$, C_1 and C_2 be two clauses, C be a λ-lock-resolvent or a \lambda-lock-paramodulant of C1 and C2. If and C_2 * are λ -identical with C_1 and Cı* C2 respectively, then there is λ-lock-resolvent (" OF a \lambda-lock-paramodulant C such that C is X-identical with C.

Proof 1. Let C1 be A1L1VC1' and C2 be $\lambda_2 \perp_2 VC_2$, where $\lambda_1 > \lambda$ and $\lambda_2 < 1 - \lambda$. Let $C = (C_1^T - \lambda_1 \perp_1^T) \cup (C_2^T - \lambda_2 \perp_2^T)$,

where r is an MGU of Li and L2.

It is clear that C1* and C2* are two clauses as follows:

 $\lambda_1^* L_1 V C_1^*$, $\lambda_2^* L_2 V C_2^*$, where $\lambda_1^* > \lambda$, $\lambda_2^* < 1 - \lambda$, C_1^* and C_2^* are Midentical with C_1 and C_2 respectively. Let

 $C^* = (C_1^* - \lambda_1^* L_1^*) U(C_2^* - \lambda_2^* L_2^*).$ Obviously, C* is a \(\lambda\)-resolvent of C1* and C2* and is also a λ-lock-resolvent, C* being λ -identical with C.

2. We might as well assume that $\text{C} \boldsymbol{r}$ is $\lambda_1 L[t]VC_1$ and C_2 is $\lambda_2 (r=s)VC_2$ where $\lambda_1 > \lambda$ and $\lambda_2 > \lambda$. Let $C = \lambda_3 L^{-1} [s^{-1}VC_1]^{-1} VC_2$,

where $\lambda_3 = (\lambda_1 + \lambda_2)/2$ and σ is an MGU of t

Then, C1 and C2 are two clauses as follows:

λ1*L[t]VC1*',

\2*(r=8)VC2*', where $\lambda_1^*>\lambda$, $\lambda_2^*>\lambda$, C_1^{*} and C_2^{*} are Aidentical with C1' and C2' respectively. Let

 $C^* = \lambda^* L^* [s^*] V C_1^*, V C_2^*$ where $\lambda_3^* = (\lambda_1^* + \lambda_2^*)/2$. Obviously, C* is a λ -lock-paramodulant and is λ -identical Q.E.D.

Theorem 6. Let $\lambda \geqslant 0.5$ and S be a set of clauses, where every literal is locked with **a**n integer. Then, is AE -inconsistent if and only if there is a deduction of λ -empty clause from $(SU\{\lambda^*(x=x)\}UF_{\lambda})$ by λ -LH-resolution method and λ -LH-paramodulation method, where $\lambda^* > \lambda$ and F_{λ} is the set of λ-functionally reflexive axioms for S. (λ-empty clause is composed of λ-irrelevant literals, denoted by λ -D.)

(⇒). Suppose K_k is the set of \u03b4-functionally reflexive axioms for S. Because S is λE -inconsistent, we know (SUK >) theorem 2 that is λ -inconsistent. From theorem 4, we know that there is a λ -LH-resolution deduction D of $\lambda\text{-empty}$ clause from (SUK,). We now show that D can be transformed into the deduction satisfying this theorem.

For each λ -LH-clash (E₁,...,E_q,N) in since E_1, \ldots, E_q are λ-positive clauses, E_1, \ldots, E_q must be in S or λ^* (x=x). If N\(\epsilon\)S, then the clash is the desired one. If $N \in K_{\lambda}$, N is clearly not $\lambda^*(x=x)$. Then we have the following four possible cases:

1. N is $(1-\lambda^*)(x=y)V\lambda^*(y=x)$ and $\lambda^* > \lambda$. Obviously, there must be q=1 and E₁=(λ_1 (t₁=t₂)VE₁'), where $\lambda_1 > \lambda$. Therefore,

 $(E_1, N) = (\lambda^* (t_1 = t_2) V E_1^*),$

In addition,

 $P_{\mathbf{A}}(\lambda_{\mathbf{i}}(\mathbf{x}=\mathbf{x}), \lambda_{\mathbf{i}}(\mathbf{t}_{\mathbf{i}}=\mathbf{t}_{\mathbf{2}})VE_{\mathbf{i}})$ $=(\lambda_1 (t_2=t_1)VE_1^{\prime}).$

Because (E_1, N) is a P_{λ} $(\lambda_1(x=x), E_1)$ λ-LH-clash, be must λ-LH-paramodulant and (E1, is λ -identical with $P_{\lambda}(\lambda_1(x=x), E_1)$.

2. N is $(1-\lambda^*)(x=y)V(1-\lambda^*)(y=z)V$ $\pi(x=z)$ and $\lambda^* > \lambda$. Obviously, we have q=2and two clauses E1 and E2 as follows:

 λ_1 *(t₁=t₂)VE₁', λ_2 *(s₁=s₂)VE₂',

where $\lambda_1^*>\lambda$, $\lambda_2^*>\lambda$. Thus,

 $(E_1, E_2, N) = (\chi^* (t_1^r = s_2^r) VE_1^{rr} VE_2^{rr}),$ rbeing an MGU of t₂ and s₁. Clearly, $P_{\lambda}(E_1,E_2) = (\lambda_1^* + \lambda_2^*)/2(t_1^* = S_2^*)VE_1^* VE_2^*$. We can see that $P_{\lambda}(E_1,E_2)$ is a λ-LH-paramodulant and λ-identical with $(E_1, E_2, N).$

3. N is $(1-\lambda^*)(x_1=x_0)V(1-\lambda^*)$ $P(\ldots x_j \ldots) \vee \lambda^* P(\ldots x_0 \ldots)$, with $\lambda^* > \lambda$. Obviously, we have q=2 and E1 and E2 are

two clauses as follows:

λ₁ (t_j=t₀)VE₁', &P(...s_j...)VE₂', where $\lambda_1 > \lambda$ and $\lambda_2 > \lambda$. Thus

(E₁, E₂, N)=(λ^* P(s₁...to ...sm) VE1 "VE2 "),

where σ is an MGU of $(x_1 \dots t_j \dots x_n)$ and (S1 . . . Sj . . . Sn).

Clearly,

 $P_{\lambda}(E_2, E_1) = (\lambda_1 + \lambda_2)/2P(s! \dots t]$...s_n $VE_1 VE_2 VE_3$

We can see that P_{λ} (E₂, E₁) is a λ -LH-paramodulation and λ -identical

with $\{E_1, E_2, N\}$. 4. N is $(1-\lambda^*)(x_3=x_0)$

 $V \lambda^* (f(...x_j...)=f(...x_0...)),$

where $\lambda^* > \lambda$.

Obviously, we have q=1 and E, is a clause as follows:

λı(tj=t0)VE₁',

where $\lambda_1 > \lambda_2$. Thus,

 $(\mathbf{E}_{\mathbf{i}}, \mathbf{N}) =$

 $(\lambda^* (f(x_1...t_j...x_n) = f(x_1...t_0...x_n)) VE_1)$ Clearly, A-paramodulant of

 $\lambda_1 (f(x_1 \dots x_j \dots x_n) = f(x_1 \dots x_j \dots x_n))$ and Er is a clause as follows:

 $P_{\lambda}(\lambda_1(f=f), E_1)=$ $(\lambda_1 (f(x_1...t_j...x_n)=f(x_1...t_0...x_n))VE_1)$ We can see that P_{λ} ($\lambda_1(f=f)$, E_1) is a λ-LH-paramodulant and λ-identical with (E1, N).

Theorem 5, we know each A-LH-Clash in D can be transformed into a N-LH-paramodulant of two clauses which belong to the set $(SU\{\lambda^*(x=x)\}UF_{\lambda})$.

Therefore, we obtain a new deduction D' of λ -empty from $(SU(\lambda^*(x=x))UF_{\lambda})$ by using -LH-resolution method and λ-LH -paramodulation method.

(). If there is a deduction of λ -empty clause from $(SU\{\lambda^*(x=x)\}UF_{\lambda})$ by using **λ**−LH -resolution and A-LH -paramodulation, but S is not ME-inconsistent, then there is an E-interpretation is such that $Tre(S) > \lambda$. for each clause C in (SU{ λ^* (x=x)}UF $_{\lambda}$), there must be Tig(C)> λ . From Property 11, Property 12 and theorem 3, we can easily see that $Tre(\lambda-\Box)>\lambda$, which contradicts the definition of \-Q.

Q.E.D.

V. LINEAR X-PARAMODULATION

Definition 17. Given a set S of clauses and a clause C_0 in S_* a linear χ -deduction of C_n from S with top clause Co by λ-resolution and A-paramodulation is a deduction of the form shown in Fig. 1, where

1. For $i=1,\ldots,n-1$, C_{i+1} is a λ -resolvent or a λ -paramodulation of C_{i} (called a center clause) and B_{i} (called a side clause).

2. Each Bi is either in S, or is a C_j for some j<i.

Figure 1

Linear λ-refutation by λ -resolution and λ -paramodulation is a linear λ -deduction of λ -Q by λ -resolution and \paramodulation.

Definition 18. Let $\lambda \geqslant 0.5$, and S be a set of clauses. Se is said to be a \mathbb{\chi}-reduction of S if and only if Se is obtained by the following replacing: for any literal X t S,

1. if $\lambda^* \leqslant \lambda$ and $1-\lambda \leqslant \lambda^*$, delete $\lambda^* L$. 2. if $\lambda^* > \lambda$, $\lambda^* L$ is replaced by L.

3. if $1-\lambda > \lambda^*$, $\lambda^* L$ is replaced by $\sim L$. Let S_{B} denote the λ -deduction of S_{λ} Cm denote the \u03b1-deduction of C.

Theorem 7. Let $C_{1\,R}$ and $C_{2\,R}$ be the λ -reducing clauses of C_1 and C_2 respectively. If C' is a resolvent (or a paramodulant) of $C_{1\,R}$ and $C_{2\,R}$, then there is a λ-resolvent (or a λ-paramodulant) C of C_1 and C_2 such that $C_R = C^2$.

Proof. If C' is a resolvent of Cim and Cam, we know that this theorem is correct. [1]

If C' is a paramodulation of Cir and Cir, without loss of generality, we may assume that C' is a binary paramodulant, let

 $C_1 = \lambda_1 L[t] V C_1', \quad \lambda_1 > \lambda \text{ or } \lambda_1 < 1 - \lambda,$ $C_2 = \lambda_2 (r = s) V C_2', \quad \lambda_2 > \lambda.$

Then

$$C_{IR} = \left\{ \begin{array}{ll} L[t]VC_{IR}, & \lambda_{I} > \lambda, \\ \sim L[t]VC_{IR}, & \lambda_{I} < 1 - \lambda, \\ C_{2R} = (\tau = s)VC_{2R}, & \end{array} \right.$$

Therefore $C^1 = \int L^{\sigma}[s^{\sigma}]UC_{1R}^{-1}UC_{2R}^{-1}UC_{2R}^{-1}$, $\lambda_1 > \lambda_2$ [~!f (sf)UC1 κ 'F UC2 κ 'F λ1 <1-λ.

Since

C=
$$\{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 > \lambda_1 > \lambda_1 = \{[(\lambda_1 + 1 - \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + 1 - \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + 1 - \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 > \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}[s^{\sigma}]UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_2)/2]L^{\sigma}UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_1)/2]L^{\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_1)/2]L^{\sigma}UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_1)/2]L^{\sigma}UC_1^{-1\sigma}UC_2^{-1\sigma}, \lambda_1 < 1 - \lambda_1 = \{[(\lambda_1 + \lambda_1)/2]L^{\sigma}UC_1^{-1\sigma}UC_1^{-1\sigma}UC_1^{-1\sigma}UC_1^{-1\sigma}UC_1^{-1\sigma}UC_1^{-1\sigma}UC_1^{-1\sigma}UC_1^{-1\sigma}UC_1^{-1\sigma}UC_1$$

But when $\lambda_1 > \lambda$, $(\lambda_1 + \lambda_2)/2 > \lambda$ and when $\lambda_1 < 1-\lambda_1$, $(\lambda_1 + 1 - \lambda_2)/2 < 1-\lambda_1$.

Then

$$C_{R} = \int L^{\sigma} [s^{\sigma}] UC_{1R}^{1\sigma} UR_{2R}^{1\sigma}, \quad \lambda_{1} > \lambda,$$

$$\{ \sim L^{\sigma} [s^{\sigma}] UC_{1R}^{1\sigma} UC_{2R}^{1\sigma}, \quad \lambda_{1} < 1 - \lambda.$$

$$= C^{T}. \quad Q.E.D.$$

If C is a clause in λE -inconsistent set S of clauses including λ^* (x=x) and the set $F_{\mathbf{k}}$ of λ -functionally reflexive axioms for S and if S-{C} is λE -satisfiable, then Shas a linear λ -refutation by λ -resolution and λ -paramodulation with top clause C.

Proof. According the theorem above we know that S is AE -inconsistent if and only if (SUK_{λ}) is λ -inconsistent if and only if SmUK is inconsistent. (K is the A -reduction of K_{λ}).

Since S-{C} is λ E--satisfiable, clearly, S_R -{C} is E-satisfiable, then SR has a linear refutation D by resolution and paramodulation with top clause CR [4]. By theorem 7, for every resolvent R(C1R, C2R) or paramodulant P(C1R, C2R) in D, there is a λ -resolvent R(C1, C2) or λ -paramodulation P_{λ} (C1, C2), and

 $R(C_{1R}, C_{2R}) = (R_{\lambda}(C_{1}, C_{2}))_{R}$ $P(C_{1R}, C_{2R}) = (P_{\lambda}(C_{1}, C_{2}))_{R}$

Therefore, we can obtain a linear deduction of λ -empty clause from S, by A~resolution and x-paramodulation.

Up to now we have obtained λ -paramodulation method in operator fuzzy logic. This is an inference rule for the fuzzy equality relation. λ -paramodulation is essentially an extension of the fuzzy equality substitution.

Because OFL describes fuzzy propositions naturally [6], the combination of λ -resolution and λ -paramodulation is convenient in doing fuzzy reasoning.

References

- [1] Liu, X. H. & Xiao, H., Operator fuzzy logic and fuzzy resolution, Proc. of the 15th ISMVL, Canada, 5(1985),68-75
- [2] Liu, X.H. & Fang, K.Y., Fuzzy reasoning on \(\bar{\lambda}\)-horn set, Proc. of the 16th ISMVL, U.S.A., 5(1986), 248-251
- [3] Liu, X.H., Chang, Carl K. & Jeffery J-P Tsai, Fuzzy reasoning base on **\hat\tau-** LH-resolution, Proc. of the *IEEF* 10th International Computer Software Application Conference, U.S.A., 10(1986), 154-157
- [4]Chang, C. L. & Lee, R.C.T., Symbolic Logic and Mechanical Theorem Proving, Academic Press, New York, 1973.
- [5] Lee, R.T., Fuzzy Logic and the Resolution Principle, Journal of ACM, 19(1972), 1:109-119
- [61 liu, X.H., Fang, K.Y. & Jeffery J-P Tsai, Fuzzy reasoning in operator fuzzy logic, Proc. of 19th IMSVLS-89,China, 5, 1989.
- [71 Liu, X.H. & Yang, F.J. Linear **_**-paramodulation" (to appear).