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Abstract 10 

Due to the rapid growth of Mahasarakham University (MSU), land use 11 

and land cover (LULC) change takes place in the campus and its vicinity, 12 

various types of environmental impacts occur in the area. Main objectives are 13 

to quantify the characteristics of LULC change, to identify an optimum LULC 14 

change model for LULC prediction, and to examine LULC change on surface 15 

runoff at Mueang Maha Sarakham and Kantharawichai districts of Maha 16 

Sarakham province. Three main components of research methodology are 17 

LULC assessment by visual interpretation, an optimum predictive LULC 18 

change model identification, and impact of LULC changes on surface runoff. 19 
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The study revealed that the dominate LULC type during 2001-2011 was 20 

agricultural land, while urban and built-up area had been continuously 21 

increased by conversion of agricultural and forest lands. The overall accuracy 22 

and Kappa hat coefficient for LULC data in 2011 was 98.03% and 95.85%. It 23 

was found that an optimum predictive LULC change model was CA-Markov 24 

model which provided higher accuracy than Land Change Modeler. Also, most 25 

of urban and built-up area sub-classes during 2001-2021 had continuously 26 

increased except dormitory while agricultural land except field crop had 27 

continuously decreased. This study also demonstrated that there is strongly 28 

related the change of urban area on surface runoff depth. Likewise, level of 29 

urbanization is strongly associated with mean surface runoff depth zonation. 30 

Evidence from the study suggests that LULC changes have an effect on surface 31 

runoff characteristic. In conclusion, it appears that geoinformatics technology 32 

and LULC change model can be used as tools for LULC change and 33 

environmental impact assessment. 34 

 35 
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 38 

Introduction 39 

Understanding of land use and land cover (LULC) change, urbanization and urban 40 

growth are critical to city planners and resource managers in the rapidly changing 41 

environments because changes in LULC will cause changes in environmental 42 



conditions (Meyer and Turner, 1994; Eliasson, 2000; Pauleit et al., 2005; Seto and 43 

Fragkias, 2005; Chen. 2007; Deng et al., 2009; Seto and Shepherd, 2009; Yin et al., 44 

2009). When LULC change occurs due to urbanization (the building up and paving 45 

over of undeveloped areas) and along a city boundary, it increases the size of the 46 

city as it grows (Fang et al., 2005). Its process has a considerable environmental 47 

impact such as hydrological impact in terms of influencing the nature of runoff and 48 

other hydrological characteristics, stream flow response, delivering pollutants to 49 

rivers, and controlling rates of erosion. Surface runoff from storm events is part of 50 

the natural hydrologic process. It can arise from overland surface flow, flow within 51 

drainage pipes and sewers, or flow from the top, saturated layers of soil near the 52 

stream. 53 

 Due to the rapid growth of Mahasarakham University (MSU), LULC 54 

change takes place in the campus and its neighboring. As a result, the number of 55 

households in Mueang Maha Sarakham and Kantharawichai districts has 56 

continuously increased from 30,358 and 14,649 households, respectively, in 1995 57 

to 46,332 and 22,678 households in 2010, respectively (Department of Provincial 58 

Administration, 2010). In addition, LULC assessment of Mueang Maha Sarakham 59 

and Kantharawichai districts was also showed that the explicit of urban area 60 

expanded from 53.91 sq.km in 2001 to 64.73 sq.km in 2011 (Pimjai and 61 

Ongsomwang, 2013). 62 

 In recent years, geoinformatics technology was popular to land use and 63 

urban planners and geographers as a geospatial simulation tool and LULC change 64 

modeling and prediction have been emphasized in the previous LULC change 65 



studies such as Landis (1995); Clarke and Gaydos (1998); Batty et al. (1999); Li 66 

and Yeh (2000); Wang and Zhang (2001); Weng (2001); Wu, (2002); Cheng and 67 

Masser (2003); Ayad (2005); Tang et al. (2005); Wu et al. (2006); Xiao et 68 

al.(2006); Liu et al.(2007); Shalaby et al. (2007); Grêt-Regamey et al. (2008); 69 

Santé- Riveira et al. (2008); Kamusoko et al. (2009); Liu (2009); Verburg and 70 

Overmars (2009); Araya and Cabral (2010); Tudes and Yigiter (2010); Guan et al. 71 

(2011); Sang et al. (2011); Wilson and Weng, (2011); Jjumba and Dragićević 72 

(2012); Arsanjani et al. (2013); Zhang et al. (2013).  73 

Therefore, geoinformatics technology with LULC change model is here 74 

applied for LULC change assessment and its impact on surface runoff. The specific 75 

objectives are to quantify the characteristics of LULC change, to identify an 76 

optimum LULC change model for LULC prediction, and to examine LULC change 77 

on surface runoff. 78 

 79 

Materials and Methods 80 

Study Area 81 

Mueang Maha Sarakham and Kantharawichai districts of Maha Sarakham 82 

province, where MSU is located, was selected as the study area (Figure 1). The 83 

study area, which covers area of 977 sq. km, is characterized by LULC change and 84 

urbanization. 85 

Data and equipment 86 



Remotely sensed and GIS datasets had been collected and prepared for this 87 

study while basic equipment such as hardware and software were employed to data 88 

collection and data analysis (Table 1). 89 

 90 

Research methodology 91 

The research methodology framework of the study consisted of three main 92 

components: (1) LULC assessment by visual interpretation (2) an optimum LULC 93 

change model identification for LULC prediction, and (3) impact of LULC changes 94 

on surface runoff (Figure 2). Summary of each main component is separately 95 

described as following. 96 

 (1) LULC assessment by visual interpretation 97 

 Three remotely sensed dataset included color orthophotos in 2001, SPOT 98 

imagery in 2006 and THEOS imagery in 2011 were firstly visually interpreted 99 

based on the element of image interpretation (Jensen, 2007, Ongsomwang, 2011) 100 

(e.g., size, shape, pattern, tone color, texture, site, situation, and association) by 101 

mean of on-screen digitizing at the scale of 1:10,000. In this study LULC 102 

classification system was modified from standard land use classification of the 103 

Land Development Department (LDD), consisting of commercial, city and village, 104 

institution, dormitory, real estate, paddy field, field crop, perennial tree, orchard, 105 

secondary forest, eucalyptus plantation, development land, marsh land and water 106 

body. In addition, accuracy assessment for the interpreted LULC in 2011 was 107 

performed by field survey in 2011/2012 for overall accuracy and Kappa hat 108 

coefficient evaluation (Congalton and Green, 2008). 109 



 (2) An optimum LULC change model identification for LULC 110 

prediction 111 

 The interpreted LULC in 2001 and 2006 were used to predict LULC in 2011 112 

by two LULC change model: CA-Markov and Land Change Modeler. After that 113 

the derived LULC data in 2011 were compared with the interpreted LULC in 2011 114 

for an optimum predictive LULC change model identification based on overall 115 

accuracy and Kappa hat coefficient. An optimum LULC change model was further 116 

used for LULC in 2011 and 2016 prediction. 117 

 For CA-Markov model, two basic processes are required include Markov 118 

process and Cellular Automata (CA): 119 

 (i) Markov process. This process is considered in discrete time and 120 

characterized by variables that can be in one of N states from S = {S1, S2, …SN}. 121 

The set T of transition rules is substituted by a matrix of transition probabilities (P) 122 

and this is reflective of the stochastic nature of the process: 123 
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where Pij is the conditional probability that the state of a cell at moment t+1 will be 125 

Sj, given it is Si at moment t: 126 

 Prob(SiSj) = pij (2) 127 

The Markov process as a whole is given by a set of status S and a transition 128 

matrix P. By definition, in order to always be “in one of the state” for each i, the 129 

condition ∑ Pij= 1j  should hold (Benenson and Torrens, 2004). 130 



(ii) Cellular Automata (CA) Cellular automata are dynamic models being 131 

discrete in time, space and state. A simple of cellular automata A is defined by a 132 

lattice (L), a state space (Q), a neighborhood template () and a local transition 133 

function (f): 134 

 A = (L, Q, , f) (3) 135 

 Each cell of L can be in a discrete state out of Q. The cells can be linked in 136 

different ways. Cells can change their states in discrete time-steps. Usually cellular 137 

automata are synchronous, i.e. all cells change their states simultaneously. The fate 138 

of a cell is dependent on its neighborhood and the corresponding transition function 139 

(Balzter et al., 1998). 140 

Meanwhile, Land Change Modeler which applies three driving force for 141 

LULC change prediction under three modules: change analysis, transition potential, 142 

and change prediction (Eastman, 2007). 143 

 (i) Change analysis module. Two LULC dataset are used to calculate 144 

transitional LULC change matrix for loss and gain evaluation and change map 145 

generation. 146 

 (ii) Transition potential module. Potential for transitional change between 147 

LULC types are firstly identified to generate variable transformation with specific 148 

transformation type (e.g. evidence likelihood). Then dominant driving forces are 149 

added to transition sub-model for MLP Neural Network operation to generate a 150 

potential transition map as from-to change detection. 151 

 (iii) Change prediction module. LULC are predicted for specific period 152 

using change demand modeling (Markov chain) and change allocation conditions. 153 



(3) Impact of LULC changes on surface runoff 154 

Under this component, the spatiotemporal surface runoff depth according to 155 

LULC change between 2001 and 2021 was firstly estimated using SCS-CN method 156 

(USDA, 1986) and impact of LULC change on surface runoff depth was then 157 

examined using spatial and simple linear regression analyses. 158 

(3.1) Surface runoff estimation by SCS-CN method. Major steps of surface 159 

runoff estimation, which was processed in raster format with cell size of 30 m under 160 

Model Builder of ERSI ArcGIS, are as followings. 161 

(i) Analysis of hydrologic soil group–land cover complex. Soil and LULC 162 

data are used to create the hydrologic soil group–land cover complex for runoff 163 

curve number (CN) extraction using the standard SCS-CN table. 164 

(ii) Calculation of potential maximum storage. A potential maximum 165 

storage (S) is computed for each location (pixel) as: 166 

 S = 25.4 × 
1000

CN
 – 10 (4) 167 

where S is potential maximum storage in mm, and CN is runoff curve number of 168 

hydrologic soil group–land cover complex. 169 

(iii) Surface rainfall interpolation. Maximum rainfall data from 30 years 170 

climatological data of Thailand (1981-2010) from Kosum Pisai meteorological 171 

station and 8 neighboring stations are used to interpolate surface rainfall event using 172 

kriging method. 173 

(iv) Surface runoff estimation. Surface runoff depth (Q) is here generated 174 

using SCS equation for storm runoff depth as: 175 

 Q  = 
(P – 0.2S)

2

(P + 0.8S)
 (5) 176 



where Q is the direct runoff depth (mm), P is the rainfall (mm) and S is the potential 177 

maximum retention after runoff begins (mm) 178 

 (3.2) Impact of LULC change on surface runoff depth 179 

 (i) Impact of urban expansion on total surface runoff depth. The relationship 180 

between urban area and total surface runoff depth changes in the study period was 181 

examined by simple linear regression analysis under Trend Analysis of MS-Excel. 182 

 (ii) Impact of urbanization on surface runoff depth. Spatial relationship 183 

between urbanization, which measure as urban land percentage (PU), and mean 184 

surface runoff depth in each district was here examined by spatial simple linear 185 

regression analysis of IDRISI software for describing its impact on surface runoff 186 

depth. The derived correlation coefficient (R) and coefficient of determination (R2) 187 

values of regression analysis were also used to explain the spatiotemporal 188 

relationship between urbanization and surface runoff depth. Herein, urban land 189 

percentage (PU) that describes the percentage of urban areas of the total areas (Tian 190 

et al., 2005) was calculated as: 191 

 PU = 
UL

UT
 ×100  (6) 192 

where PU is urban land percentage (%), UL is urban land area (sq. km) and UT is 193 

total land area (sq. km). 194 

 195 

Results and Discussion 196 

Visual interpretation and LULC assessment during 2001-2011 197 

LULC assessment in 2001, 2006 and 2011 were extracted from visual 198 

interpretation of remotely sensed data under GIS environment. The distribution of 199 



LULC pattern was presented in Figure 3 while area and percentage of LULC types 200 

and theirs change was reported in Table 2. 201 

As results, the dominate LULC type in 2001, 2006 and 2011 were 202 

agricultural land included paddy field, field crops, perennial trees and orchards. 203 

Meanwhile, urban and built-up area including commercial, city and village, 204 

institution, dormitory and real estate had been continuously increased in these 205 

periods. Herewith percent of change for dormitory and real estate was about 789% 206 

and 200%, respectively between 2001 and 2006 and was about 140% and 222%, 207 

respectively between 2006 and 2011 (Figure 4a). These phenomena correspond to 208 

the increasing of the registered students at MSU. In fact, number of MSU students 209 

was increased from 12,658 in 2001 to 46,273 in 2011 (Mahasarakham University, 210 

2011). 211 

In addition, most of urban and built-up areas in 2006 and 2011 were 212 

converted from agricultural and forest lands. Annual increasing rate of commercial, 213 

city and village, institution, dormitory and real estate during 2001-2006 was about 214 

0.16, 0.16, 0.10, 0.14 and 0.05 sq. km, respectively and was 0.20, 0.90, 0.06, 0.22, 215 

and 0.16 sq. km, respectively during 2006-2011. It reveals that most of urban and 216 

built-up area sub-classes had continuously increased except institution area (Figure 217 

4b). 218 

Accuracy assessment for visual interpretation of LULC in 2011 219 

In the study, 862 randomly stratified sampling points based on the 220 

multinomial distribution theory with desired level of confidence at 85% and a 221 

precision at 5% were used for accuracy assessment. The overall accuracy and 222 



Kappa hat coefficient for the visually interpreted LULC in 2011 was 98.03% and 223 

95.85%, respectively. According to Landis and Koch (1977) Kappa hat coefficient 224 

more than 80% represents strong agreement or accuracy between the classification 225 

map and the ground reference information. 226 

An optimum LULC change model identification for LULC prediction 227 

Two LULC change models: CA-Markov model and Land Change Modeler 228 

were here examined for an optimum predictive LULC change model identification 229 

under IDRISI software. For CA-Markov model, the interpreted LULC data in 2001 230 

and 2006 were used to generate a transition probability matrix with a transition area 231 

matrix and it then applied to predict LULC in 2011 with Cellular Automata model. 232 

Similarly, Land Change Modeler also used both LULC data for LULC in 2011 233 

prediction but it required more three dominant driving forces for LULC change 234 

prediction. In this study the most dominate factors for urban and built-up area 235 

expansion were per capita income, population density, and slope according to 236 

coefficient values from spatial multiple linear regression analysis of the relevant 237 

data in 2011 as: 238 

UNU2011 = 0.367 + 3.0930*INCOME + 0.7897*MSU + 0.6045*DISTU + 239 

0.4746*ROAD + 1.6858*SLOPE – 1.6877*POP 240 

where UNU2011 are urban area and non-urban area (sq.km), INCOME is per capita 241 

income in each sub-district (baht), MSU is distance to new MSU’s location (m), 242 

DISTU is distance to existing urban area (m), SLOPE is slope in percent and POP 243 

is population density in each sub-district (person). 244 



It was found that CA-Markov model provided an overall accuracy and 245 

Kappa hat coefficient with values of 96.84% and 93.27% higher than Land Change 246 

Modeler with values of 96.04% and 91.60%, respectively. Therefore, CA-Markov 247 

model was here chosen as an optimum LULC change model for LULC prediction 248 

in 2016 and 2021 (Figure 5). This finding is similar to the previous work of 249 

Ongsomwang and Suravisutra (2011) which identified CA-Markov model as an 250 

optimum predictive model for future urban growth prediction. Furthermore, the 251 

derived Kappa hat coefficient of CA-Markov model which was higher than 80% is 252 

acceptable and suitable for LULC change prediction according to suggestion of 253 

Subedi et al. (2013). 254 

LULC development in the past and future 255 

According to LULC assessment in the past during 2001-2011 by visual 256 

interpretation and in the future during 2016 and 2021 by an optimum predictive 257 

LULC change model, it was found that most of urban and built-up area sub-classes 258 

had continuously increased during 2001-2021 except dormitory. In contrary, most 259 

of sub-classes of agricultural land except field crop and secondary forest had 260 

continuously decreased in these periods. Meanwhile, marsh land had trended to 261 

decrease but development land had trended to increase in the future. At the same 262 

times, water body was unpredictable. Area of LULC change in term of gain (+) and 263 

loss (-) for each LULC type in 4 different periods was summarized in Table 3. 264 

Furthermore, future trend of sub-classes of urban and built-up area were 265 

examined using various regression types including exponential, linear, logarithmic, 266 

polynomial, power, and moving average types under Trend Analysis of MS-Excel 267 



as summary in Table 4 and Figure 6. As results, it was found that the best fit for 268 

commercial, city and village, institution and real estate areas was linear regression 269 

type while the best fit for dormitory was logarithmic regression type. The R2 of the 270 

regression analysis varies between 90.51-98.70%. These show a nearly perfect 271 

explanation of time to area of urban and built-up area sub-classes. The predictive 272 

area of urban and built-up area sub-classes until 2046 with 5 year interval was also 273 

reported in Table 5. It was found that the highest percentage of change of urban and 274 

built-up area sub-class between 2011 (at the present) and 2046 (in the future) was 275 

real estate (240.52%) while the lowest percentage of change was institution 276 

(19.01%). These results indicate that urban expansion has continuously increased 277 

in the study area in the near future. 278 

Spatiotemporal surface runoff depth estimation using SCS-CN method 279 

Spatiotemporal surface runoff depth estimation by SCS-CN method was 280 

implemented based on the LULC change during 2001-2021 with a presumable 281 

permanent soil texture and the interpolated maximum rainfall during 1981-2010 282 

under Model Builder of ArcGIS software (Figure 7). Distribution of the 283 

spatiotemporal surface runoff depth estimation in the study period was displayed in 284 

Figure 8 while the minimum, mean, maximum, and total values of surface runoff 285 

depth was presented in Table 6. 286 

It was found that characteristics of the minimum and maximum values of 287 

surface runoff depth in 2001 and 2006 and in 2016 and 2021 were similar while the 288 

minimum and maximum values of surface runoff depth in 2011 were dissimilar 289 

with others. However, the mean and total values of surface runoff depth were 290 



different from each other in these periods. They had continuously increased during 291 

2001 to 2021. These phenomena correspond to LULC change in this period. 292 

Especially, the increasing of urban and built-up areas, which consist of impervious 293 

surface, is a major cause to increase surface runoff depth in the study area. 294 

Impact of urban expansion on total surface runoff depth 295 

The result of urban area and total surface runoff depth changes in the study 296 

period was presented in Table 7. It was found that both changes had continuously 297 

increased. Meanwhile, the relationship between urban area and total surface runoff 298 

depth during 2001 to 2021 was linear regressed by Trend Analysis of MS-Excel as 299 

presented in Figure 9. The simple linear equation between urban area and total 300 

surface runoff depth showed positive relationship with R2 at 98.30% as:  301 

y = 108 + 0.01111x 302 

Where y is total surface runoff depth in mm and x is urban area in sq. m in the study 303 

period. This equation implies that when urban area increases then total surface 304 

runoff depth increase. Meanwhile, the derived R2, which is the percentage of the 305 

response variable variation that is explained by a linear model, indicated that 306 

expansion of urban area regulates the total surface runoff depth in the study area. 307 

Herewith, it should be here noted that total surface runoff depth basically derives 308 

from all various LULC type based on variation of runoff curve number of 309 

hydrologic soil group–land cover complex (CN). However, CN values of urban and 310 

built-up area are relative higher than others LULC types except marsh land and 311 

water body. These phenomena agreed with the finding of Wilson and Weng, (2010) 312 



which stated that surface runoff volume is mostly related to changes in the spatial 313 

extent of each land cover over the study period. 314 

Impact of urbanization on surface runoff depth 315 

Spatial simple linear regression analysis between urban land percentages 316 

(PU) (Eq. 6) as urbanization level (Figure 10) and mean surface runoff depth 317 

zonation by sub-district (Figure 11) during 2001-2016 were here examined to 318 

describe the impact of urbanization on surface runoff depth. 319 

It was found that urbanization level strongly correlated with mean surface 320 

runoff depth zonation by sub-district. Because the spatial pattern between 321 

urbanization level, which describes the percentage of urban areas in sub-district, 322 

and mean surface runoff depth zonation, which creates by mean surface runoff 323 

depth value in each sub-district, are similar. Herewith, the highest value of R and 324 

R2 was 87.80% and 77.09% in year 2016 while the lowest value of R and R2 was 325 

84.98% and 72.21% in year 2001 (Table 8). This result implies that when 326 

urbanization is taken place in each sub-district, then the surface runoff depth 327 

increase in each sub-district. Likewise, urbanization has a considerable 328 

environmental impact on surface runoff in the study area. 329 

 330 

Conclusions 331 

An optimum LULC change model can provide a good baseline of LULC 332 

data which is the one of the required dataset for variety applications and modellings. 333 

This study applied geoinformatics technology (remote sensing and GIS) and LULC 334 

change model as a basic tools to assess LULC and its impact on surface runoff. The 335 



study demonstrate that the dominate LULC type in 2001, 2006 and 2011, which 336 

were visually interpreted from remotely sensed data, was agricultural land. At the 337 

same time urban and built-up area had been continuously increased by conversion 338 

of agricultural and forest lands. In addition, accuracy assessment of the interpreted 339 

LULC data in 2011 as a baseline data for an optimum LULC change model 340 

identification shown that overall accuracy and Kappa hat coefficient was 98.03% 341 

and 95.85%, respectively. 342 

This study has revealed that an optimum predictive LULC change model 343 

was CA-Markov model which provided overall accuracy and Kappa hat coefficient 344 

(96.84% and 93.27%) higher than Land Change Modeler (96.04% and 91.60%). 345 

Herewith, CA-Markov was chosen to predict LULC data in 2016 and 2021. 346 

For LULC development in the past and future, most of urban and built-up 347 

area sub-classes has continuously increased during 2001 to 2021 except dormitory. 348 

In contrary, most of agricultural land except field crop had continuously decreased. 349 

These results indicate that urban area has continuously increased in the study area 350 

in the near future. 351 

Furthermore, results of spatiotemporal surface runoff depth estimation 352 

during 2001 to 2021 by SCS-CN method showed that the mean and total surface 353 

runoff depth had continuously increased. Similarly, urban area had continued to 354 

increase in these periods. This study also demonstrated that there is strongly related 355 

the change of urban area on surface runoff depth with R2 at 98.30%. Likewise, level 356 

of urbanization is strongly associated with mean surface runoff depth zonation. 357 

Evidence from this study suggests that LULC changes, especially urban expansion 358 



and urbanization have an effect on surface runoff depth characteristic. Hence, an 359 

optimal land use policy and urban planning are urgently required to implement in 360 

the study area for urban flood mitigation and prevention due to a rapid LULC 361 

change. 362 

In conclusion, it appears that remote sensing, GIS and LULC change model 363 

can be used as an efficient tools and an information providers for LULC change 364 

and its impact assessment for scientists, researchers, land use planners, policy and 365 

decision makers. 366 

 367 

Reference  368 

Araya, H. Y., and P. Cabral. (2010). Analysis and modeling of urban land cover 369 

change in Setúbal and Sesimbra, Portugal. Remote Sens, 2: 1549-1563. 370 

Arsanjani, J. J., Helbich, M., Kainz, W., and Boloorani, D. A. (2013). Integration 371 

of logistic regression, Markov chain and cellular automata models to 372 

simulate urban expansion. Int. J. Appl. Earth Obs. Geoinf, 21: 265-275. 373 

Ayad, M. Y. (2005). Remote sensing and GIS in modeling visual landscape change: 374 

a case study of the northwestern arid coast of Egypt. Landsc Urban Plan, 375 

73: 307-325. 376 

Balzter, H., Braun, P. W., and Köhler, W. (1998). Cellular automata models for 377 

vegetation dynamics. Ecol Modell, 107:113-125. 378 

Batty, M., Xie, Y., and Sun, Z. (1999). Modeling urban dynamics through GIS-379 

based Cellular Automata. Comput Environ Urban Syst, 233: 205-233. 380 



Benenson, I., and Torrens, M. P. (2004). Geosimulation: automata-based modeling 381 

of urban phenomena. John Wiley & Sons, NJ, 287p. 382 

Chen, J. (2007). Rapid urbanization in China: A real challenge to soil protection 383 

and food security. Catena Suppl, 69: 1-15. 384 

Cheng, J., and I. Masser. (2003). Modelling urban growth patterns: a multiscale 385 

perspective. Environ Plan A, 35: 679-704. 386 

Clarke, K. C., and Gaydos, L. (1998). Loose-coupling a cellular automaton model 387 

and GIS: long-term urban growth prediction for San Francisco and 388 

Washington/Baltimore. Int J Geogr Inf Sci, 12(7): 699-714. 389 

Congalton, G. C., and Green, K. (2008). Assessing the Accuracy of Remotely 390 

Sensed Data: Principles and Practices. 2nd ed., CRC Press, FL, 183p. 391 

Deng, S. J., Wang, K., Hong, Y., and Qi, G. J. (2009). Spatio-temporal dynamics 392 

and evolution of land use change and landscape pattern in response to rapid 393 

urbanization. Landsc Urban Plan, 92: 187-198. 394 

Department of Provincial Administration. (2010). Population statistics. Available 395 

from: http://stat.dopa.go.th/xstat/popstat.html. 396 

Eastman. J. R. (2007). Land Change ModelerTM Tutorial. Clark University, 397 

Worcester, MA, 38p. 398 

Eliasson, E. (2000). The use of climate knowledge in urban planning. Landsc Urban 399 

Plan, 48: 31-44. 400 

Fang, S., Gertner, G. Z., Sun, Z., and Anderson, A. (2005). The impact of 401 

interactions in spatial simulation of the dynamics of urban sprawl. Landsc 402 

Urban Plan, 73: 294-306. 403 



Grêt-Regamey, A., Bebi, P., Bishop, D. I., and Schmid, A. W. (2008). Linking GIS-404 

based models to value ecosystem services in an Alpine region. J. Environ. 405 

Manage., 89: 197-208. 406 

Guan, D., Li, H., Inohae, T., Su, W., Nagaie, T., and Hokao, K. (2011). Modeling 407 

urban land use change by the integration of cellular automaton and Markov 408 

model. Ecol Modell, 222: 3761-3772. 409 

Jensen, R. J., (2007), Remote Sensing of the Environment: An Earth Resource 410 

Perspective. 2nd ed., Prentice Hall, NJ, 592p. 411 

Jjumba, A., and Dragićević, S. (2012). High Resolution Urban Land-use Change 412 

Modeling: Agent iCity Approach. Appl. Spatial Analysis, 5: 291-315. 413 

Kamusoko, C., Aniya, M., Adi, B., and Manjoro, M. (2009). Rural sustainability 414 

under threat in Zimbabwe - Simulation of future land use/cover changes in 415 

the Bindura district based on the Markov-cellular automata model. Appl 416 

Geogr, 29: 435-447. 417 

Landis, J. D. (1995). Imagining land use futures: applying the California urban 418 

futures model. J Am Plann, 61(4): 438-457. 419 

Landis, J. D., and Koch, G. (1977). The measurement of observer agreement for 420 

categorical data. Biometrics, 33: 159-174. 421 

Li, X., and Yeh, G. A. (2000). Modelling sustainable urban development by the 422 

integration of constrained Cellular Automata and GIS. Int J Geogr Inf Sci, 423 

14(2): 131-152. 424 

Liu, Y. (2009). Modelling urban development with geographical information 425 

systems and cellular automata. CRC Press, FL, 188p. 426 



Liu, Y., Lv, X., Guo, H., Yu, Y., Wang, J., and Mao, G. (2007). An integrated GIS-427 

based analysis system for land-use management of lake areas in urban 428 

fringe. Landsc Urban, 82: 233-246. 429 

Mahasarakham University. (2011). Student statistics. Maha Sarakham, Thailand. 430 

Available from: http://www.web.msu.ac.th/msumis. 431 

Meyer, W. B., and Turner, B. L. (1994). Changes in land use and land cover : A 432 

global perspective. Cambridge University Press, NY, 549p.  433 

Ongsomwang, S. (2011). Principles of Remote Sensing and Digital Image 434 

Processing. School of Remote Sensing, Institute of Science, Suranaree 435 

University of Technology. Nakhon Ratchasima, Thailand, 466p. 436 

Ongsomwang, S., and Suravisutra, A. Optimum predictive model for urban growth 437 

prediction. Suranaree J. Sci. Technol., 18(2): 141-152. 438 

Pauleit, S., Ennos, R., and Golding, Y. (2005). Modeling the environmental impacts 439 

of urban land use and land cover change: A study in Merseyside, UK. 440 

Landsc Urban Plan, 71: 295-310. 441 

Pimjai, M. and Ongsomwang, S. (2013). Optimum predictive model for land use 442 

and land cover prediction. The 1st Geoinformatics Conference for Graduate 443 

Students and Young Researchers, 19-21 June 2013, Nakhon Ratchasima, 444 

Thailand, Suranaree University of Technology, p 124-136. 445 

Sang, L., Zhang, C., Yang, J., Zhu, D., and Yun, W. (2011). Simulation of land use 446 

spatial pattern of towns and villages based on CA-Markov model. Math 447 

Comput Model, 54: 938-943. 448 



Santé-Riveira, I., Crecente-Maseda, R., and Miranda-Barŕos, D. (2008). GIS-based 449 

planning support system for rural land-use. Comput Electron AGR, 63: 257-450 

273. 451 

Seto, C. K., and Fragkias, M. (2005). Quantifying spatiotemporal patterns of urban 452 

land-use change in four cities of China with time series landscape metrics. 453 

Landsc Ecol, 20: 871-888. 454 

Seto, C. K., and Shepherd, J. M. (2009). Global urban land-use trends and climate 455 

impacts. Curr Opin Environ Sustain, 1:89-95. 456 

Shalaby, A., and Tateishi, R. (2007). Remote sensing and GIS for mapping and 457 

monitoring land cover and land-use changes in the Northwestern coastal 458 

zone of Egypt. Appl Geogr, 27: 28-41. 459 

Subedi, P., Subedi, K., and Thapa, B. (2013). Application of a hybrid Cellular 460 

Automaton-Markov (CA-Markov) Model in land-use change prediction: A 461 

case study of Saddle Creek Drainage Basin, Florida. Applied Ecology and 462 

Environmental Sciences, 1(6): 126-132. 463 

Tang, Z., Engel, A. B., Pijanowski, C. B., and Lim, J. K. (2005). Forecasting land 464 

use change and its environmental impact at a watershed scale. J. Environ. 465 

Manage., 76: 35-45. 466 

Tian, G., Liu, J., Xie, Y., Yang, Z., Zhuang, D., and Niu, Z. (2005). Analysis of 467 

spatio-temporal dynamic pattern and driving forces of urban land in China 468 

in 1990s using TM images and GIS. Cities, 22(6): 400-410. 469 



Tudes, S., and Yigiter, D. N. (2010). Preparation of land use planning model using 470 

GIS based on AHP: case study Adana-Turkey. Bull Eng Geol Environ, 69: 471 

235-245. 472 

U. S. Department of Agriculture. (1986). Urban hydrology for small watersheds: 473 

TR-55. Natural Resources Conservation Service, Conservation Engineering 474 

Division. Available from: ftp://ftp.wcc.nrcs.usda.gov/ 475 

downloads/hydrology_hydraulics/tr55/tr55.pdf. 476 

Verburg, H. P., and Overmars, P. K. (2009). Combining top-down and bottom-up 477 

dynamics in land use modeling: exploring the future of abandoned 478 

farmlands in Europe with the Dyna-CLUE model. Landsc Ecol, 24: 1167-479 

1181. 480 

Wang, Y., and Zhang, X. (2001). A dynamic modeling approach to simulating 481 

socioeconomic effects on landscape changes. Ecol Modell, 140: 141-162. 482 

Weng, Q. (2001). Modeling urban growth effects on surface runoff with the 483 

integration of remote sensing and GIS. Environ Manage, 28(6): 737-748. 484 

Wilson, O. C., and Weng, Q. (2010). Assessing surface water quality and its relation 485 

with urban land cover changes in the Lake Calumet Area, Greater Chicago. 486 

Environ Manage, 45:1096-1111. 487 

Wilson, O. C., and Weng, Q. (2011) Simulating the impacts of future land use and 488 

climate changes on surface water quality in the Des Plaines River 489 

Watershed, Chicago Metropolitan Statistical Area, Illinois. Sci. Total 490 

Environ., 409: 4387-4405. 491 



Wu, F. (2002). Calibration of stochastic cellular automata: the application to rural-492 

urban land conversions. Int J Geogr Inf Sci, 16(8): 795-818. 493 

Wu, Q., Li, H., Wang, R., Paulussen, J., He, Y., Wang, M., Wang, B., and Wang, 494 

Z. (2006). Monitoring and predicting land use change in Beijing using 495 

remote sensing and GIS. Landsc Urban Plan, 78: 322-333. 496 

Xiao, J., Shen, Y. Ge, J. Tateishi, R., Tang, C., Liang, Y., and Huang, Z. (2006). 497 

Evaluating urban expansion and land use change in Shijiazhuang, China, by 498 

using GIS and remote sensing. Landsc Urban Plan, 75: 69-80. 499 

Yin, J., Yin, Z., Zhong, H., Xu,  S., Hu, X., Wang, J., and Wu, J. (2011). Monitoring 500 

urban expansion and land use/land cover changes of Shanghai metropolitan 501 

area during the transitional economy (1979–2009) in China. Environ Monit 502 

Assess, 177: 609-621. 503 

Zhang, P., Liu, Y., Pan, Y., Yu, Z. (2013). Land use pattern optimization based on 504 

CLUE-S and SWAT models for agricultural non-point source pollution 505 

control. Math Comput Model, 58: 588-595.1 506 

  507 



Table 1 Dataset and equipment 508 

Dataset and equipment Date Resolution/Scale Source 

1. Remote sensing datasets    

1.1 Digital color orthophoto data 2001 1:4,000 LDD 

1.2 SPOT data 2006 10x10 GISTDA 

1.3 THEOS pansharpened data 2011 2x2 m. GISTDA 

2. GIS datasets and documents data    

2.1 Soils series data 2002 1:100,000 LDD 

2.2 Digital Elevation Model (DEM) data 2009 30x30 NASA  

2.3 Administrative boundary data 2000 1: 50,000 DOPA 

2.3 Rainfall data 1981-2010 NA TMD 

2.4 Per capita income 2011 NA CDD 

2.5 Number of population 2011 NA DOPA 

3. Equipment    

3.1 Software    

3.1.1 ERDAS Imagine Version 8.7   Remote sensing 

Lab, SUT 3.1.2 ESRI ArcGIS Version 9.3   

3.1.3 IDRISI Taiga    

3.2 Hardware    

3.2.1 GPS   Remote sensing 

Lab, SUT and 

Personal 

3.2.2 Computer and Notebook 

  

Note: LDD = Land Development Department, GISTDA = Geo-Informatics and Space Technology Development Agency 509 
(Public Organization), TMD = Thai Meteorological Department, DOPA = Department of Provincial Administration, NASA 510 
= National Aeronautics and Space Administration, CCD = Community Development Department, SUT = Suranaree 511 
University of Technology, NA = Not Applicable. 512 
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Table 2 Area and percent of LULC types in 2001, 2006 and 2011 and theirs change. 514 

LULC 

2001 2006 2011 Change 2001-2006 Change 2006-2011 

sq. km % sq. km % sq. km % sq. km 
% of 

change 

Annual 

rate 

sq. 

km 

% of 

change 

Annual 

rate 

Urban and built-up areas 

Commercial  1.56 0.16 2.36 0.24 3.38 0.34 0.80 51.28 0.1600 1.02 43.22 0.2040 

City and village  42.02 4.30 42.84 4.38 47.34 4.84 0.82 1.95 0.1640 4.50 10.50 0.9000 

Institution  10.11 1.04 10.62 1.09 10.94 1.12 0.51 5.04 0.1020 0.32 3.01 0.0640 

Dormitory 0.09 0.01 0.80 0.08 1.92 0.20 0.71 788.89 0.1420 1.12 140.00 0.2240 

Real estate 0.12 0.01 0.36 0.04 1.16 0.12 0.24 200.00 0.0480 0.80 222.22 0.1600 

Agricultural land 

Paddy field 704.74 72.12 703.23 71.97 699.90 71.62 -1.51 -0.21 -0.3020 -3.33 -0.47 -0.6660 

Field crop 80.36 8.22 81.41 8.33 79.69 8.16 1.05 1.31 0.2100 -1.72 -2.11 -0.3440 

Perennial tree  0.57 0.06 0.52 0.05 0.57 0.06 -0.05 -8.77 -0.0100 0.05 9.62 0.0100 

Orchard 7.92 0.81 7.76 0.79 7.18 0.73 -0.16 -2.02 -0.0320 -0.58 -7.47 -0.1160 

Forest land 

Secondary 

forest 
63.39 6.49 60.66 6.21 54.90 5.62 -2.73 -4.31 -0.5460 -5.76 -9.50 -1.1520 

Eucalyptus 

plantation 
12.24 1.25 12.09 1.24 14.33 1.47 -0.15 -1.23 -0.0300 2.24 18.53 0.4480 

Miscellaneous land 

Development 

land 
12.09 1.24 12.69 1.30 12.38 1.27 0.60 4.96 0.1200 -0.31 -2.44 -0.0620 

Marsh land 3.45 0.35 3.06 0.31 4.86 0.50 -0.39 -11.30 -0.0780 1.80 58.82 0.3600 

Water body 38.50 3.94 38.76 3.97 38.61 3.95 0.26 0.68 0.0520 -0.15 -0.39 -0.0300 

Total 977.16 100 977.16 100 977.16 100       

 515 
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Table 3 Development of LULC area during 2001 to 2021. 517 

LULC types 

Change in term of gain and loss (sq.km) 

2001-2006 2006-2011 2011-2016 2016-2021 

Commercial  0.80 1.02 0.41 0.83 

City and Village  0.82 4.50 2.42 1.32 

Institution  0.51 0.32 0.01 0.56 

Dormitory 0.71 1.12 0.31 -0.25 

Real estate 0.24 0.80 0.43 0.04 

Paddy field -1.51 -3.33 2.30 -1.72 

Field crop 1.05 -1.72 -1.41 1.03 

Perennial tree  -0.05 0.05 0.00 -0.01 

Orchard -0.16 -0.58 -0.52 -0.09 

Secondary forest -2.73 -5.76 -4.44 -1.93 

Eucalyptus plantation -0.15 2.24 2.15 -0.59 

Development land 0.60 -0.31 -1.84 1.2 

Marsh land -0.39 1.80 0.24 -0.42 

Water body 0.26 -0.15 -0.06 0.03 
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Table 4 Predicted model for sub-classes of the urban and built-up areas by Trend 519 

Analysis. 520 

LULC type Model Type Equation R2 

Commercial areas Linear regression y = 0.755x + 0.877 98.70 

City and village areas Linear regression y = 2.504x + 39.096 95.41 

Institution areas Linear regression y = 0.313x + 9.887 93.19 

Dormitory Logarithmic regression y = 1.3744ln(x) + 0.088 90.51 

Real estate Linear regression y = 0.425x - 0.303 92.60 

Note: y is dependent variable which represents area of urban and built-up area sub-class in sq.km 521 

 x is independent variable which represents as 5 year interval such as 1 for year 2001, 2 for 522 

year 2006, 3 for year 2011, and so on. 523 
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Table 5 Predictive area of sub-classes of urban and built-up areas in 2046. 525 

LULC Types 

Area in sq. km in Year 

2026 2031 2036 2041 2046 

Commercial  5.41 6.16 6.92 7.67 8.43 

City and Village  54.12 56.62 59.13 61.63 64.14 

Institution  11.77 12.08 12.39 12.70 13.02 

Dormitory 2.55 2.76 2.95 3.11 3.25 

Real estate 2.25 2.67 3.10 3.52 3.95 
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Table 6 Summary of the minimum, mean and maximum values of surface runoff 527 

depth estimation during 2001 to 2021. 528 

Year 

Surface runoff depth in mm. 

Minimum value Maximum value Mean value Total value 

2001 10.312 204.035 127.721 138,670,420 

2006 10.312 204.035 128.073 139,052,900 

2011 10.319 203.707 128.645 139,674,640 

2016 10.319 205.527 129.252 140,334,100 

2021 10.319 205.527 129.481 140,581,730 
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Table 7 Surface runoff depth and urban area during 2001-2021. 530 

Year Urban area in sq. m Total Surface runoff depth in mm 

2001 53,910,000 138,670,420 

2006 56,980,000 139,052,900 

2011 64,730,000 139,674,640 

2016 68,320,000 140,334,100 

2021 70,820,000 140,581,730 
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Table 8 Summary of spatial simple linear regression model between urbanization 532 

and mean surface runoff depth zonation. 533 

Year Model 
Correlation 

Coefficient (R) (%) 

Coefficient of 

determination (R2) (%) 

2001 Y = 0.036044 + 0.908790X 84.98 72.21 

2006 Y = 0.035703 + 0.858506X 85.85 73.70 

2011 Y = 0.062702 + 0.854680X 85.47 73.05 

2016 Y = 0.025225 + 0.907646X 87.80 77.09 

2021 Y = 0.031557 + 0.882305X 86.90 75.51 

Note: X = Urbanization (PU), Y= Mean surface runoff zonation 534 
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 536 

Figure 1 The study area. 537 

  538 



 539 

Figure 2 Work flow of research methodology. 540 
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(a) (b) 

 

 

(c)  

Figure 3 Distribution of the interpreted LULC pattern: (a) in 2001, (b) in 2006, and 542 

(c) in 2011. 543 

  544 



 
(a) 

 
(b) 

Figure 4 Comparison of urban and built-up area sub-classes between 2001-2006 545 

and 2006-20111: (a) percent of change and (b) annual increasing rate. 546 
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(a) (b) 

Figure 5 Distribution of predictive LULC pattern: (a) in 2016 and (b) in 2021. 548 
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(a) (b) 

 
 

(c) (d) 

 

 

(e)  

Figure 6 Trend analysis of urban and built-up areas sub-class: (a) commercial, (b) 550 

city and village, (c) institution, (d) dormitory, and (e) real estate. 551 
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 553 

Figure 7  Schematic diagram of Model Builder of ESRI ArcGIS for spatiotemporal 554 

surface runoff depth estimation. 555 
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(a) (b) 

  
(c) (d) 

 

 

(e)  

Figure 8  Distribution of the spatiotemporal surface runoff depth estimation: (a) 557 

in 2001, (b) in 2006, (c) in 2011, (d) in 2016, and (e) in 2021. 558 

  559 



 560 
 561 

Figure 9  Simple linear regression analysis between urban area and surface runoff 562 

depth. 563 
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(c) (d) 

 

 

 

Classification of urbanization 

Based on urban land percentage (PU) 

 

Very low urbanization  = PU < 0.001% 

Low urbanization          = 0.001%  PU < 1% 

Moderate urbanization = 1%  PU < 5% 

High urbanization         = 5%  PU < 10% 

Very high urbanization = 10%  PU 

(e)  

Figure 10  Distribution of urban land percentage (PU) as urbanization: (a) in 2001, 565 

(b) in 2006, (c) in 2011, (d) in 2016 and (e) in 2021. 566 
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(a) (b) 

  
(c) (d) 

 

 

Classification of mean surface runoff depth 

at sub-district level 

 

Very low   = 81 mm > Mean < 91 mm 

Low           = 91 mm  Mean < 111 mm 

Moderate  = 111 mm  Mean < 136 mm 

High          = 136 mm  Mean < 151 mm 

Very high  = 151 mm  Mean 

(e)  

Figure 11  Surface runoff depth zonation based on its mean value in each sub-568 

district: (a) in 2001, (b) in 2006, (c) in 2011, (d) in 2016 and (e) in 569 

2021. 570 


