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Abstract 
Timely disease detection can improve disease management and re-
duce environmental impact, as applying unnecessary chemical ap-
plications could increase the risk of pollution and reduce profit. 
Herein, different development stages of powdery mildew disease 
(asymptomatic, early, intermediate, and late stage) were monitored 
in a squash crop by utilizing hyperspectral imaging (380-1030 nm) 
in laboratory conditions (the spectral measurements were con-
ducted seven times). Radial basis function network was used to 
discriminate between healthy and diseased plant and to distinguish 
the infection level (disease development stage). Since, spectral 
Vegetation Indices (VIs) have been shown to be useful for moni-
toring disease development stages, seventeen VIs were selected 
and evaluated to detect and classify healthy and powdery mildew 
diseased plants. The best VI that can be used for disease detection 
was the water index (WI) in early, intermediate and late disease 
development stage. High classification rates, ranging from 82% - 
99% for asymptomatic to late stages, were achieved in disease de-
tection.  
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Introduction 
Cucurbita pepo (squash, pumpkin, and gourd) are important 
and economically profitable vegetable crops. These species 
are highly susceptible to the powdery mildew (PM) disease 
caused by the fungus Podosphaera xanthii (Cohen et al., 
2003). Early disease detection is necessary for the optimal 
field management of the PM disease. The PM disease must 
be controlled effectively in order to prevent the spreading of 
the disease throughout the field and reduce the disease se-
verity. 

Disease detection is considered a critical task especially dur-
ing the early disease development stage(s). Detecting a dis-
ease at an early stage might prevent growers from losing the 
majority of the crops. It can help growers to early detect a 
disease in small areas and apply precision management 
practices to control it and avoid spreading in the entire field, 
which can save time and money.  

Visible and near infrared (NIR) spectroscopy is one of the 
nondestructive methods to detect plant diseases in the labor-
atory (Abdulridha et al., 2018; Ampatzidis et al., 2017; Lu-
visi et al., 2016). Several studies utilized this technology in 
disease and stress detection (Abdulridha et al., 2019a; Hari-
hara et al., 2019). Xu et al. (2007) detected and monitored 
the leafminer damage in tomato leaves by using NIR spec-
troscopy (800-2500 nm). The classification was determined 
in five scales based on the severity level of the disease dis-
played on the surface of the plant leaves. Abdulridha et al. 
(2019b) were able to select the best wavelength to detect 
phytophthora root rot and laurel wilt in avocado trees. The 
objectives of this study were to: i) evaluate and detect the 
powdery mildew disease in squash plants in the laboratory, 
ii) monitor the progress of the powdery mildew disease be-
fore and after infection, iii) obtain the optimal wavelength 
and vegetation indices for disease detection.  

Materials and methods 
Data collection  
Squash leaves (Cucurbita pepo ‘Yellow Crookneck’) were 
collected before and after natural infection by powdery mil-
dew at University of Florida- Southwest Florida Research 
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and Education Center, in Immokalee, FL. For laboratory 
measurements, ten leaves were collected at regular intervals 
to monitor the development of the disease after the infection 
(April 8, 12, 15, 17, 19, 22, May 1st) (Fig 1). The first set of 
collected leaves did not show any symptoms, and then the 
symptoms started to appear gradually after few days. 

 

Figure 1: Squash plants in different development stages of 
the powdery mildew disease: a) healthy leaf, b) leaf with 
early symptoms, c) leaf with late symptoms.  

Hyperspectral data collection 

A benchtop hyperspectral imaging system, Pika L 2.4 
(Resonon Inc., Bozeman MT, USA), was used to collect re-
flectance data (Fig. 2). The Pika L 2.4 is equipped with a 23 
mm lens which has a spectral range of 380-1030 nm, 281 
spectral channels, 15.3º field of view and a spectral resolu-
tion of 2.1 nm. 

 

Figure 2: Laboratory spectral measurements of squash 
leaves using a benchtop hyperspectral imaging system.  

Vegetation indices (VIs) 
Seventeen VIs (Table 1) were selected and evaluated to de-
tect and classify healthy and powdery mildew-affected 
plants. The proposed VIs evaluate the quality and the quan-
tity of the measured vegetation using hyperspectral data. 

Usually, any spectral measurement would be a combination 
of reflectance by vegetation, soil, illumination, humidity, 
temperature, smoke, ecological effect, shadow, soil color 
and moisture.  

Table 1: Vegetation indices utilized in this study.  

VIs Equations and references 

Ratio Analysis of 
reflectance Spec-
tral Chlorophyll-a 
(RARSa) 

RARSa = R675
R700

 (Chappelle et al. 1992) 

Ratio Analysis of 
reflectance Spec-
tral Chlorophyll b 
(RARSb) 

RARSb = R675
(R700×R650)

   
(Chappelle et al. 1992) 

Water Index (WI) WI = R900
R970

  (Penuelas et al. 1997) 
Water Stress and 
Canopy Tempera-
ture (NWI 2) 

NWI2 = R970−R850
R970+R850

  (Babar et al. 2006) 

Structure Insensi-
tive Pigment Index 
(SIPI) 

SIPI = (R840−R450)
(R840−R670)

 (Penuelas et al. 1995) 

Normalized 
phaeophytinization 
index (NPQI)  

NPQI = (R415−R435)
(R415+R435)

  (Barnes et al. 1992) 

Normalized differ-
ence vegetation in-
dex (NDVI 760) 

NDVI 760 = (R760−R450)
(R760−R450)

  (Raun et al. 
2001) 

Normalized differ-
ence vegetation in-
dex 850 (NDVI 
850) 

NDVI 850 = (R850−R651)
(R850+R651)

  (Raun et al. 
2001) 

Simple Ratio In-
dex (SR 760) SR761 = R760

R650
  (Jordan 1969) 

Simple Ratio In-
dex (SR 850) SR 850 = (R850)

(R650)
  (Jordan 1969) 

Triangle Vegeta-
tion Index (TVI) 

TVI=0.5[120*(R750-R550)-200(R670-
R550)]  
(Broge & Leblanc 2001) 

Modified Triangu-
lar Vegetation In-
dex1 (MTVI 1) 

MTVI 1= 1.2[1.2*(R800-R550)-2.5 
(R670-R550)] 
(Haboudane et al. 2004) 

Renormalized Dif-
ference Vegetation 
Index (RDVI) 

RDVI =
(R760− R650)

(R760 + R650)0.5 

(Roujean & Breon 1995) 
Red-Edge Vegeta-
tion Stress Index 1 
(RVS 1) 

RVSI 1 =
(R650 + Red Edge 750)

2 − 
Red Edge 733 (Merton 1998) 

Normalize differ-
ence of 750/705 

ND750/705= (R750−R705)
(R750+R705)

 (Raun et al. 
2001) 

Modified Chloro-
phyll Absorption 
in Reflectance In-
dex (mCARI 1) 

mCARI 1= 1.2[(2.5*(R761-R651)-
1.3(R761-R581)] 
(Haboudane et al. 2004) 

Anthocyanin Re-
flectance Index 
(ARI) 

ARI = ( 1
R550 

) − ( 1
R700

)  (Gitelson et al. 
2001) 



 
Data analysis 
The M value was used to differentiate between VIs by di-
viding the difference of mean of two categories (healthy and 
infected plants) by the sum of the standard deviation (σ) of 
the two categories (equation 1). There were six disease 
stages in the laboratory setting, and the M value was calcu-
lated to differentiate the results between each individual 
stage. The M value is generally higher when the standard 
deviation is low, which leads to the narrowing of the histo-
gram of spectral reflectance which leads to less overlap and 
good separability (Kaufman & Remer 1994). The M value 
is considered as a significant discriminant between different 
vegetation indices. As the value of M value increases, less 
overlap and better separability is observed (Smith et al. 
2007). Furthermore, the Tukey's HSD test (α = 0.01) was 
used to analyze and evaluate all VIs using the SPSS soft-
ware. 

𝑀𝑀 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣 =  ( 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦 −𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)
( 𝜎𝜎𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻ℎ𝑦𝑦+ 𝜎𝜎𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼𝐼)

           (1) 

 
Radial basis function network (RBF) 

A radial basis function network is a type of artificial neural 
network. It uses a supervised machine learning to work as a 
non-linear classifier. In contrast to simple linear classifiers 
that work on lower-dimensional vectors, non-linear classifi-
ers use advanced functions to go further deep into the anal-
ysis. RBF performs classification by measuring the input 
similarity to examples from the training set. RBF is gener-
ally considered a relatively intuitive approach and a better 
way to address specialized machine learning problems. 

Results and discussion 

Spectral reflectance of squash leaves collected in 
laboratory conditions  
The squash leaves were collected every 3-4 days, based on 
the progress of PM disease, and their spectral reflectance 
was measured in laboratory conditions. The spectral reflec-
tance of leaves across time varied depending on the disease 
development stage. Fig. 3 shows that the spectral reflectance 
of leaves was increased in the green and red range gradually 
as the disease progressed and as the symptoms increased; 
the spectral reflectance was higher in the late stage of PM 
disease. 

Disease detection accuracies, using the RBF classifier, in in-
itial disease development stages was at 82% and increased 
gradually to reach 99% in the late disease development 

stages (Fig 4). The best bands, where the most significant 
differences could be observed, were selected between 966 
nm to 989 nm for PM1, PM2, PM3 and PM4 stages. There 
was no significant difference between the classification ac-
curacies of these bands, which was tested by using the 
Tukey’s HSD test (Honestly Significant Difference α = 
0.01). In the late PM5 stage, the best bands were selected 
between 1,005 nm and 1,016 nm, while for the very late 
stage, PM6, the best bands were selected in blue range at 
388-398 nm (Table 2).  

 
Figure 3: Spectral reflectance signatures of healthy squash 
plants and powdery mildew-affected plants in different dis-
ease development stages. 

 

 
Figure 4: Classification accuracy, using the radial basis 
function classifier, of health and powdery mildew-affected 
squash plants in different disease development stages.  
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Table 2: The best wavebands selected in laboratory condi-
tion based on disease severity; the weight value (classifica-
tion accuracy) of each band is reported in parentheses. The 
letter “a” denotes that there is no significant difference be-
tween the bands. 

Parameters  Best bands selected and 
their weight value  

H vs. PM1 991(100%) a, 976 (100%) a, 
978 (99%) a, 992 (99%) a, 
989 (98%) a 

H vs. PM2 960 (100%) a, 964 (98%) a, 
975 (98%) a, 966 (97%) a, 
966 (97%) a 

H vs PM3 975 (100) a, 964 (98%) a, 
975 (98%) a, 966 (97%) a, 
966 (97%) a 

H vs. PM4 975 (100) a, 964 (98%) a, 
975 (98%) a, 966 (97%) a, 
966 (97%) a 

H vs. PM5 1,012 (100) a, 1,014(99%) a, 
1,016 (98%) a, 1,007 (98%) 
a, 1005 (97%) a 

H vs. PM6  388 (100) a, 397 (99%) a, 
394 (96%) a, 396 (94%) a, 
390 (94%) a 

Tukey's HSD test (α = 0.01).  

Vegetation indices analysis 
The highest M discrimination value for VIs in early PM1 
and PM2 stages was observed in the water index (WI) and 
the Red-Edge Vegetation Stress Index 1 (RVSI 1). Most of 
the studied VIs in the early stage had a low separation power 
except the WI, for which the M value was more than 1.0, 
which indicates a high and good discrimination (de Castro 
et al., 2015). Fig 5 presents the M value of some of the stud-
ied vegetation indices. The best VIs for disease detection 
varied based on the disease development stage. The M value 
of the WI increased from 3. 5 in PM1 to 4.5 in PM5, while 
it reduced to 0.3 in PM6 stage. The M value of the SR850 
increased from 0.6 in PM3 to 1.8 in PM6, and the SR761 
also increased from 0.6 to 1.8 in PM3 and PM6 stages re-
spectively. This indicates that the WI was the best distin-
guisher in PM5 stage, and the SR 850 and SR 761 were the 
best distinguishers in PM6 stage. The least M value among 
the VIs was observed for the NWI 2 and ARI.  

     

 
(a) 

 
 (b) 

Figure 5: M value for some vegetation indices for: a) very 
early disease stage (PM1 & PM2); b) intermediate and very 
late stages (PM3-PM6). Data were acquired in laboratory 
conditions.  

  

Conclusion  

The spectral reflectance analysis of squash leaves in indoor 
conditions was performed to track different PM disease de-
velopment stages (asymptomatic, early, intermediate and 
late disease) and to differentiate between each stage of the 
PM disease. The best bands were selected to differentiate 
between healthy and PM-affected plants (several disease de-
velopment stages). Furthermore, a radial basis function clas-
sifier was utilized to distinguish the disease severity stages. 
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The highest classification accuracy (99%) was observed in 
the very late disease development stage. The most signifi-
cant vegetation indices that could differentiate between dif-
ferent stages of the disease were the water index (WI) in 
asymptomatic, intermediate and late stages. 
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