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Abstract

In this paper we formulate the prevention of Denial of
Service (DoS) attacks in wireless sensor networks as a
repeated game between an intrusion detector and nodes
of a sensor network, where some of these nodes act ma-
liciously. We propose a protocol based on game theory
which achieves the design objectives of truthfulness by
recognizing the presence of nodes that agree to forward
packets but fail to do so. This approach categorizes differ-
ent nodes based upon their dynamically measured behav-
ior. Through simulation we evaluate proposed protocol
using packet throughput and the accuracy of misbehav-
ing node detection.

Keywords: Game theory, intrusion detection, security,
sensor networks

1 Introduction

Wireless sensor networks can be considered as a special
type of ad hoc wireless networks, and there are already
some proposals addressing security in general ad hoc net-
works, but sensor networks have some additional concerns
that limit the applicability of those traditional security
measures. Sensor networks are very limited in local mem-
ory and calculation capacity [4], and so security mech-
anism for sensor networks can not require each sensor
node to store long-sized key to run very complex cryptol-
ogy protocols. They have low power consumption and so
sensor network protocols must focus on power conserva-
tion. Usually sensor networks consist of large number of
communication nodes, do not have global identification
number, and could face easy node failure [4].

In DoS attacks, the attacker’s objective is to make tar-
get destinations inaccessible by legitimate users [17]. A
sensor network without sufficient protection from DoS at-
tacks may not be deployable in many areas. Nodes of

Table 1: DoS attacks in sensor networks [17]
DoS attacks Defense strategy
Radio interference Use spread-spectrum
Physical tampering make nodes tamper-resistant
Denying channel Use error correction code
Black holes Multiple routing paths
Misdirection Source authorization
Flooding Limit the connections

a sensor network can not be trusted for the correct exe-
cution of critical network functions. Nodes misbehavior
may range from simple selfishness or lack of collaboration
due to the need for power saving, to active attacks aiming
at DoS and subversion of traffic. There are two types of
DoS attacks:

• Passive attacks: selfish nodes use the network but do
not cooperate, saving battery life for their own com-
munications; they do not intend to directly damage
other nodes.

• Active attacks: malicious nodes damage other nodes
by causing network outage by partitioning, while sav-
ing battery life is not a priority.

DoS attacks can happen in multiple sensor network pro-
tocol layers. Table 1 depicts the typical DoS attacks and
the corresponding defense strategies [17].

There is very little work done on the prevention of
DoS attacks. Attempts to add DoS resistance to exist-
ing protocols often focus on cryptographic authentication
mechanism. Aside from the limited resources that make
digital signature schemes impractical, authentication in
sensor networks poses serious complications. It is diffi-
cult to establish trust and identity in large-scale sensor
network deployments. Adding security afterward often
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fails in typical sensor networks. Thus design-time consid-
eration of security offers the most effective defense against
DoS attacks.

This paper formulates the prevention of passive denial
of service attack at routing layer in wireless sensor net-
works as a repeated game between an intrusion detector
and nodes of a sensor network, where some of these nodes
act maliciously. We propose a framework to enforce coop-
eration among nodes and punishment for non-cooperative
behavior. We assume that the rational users optimize
their profits over time. Intrusion detector residing at the
base station keeps track of other nodes’ collaboration by
monitoring them. If performances are lower than some
trigger thresholds, it means that some nodes act mali-
ciously by deviation. Intrusion detector rates other nodes,
which is known as subjective reputation and the positive
rating accumulates for each node as it gets rewarded.

This paper is organized as follows. Section 2 reports
the related work. Section 3 formulates the game while and
discusses the equilibrium and payoff of the game. Section
4 evaluates the performance of proposed protocol, and
Section 5 concludes the paper.

2 Related Work

Currently there are four mechanism that could be helpful
to overcome DoS attacks in sensor networks.

Watchdog scheme: A necessary operation to overcome
DoS attacks is to identify and circumvent the misbehav-
ing nodes [19]. Watchdog scheme attempts to achieve
this purpose through using of two concepts: watchdog
and path-rater. Every node implements a watchdog that
constantly monitors the packet forwarding activities of
its neighbors and a path-rater rates the transmission reli-
ability of all alternative routes to a particular destination
node. The disadvantages of this scheme are that (1) it
is only practical for source routing protocols instead of
any general routing protocol and (2) collusion between
malicious nodes remains an unsolved problem [17].

Rating scheme: In Rating scheme the neighbors of any
single node collaborate in rating the node, according to
how well the node execute the functions requested from
it [20, 21, 23]. It strikes a resonant chord on the impor-
tance of making selfishness pay. Selfishness is different
from maliciousness in the sense that selfishness only aims
at saving resources for the node itself by refusing to per-
form any function requested by the others, such as packet
forwarding and not at disrupting the flow of information
in the network by intension. The disadvantages of this
approach are that (1) how an evaluating node is able to
evaluate the result of a function executed by the evalu-
ated node, (2) evaluated node may be able to cheat easily
and (3) the result of the function may require significant
overhead to be communicated to the evaluating node [17].

Virtual currency: This scheme introduces a type of
selfish node that are called nuglets [9, 11]. To insulate
a node’s nuglets from illegal manipulation, a tamper-

resistant security module storing all the relevant IDs, nu-
glet counter and cryptographic materials is compulsory.
In Packet Purse Model each packet is loaded with nu-
glets by the source and each forwarding host takes out
nuglets for its forwarding services. The disadvantages of
this schemes are that : (1) malicious flooding of the net-
work can not be prevented, (2) intermediate nodes are
able to take out more nuglets than they are supposed to,
and (3) overhead [17].

Route DoS Prevention: It attempts to prevent DoS in
the routing layer by cooperation of multiple nodes [8]. It
incorporates a mechanism to assure routing security, fair-
ness and robustness targeted to mobile ad hoc networks.
The disadvantage of this approach is that misbehaving
nodes are not prevented from distributing bogus informa-
tion on other nodes’ behavior and legitimate nodes can
be classified as misbehaving nodes [17].

3 Game Formulation of the Pro-

posed Protocol

Here we formulate the prevention of passive denial of ser-
vice (DoS) attacks in wireless sensor networks as a re-
peated game between an intrusion detector and nodes of
a sensor network, where some of these nodes act mali-
ciously. Intrusion detection systems (IDSs) extend the
information security paradigm beyond traditional protec-
tive network security. They monitor the events in the
system and analyze them for any sign of a security prob-
lem [7]. Considering current intrusion detection systems,
there is definitely a need for a framework to address attack
modeling and response actions.

Game theory addresses problems where multiple play-
ers with different objectives compete and interact with
each other in the same system; such a mathematical ab-
straction is useful for generalization of the problem. In
order to prevent DoS, we capture the interaction between
a normal and a malicious node in forwarding incoming
packets, as a non-cooperative N player game [24]. The
intrusion detector residing at the base station keeps track
of nodes’ collaboration by monitoring them. If perfor-
mances are lower than some trigger thresholds, it means
that some nodes act maliciously by deviation. The IDS
rates all the nodes, which is known as subjective repu-
tation [20], and the positive rating accumulates for each
node as it gets rewarded.

Our proposed framework enforces cooperation among
nodes and provides punishment for non-cooperative be-
havior. We assume that the rational users optimize their
profits over time. The key to solve this problem is when
nodes of a network use resources, they have to contribute
to the network life in order to be entitled to use resources
in the future. The intrusion detector keeps track of other
nodes behavior, and as nodes contribute to common net-
work operation their reputation increases.

To understand the concept of repeated games, let us
start with an example, which is known as the Prisoner’s



International Journal of Network Security, Vol.5, No.2, PP.145–153, Sept. 2007 147

Dilemma [28], in which two criminals are arrested and
charged with a crime. The police do not have enough
evidence to convict the suspects, unless at least one con-
fesses. The criminals are in separate cells, thus they are
not able to communicate during the process. If neither
confesses, they will be convicted of a minor crime and sen-
tenced for one month. The police offers both the criminals
a deal. If one confesses and the other does not, the con-
fessor one will be released and the other will be sentenced
for 9 months. If both confess, both will be sentenced for
six months. This game has a unique Nash equilibrium in
which each player chooses to cooperate in a single-shot
setting.

However, in a more realistic scenario a particular one
shot game can be played more than once, in fact a real-
istic game could even be a correlated series of one shot
games. So what a player does early on can affect what
others choose to do later on. In particular, one can strive
to explain how cooperative behavior can be established
as a result of rational behavior. This does not mean that
the game never ends; we will see that this framework is
appropriate for modeling a situation when the game even-
tually ends but players are uncertain about exactly when
the last period is.

Now in the prisoner’s dilemma, suppose that one of
the players adopts the following long-term strategy: (1)
choose to cooperate as long as the other player chooses
to cooperate, (2) if in any period the other player chooses
to defect, then choose to defect in every subsequent pe-
riod. What should the other player do in response to this
strategy? This kind of games is known as repeated games
with sequences of history-dependent game strategies.

We model the interaction between nodes (normal or
malicious) and IDS in a sensor network as a repeated
game. N players play a non-cooperative game at each
stage of the game, where players of the game are an IDS
residing at the base-station and N sensor nodes. We first
define the stage game, then define the uncertainty that
players have about the game. Finally, we define what
strategies the players can have in the repeated game.

Consider a game G, which will be called the stage
game. Let the players/nodes set to be I = {1, · · · , N},
and refer to a node’s stage game choices as actions. So
each node has an action space Ai. If it is a malicious
node then sometimes its action is dropping of the incom-
ing packets.

Let at
i refer to the action of the stage game G which

node i executes in period t. The action profile played
in period t is just the n-tuple of individuals’ stage game
actions at = (at

1
, · · · , at

n). We want to be able to condi-
tion the nodes’ stage game action choices in later periods
upon actions taken earlier by other nodes. To do so, we
need the concept of history which is a description of all
the actions taken up through the previous periods. We
define the history at time t as ht = (a0, a1, · · · , at−1).
In other words, the history at time t specifies which stage
game action profile was played in each previous period. So
we write node i’s period-t stage game as the function st

i,

where at
i = st

i(h
t) is the stage game action it would play

in period t if the previous play had followed the history
ht. When the game starts, there is no past play, every
node executes its a0

i stage game. This zero-th period play
generates the history h1 = (a0), which will be recorded at
the base station, where a0 = (a0

1
, · · · , a0

n). This history
is then revealed to the IDS so that it can condition its
period-1 play upon the period-0 play. It means that if a
node is acting maliciously, by keeping history of the game,
the IDS is able to notify neighboring nodes of a malicious
one. Each node chooses its t = 1 stage game, strategy
s1

i (h
1). Consequently, in the t = 1 stage game the stage

game strategy profile a1 = s1(ht) = (s1

1
(h1), · · · , s1

n(h1))
is played.

Each node i has a von Neumann-Morgenstern utility
function defined over the outcomes of the stage game G,
as ui : A → <, where A is the space of action profiles. Let
G be played several times and let us award each node a
payoff which is the sum of the payoffs it got in each period
from playing G. Then this sequence of stage games is itself
a game, called a repeated game. Here,

ut
i = αrt

i − βct
i,

where rt
i is the gain of node i’s reputation, ct

i is the cost
of forwarding a packet for the node, and α and β are
weight parameters. We assume that measurement data
can be included in a single message that we call a packet.
Packets all have the same size. The transmission cost for
a single packet is a function of the transmission distance.
In particular, we assume ct

i = c′.dµ, where c′ is a constant
that includes antenna characteristics, d is the distance of
the transmission and µ is the path loss exponent [27].

By assuming that in each period the same stage game
is being played, two statements are implicit:

• For each node, the set of actions available to it in any
period in the game G is the same regardless of which
period it is and regardless of what actions have taken
place in past.

• The payoffs to the nodes from the stage game in any
period depend only on the action profile for G which
was played in that period, and this stage game payoff
to a node for a given action profile for G is indepen-
dent of which period it is played.

We now define the players’ payoff functions for the re-
peated game. When studying repeated games, we are
concerned about a player who receives a payoff in each of
many periods. In order to represent the performance over
various payoff streams, we want to meaningfully summa-
rize the desirability of such a sequence of payoffs by a
single number. A common assumption is that the player
wants to maximize a weighted sum of its per-period pay-
offs, where it weights later periods less than earlier peri-
ods. For simplicity this assumption often takes the partic-
ular form that the sequence of weights forms a geometric
series for some fixed δ ∈ (0, 1), each weighting factor is
δ times the previous weight. δ is called discount factor.
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If in each period t, player i receives the payoff ut
i, then

we could summarize the desirability of the payoff stream
u0

i , u
1

i , · · · by the number:

(1 − δ)

∞
∑

t=0

δtut
i.

Such a preference structure has the desirable property
that the sum of the weighted payoffs will be finite. It is
often convenient to compute the average discounted value
of an infinite payoff stream in terms of a leading finite sum
and the sum of a trailing infinite stream. For example,
suppose that the payoffs vt

i a player receives are some
constant payoff v′i for the first t periods, and thereafter
it receives a different constant payoff v′′i in each period.
The average discounted value of this payoff stream is:

(1 − δ)

∞
∑

τ=0

δτvτ
i = (1 − δ)(

t−1
∑

τ=0

δτvτ
i +

∞
∑

τ=t

δτvτ
i )

= (1 − δ)v′i

t−1
∑

τ=0

δτ + (1 − δ)v′′i
δt

1 − δ

= (1 − δ)v′i
1 − δt

1 − δ
+ δtv′′i

= (1 − δt)v′i + δtv′′i .

Now we need to specify the strategies for each of these
players. Each node makes the decision whether to (1)
accept a packet and forward it to improve its own rep-
utation in the network, we call this action “Normal”; or
(2) do not cooperate and save battery life and stay self-
ish, we call this action “Malicious”. On the other hand,
IDS always wants to catch a malicious node but it de-
pends on how well it can detect an intrusion. Thus the
output of IDS actions are either (1) “Catch” a node as
malicious, or (2) “Miss” it. As depicted in Figure 1, in
cases of false positives and false negatives, payoff of one
player is the maximum when it is the minimum for the
other player. The most important case (rewarding for
IDS) is when a node acts maliciously and IDS is able
to catch it. IDS has different utility values based on
which case happens and how we would like to give dif-
ferent weights to false positives and false negatives detec-
tions. For simplicity, we assume U(Miss, Normal) = v′,
U(Catch, Normal) = v′′, U(Miss, Malicious) = v′′′, and
U(Catch, Malicious) = v′′′′.

At each stage game, the IDS concurrently plays an
N -person game with N different nodes and several pos-
sible strategies can be described for it. We want a
strategy that punishes it even for its own past devia-
tions (false negatives). We define the utility of IDS as:
UIDS = γ1v

′′′′ − γ2v
′′′ − γ3v

′′, where each γi represents
the number of occurrences of case i. We consider the fol-
lowing retaliation strategy for IDS: in the initial period
every node plays cooperatively and so IDS does not catch
anyone; in later periods, IDS does not catch if the node
has always played normal. However, if a node acts mali-
ciously, then the IDS catches it for the remainder of the

Least Damage

Node

IDS

Normal

Malicious

Miss Catch

False Negative

False Positive

Best Choice for
IDS

Figure 1: Possible cases of interaction between IDS and a
node

game. More formally, the IDS has the following strategy:

sIDS(ht) =







Miss if t = 0
Miss if at−1

i = Normal
Catch otherwise.

Each node in the initial period plays normally and so IDS
does not catch anyone, in later periods, a node does not
act maliciously if the IDS has missed it. However, if the
IDS catches a node, then the node acts maliciously for
the remainder of the game. More formally for a node i,
we have the following strategy:

si(h
t) =







Normal if t = 0
Normal if at−1

i = Miss
Malicious otherwise.

3.1 Equilibrium

First, we show that the above strategies reach to Nash-
equilibrium of the repeated game. Both players (sensor
nodes and IDS) play cooperatively at t = 0. Therefore at
t = 1, the history is h1 = (Miss, Normal); so they both
play cooperatively again. Therefore at t = 2, the history
is h2 = ((Miss, Normal), (Miss, Normal)), and so on.
The repeated game payoff to each player corresponding
to this path is trivial to calculate.

Can IDS gain from deviating from the repeated game
strategy given that a sensor node is faithfully following
it? Let t be the period in which IDS first deviates. It
receives a payoff of v′ in the first t periods and in period
t, IDS plays “Catch” while sensor node played “Normal”,
yielding IDS a payoff of v′′ in that period. This defection
by IDS triggers “Malicious” always response from node.
The best response of IDS to this strategy is to “Catch” in
every period itself. Thus it receives v′′′′ in every period
t + 1, t + 2, · · · .

To calculate the average discounted value of this pay-
off stream, we see that the player receives v′i for the first
t periods, then receives v′′i only in period t and receives
v′′′′i every period thereafter. Therefore, the average dis-
counted value of this stream is:

(1 − δt)v′i + δt[(1 − δ)v′′i + δv′′′′i ].
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By solving the above inequality for δ and calculating
the average discount value of this payoff, while substitut-
ing v′′′′ > v′′ > v′ > v′′′, one possible discount factor nec-
essary to sustain cooperation is δ ≥ 1/2. In other words,
for δ ≥ 1/2, the deviation is not profitable. This means
that if IDS is sufficiently patient (i.e., if δ ≥ 1/2) then
the strategy of retaliation is a Nash equilibrium of the in-
finitely repeated game. We see that with this strategy the
optimal response for IDS is to cooperate and not deviate.
In other words, in any stage game reached by some player
having “defected” in the past, each player chooses the
strategy “defect always”. Therefore, the repeated game
strategy profile is a sequence of Nash-equilibria.

3.2 Payoff and Reputation

The problem of generating reliable information in sensor
networks can be reduced to one basic question: How do
sensor nodes trust each other? Embedded in every so-
cial network is a web of trust with a link representing the
amount of trust between two individuals. Here IDS moni-
tors the behavior of other nodes, based on which it builds
up their reputation over time. It uses this reputation to
evaluate their trustworthiness and in predicting their fu-
ture behavior. At the time of collaboration, a node only
cooperates with those nodes that it trusts. Here the ob-
jective is to generate a group of trustworthy sensor nodes.

In order to compute the values of a node’s gain, we
turn our attention to the work proposed in [20]. In this
work the authors proposed the concept of subjective rep-
utation, which reflects the reputation calculated directly
from the subject’s observation. In order to compute each
node’s gain at time t, we use the following formula:

rt
i =

t−1
∑

k=1

ρi(k),

where ρi(k) represents the ratings that the IDS has given
to node i, and ρi ∈ [−1, 1]. If the number of observations
collected since time t is not sufficient, the final value of
the subjective reputation takes the value 0. IDS incre-
ments the ratings of nodes on all actively used paths at
periodic intervals. An actively used path is one on which
the node has sent a packet within the previous rate in-
crement interval. Recall that reputation is the perception
that a person has of another’s intentions. When facing
uncertainty, individuals tend to trust those who have a
reputation for being trustworthy. Since reputation is not
a physical quantity and only a belief, it can be used to
statistically predict the future behavior of other nodes
and can not define deterministically the actual action per-
formed by them. Table 2 depicts the notations that were
used throughout this paper.

3.3 Protocol Description

In the proposed protocol, a node sends out a Route request
message. All nodes receiving this message compute their

Table 2: Parameters and Notations
Cost of forwarding packet at node i ci

History at node i hi

Rating of node i ρi

Reputation at node i ri

Utility at node i ui

Weight Parameters αi, βi

utility based on their local reputation and cost, place
themselves into the source route and forward it to their
neighbors, unless they have received the same request be-
fore. If a receiving node is the destination, or has a route
to the destination, it does not forward the request, but
sends a Reply message containing the full source route
with the total utility.

After receiving one or several routes, the source selects
the best one having the highest utility, which means this
route consists of the most reputed possible nodes; stores
it and sends messages along that path. Once a route
request reaches its destination, the path that this route
request has taken is reversed and sent back to the sender.
As the destination notifies the base station of the receipt
of the packet, the base station gives a higher reputation
value to every node on the route, and broadcasts the new
reputation values to nodes. As each node is aware of
its neighboring node (in its transmission range), it will
update the reputation table.

This protocol ensures a view on which nodes will pro-
vide likely service due to their commitment, as they want
to increase their reputation in the network. IDS also
wants to recognize the malicious nodes and isolates them
from participating in network functions, but it would pre-
fer not to risk it and have the least amount of false detec-
tions, to increase its own utility. The benefit of using a
framework based on repeated games is that, the base sta-
tion has a history of the previous games and when a node
is malicious it gets a negative reputation when the total
reputation accumulates, a path consisting of less number
of malicious nodes is chosen to be the wining path. This
results in isolation of malicious nodes.

4 Performance Evaluation

For simplicity we assume the following: (1) sensors are
scattered in a field, (2) in the beginning each battery has
the same maximum energy, (3) two sensors are able to
communicate with each other if they are within trans-
mission range, (4) sensors perform a measurement task
and periodically report to a base station, and (5) IDS
is present at the base station and constantly monitors
all nodes for any sign of maliciousness. The sensor net-
work consists of some malicious nodes which occasionally
launch DoS attacks.



International Journal of Network Security, Vol.5, No.2, PP.145–153, Sept. 2007 150

4.1 Metrics

Number of hops for received packets: Malicious be-
havior affects performance in a number of ways. We con-
sider different topologies, and see the effect of starving
multi-hop flows and giving all the capacity to one-hop
flows.
Throughput: This measure characterizes the total num-
ber of forwarded packets over the total number of received
packets.

4.2 Implementation

Figure 2 illustrates throughput as a function of the per-
centage of attackers. The figure indicates that without
any attacking node, legitimate nodes spend 60% of their
time successfully transmiting, and the remaining 40%
having broken routes and trying to re-establish routes due
to the quality of routes. We can observe the scalability of
the attack for 5 hop nodes: with 10% of attacking nodes,
the throughput drops to 52%, whereas with 20% of at-
tacking nodes, the throughput drops to 35%. We belive
that the impact of the attacker is even more prominent
in large-scale networks in which a longer path length is
increasingly likely to include an attacking node.

Figure 3 depicts the average hop length for received
packets. Without attack, the mean is 7 indicating that a
significant number of packets are received on long routes.
Yet, as the number of malicious nodes grows, the average
path length for a received packet diminishes: fewer and
fewer packets are able to traverse long routes leading to
increased capacity for one-hop flows.
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Figure 2: Throughput vs. number of malicious node

Figure 4 indicates the throughput of a node versus
time. As the figure depicts, when a node acts maliciously
its average throughput drops compared to when it acts
normally. The reason behind increase in the throughput
over time is that for simulating packet drop, we manually
switched off the power switch on the board, and malicious
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Figure 3: Average number of hops for received packets
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Figure 4: Throughput

nodes were turned off for shorter duration of time as we
proceed with this experiment.

In the original case, we consider a 2m × 2m topology
with 18 real sensor nodes. Here we also consider a scenario
with half the density. Figure 5 shows that for very low
densities the average number of hops is relatively low in
spite of the large dimensions of the topology. In fact, due
to the low density, the network is not fully connected such
that long-range flows are unlikely to exist.

Also, we explore the effect of system size (number
of nodes) on successfully attack detection in Figure 6.
We can observe that with the presence of 60% malicious
nodes, the IDS is able to detect correctly 60% of the time,
but as we have a large number of nodes present in the area
the rate of success degrades.

Finally, Figure 7 depicts the percentage of malicious
node detection by IDS. We run the experiments for 100
times for two scenarios, (1) 30% of nodes are malicious
and (2) 60% of nodes are malicious. As predicted, when
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we have more malicoius nodes present in the network the
success rate of IDS degrades. This is due to the fact
that IDS prefers to maximize its own utility and so it
has to lower the rate of false positives and flase nagatives
detection and eventually it misses more malicious nodes.

5 Conclusion

Infinite repetition can be the key for obtaining behavior in
the stage games which could not be equilibrium behavior
if the game were played once or a known finite number of
times. In the proposed protocol, IDS rates nodes through
a monitoring mechanism. The observations collected by
the monitoring mechanism are processed to evaluate rep-
utation of each node. We ensure the finiteness of the
repeated-game payoffs by introducing discount of future
payoffs relative to earlier payoffs.
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