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Abstract 
In this paper, comparison of deep learning-based target de-
tection methods is presented for precision weed management 
system. Conventional weed control methods are to spray 
herbicides uniformly in every fields. However, it is intimately 
related with massive herbicides consumption, environmental 
issues and agrochemical residues on food product. Hence, an 
autonomous and intelligent herbicide sprayer has been devel-
oped with machine vision in order to determine the type of 
weeds in real-time and spray the proper herbicide only on de-
sired spots. This paper presents a comparison of deep learn-
ing frameworks with evaluation metrics; Precision and Re-
call. Through this comparison, the smart sprayer system will 
be developed with more precise real-time target detection 
performance. 

 Introduction   
Since Weed control is closely related to crop yields, it is im-
portant to eliminate weeds in agriculture (Rajcan, Chandler, 
and Swanton 2004; Zimdahl 2018; Clements et al. 2004; 
Gianessi 2013). Weeds impede growing progress of the crop 
by depriving of light and the essential resources (e.g. water 
and nutrients). Once weeds are not removed at the proper 
period, the yield potential can be negatively impacted. 
 In order to control weeds, United States farmers sprayed 
about 113.36 million kg of herbicides (glyphosate) in 2014 
(Benbrook 2016). Global herbicide market shows that farm-
ers sprayed a total of 746.58 million kg of herbicides 
(glyphosate) worldwide in 2014 (Benbrook 2016). This 
enormous consuming number of herbicides is mostly due to 
the conventional spraying strategy, spraying herbicides uni-
formly in every area of fields. Since weeds usually occur in 
patches, conventional spraying strategy is not efficient in 
terms of cost and method. In addition, indiscriminate herbi-
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cide spraying causes environmental issues (e.g. soil and wa-
ter contamination) and agrochemical residues on food prod-
ucts. The United State government warns regarding effects 
of herbicides on human health and environment (US Envi-
ronmental Protection Agency; US Fish and Wildlife Ser-
vice). Furthermore, there is an issue of a shortage of farm 
labor and increased costs for weed control (Duke 2012). 
Hence, developing autonomous and intelligent herbicide 
sprayer is required to reduce these negative impacts.  
 In recent decades, there has been a constant increase of 
interest in pest and disease detection  (Cruz et al. 2017; Ab-
dulridha et al. 2018; Cruz et al. 2019) and autonomous 
sprayer for controlling weeds (Moller 2010; Fernandez-
Quintanilla et al. 2018), concluding that computer vision 
technologies will lower workload and costs in agricultural 
field. Using computer vision helps a smart sprayer system to 
have the ability to determine the type of weeds in real-time 
and spray the proper herbicide only on desired spots. In 
(Hong, Minzan, and Qin 2012), various sensors and tech-
niques are surveyed for a smart sprayer analyzing machine 
vision, spectral analysis, remote sensing and thermal im-
ages. (Wendel and Underwood 2016) present classification 
of crops and weeds using spectral images, and it showed 
good performance. A spectral camera, however, has disad-
vantages that it is too expensive and has heavy computation 
load comparing to a RGB camera. There is also literature 
supporting the use of RGB images for weed detection. Weed 
detection is performed using Convolutional Neural Net-
works (CNNs), and weeds among grass and broadleaf are 
classified in (dos Santos Ferreira et al. 2017). Even though 
there is no contribution for a smart sprayer, it showed satis-
fying performance results. A herbicide sprayer using a RGB 
camera is developed for wild blueberry in (Esau et al. 2018). 
In this paper, weeds are determined using the color contrast 
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between the green weeds and the wild blueberry plants and 
soil surface which shown in reddish-brown background 
color. The image processing used in this paper is a low-level 
object detection strategy, and this method is limited only to 
certain wild blueberry farms. 
 In this paper, we present a comparison of deep learning-
based target detection frameworks for a low-cost and smart 
precision sprayer system. In order to detect weeds, machine 
vision and deep learning-based target detection are applied 
to the developed system. In the next section, we present ma-
terials and method for the smart sprayer system, then three 
applications of deep learning-based target detection are 
compared and evaluated in Experiment Section. Finally, we 
present the conclusion and future works at the end of the 
paper. 
 In this paper, a comparison of deep learning-based target 
detection frameworks is presented for a low-cost and smart 
precision sprayer system (previously developed by Partel et 
al., 2019). In order to detect weeds, machine vision and deep 
learning-based target detection were applied to the devel-
oped system. In the next section, we present materials and 

method for the smart sprayer system; then, three applica-
tions of deep learning-based target detection were compared 
and evaluated.  

Materials and Methods 
A prototype of the smart sprayer system consists of individ-
ual nozzle control (12 nozzles with an adjustable spraying 
cone and 12 valves), a low-cost pump, a Real-Time Kine-
matic GPS (RTK-GPS), three video cameras (Webcam 
Logitech c920), speed sensor (odometer and laser-based 
sensor), and several relay boards, tubes, pressurized mani-
folds, etc. (Partel et al. 2019). 

Hardware Description 
Fig. 1 presents the smart sprayer attached on an All-Terrain 
Vehicle (ATV) through a hitch, and the workflow of the 
smart sprayer system is depicted in Fig. 2.   

The nozzles arrangement is designed considering a work 
length of 1.08 m to be covered by sprayers. It employs 

Figure 1. (a) The smart sprayer mounted on an All-terrain vehi-
cle (ATV); (b) main components of the smart sprayer. 

Figure 2. Overall workflow of the smart sprayer system. 

Figure 3.  Nozzles arrangement design. 



twelve nozzles to spray a width of 0.09 m each from 0.03 m 
of height as shown in Fig 3. 

In order to spray herbicide rapidly and precisely after re-
ceiving signals from the main computer, a 95 L tank was 
utilized to store herbicide with a 4.10 bar, 8 L/min pump 
(FIMCO LG-25-SM, North Sioux City, SD, USA) as shown 
in Fig. 4. 

12 V solenoid valves (WALFRONT 2 V025, China), with 
a response time of less than 50 ms, were utilized in order to 
control nozzles (TEEJET 5500-X5 Glendale Heights, IL, 
USA). Three nozzles can be adjusted by changing the angle 
of the spraying cone. 

For the image acquisition system, three low-cost cameras 
(LOGITECH c920, Newark, CA, USA) were utilized. The 
cameras cover the work length of 1.08 m. The three cameras 
were installed to minimize an overlap.  

For the positioning system, a RTK GPS (TOPCON 
HiperXT, Tokyo, Japan) was used with a 2.50 Hz update 
rate. Using the position data, a heading angle is also calcu-
lated to obtain accurate geo-locations of the targets on the 
soil. 

The main computer unit utilized was a graphical pro-
cessing unit (GPU) (NVIDIA GTX 1070 Ti, Santa Clara, 
CA, USA) with 2432 CUDA cores on a clock frequency of 
1607 MHz. This GPU has 8 GB of memory. 

The future overall goals of this project can be described 
as shown in the following; 

1. Develop further a low-cost, high throughput, and 
smart technology to simultaneously scout and 
spray a variety of weeds with different herbicides. 

2. Develop low-cost and multi-crop autonomous ve-
hicles equipped with the precision spray technol-
ogy. 

3. Design and develop a high-level task planning and 
control system for the autonomous precision spray-
ers. 

4. Conduct comprehensive economic analyses of the 
proposed multi-robot system. 

Smart Sprayer Software 
A software was developed to achieve a precise spraying on 
the target and to develop a weed map. The software can pro-
cess up to 28 fps (frames per second) in all the steps in real-
time. Fig. 5 depicts the overall workflow of the smart 
sprayer system. 

Image Acquisition 
Three cameras simultaneously provide the software of 
frames of resolution 640 x 480 pixels each. The obtained 
images are then merged as one single image of a 1920 x 480 
pixels, which is then resized for a 1024 x 256 pixels final 
image. The final image was found to be a proper size to 
achieve real-time processing speeds. The cameras are lim-
ited to acquire up to 30 fps. The overall processing speed is 
determined by the network utilized and the capabilities of 
the GPU. 

Target Detection 
For the real-time target (object) detection, two frameworks 
were tested: (i) Faster R-CNN, and (ii) YOLOv3 (Redmon 
and Farhadi 2018). A primitive approach of target detection 
takes different regions of interest from the image, and it uti-
lizes a CNN to classify the presence of the object within that 
region. The problem, however, is that the objects of interest 
might have various locations and scales in the image. Since 
the algorithm must select every region over the entire image, 
a computational load can be naturally increased. Hence, 
such an algorithm like R-CNN and YOLO have been devel-
oped in order to detect the target fast. 

Convolutional Neural Network and Deep Learn-
ing 
When considering a network of the object detection frame-
works, Faster R-CNN and YOLO employs CNNs to train 
and detect objects. The name of CNNs is from a mathemat-
ical operator, convolution, and CNNs consist of three layers; 
input layer, output layer, and hidden layers. A typical CNN 

Figure 4. Tank and pump. 

Figure 5. Hardware components of the smart sprayer. 



has four main operations known as convolution, non-linear-
ity, pooling (sub-sampling) and classification.  

Evaluation Metrics 
In all experiments, the performance of the target detection 
was evaluated based on visual observations, determining 
whether the targets or non-targets are detected correctly. The 
output videos, which are the results of deep learning-based 
target detection using various frameworks, were used to val-
idate and calculate evaluation metrics.  
 As the evaluation metrics, the precision and recall (Fig. 
6) of the deep learning-based target detection are used. For 
each framework, precision and recall are defined as shown 
in the following equation. 

𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃𝑃 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹) , 

                        (1) 

𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅𝑅 =  
𝑇𝑇𝑇𝑇

(𝑇𝑇𝑇𝑇 + 𝐹𝐹𝐹𝐹)
 , 

where TP is True Positives, and FP and FN represent False 
Positives and False Negatives, respectively. 

Results and Discussion 
In this section, we present experiment results of two differ-
ent object detection frameworks for developing the smart 

sprayer. In order to compare performances, we apply Faster 
R-CNN with Resnet 50, Faster R-CNN with Resnet101, and 
YOLOv3 with Darknet53 for detecting one specific type of 
target weeds. We utilized three different artificial plants as 
shown in Fig. 7. In the experimental field, twenty target 
weeds were randomly placed, and six and three of non-target 
plants were also implanted, respectively.  
 All networks used in this experiment were trained using 
1821 images of targets and non-targets labeled manually for 
each target position on the images. After training the net-
works, the real-time target detection was performed with 
two frameworks mentioned above using two videos rec-
orded between 2 PM to 3 PM in September 2019 on sandy 
soil. On video is recorded without shade disturbances, and 
other one is recorded with shade disturbances. The hardware 
system used in this experiment are described in the previous 
Hardware Description section. 
 The experiment results are shown in Table 1 and Table 2. 
The best performing network was Resnet50 achieving 100% 
in all metrics for both video experiments. YOLOv3 
achieved the lowest metrics of all three but still performed 
well, struggling mainly with false negative detections on 
shade disturbance zones (Fig. 8). 
 Note that the significant difference in processing time 
(evaluated in frames per second) of YOLOv3 compared to 
the two other networks, 176.13% and 228.38% for Resnet50 
and Resnet101, respectively. This optimized processing 
time, while still achieving fairly good detection results, 
makes YOLOv3 a viable solution for the network frame-
work detection for real-time or near real-time smart sprayer.  

Figure 6. Precision and Recall. 

Figure 7. Target weed and Non-target plant used in the ex-
periment. 



Conclusion 
This paper presented a prototype of the smart herbicide 
sprayer with machine vision in order to determine the type 
of weeds in real-time and spray the proper herbicide only on 
desired spots. For the machine vision part, performances of 
deep learning-based target detection methods are compared. 
We utilized two types of deep learning frameworks, Faster 
R-CNN and YOLOv3, and three types of networks, Res-
net50, Resnet101 and Darknet53. After training all networks 
using 1821 images, experiments were carried out with two 
videos which is recorded one type of target weeds and two 
types of non-target plants in the field with and without shade 
disturbances. The experimental results showed the best per-
forming network was Resnet50, and it will be successfully 
applied to the smart sprayer system for better performances. 
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Table 1: Experimental results. 
 

Framework Network Scale FPS  True 
Positives 

False 
Negatives 

False 
Positives 

Faster R-CNN Resnet50 1248x708 5.405  20 0 0 
w/ Disturbances 20 0 0 

Faster R-CNN Resnet101 1248x708 4.545  20 0 0 
w/ Disturbances 19 1 0 

YOLOv3 Darknet53 1248x708 14.925  18 2 2 
w/ Disturbances 17 3 2 

 
Table 2: Precision and Recall. 

 

Framework Network  Precision Recall 

Faster R-CNN Resnet50 
 100% 100% 

w/ Disturbance 100% 100% 

Faster R-CNN Resnet101  100% 100% 
w/ Disturbance 95% 100% 

YOLOv3 Darknet53  95% 90% 
w/ Disturbance 85% 89.5% 
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