Towards Generalized Rule-based Updates

Yan Zhang
Department of Computing
University of Western Sydney, Nepean
Kingswood, NSW 2747, Australia
E-mail:

Abstract

Recent work on rule-based updates provided
new frameworks for updates in more general
knowledge domains [Marek and Truszczriski,
1994; Baral, 1994; Przymusinski and Turner,
1995]. In this paper, we consider a simple gen-
eralization of rule-based updates where incom-
plete knowledge bases are allowed and update
rules may contain two types of negations. It
turns out that previous methods cannot deal
with this generalized rule-based update prop-
erly. To overcome the difficulty, we argue that
necessary preferences between update rules and
inertia rules must be taken into account in
update specifications. From this motivation,
we propose prioritized logic programs (PLPs)
by adding preferences into extended logic pro-
grams [Gelfond and Lifschitz, 1991]. Formal se-
mantics of PLPs is provided in terms of the an-
swer set semantics of extended logic programs.
We then show that the procedure of general-
ized rule-based update can be formalized in the
framework of PLPs. The minimal change prop-
erty of the update is also investigated.

1 Introduction

Marek and Truszcznski's recent work on rule-based up-
dates [Marek and Truszcznski, 1994] provided a new
framework Tor updates in more general knowledge do-
mains. Generally, they addressed the following problem:
given an initial knowledge base B, i.e. a set of ground
atoms, and a set of update rules V with the forms’:

in{A) —in(By), -, in{Bp,),0ut(Cy),- - -, out(Cpn),
(1)

D‘Ht(A) - in(Bl)! Ty iﬂ(Bm), Oﬂt(C}), Tt '!wt(cﬂ);
()

P was called a revision progrom in [Marek and
Truszczhiski, 1994].

82 AUTOMATED REASONING

yan@st.nepean.uws.edu.au

Norman Y. Foo

School of Computer Science and Engineering

University of New South Wales
NSW 2052, Australia
E-mail: norman@cse.unsw.edu.au

where A, By, -+, B, (1, - - -, Cy, are ground atoms, what
is the resulting knowledge base B’ after updating B by P?
The intuitive meaning of (1) (or (2)) is that if By,---, By,
are in the knowledge base, and (', - - -, C,, are not in the
knowledge base, then A should be (or not be) in the
knowledge base.

For example, given a knowledge base B = {A, D} and
a set of update rules P = {in(C} « in{A),out(B),
oul(D) « in(C},out(B)}, where A,B,C and D are
ground atoms, then after updating B by P, according
to Marek and Truszczniski’s approach, we would expect
to have a resulting knowledge base B’ = {A,C}.

Relationships between rule-based updates and logic
programming have been studied by Baral [Baral, 1994)
and Przymusinski and Turner [Przymusinski and Turner,
1995). In particular, they showed that Marek and
Truszcziski’s formal procedure of specifying B’ can be
reduced to a computation of the answer set of a cor-
responding extended logic program (we will review this
procedure in next section). However, there are two limi-
tations with Marek and Truszcznski’s rule-based update:
the initial knowledge base should be complete, i.e. any
ground atom not in the initial knowledge base is treated
as its negation; and update rules only contain classical
negations. For instance, following ideas of [Baral, 1994}
and [Przymusinski and Turner, 1995), rules (1) and (2)
are translated into the following inference rules respec-
tively in the corresponding extended logic program:

APB],""Bm,HC],y"'|Cﬂ1
_‘A‘_Blr"' B!TII_‘CI.!"':C!'I'

In this paper, we consider a simple generalization of
rule-based updates where a knowledge base can be sn-
complete, eg. a set of ground literals, and update rules
have the following form:

LO ‘-'Lli"'lL'ﬂ) not Lm+lv"': not Ll'lr

where each L; (0 < i < n) is a literal, and not represents
negation as failure (or called weak negation). As a literal
can be a negative atom, the above rule actually may
contain two types of negations, i.e. classical and weak

negations. The intuitive semantics of this rule can be
interpreted aa follows: if facts Ly, .., L, are true in the
knowledge base, and there are no explicit representations
saying that facts L4y, - -, L, are true in the knowledge
base, then fact Lg should be true in the knowledge base.

Such generalized rule-based update is important in
many applications. For example, in a secure computer
system, a formal specification of users’ access rights is
usually required, and the access policy of the system can
be represented by a knowledge base. An update of this
knowledge base must be performed whenever new ac-
cess control rules are applied to the system. Generally,
two types of negations are needed to specify access con-
trol rules. Let B = {Member(A,G), Member(B,G),
Access(A, F), ~Access(B, F)} represent the current ac-
cess policy of the system, where Member(A,() and
Member(B, G} mean that users A and B are members of
group G, and Access(A, F) and ~Access(B, F) indicate
that user A can access file F and user B cannot access
file F respectively. Suppose that new users C and D are
added into group G and a global access control rule is
now applied to each member of group G-

Access(x, F) « Member(z,G),not ~Access(z, F).

This rule actually saye that any user belonging to
group (G can access file F unless it is explicitly stated
that the user is hot allowed to access F. Updating
B by P = {Member(C,G) &, Member(D,G) «,
Access(x, F) +— Member(x,G),not —Access(z, F)}.
from our intuition, we would expect that Access{C, F)
and Access(D, F) are obtained, while facts Access(A, F)
and -Access(B, F') remain persistent.

As we will see next, previous rule-based update ap-
proaches are not suitable to deal with this generalized
rule-based update properly. To overcome the difficuity,
we argue that necessary preferences between update
rules and inertia rules with respect to the update must
be taken intoc account. From this motivation, we propose
prioritized logic programs (PLPs} by adding preferences
into extended logic programs. Formal semantics of PLPs
is provided in terms of the anawer set semantics of ex-
tended logic programs. We then show that the procedure
of generalized rule-based update can be formalized in the
framework of PLPs. The minimal change property of the
update is also investigated.

2 A Motivating Example

In this section we first review the concept of extended
logic programs proposed by Gelfond and Lifschitz {Gel-
fond and Lifschitz, 1991] and then discuss an example
of generalized rule-based update in the framework of ex-
tended logic programs.

2.1 Preliminaries

A language £ of extended logic programs is determined
by its object constants, function constants and predi-
cates constants. Terms are built as in the corresponding
first order language: atoms have the form P({,;,.-.,{,),
where ¢; {1 < { < n) i8 & term and P is a predicate sym-
bol of arity n; a literal is either an atom P(t;,---,t,) or
a negative atom - P{t;,---,1,). A rule is an expression
of the form:

Lo+ Ly Lym,notLyyy, -, notLy, (3)
where each Li (0 < 7 < n) is a literal. Ly is called the
head of the rule, while Ly, -, Ly,not Lymyy, -+, not Ly,
is called the body of the rule. Obviously, the body of
a rule could be empty. A term, atom, literal, or rule
1s ground if no variable occurs in it. An erlended logic
program Il is a collection of rules. The following is an
example of extended logic program Ilg:

—Employed(z) + Student(z),
not Employed(z),
Employed(z) + Age(z, > 2b), ~Student(z).
not ~Employed(z}.

To evaluate a extended logic program, Gelfond and
Lifechitz proposed the answer set semantics for extended
logic programs. For simplicity, we treat a rule r in IT
with variables as the set of all ground instances of r
formed from the set of ground literals of the language
of I1. In the rest of paper, we will not explicitly declare
this assumption whenever there is no ambiguity in our
discussion.

Let TI be an extended logic program not containing
not and Lit the set of all ground literals in the language
of TI. The answer set of II, denoted as Ans(II), is the
smallest subset S of Lit such that

(i) for any rule Lg ¢ Ly,--+,Lm from II, if
Li.o-,Lm €S, then Ly € 5,

(ii) if § contains a pair of complementary literals, then
S=Lit.

Now let II be an extended logic program. For any subset

S of Lit, let I1° be the logic program obtained from Il

by deleting

(i) each rule that has a formula not L in ite body with
Les, and

{ii) all formulas of the form not L in the bodies of the
remaining rules. :

We define that S is ap enswer set of 1, denoted Ans(II),
iff S is an answer set of I1°, j.e. § = Ans(II¥).
Consider an extended logic program II; obtained
from [I; by adding other two rules in Il;: II; =
Mg U {~Student(Peter) +, Age(Peter,> 25) «}.

ZHANG & FOO 83

It is not difficult to see that IT; has a unique an-
swer set set: {—Student(Peler), Age(Peter,> 25),
Employed(Peter)}.

2.2 An Example

As we mentioned earlier, in previous formulations a spec-
ification of rule-based update can be represented by an
exiended logic program [Baral, 1994; Przymusinski and
Turner, 1995]. By illustrating a simple example here, we
will show that these methods are not suitable for speci-
fying generalized rule-based updates.

Example 1 Suppose B = {~A, B,C} is a knowledge
base, and P = {—~B « not B,A «+ C} is a set of up-
date rules. Consider an update of B by P. Obviously,
fact —=A should change to A by applying the second rule
of P. Fact B, on the other hand, seems persistent be-
cause B is true in the initial knowledge base, and ~B
can only be derived from the first rule of P if fact B
is absent from the current knowledge base. Therefore,
from our intuition, the resulting knowledge base should
be {4, B,C}.

Now we follow the principle of Baral and Przymusin-
ski and Turner’s methods [Baral, 1994; Przymusinski
and Turner, 1995] to specify the above update proce-
dure within an extended logic program?. Firstly, we
need to extend the language of our domain by adding
new propositional letters with the form New-L if Lisa
propositional letter in the original language®. In this ex-
ample, the extended language will include propositional
letters A, B,C, New-A, New-B and New-C. Then an
extended logic program II(B, P) is formed by the follow-
ing rules:

Initial knowledge rules:

—A ¢,
B+,
C+~,
Inertia rules:
New-A &« A,not -~ New-A,
New-B « B ,not ~Neuw-B,
New-C « C,not ~New-C,
=New-A « -Anot New-A,
“New-B « -~B,not New-B,
“New-C « -C,not New-C,
Update rules:
=New-B + not New-B,
New-A + New-C.

Generally speaking, an answer set of program (B, P)
represents a possible resulting knowledge base after up-
dating 8 by P, where literal New-L in the answer pet

2The formaliem used here, of course, is different from
theirs

*For simplicity, here we restrict the language to be
Propositional.

84 AUTOMATED REASONING

denotes the persistence of literal L if L € B, or a change
of L if ~L € B or L ¢ B with respect to this update.

It is easy to see that the above II{B, P) has two answer
gets: in one New-B is true where in the other New-B is
false. Obviously this solution is not consistent with our
previous observation. M

Observing program II(B, P), it is not difficult to see
that a confiict occurs between inertia rule New-B « B,
not ~New-B and update rule =Neu-B « not New-B,
that is, applying New-B « B, not ~New-B will defeat
~New-B « not New-B, and vice versa, This confiict
leads II{B,P) to have two different answer sets with an
indefiniteness of New-B.

On the other hand, it seems that the inertia rule
New-B « B, not ~New-B should override the update
rule “New-B « not New-B during the evaluation of
II{B,P) in order to cbtain the desired solution. But this
preference information cannot be expressed in Gelfond
and Lifschitz’s extended logic programs.

From the above discussion, we argue that to represent
such generalized rule-based update properly, necessary
preferences between inertia rules and update rules have
to be taken into account during the evaluation of the up-
date. We approach this problem from a general ground:
we will first propose prioritized logic programs where
preferences between rules can be explicitly expressed,
and then formalize the generalized rule-based update in
the framework of pricritized logic programs.

3 Prioritized Logic Programs (PLPs)

In this section we propose prioritized logic programs
(PLPs) which extend Gelfond and Lifschitz’s extended
logic programs [Gelfond and Lifschitz, 1991] by adding
preference information into programs. We first describe
the syntax of PLPs and then provide an answer set se-
mantics for PLPs.

3.1 Syntax

The language £7 of PLPs is a language £ of extended
logic programs just with the following augments:

- Names: N, Ny, Nqg,.--.

- A strict partial ordering (i.e. antireflexive, antisym-
metric and transitive) < on names.

- A naming function A, which mape a rule to a name.

Terms, atoms, literals and rules in PLPs are defined
as the same in extended logic programs. For the naming
function A, we require that for any rules r and v’ in a
PLP (see the following definition), N (r) = N (r') iff »
and r' indicate the same rule.

A prioritized logic progrem (PLP) P is a triplet
(11, N, <), where 11 is an extended logic program, A is a
naming function mapping each rule in II to a name, and

< is a relation representing all strict partial orderings on
names.,
The following is an example of prioritized extended
logic program.
Py = ({P & not Q, not R, Q + not P, R « not P},
{N{P « not Q. not R) = N|, N(Q ¢ not P) = Ns.
N(R « not P) = N3}, {Ni < Nz, N; < N3}). To
simplify our presentation, we usually represent P, as the
following form:
plt
Ny : P+ not Q, not R,
Ny : Q +~ not P,
Ng: R+ not P,
Ny < Np, Na < Na.

We also use notations P, {II), P;{N), and P(<) to de-
note the sets of rules, naming function’s valyes and <-
relation of P, respectively.

Consider the following program:

Py

Ny : P+ notQ, not R,

Ny Q « not P,

Na: R+ not P,

Ny < Ny, No < N3, Ny < Ma.

Obviously, the only difference between P; and P» is that
there is one more relation N; < N3 in Py. As we men-
tioned earlier, < is a strict partial ordering (i.e., antire-
flexive, antisymmetric and transitive), we would expect
that 7, and P; are identical in some sense. Furthermore,
if we rename rules in P as follows,
Py
N{: P+ not Q, not R,
N} :Q+ not P,
Ni:R+ not P,
N{ < N3, Nj < N3, N{ < N3,
P’y would be also identical to P» and hence to P; too
from our intuition. To make this precise, we first intro-
duce <-closure as follows.

Definition 1 Given a program P = (I NV, <).
P(<*) is the <closure of P iff P(<*) is the smallest
set containing P(<) and closed under transitivity.

We also need to define a renaming function as follows.
A renaming function Rn maps a PLP P = (I1L N, <) to
another PLP 7/, i.e. Rn(P) =P = (IT', A, <’), such
that (i) P(II}) = P'{IT); (ii) for each rule r € P(II)*,
N(r)=NePN)if N'(r) =N € P'(N') (N and N'
are not necessarily different); (iii) for any rules ry and r;
in P(IT), N(ry) = Ny, N(r3) = Nz € P(N), and M, <
Ny € P(<) iff N'(ry) = N}, N'(r2) = N3 € P'(N'),
and N{ < Nj € P'(<'). It is easy to see that applying a

*Of course, r is also in P/(IT').

renaming function to a PLP will only change the names
of rules in the PLP. -

Two prioritized extended logic programs P; and P;
are identical iff there exists a renaming function Rn,
mapping P; to P’ such that Pi(I7) = P'3(I1"), P1(N) =
P3(N'), and Py(<*) = P'y(<™*).

We have defined that a prioritized extended logic pro-
gram is an extended logic program by associating with a
partial ordering < to it. Intuitively such ordering repre-
sents a preference of applying rules during the evaluation
of a query of the program. In particular, if in & program
P, relation A(r) < N{(r') holds, rule r would be pre-
ferred to apply over rule r’ during the evaluation of P
(i-e. rule r is more preferred than rule r’). Consider the
following classical example represenied in our formalism:

Py

Ny : Fly(z) « Bird(z), not =Fly(z)},

Ng : =Flylz) « Penguin(z), not Fiy(z),
Nz ! Bird(Tweety) «,

Nqt Penguin{Tweety) «,

Ny < Ny,

Obviously, rules Ny and N, conflict with each other as
their heads are complementary literals®, and applying
N, will defeat Ny and vice versa. However, as Ny < Ny,
we would expect that rule N, is preferred to apply first
and then defeat rule N, after appiying N; so that the
desired solution = Fly(Tweety) could be derived.

3.2 Answer Sets for PLPs

Now we are ready to provide the semantics of PLPs. The
semantics of PLPs is defined in terms of the answer set
semantics of extended logic programs described earlier.

In program Pi, we have seen that rules Ny and Ny
conflict with each other. Since N, < N{, we try to solve
the conflict by applying N> first and defeating N,. How-
ever, in some programs, even if one rule is more preferred
than the other, these two rules may not affect each other
at all during the evaluation of the program:. In this case,
the preference relation between these two rules does not
play any role in the evaluation and should be simply
ignored. This is illustrated by the following program:

P4Z
NP e notQy,
N3 : P & not Qq,
Ny < Ng.

Although heads of Ny and N, are complementary liter-
als, applying N; will not affect the applicability of N>
and vice versa. Hence N < N; should not be taken
into account during the evaluation of P4. The following
definition provides a formal description for this intuition.

5Precisely, N; is the name of rule ~Fly(z) « Penguiniz),

not Fly(z). Whenever there is no confusion in the context,
we just simply refer a rule by its name.

ZHANG & FOO 85

Definition 2 Let I1 be an extended logic program and r
a rule with the form Lg « L;,---,Ln, not Lyngr, -+
not L, (r does not necessarily belong to I1). Rule r is
defeated by IT iff for any answer set Ans(Il) of 11, there
exists some L; € Ans(ll), wherem+1<i<n,

Now our idea of evaluating a PLP is described as fol-
lows. Let P = (I1LN,<). If there are two rules r and
r in P(IT) and N(r) < N(r'), v will be ignored in the
evaluation of P, enly if keeping r in P(II) and deleting
r' from P(I1) will result in a defeat of r/, i.e. *' is de-
feated by P(I1) — {r'}. By eliminating all such potential
rules from P(II), P is eventually reduced to an extended
logic program in which the partial ordering < has been
removed. Our evaluation for P is then based on this
extended logic program.

Let us consider program P; once again. Since
Ny < N; and N, is defeated by P; —~ {N,;} (i.e. the
unique answer set of Py — {N;} is {Bird(Tweety),
Penguin(Tweety). ~Fly(Tweety)}}), rule N; should be
ignored during the evaluation of P3. For program
P4, on the other hand, although N, < N;. relation
N1 < Ny will not affect the solution of evaluating P4
88 Py(I1) — { N2} does not defeat N; (i.e. the unique
answer set of Py(Il) — {N;} is {P}).

Definition 3 Let P = (II, N, <) be a prioritized ez-

tended logic program. We define a reduct of P with re-

spect 1o <, denoted as P<, as follows.

(i) Mop=11,

(4) I; =1,y — {ry,--- 7% | there exists r € ;. such
that N(r) < N(r) €P{<?) fi=1.. - k) and
ry, o, re are defeated by II;_y = {r1, -, r}}:

(iii) P< = (2, 11;.

In above definition, clearly P< is an extended logic
program obtained from II by eliminating some rules from
I1. In particular, if A{(r) < A(r') and I1 — {r'} defeats
r, rule r’ is eliminated from I1. This procedure is contin-
ued until a fixed point is reached. Note that due to the
transitivity of <, we need to consider each N{r) < A(r')
in the <-closure of P. 1t is also not difficult to note that
the reduct of a PLP may not be unique generally.

Example 2 Using Definition 1 and 3, it is not difficult
to conclude that P;, Py and P, have unique reducts as
follows respectively:

P = {P + not Q},

PL = {P « not Q, not R},

Ps = {~Fly(z) « Penguin{z), not Fly(z),

Bird(Tweety) «, Penguin{Tweety) «},

PL = PufID).

n

Now it is quite straightforward to define the answer set
for a prioritized extended logic program.

86 AUTOMATED REASONING

Definition 4 Let P = (I1, N, <) be a PLP and Lit the
set of all ground literals in the language of P. For any
subset S of Lit, S is an answer set of P, denoted as
AnsP (P), iff § = Ans(P<).

Example 3 Immediately from Definition 4 and Exam-
ple 2, we have the following solutions:.

AnsP (Py).= { P},
AnsP (P)) = { P},
Angf (P3) = { Bird(Tweety),
Penguin(Tweely), ~Fiy(Tweety)},
Ans® (Py) = Lit,
which, respectively. are also consistent with our intu-
itions. B

3.3 Basic Properties of PLPs

We now discuss some properties of PLPs. To simplify
our presentation, let us introduce some useful notations.
Let It and P be an extended logic program and & PLP
respectively. We use ANS(IT) to denote the classes of
answer sets of II. Suppose P = (II,A,<) i1s a PLP.
From Definition 3, we can see that a reduct P< of
P is generated from a sequence of extended logic pro-
grams: I = Iy, I, 02, - . We use notation {II;}
(i = 0,1,2, -} to denote this sequence and call it a
reduct chain of P. Then we can prove the following use-
ful solutions®.

Theorem 1 Let P = (I, N, <) be a PLP, and {II;}
(i =0,1,2,- -} a reduct chain of P. Suppose each II;
has answer set(s). Then for any i and § where { < j,
ANS(II;) € ANS(IL).

Theorem 2 Let P = (1, N, <) be a PLP. Then a sub-
set S of Lit is an answer set of P iff 5 is an answer sel
of each I1; for some reduct chain {Il;} (i = 0,1,2,--:)
of P. where each II; has answer set(s).

4 Generalized Rule-based Update

Consider a language £ of extended logic programs as
described in section 2.1. We specify that a knowledge
base B is a set of ground literals of £ and P is a set
of rules of £ with form (3) that are called update rules.
Note that we allow a knowledge base to be incomplete.
That is, a literal not in a knowledge base is treated as
unknown.

We will use a prioritized logic program to specify an
update of B by P. For this purpose, we first need to
extend language £ by the following way. We sapecify
£?F, ., to be a language of PLPs based on £ as described
in section 3.1 with one more augment: For each predicate
symbol P in £, there is a corresponding predicate symbol
New-P in £}, with the same arity of P.

® All proofs of theorema presented in this paper were given
in our manuscript [Zhang and Foo, 1997].

To simplifying our presentation, in £F,, we use no-
tation New-L to denote the corresponding literal L in
L. For inetance, if & Literal L in £ is =P(z). then nota-
tion New-L simply means ~New-P(z). We use Liln.y
to denote the set of all ground literals of £F,, . Clearly,
Litnew = Lit U {New-L | L € Lit}. Now we are ready
to formalize our generalized rule-based update.

Definition 5 Let B, P. £ and LE,,, be defined as above.
The specification of updating B by P is defined as a PLP
of L, , denoted as Update(B,P) = (II(B,P). N, <), as
Jollows:

1. TI{B,P) consists of following rules:
Initial knowledge rules: for each L in B, there is a
rule L «;
Inertia rules: for each predicate symbol P in L,
there are two rules:
New-P(z) « P(z), not ~New-P(zx), and
- New-P(z) + —~P(z}, not New-P(z),
Update rules: for each rule
LoeLi, L. 00t L1,
there s a rule
New-Lp ¢ New-Ly.---. New-Ly.
nol New-Lyyy.- -, not New-L,;

not L, in P,

2. Naming function N assigns a unique name N for
each rule in I(B, P);

3. For any inertie rule with name N and update rule
with name N', there is e partial ordering between N
and N': N < N'.

Comparing Definition 5 with the update specification
described in Example 1, we can see that the difference
between these two approaches is that in our formulation
preference relations between inertia and update rules are
explicitly expressed. We specify inertia ruies to be more
preferred than update rules in Update(B,P).

The intuitive idea behind this is that a preference or-
dering between an inertia rule and an update rule in
Update(B, P) will affect the evaluation of Update(B,P)
only if these two rules conflict with each other, eg. ap-
plying one rule causes the other inapplicable. On the
other hand, a fact in the initial knowledge based B is
always preferred to persist during an update whenever
there is no violation of update rules®. Therefore, when
conflicts occur between inertia and update rules, iner-
tia rules should override the corresponding update rules.
Otherwise, the preference ordering does not play any
tole in the evaluation of Update(B,P). Also note that
there will be at most 2k - ! instances of relation < in
Update(B,P), where k is the number of predicate sym-
bols of £ and { is the number of update rules in P.

Tz might be a tuple of variables.
"Note that an update rule in Update(B, P) is defeasible if
it contains a weak negation notin the body.

Finally, on the basis of Definition 5, we can formally
define a knowledge base B resulting from updating B by
P in a straightforward way.

Definition 6 Let B,P, L and LF,, be specified as be-
fore, and Update(B,P) the specification of updating B
by P as defined in Definition 5. A set of ground literals
of L, B'. ts called a possible resulting knowledge base
with respect lo the update specification Update(B, P), iff
B’ satisfies the following conditions:

1. ff Update(B,P) does not have an answer sel, then
B =8
2. of Update(B,P) has a consistent answer set, say
Ans® (Update(B,P)), then
B' = {L} New-L € Ans® (Update(B, P))};

3. B = Lit if Ans” (Update(B,P)) = Lilnew.

Example 4 Example 1 continued. Let B = {-A4, B,C}
and P = {-B « not B, A « C}. From Definition 5,
the specification of updating B by P, Update(B,P), is
as follows:

Initial knowledge rules:
Ny A e
Nz - B -,
N3 1 C e,
Inertia rules:
Ny New-A & A not ~"New-A,
N5 : New-B « B,not ~New-B,
Ne : New-C + C not =New-C,
N7~ New-A + =A,not New-A,
Ng : = New-B « -~B,not New-B,
Ng : " New-C +~ =C not New-C,
Update rules:
Niop:=~New-B & not New-8,
Nu :New-A New—C,
<
Ny < Nyp. Ny < Ny, N < Ny,
N7 < Nyg. Ng < Nio, No < Ny,
Ny < N1y, Ny < Nip, Ng < Ny,
N7 < Nij, Ng < Ny, Ng < Nyt

Now from Definitions 3 and 4, it is not diffi-
cult to see that Update(B,P) has a unique answer
set: {~A,B,C,New-A,New-B, New-C}. Note that
in Update(B,P), only ordering N5 < Njo is used in
Update(B, P) s evaluation, while other orderings are use-
less (see Definition 3). Hence, from Definition 6, the only
resulting knowledge base B’ after updating B by P is:
{A.B,C}®m
Example 5 Let us consider the secure computer system
domain described in section 1 again. Let

B = {Member(A,G), Member(B,G),
Access(A, F), ~Access(B, F)} and
P = {Member(C,G) +, Member(D,G) +,

ZHANG & FOO 87

Access(z, F) «~ Member(z, G),
not ~Access(z, F)}.

Consider the update of B by P. Ignoring the detail. using
the approach presented above, we get a unique resulting
knowledge base

B = {Member(A, G), Member(B,G),
Member(C,G), Member(D, G),
Access(A, F}, ~Aceess(B, F),
Access(C, F), Access(D, F)}.

5 Update and Minimal Change

In this section we investigate the minimal change prop-
erty for the generalized rule-based update described pre-
viously. Let B be a consistent knowledge base and r a
rule with the form (3}. B satisfies riff iffacts L;.---, Ly
are in B and fact Ly4y, -+, Ly are not in B, then fact
Ly is in B. Let P be a set of rules with the form (3). B
satisfies P if B satisfies each rule in P.

Let B and B’ be two knowledge bases. We use
Diff(B,B') to denote the set of different ground atoms
between B and B, i.e.

Diff(8,B'}={|L!|L€(B-B)u (8 -8B}
where notation L] indicates the corresponding ground
atom of ground literal L, and Min(B, P) to denote the

set of all consistent knowledge bases satisfying P but
with minimal differences from B, i.e.

Min(B,P) = {B' | B’ satisfies P and
Diff(B, B') is minimal with
respect to set inclusion}.

Then we have the following result.

Theorem 3 Let B be a knowledge base, P a set of up-
date rules, and Update(B,P) the spectfication of updat-
ing B by P as defined in Definition 5. If B' is a consis-
tent resulting knowledge base with respect to the update
specification U pdate(B, P), then B' € Min(B,P).

The above theorem guarantees that our generalized
rule-based update satisfies the principle of minimal
change. However, it should be noted that not every ele-
ment of Min(B,P) could be a resuiting knowledge base
of updating B by P. The following example illustrates
the case.

Example 6 Let B = {4, B} and P = {-A + B, ~B +
not B}. Using our approach, updating B by P will give
us a unique resulting knowledge base 8’ = {-A, B].
However, it is not difficult to see that Min(B,P) also
contains another element: B = {A,-~B}. Although B"
satisfies P and has minimal difference from B, it does
not represent an intuitive solution of updating B by P
according to our previous discussion. B

88 AUTOMATED REASONING

6 Concluding Remarks

In this paper we considered generalized rule-based up-
dates in the framework of prioritized logic programs. We
should mention that Marek and Truszcznski's rule-based
update is embeddedable into our framework. For exam-
ple, if our update rules only contain classical negations,
our formulation is reduced to Przymusinski and Turner's
described in [Przymusinski and Turner, 1995].

Finally, we have noticed that the issue of logic pro-
grams with preferences has also been explored recently
by some other researchers (eg. [Brewka, 1996]). In fact,
we can further extend our prioritized logic programs by
associating with dynamic preference so that our priori-
tized logic programs can be used as a more general tool in
broad areas of knowledge representation and reasoning.
A detailed comparison between our PLPs and others'
work and other applications of PLPs in reasoning about
change is beyond the scope of this paper and was rep-
resented in our full version manuscript [Zhang and Foo,
1997].

Acknowledgements

This research is supported in part by a grant from the
Australian Research Council. We thank to Chitta Baral
for many valuable comments on an earlier draft of this

paper.

References

[Baral, 1994] C. Baral. Rule based updates on
simple knowledge bases. In Proceedings of the
Eleventh National Conference on Artificial Intelli-

gence (AAAI'94), pages 136-141. AAAI Press, 1994.

[Brewka, 1996] G. Brewka. Well-founded semantics for
extended logic programs with dynamic preferences.
Journal of Atrtificial Intelligence Research, 14:19-36,
1996.

[Gelfond and Lifschitz, 1991] M. Gelfond and V. Lif-
schitz. Classical negation in logic programs and
disjunctive databases. New Generation Computing,
9:365-386,1991.

[Marek and Truszcznski, 1994] M. Marek
and M. Truszcznski. Update by means of inference
rules. In Proceedings of JELIA '94, Lecture Notes in
Artificial Intelligence, 1994.

[Przymusinski and Turner, 1995] T.C.
Przymusinski and H. Turner. Update by means of
inference rules. In Proceedings of LPNMR'95; Lecture
Notes in Artificial Intelligence, pages 156-174, 1995.

[Zhang and Foo, 1997] Y. Zhang and N.Y. Foo. Priori-
tized logic programming and reasoning about change.
Technical report, University of Western Sydney, Ne-
pean, 1997.

