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Abstract 

Using cases to find innovative solutions to 
problems is mainly the result of two processes: (1) 
cross-contextual rem in dings, and (2) composition 
of multiple cases or case parts. Although the 
ability to use cases taken from across contextual 
boundaries is desirable, there is a tension between 
representing and accessing cases across contexts 
and in using parts of multiple cases to synthesize a 
solution. One way of alleviating this difficulty is 
through index transformation. In this paper, we 
represent two index transformation techniques that 
facilitate both cross-contextual remindings and the 
access of multiple appropriate case parts. The 
mechanisms are general and principled (based on a 
qualitative calculus). They are also behavior-
preserving, a needed requirement for case syn­
thesis in many domains of interest. The transfor­
mation techniques have been implemented in 
CADET, a case-based problem solver mat operates 
in the domain of mechanical design. 

1. Introduction 
Case based reasoning [Kolodner.Simpson.Sycara 85] is 

the method of using previous cases to guide solving of new 
problems. Given a new problem solving situation, ap­
propriate previous cases are retrieved from memory, the 
best is selected, and differences as well as similarities be­
tween the previous and current case are identified. These 
similarities and differences are used to adapt the retrieved 
case to fit current circumstances. At the end of problem 
solving, the solved case is stored as a new case to be used in 
the future. 

Using cases to find innovative solutions to problems is 
mainly the result of two processes: (1) cross-contextual 
remindings [Gordon 61], and (2) composition of multiple 
cases or case parts [Koestler 64], Each one of these 
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processes imposes requirements on case representation, 
memory organization, and indexing. The work presented in 
this paper focuses on the issue of indexing, in terms both of 
a domain-independent indexing vocabulary and index trans­
formation techniques to facilitate the access and composi­
tion of cases and case pieces. We illustrate our claims in 
the domain of mechanical design. The abstract index 
representation and transformation techniques presented in 
this paper have been implemented in CADET, a case-based 
design problem solver [Sycara & Navinchandra 
89, Navinchandra et al. 91]. 

A memory that allows retrieval based on similarity is an 
important component of a case-based system fSchank 82]. 
The natural way to implement similarity recognition and 
retrieval based on similarity, is to index memory such that 
similar cases share common indices and can consequently 
be retrieved together. But what kind of similarity should 
this process use? Although surface features have been used 
successfully to retrieve cases in some CBR systems (e.g., 
[Simoudis & Miller 90]), it is clearly more useful to index 

cases in terms of abstract features so that the solution in­
dexed with a particular case is applicable to other cases that 
share those abstract features, and may share few, if any, 
surface features. If a case is to have broad applicability, the 
indexing vocabulary must be at an appropriate level of 
generality and must reflect some thematic abstraction 
[Owens 88]. We advocate the use of qualitauve influences 

as an appropriate vocabulary for expressing thcmatic 
abstractions. 

Qualitauve influences express abstract causal interactions 
among problem variables. An influence is a qualitative 
differential (partial or total) relation between two variables 
one of which is a dependent variable and the other an inde­
pendent variable. We use graphs of these influences to 
represent the behavior of physical artifacts. Behavioral 
descriptions are good thematic abstractions that result in 
interesting and useful cross-contextuaJ remindings. For ex­
ample, an electronic sensing device could be used to sense 
water level in the design of a flush tank. This is a cross-
contextual reminding (electronic device used in a hydraulic-
domain) that results in an innovative solution. 

Retrieving cases from different domains make it difficult 
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to access case parts that could be used in the composition. 
Useful parts may be buried in the case where subpart boun­
daries may be difficult to identify- One approach for ad­
dressing the difficulty of indexing and accessing ap­
propriate case parts is to use index transformation. Our 
earlier work on the PERSUADER [Sycara 87] and 
CYCLOPS [Navinchandra 87,Navmchandra 91] used 
pieces from multiple previous cases to come up with a 
proposed new solution. Redmond's [Redmond 90] work on 
diagnosis uses pieces from multiple cases, where conven­
tional subgoaling is used to indicate the appropriate snip­
pets. The snippets arc indexed under their corresponding 
subgoals. 

By contrast, in engineering design, a subgoal decomposi­
tion that would facilitate snippet indexing and retrieval can­
not be identified a priori. This is a consequence of the fact 
that there is no one to one correspondence between device 
components and desired device subfunctions. In addition, 
since design goals change during problem solving, the cases 
in memory may not always be compatible with the current 
goal. Therefore, it becomes necessary to transform the goal 
during problem solving. This is done in CADET through 
index transformation techniques that arc behavior preserv­
ing. In the design domain, a stringent constraint on the 
retrieved case parts is that their combined behavior must be 
equivalent to the original behavioral specification of the 
desired artifact. In this paper, we present two index trans­
formation techniques that allow such behavior-preserving 
retrieval of case parts. 

2. CBR in Design 
Design is the act of devising an artifact that satisfies a 

useful need, in other words, performs some function. It is 
an interesting domain for conducting research in Case 
Based Problem Solving because: designs are often syn­
thesized by combining several parts of different design 
cases taken from different contexts, where each part 
delivers a portion of the overall behavior of the final 
artifact. A design, hence, can contain parts taken from 
design cases that are, on the surface, functionally dissimilar 
to the current design problem. 

For example, consider the design of a device which con­
trols the flow of water into a flush tank. The behavior can 
be specified as follows: as the depth of water (D) in the 
tank increases, the rate of flow of water into the tank (Q) 
should decrease. This specification may be used as a set of 
indices to find relevant cases in memory. If there are no 
cases that directly match the specifications, then it would be 
useful to consider using pans of several cases. In this in­
stance, an analogically relevant case is a hot-cold water 
faucet shown in Figure 2-1. The faucet is specified as a 
device that allows for the independent control of the tem­
perature and flow rate of water by appropriately mixing the 
hot and cold water streams. By extracting portions of the 
faucet, such as the see-saw part, it is possible to design the 
flush lank device as shown in in Figure 2-2. 

The relevance of the faucet case to the design of the flush 
tank would not have been possible to recognize because: (a) 
the functional descriptions of the two devices are com-
pletely different, and (b) the whole faucet is not relevant to 
the target problem. The relevance recognition process has 
two parts: similarity recognition and sub-behavior match-
ing. First, the goal specification is elaborated by applying 
transformation operators. This process, in essence, 
generates several alternative behavior descriptions that are 
equivalent to the original goal. These alternatives are then 
matched against the cases in memory. The matching 
process tries to find entire cases or parts of cases that share 
common "sub-behaviors'1 with the elaborated goal. 

We present an approach to accomplish recognition of 
shared "sub-behaviors" based on behavior preserving trans-
formations that uses qualitative reasoning methods. The 
transformation is done in two ways: (a) If it is known what 
physical laws and principles are going to govern the solu­
tion, then the given goal is transformed by relying on the 
laws to achieve certain sub-behaviors, (b) If, however, the 
relevant laws are not known a priori, sub-behaviors are 
hypothesized and the case memory is searched to find ways 
in which the required behavior may be achieved. This is in 
contrast to other approaches that assume a priori 
knowledge of the domain laws and models that will be part 
of the solution [Williams 90], If CADET cannot complete a 
design because it is not given the relevant physical laws, it 
hypothesizes new behaviors and looks for cases which em­
body those behaviors. The approach has the following ad­
vantages: (1) the system at each point in the search, is 
aware of what behavior it is trying to achieve, (2) because 
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cases embody design optimizations, the accessed com­
ponents correspond to already optimized physical struc­
tures, (3) solutions may involve the use of principles out­
side the current domain, that have been successful in a prior 
design, (4) the problem solver does not have to re-solve 
every problem from scratch. 

3. Behavior Representation in the Cases 
Device behavior is represented as a collection of in­

fluences organized in the form of a graph. The notion of 
influence graphs is a very general one. It applies to any 
domain in which behavior can be characterized as a set of 
quantities that relate to one-another. Given such an in­
fluence graph, it is possible to predict possible outcomes of 
given perturbations [Sycara 87]. 

Consider, for example, a gated water tap that has two 
inputs: a water source and a signal to regulate the rate of 
flow of water (Figure 3-1). The flow rate is given by Q and 
the position of the gate is given by X. The position of the 
gate controls the flow rate. This behavior is represented as 
an influence Q X, which is read as follows: "The flow 
rate (Q) increases (+) monotonically with an increase in the 
signal (X)". This influence represents the "tap" principle. 

Figure 3-1: A gated-tap 

Sets of qualitative influences can be combined to capture 
the behavior of more complex devices. The see-saw shown 
in Figure 3-2 has three major behavioral parameters: ft, the 
angular position of the see-saw and the positions of the two 
ends of the see-saw (X1 and X2), The main influences are 
X2----------a , X2 <—a and X2 < — X 1 . These influences 
form a directed graph. 

Figure 3-2: A see-saw 

3.1, Influence Graphs and Components 
The various components of a design work together to 

deliver its composite behavior. The influence graph that 
describes the overall behavior has sub-graphs that cor­
respond to individual components. This provides a map­
ping between behavior and the structure of the case. 

Let's re-consider the hot-cold water faucet (Figure 2-1). 
The behavior of this device can be represented as shown 
below (Figure 3-3). Two input signals St and Sf control the 
mix temperature and the mix flow-rate. When St is in­

creased, then the total quantity of hot water Qh increases. 
At the same time, due to the see-saw principle, the signal 
St\ decreases, causing the total quantity of cold water Qc to 
proportionately decrease. 

Note also, that single and multi-influence subgraphs of 
the faucet's influence graph corresponds to the various 
components of the faucet. This information serves as 
handles for snippet (component) identification and extrac-
tion. 

See-Saw 

Figure 3-3: Faucet's Influence Graph 

When this behavior representation is incorporated in a 
device case base, it becomes possible to retrieve cases 
which match given behavior specifications. If retrieval 
using the design specification fails to retrieve relevant 
cases, the system should be able to recognize how a com­
bination of component behaviors could produce the re­
quired effect. This is done by transforming the indices. In 
the next section we will cover case indexing and retrieval, 
followed by a section on index transformation. 

4. Case Retrieval 
Most CBR systems retrieve cases using indices that 

match specific attributes about cases. In engineering 
design, the case matching problem includes matching 
graphs of influences. Behavior matching for case retrieval 
is carried out in several ways: 

4.1.Abstract Matching 
The nodes in the influences are matched using object and 

concept hierarchies. For example, the simple tap is 
described by the influence Q X. The node Q which is 
a flow of water is abstracted to be a liquid-flow, a material 
flow, and finally a design-parameter. The quantity X is a 
translatory-signal, a physical-signal, a signal, and finally a 
design-parameter. Every design parameter is entered in 
such a hierarchy. 

4.2. Matching a sub-part of a larger case 
Design cases are often composed of many other cases (or 

parts thereof). Each part is indexed separately. For ex­
ample, the faucet is composed of a see-saw, a rigid-body, 
four gated-taps, and a right angle t-pipe. All these cases arc 
indexed in an abstraction hierarchy. The gated-tap's 
abstractions are: a tap, a flow-control device, a hydro-
mechanical device, and finally a device. In addition to this 
hierarchy, each influence in the case's behavior graph is 
indexed in an Influence Hierarchy. 
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The root of the influence hierarchy is the most generic 
influence-. Parameter Parameter. The parameters can 
be cither materials, energy, or signals. This gives us nine 
possible influences. This hierarchy is expanded all the way 
down to the influences in the cases, thus providing a direct 
access into the innards of a case. A part of the influence 
hierarchy is shown below. The lowest level in the hierar­
chy points to actual cases or components inside cases. For 
example, the influence Qh X1 corresponds to the case: 
SLIDER-TAP-FAUCET which is a slider-tap inside the 
faucet case. Note that this is different from the general 
SLIDER-TAP case because the tap in the faucet has been 
modified to interface with other components in the faucet. 
The behavior may look the same, but the cases are physi­
cally different. We will see, later, why this distinction is 
important to maintain. 

When CADET is given an influence as a goal, it can 
retrieve all cases that contain the goal. This can include all 
cases that match an abstraction of the goal. For example, 
the influence Q can be abstracted to the influence 
Water-flow Translatory-Signai In this way, CADET 
is able to find components of larger cases that match a 
given goal specification, making it possible to find all 
"taps" in the case base, even if they are embedded in larger 
cases. 

4.3. Mult iple Influences in the Goal 
The goal may consist of several influences arranged in 

the form of a graph. The aim of case matching is to find 
cases that have behaviors which correspond to the in­
fluences in the given goal 

The matching process starts by finding prior cases that 
contain the nodes (parameters) in the influence graph. This 
returns a large set of cases for each node in the goal graph. 
Next, the Influence Hierarchy is used. For each individual 
influence in the goal statement, the hierarchy is used to 
identify all the cases that contain that influence. An inter­
section of the sets of cases that match each influence and 
each node yields a smaller set of cases that contain the goal 
influences. This does not, however, guarantee that the 
topology of the influences in the cases will match that of 
the goal. The final step involves checking each of the 
retrieved cases for the goal graph. If the entire graph is 
matched, then the corresponding components in the case is 
extracted, 

4.4. Matching Mult iple cases 
When a goal has multiple influences, it may not be pos­

sible to find one case that satisfies the entire goal. In this 
situation, one has to find several components (from dif­
ferent cases) that can be synthesized to yield a final design. 
The process is as follows: For each influence, we first iden­
tify sets of cases that contain that influence. These sets can 
be viewed as possible colors that can be assigned to the 
various links in the goal graph. The next step is to select a 
case for each influence, such that a minimum number of 
cases are required to cover all the influences in the goal. A 
heuristic, polynomial-time, algorithm is used to find par­
titions of the influence graph. The algorithm works as fol­
lows: first, the largest contiguous set of influences that 
share a common case name is identified; next, the set is 
removed from the graph; and finally, the process is repeated 
till no unassigned influences are left. 
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4.5. Exploiting Novel Combinations 
A question that is often asked about the Case Based 

Problem Solving approach is: "If design problems can be 
solved by finding and synthesizing components such as 
taps, levers, and gears; then why should be keep larger 
cases in memory? The component hierarchy should be suf­
ficient, why should the system have to find components 
embedded in the cases?" 

In the mechanical design domain, cases provide useful 
sub-assembly "packages" of components. These sub­
assemblies can reflect good design principles. For example, 
components are often made to share functions and may in­
corporate decisions that take advantage of, or compensate 
for incidental components interactions. The components in 
a prior design are often coupled efficiently to work as a 
sub-assembly of the larger design. These components are 
structurally modified to appropriately mesh with one-
another. In addition, special connectors and fixtures may 
be used to interface the components. When a new design 
calls for the combination of two components behaviors, the 
modifications and interfaces need not be re-determined 
from scratch if relevant cases can be identified. 

5, Index Transformation 
In the example above, we said that the Hush tank's goal 

behavior is given by a set of influences. If, however, we 
were only given the original influence Q then it 
would not have been possible to recognize that the gated-
tap, the see-saw, and the float can be combined to solve the 
problem. 

In our domain, it often happens that the goal description 
docs not correspond to the appropriate cases in memory, A 
deliberate attempt has to be made to recognize what sub-
behaviors can achieve the goal and how these sub-behaviors 
can be physically realized. We approach this problem in 
two steps: (1) If the goal description fails to retrieve cases 
from memory, then the goal is elaborated using certain be­
havior preserving transformations. (2) The elaborated goal 
is then used as indices to find relevant cases. Index trans­
formation is a way to change the given salient features of 

the current problem to match the indices under which pre-
vious cases have been stored, thus making accessible to the 
problem solver previously inaccessible cases. The transfor­
mation technique described here is applicable to any 
domain in which behavior can be modeled as a graph of 
influences. 

We will now examine two rules which arc used to trans-
form given goals into more elaborate sets of influences that 
are behaviorally equivalent to the goal. The hypothesis is 
that, if one cannot find a case relevant to a given goal, then 
it might be possible to find several cases or parts of cases 
that are relevant to elaborations of the given goal. 
Design Rule 1. If the goal is to have x influence z, and if it 
is known a priori that u influences z, then the goal could be 
achieved by making x influence u. 
Design Rule 2. If the goal is to have x influence z and if it is 
known a priori that some two quantities p and q influence z 
then, the goal could be achieved by making x influence p or 
q, or both. 

The two design rules transform a given influence into a 
more detailed set of influences that are behaviorally equiv­
alent to the original influence. In CADET, the transfor­
mation is done in two ways: (1) by using domain laws and, 
(2) by hypothesizing new variables. 

5.1. Elaboration Using Domain Laws 
The influences implied by domain laws may be used to 

elaborate given goals. For example, assume it is our goal to 
achieve the influence; z also assume that there arc 
no known designs that can achieve this effect directly. If, 
however, there is some domain principle which states that 
some quantity u influences z, then the goal may be achieved 
by having x influence u. The goal is hence elaborated to: 
z This new influence graph is used as a new 
index into the case base. If cases or part of cases with 
influences that match the goal are found, they are retrieved 
and used. 

5.2. Elaboration by Hypothesizing new variables 
If the given domain laws are unable to find elaborations 

that can be realized by the cases in memory, one can try to 
hypothesize variables. The idea is to hypothesize new in­
fluences and then find cases which may be used to achieve 
those influences. For example, the goal may be 
elaborated to using design rule 1. A new 
variable Var\ is hypothesized as an intermediary. The 
elaboration is then used to find cases in memory. This lime 
however, the system looks for two influences which match 
the goal and bind the unknown variable Var1. 

As new variables are introduced, corresponding new in-
fluences are hypothesized. In addition, as influences arc all 
supposed to be based on physical laws or principles, the 
introduction of new variables implies that laws or prin­
ciples, unknown to CADET, are being hypothesized. After 
hypothesizing influences, the case base is used to find prior 
designs which may embody some physical law or principle 
that matches the hypothesized influence. With this ap-

Sycara and Navinchandra 351 



proach, one often retrieves cases from outside the current 
design domain that are analogically related to the current 
design problem. It is for this reason that CADET's solu-
tions are innovative. Through the process of influence 
hypothesis and matching, the system is able to use physical 
laws and principles embedded in prior design cases to 
achieve its current goals. 

Let's return to the flush tank example. Another possible 
elaboration of the original influence for the flush tank is: 
Q The first influence 
Var\ D, says that as the water level increases, some 
quantity Var1 decreases. An ultrasonic distance measuring 
device, held over the water surface, could provide this be­
havior. The output of this device is an electrical signal. 
Let's call it Sig and bind it to Var1. The influence 
Q matches a basic tap by binding Var2 to X 
(which is a linear movement). Finally, we are left with the 
influence X which says that when an electrical sig­
nal increases a body moves linearly in the X direction. A 
positioning device with a linear ratchet and motor can 
provide this function. The resulting design is shown in 
Figure 5-1. 

Figure 5-1: A flush tank exploiting extra-domain principle 

6. Conclusions 
We have presented an approach to the conceptual design 

of mechanical systems using a case base of previous 
designs that realize subfuncuons of the desired artifact. The 
process consists of applying behavior-preserving transfor­
mations, based on a qualitative calculus, to an abstract 
description of the desired behavior until a description is 
found that closely corresponds to some collection of 
relevant cases. The major benefits of the approach are: (a) 
it allows for retrieval of relevant cases and case parts based 
on behavioral thematic abstractions that enable use of cases 
from contexts other than hydraulics (e.g., electrical, 
electronic, chemical), (b) it does not impose a predeter­
mined decomposition of the design, (c) it is a generative 
approach that utilizes knowledge of design principles, such 
as simplicity, and behavioral constraints to reason from 
design goals to possible solution structures, (d) it can iden­
tify "missing" cases, necessary for completion of the 
design, and (e) the resulting transformations are guaranteed 
to be behaviorally equivalent to the original specification. 
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