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Abstract

It is well known that, in theory, the general secure multi-
party computation problem is solvable using circuit eval-
uation protocols. However, the communication complex-
ity of the resulting protocols depend on the size of the
circuit that expresses the functionality to be computed
and hence can be impractical. Hence special solutions are
needed for specific problems for efficiency reasons. The
point inclusion problem in computational geometry is a
special multiparty computation and has got many appli-
cations. Previous protocols for the secure point inclusion
problem are not adequate. In this paper we modify some
known solutions to the point inclusion problem in compu-
tational geometry to the frame work of secure two-party
computation.

Keywords: Computational geometry, multiparty computa-
tion, point inclusion problem.

1 Introduction

The rapid growth of networks has opened up tremen-
dous opportunities for cooperative computation, where
the output depends on the private inputs of several enti-
ties. These computations could even occur between mu-
tually untrusted entities or competitors. The problem is
trivial if the context allows to have a trusted entity that
would know the inputs from all the participants; however
if the context disallows this, then the techniques of se-
cure multi-party computation are used to provide useful
solutions.

Generally speaking, a secure multi-party computation
problem deals with computing a function in a distributed
network where each participant holds one of the inputs,
ensuring that no more information is revealed to a partici-
pant in the computation than that can be computed from
that participant’s input and output. The history of the
multi-party computation problem is extensive since it was
introduced by Yao [25] and extended by Goldreich, Micali,
and Wigderson [12] and by many others. These works

use a similar methodology: each functionality F' is rep-
resented as a Boolean circuit, and then the parties run a
protocol for every gate in the circuit. The protocols it gen-
erates depend on the size of the circuit. This size depends
on the size of the input and on the complexity of express-
ing F as a circuit. If the functionality F is complicated,
using the circuit evaluation protocol will typically not be
practical. Therefore, Goldreich [11] pointed out that us-
ing the solutions from these general results for special
cases of multi-party computation could be impractical;
special efficient solutions should be developed for specific
problems. This is the motivation for seeking solutions to
specific cooperative computational problems, in which the
solutions are more efficient than the general theoretical
solutions. To this end some problems such as comparing
two private numbers [14, 17, 26], privacy preserving data
mining [1, 18], comparing information [8], privacy preserv-
ing geometric computation [5], privacy preserving coop-
erative scientific computation [4, 13], privacy preserving
auction [3], privacy preserving statistical analysis [6, 7],
privacy preserving set operations [15] have been investi-
gated.

In secure multi-party computational geometry we seek
secure protocols for several geometric problem like point
inclusion problem, intersection of two shapes, range
searching problem etc where the data is shared by two
or more entities. In this paper, we construct secure two-
party protocols for the point inclusion problem in star-
shaped domains and more complex polygonal domains.
Here, one entity Alice has a point M, and Bob has a
polygon P. Their aim is to determine whether M is in-
side P, or not without revealing to each other their private
inputs.

We outline the related work in Section 2. In Section 3,
we introduce our adversary models as well as the crypto-
graphic tools used in the subsequent sections. In Section
4, we study the point inclusion problem in star-shaped do-
mains and in Section 5, we consider more general polygo-
nal domains. The paper concludes with some remarks in
Section 6.
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2 Related Work

The secure multiparty computational geometry has got
wide applications in the fields of military, computer
graphics etc. The study of secure multiparty computa-
tional geometry was initiated by Atallah et al. [5] with
their work on secure point inclusion problem and polyg-
onal intersection problem. Their protocol for the point
inclusion problem is applicable to simple polygonal do-
main and has complexity O(n) where n is the number
of edges of the polygon. Later Li et al. [16] studied the
point inclusion problem for circular domain. However,
their solution is not secure in the sense that each party
gets additional information regarding the location of the
other party’s object. Moreover, their solution is highly
inefficient. A more efficient protocol for the point inclu-
sion problem in a circular domain was recently proposed
by Luo et al. [19].

In this paper we consider the point inclusion problem
in a star-shaped domain and a more general polygonal do-
main (can have several disconnected nested components).
Two protocols for the star shaped domain with round
complexities O(n) and O(logn) respectively, and a proto-
cols for more general polygonal domain with round com-
plexity O(n), where n is the number of vertices are given.

3 Preliminaries

In this section we state our security assumptions and list
the building block for our protocols.

3.1 Security Assumption

We assume that all parties are semihonest. A semi-honest
party is the one who follows the protocol correctly with
the exception that it keeps a record of all its intermediate
computations and might derive the other parties inputs
from the record.

The existing protocols listed below serve as important
building blocks for our protocols.

3.2 Homomorphic Encryption Schemes

An encryption scheme is homomorphic if for some opera-
tions @ and ®, Fi(z)® Ex(y) = Ex(z®y), where x and y
are two elements from the message space and k is the key.
Many such systems exist, and examples include the sys-
tems by Benaloh [2], Naccache and Stern [20], Okamoto
and Uchiyama [21], Paillier [22], to mention a few. A use-
ful property of homomorphic encryption schemes is that
an addition operation can be conduced based on the en-
crypted data without decrypting them.

3.3 Yao’s Millionaire Protocol

The purpose of this protocol is to compare two private
numbers and to determine which one is larger without re-
vealing the numbers. This was first proposed by Yao [25]

and is referred as Yao’s Millionaire Problem (because two
millionaires wish to know who is richer, without revealing
any other information about their net wealth). The early
cryptographic solution by Yao [25] uses an untrusted third
party and has communication complexity that is exponen-
tial in the number of bits of the numbers involved. Cachin
proposed a solution [3] based on an untrusted third party
that can misbehave on its own (for the purpose of illegally
obtaining information about Alice’s or Bob’s private vec-
tors) but does not collude with either participant. The
communication complexity of Cachin’s scheme is O(1),
where [ is the number of bits of each input number. Re-
cently many efficient protocols which do not need a third
party have been suggested by various authors like [26].

3.4 Scalar Product Protocol

Let Alice has a vector X = (z1,---,z,) and Bob has a
vector Y = (y1,--+ ,Yn). The scalar product protocol is
to securely compute the scalar (dot) product of X and Y,
given by X.Y = > x;u;.
k=1

In [5] Du and Atallah considered a slightly different
and more general form of the scalar product protocol in
which Alice has the vector X and Bob has the vector Y,
and the goal of the protocol is for Alice (but not Bob)
to get X.Y +V where V is random and known to Bob
only. Their protocols can be easily modified to work for
the version of the problem where the random V' is given
ahead of time as part of Bob’s data (the special case V' = 0
puts us back to the usual scalar product Definition). They
had developed two protocols for it. Secure protocols for
the scalar product problem can be found in [5, 10, 24].

4 Point Inclusion in Star-shaped
Domain

In this section, we study the point inclusion problem in
a star-shaped polygonal domain.

Problem: Let Alice has a point M and Bob has a
star-shaped polygon P with vertices P;, for 1 < ¢ < n,
where the vertices are named in the anticlockwise direc-
tion. Alice and Bob want to securely check whether M
lies inside (including boundary) P or not.

Since P is a star-shaped polygon, it contains a point
@ such the line segments joining @ to P; for 1 <i < n
lies entirely in P. We have the following Algorithm for
point inclusion from [23].

Point Inclusion Protocol Without Privacy:

1) Determine by binary search the wedge in which M
-

lies. M lies in the wedge bounded by the rays QP;
and QF;41 if and only if the angle formed by M, @
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and P; is a left turn and the angle formed by M, @
and P41 is a right turn.

2) Once P; and P,y are found, then M is internal if
and only if the angle formed by P;, P41 and M is a
left turn.

Theorem 1. [23] The inclusion question can be an-
swered in O(logn) time, given O(n) space and O(n) pro-
cessing time.

To decide whether the angle ZP; P, P5 is a right or left
turn corresponds to evaluating a 3 X 3 determinant in the
points’ coordinates. Let P; = (a;,b;) for 1 < ¢ < 3. The
determinant

ai b1 1
D(Py, Py, P3) = | az by 1
as b3 1

gives twice the signed area of the triangle A Py P, P3, where
the sign is + if and only if (Py, P>, P3) forms a counter-
clockwise cycle.

Let the coordinates of M be (a,b) and that of @ be
(s,t) with respect to some coordinate system known to
both Alice and Bob. Now Bob chooses a new coordinate
system with origin at @) and axes parallel to the original
axes. Let the co-ordinates of P; with respect to the new
coordinate axes be (a;, b;) for 1 <+i <n. The new coordi-
nates of M becomes (a —s,a—t). Now the angle ZMQP;
is a right turn or left turn according as the determinant

a—s b—t 1

D(M,Q,P;) = 0 0 1

a; bl 1
is positive or negative. For 1 < i < n, let A = (a,b,1),
Bi = (7()1',@1;,8[)2‘ — tai) and Ci = ((bz — bi+1)7 7((11‘ —

ait1), —8(bi —biy1) +t(a; — ai41) + (a;bi1 —bia;11). Now
we have,

D(M,Q, P;) —(a—3s)b; + (b—1t)a;
= —ab; + ba; + (sb; — ta;)
= (a,b,1) - (=b;,a;,sb; — ta;)
= A-B,.
D(P;, Py, M) =
+(agbiy1 — biaiy1)
= a(b; —bi11) —bla; — a;11)
—8(b; —biy1) +t(a; — aiq1)
+(aibiy1 — biaiy1)
= (a,b,1).((b; = bis1), —(a; — ait1),
—s(b; — bit1) + t(a; — aj+1)
+(aibiy1 — biait1))
= A-C;.

The point M lies in the wedge bounded by the rays
S - -
QP; and QP;y; if and only if A.B; < 0 and A.B;11 >0
and if it happens to lie in that wedge, it lies inside

the polygon if and only if A.C; < 0. Note that Alice
has the vector A and Bob has the vectors B; and C;
for 1 < ¢ < n. We now give the corresponding secure
protocol for the point inclusion problem.

The Secure Point Inclusion Protocol 4.1:
1) Fori=1,--- ,n, Alice and Bob do the following:

a. Bob computes B;, C; and chooses at random V;
and W;.

b. Alice engages in two secure scalar product pro-
tocols with Bob and gets U; = A.B; + V; and
Z; = A.C; + W,.

c¢. Alice compares U; with V; and Z; with W; using
millionaire protocol with Bob.

2) Alice identifies the index, i = j at which U; < V; and
Uj1 > Vit

3) Alice looks at the millionaire protocol output for the
pair Z; and W;. If Z; was smaller than W; then the
point is inside else it is outside.

4) Alice communicates the result to Bob.
Analysis of the Protocol 4.1:

Theorem 2. The Protocol 4.1 is correct, secure and has
round complezity O(n).

Proof.

Correctness: Using the millionaire protocol, in Step
2 Alice identifies the wedge in which the point M lies
and in Step 3 she checks whether the point M lies inside
or outside the polygon. The correctness of the protocol
follows from the correctness of the corresponding insecure
protocol.

Security: The security of the protocol immediately
follows from the privacy of the secure scalar product pro-
tocol and that of the secure protocol for the millionaire
problem. Also, Alice does not reveal to Bob the wedge
in which M lies, and so Bob will not get any idea about
the location of the point M.

(a—8)(bi —bit1) — (b—t)(ai — ai+1) Round Complexity: It is easy to see that the round

complexity of the protocol is O(n). O

Binary Search to Reduce Round Complexity:

Now, we will incorporate binary search in the above
protocol to reduce its round complexity to O(logn).
A binary search Algorithm is a technique for finding a
particular value in a sorted list. It searches a sorted
array by repeatedly dividing the search interval into half.
Begin with an interval covering the whole array. If the
value of the search key is less than the item in the middle
of the interval, narrow the interval to the lower half.
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Otherwise narrow it to the upper half. Repeatedly check
until the value is found or the interval is empty. Clearly
the complexity of this search Algorithm is O(logn),
where n is the size of the sorted list.

Let E be a homomorphic commutative encryption
scheme. That isif (F4, D) and (Eg, D) be the encryp-
tion and decryption pairs of Alice and Bob corresponding
to their keys and let £ = E4 or Ep, then

1) Ea(Ep(z)) = Ep(Ea(2));
Given U = (u1, -+ ,up), let E(U) = (E(u1), -,

E(uy)). We now give the modified secure protocol for
the point inclusion problem.

The Secure Point Inclusion Protocol 4.2:

1) For 1 < i < n, Bob computes b; = Eg(B;), and
C; = EB(CZ)

2) Bob sends (b1, ,b,) and (¢1, -+ ,¢p) to Alice.

3) Alice picks an r randomly such that 1 < r < n and
cyclically rotates the lists obtained from Bob by r
positions to get (byyy, -+ ,b.) and (c14p, - ,Cp).

4) Alice sends (E4(biyr), -, Ea(by)) and (Fa(c14r),

-+, Ea(cy)) to Bob.

5) Bob decrypts the list obtained from Alice with his
private key Dp and obtains

(D(Ea(bi4+)),- -+ ,D(Ea(by)))
= (Ba(Biyr), -, Ea(B,)),
and
(Dp(Ea(ciyr)), -+, Dp(Ealc)))
= (Ea(Citr), -, Ea(Cy)).

6) Alice computes E4(A).

7) Alice identifies the index, i = j for which A.B; < 0
and A.Bj+q1 > 0 using the following sub protocol in
the binary search.

a. For each index k Alice picks up in the binary
search, Bob picks a random r; > 0 encrypts
with his key and sends Alice Ep(r).

b. Alice encrypts with her key and sends back to
Bob EA(EB(Tk)).

c. Bob decrypts and obtains D(EA(Eg(rg))) =
Ea(ry).

d. Bob computes FA(ry) * Ea(By) = Ea(riBg).

e. Alice engages in a secure scalar product protocol

with Bob and obtains
EA(A) * EA(TkBk) = EA(Tk(A.Bk)).

f. Alice decrypts and obtains D4 (F(rx(A.By)) =
r(A.Bg) and checks whether it is positive or
not.

8) Alice checks whether A.D; is negative or positive us-
ing a similar sub protocol as in Step 7. If it is nega-
tive, the point is inside else it is outside.

9) Alice communicates the result to Bob.

Analysis of the Protocol 4.2:

Theorem 3. The Protocol 4.2 is correct, secure and has
round complezity O(logn).

Proof.

Correctness: It is clear that, in Step 5, Bob gets the
encryption of the vectors B; and C; for 1 < ¢ < n with
the key of Alice. For each index k occurring in the
binary search, Alice has E4(A) and Bob has E4(ryBy).
Using the secure scalar product protocol she obtains
E4(A) x Ez(rgBy), which is equal to E4(riyA.By) from
the homomorphic property of the encryption scheme.
By decryption using her private key Alice gets r(A.Bg)
and she can check whether A.By > 0, since r, > 0.
Thus Alice can identify the wedge in which the point
M lies. Similarly, once the wedge is identified, she can
check whether the point lies inside the polygon or not.
Thus the correctness of the protocol follows from the
correctness of the corresponding insecure protocol.

Security: Since Bob is sending B; and C; for 1 <i <mn,
after encryption with his key, Alice will not get any
information about the private data of Bob. Since Alice
rotates the list of B; and C; after masking with her key,
Bob will not get any idea of the specific B; and C; Alice
is using in the binary search in Step 7. Hence, Bob will
not get any idea of the wedge in which the point M
lies. The privacy of the secure scalar product protocol
guarantees the privacy of the individual inputs during
the scalar product computation in Step 7 and Step 8.
Also since 7, is random known only to Bob, the only in-
formation Alice can get from the scalar product is its sign.

Round Complexity: As Alice is using binary search
in the identification of the wedge in which the point M
lies, it is clear that the round complexity of the protocol
is O(logn), since the complexity of the binary search is
O(logn). O

5 Point Inclusion in More General
Polygonal Domain

In this section, we consider an Algorithm for the point
inclusion problem for a more general polygonal domain
given in [9]. This domain is more general than any of the
domains so far considered in the context of secure point
inclusion problem.

Problem: Alice has a point M and Bob has a polygon P
that may have multiple disconnected nested components,
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with vertices Py, --- , P,. Alice and Bob wants to securely
check whether M lies inside (including boundary) P or
not.

The characteristic function, x(M) of the polygon P is
defined as,

1 if M lies on or inside P;
x(M) = {

0 otherwise,

where M € R2. Let 0 < § < 27, be the included angle
(edges swept inside the polygon) at a vertex V. The ex-
tension to oo in both directions of the edges incident on
the vertex V divide the plane into 4 wedges. If § < 7
(convex vertex), there are two wedges with angle 6 and
two wedges with angle m — . We call the wedges with
angle 6 as inner and those with angle 7 — 0 as outer. If
6 > 7 (concave vertex), there are two wedges with angle
27 — 6 and two wedges with angle # — 7. In this case, we
call the wedges with angle 27 — 6 as inner and those with
angle § — 7 as outer.

We assume for convenience that the point M does not
lie on any of the four rays emanating from any of the
vertices of the polygon. The case in which M lies on
a ray can be easily handled separately. Now, the cross
function, p,, (M) of a point M with respect to a vertex V
of the polygon is defined as

% — % if 6 <7 and M is in an inner wedge;

pu (M) = —% if # <7 and M is in an outer wedge;
v % — % if 8> and M is in an inner wedge;
% if 6> 7 and M is in an outer wedge.

Theorem 4. [9] The characteristic function of the whole
polygon is the sum of the cross functions of its vertices.
That is

VM e R2.

Before we give the secure protocol for the point in-
clusion problem, we outline a way for Alice to securely
identify whether her point lies in an inner or outer wedge
corresponding to a vertex V. Bob chooses four points
V1,Va, V3 and Vy on the four rays emanating from the
vertex V. Without loss of generality let us suppose that
— — — —
VV; and V'V, bound one inner wedge and VV3 and V'V,
bound the other one. Now Alice and Bob engages in a
secure protocol (as described in the previous section) and
Alice checks whether M is inside any of these two wedges.
If that is the cases M is inside an inner wedge else M is
inside an outer wedge.

For 1 < ¢ < n, let §; be the included angle at the
vertex P;. We now give a secure protocol for the point
inclusion problem.

The Secure Point Inclusion Protocol 5.1:

n
1) Bob computes § = _Z:l(—l)"“g—jr, where m; = 0 if V;
1=
is a convex vertex (6; < m) and m; = 1, otherwise.

2) For 1 <4 < n Alice and Bob do the following.

a. For the vertex V;, Alice checks whether M lies
inside an inner or outer wedge using the protocol
described above.

b. If the wedge is inner, Alice assigns u; = %, else

she assigns u; = 0.
c. If the edge is convex Bob assigns v; = 1, else he
assigns v; = —1.

3) Alice assigns U = (u1,- -+ ,uy).

4) Bob assigns V = (v1,--- ,vp).

5) Bob engages in a secure scalar product protocol with
Alice and gets U.V.

6) Bob computes x(M) =U.V + 6.

7) Bob communicates the result to Alice.

5.1 Analysis of the Protocol 5.1

Theorem 5. The Protocol 5.1 is correct, secure and has
round complezity O(n).

Proof.

Correctness: Let E; be the set of convex vertices where
the point M lies in an inner wedge, E5 be the set of convex
vertices where the point M lies in an outer wedge, E3 be
the set of concave vertices where the point M lies in an
inner wedge and E4 be the set of concave vertices where
the point M lies in an outer wedge. Then we have,

Py,
> by (M)

x(M) =
V=P
= Z pvi(M)"" Z pvi(M)_F Z pvi(M)
Vi€eE; Vi€EE> Vi€Es
+ Z pvj(M)
Vi€E,
S SE R S R SR
VieEy 2 2m Vi€E> 2 VieEL 2m 2
0;
+ D 5
VieE;
n . 0
= ) ()™M + UV
p 2w

Thus Bob can compute x(M) and hence the protocol
is correct.

Security: The security of the protocol immediately
follows from the privacy of the secure scalar product pro-
tocol and that of the secure protocol for the millionaire
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problem.

Round Complexity: It is clear that the round complex-
ity of the protocol is O(n). O

6 Conclusion

In this paper, we studied the secure point inclusion prob-
lem for polygonal domains in a plane in the presence
of passive adversaries. The existing secure protocols for
the point inclusion problem in general polygonal domains
have a round complexity of O(n), where n is the number
of edges of the polygon. In Section 4, we exploited the
special structure of the star shaped domains and used the
binary search Algorithm to reduce the round complexity
to O(logn) in Protocol 4.2. The secure protocols for the
point inclusion problem so far have been proposed only
for simple polygonal domains and for circular domains. In
Section 5, we tried to extend the study to more complex
domains. The Protocol 5.1 for the general polygonal do-
mains is applicable for a large class of polygonal domains
than the existing protocols.

As a direction for future research, it will be interesting
to extend these ideas to more general domains in a plane
and to higher dimensional spaces. It is worth mentioning
that analogous to Theorem 5.1 can be found in dimension
three. A bigger challenge in front of us is to build secure
protocols which are very efficient in terms of round as
well as computational complexity in the presence of active
adversaries for the point inclusion problem and the range
searching problem for arbitrary domains in dimensions
two, three and even higher.
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