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Abstract

In the context of DL-Lite, a family of lightweight fragments
of description logics, this paper introduces an extension of
standard possibilistic DL-Lite to the case where the knowl-
edge base is partially preordered. We consider the assertional
base, a.k.a. ABox, to be represented as a symbolic weighted
base and we assume a strict partial preorder is applied on the
weights. We introduce a tractable method for computing a
single repair for a partially preordered weighted ABox. Basi-
cally, this repair is computed from possibilistic repairs asso-
ciated with compatible bases of a partially preordered ABox,
which intuitively encode all possible extensions of a partial
preorder. We provide an equivalent characterization using the
notion of π-accepted assertions, which ensures that the pos-
sibilistic repair is computed in polynomial time.

Introduction
Possibility theory has been widely studied since the seminal
work of Zadeh (Zadeh 1978). Basically, it is an uncertainty
theory that handles incomplete, uncertain, qualitative and
prioritized information and supports reasoning in the pres-
ence of inconsistency (Dubois, Prade, and Schockaert 2017;
Finger et al. 2017). Possibility theory has strong connec-
tions with ordinal conditional functions (Spohn 2014) as
well as with consonant belief functions (Fagin et al. 2003;
Dempster 1967; Shafer 1976).

Standard Possibilistic Logic (SPL) (Dubois and Prade
2015) provides a natural framework for reasoning with in-
consistent and uncertain information that is prioritized by
way of a total preorder. In essence, SPL is a weighted logic
where formulas are propositional logic formulas, each of
which is assigned a weight in the unit interval [0, 1] seen
as an ordinal scale. A weight (or degree) is considered as a
lower bound on the formula’s certainty (or priority) level.

A research domain that has gained considerable inter-
est is that of inconsistency management in formal ontolo-
gies, in particular those specified in the lightweight frag-
ments of description logics (DLs) known as DL-Lite. For in-
stance, fuzzy extensions have been proposed for DLs (Borg-
wardt and Peñaloza 2017; Bobillo and Straccia 2018; Strac-
cia 2013) and for DL-Lite (Pan et al. 2007; Straccia 2006).
Moreover, possibilistic extensions of DLs (Dubois, Men-
gin, and Prade 2006; Qi et al. 2011) alongside probabilis-
tic extensions (Baader et al. 2019; Borgwardt, Ceylan, and

Lukasiewicz 2018; Lutz and Schröder 2010) have also been
proposed.

Recently, a framework for possibilistic DL-Lite has been
proposed (Benferhat and Bouraoui 2017). Basically, ABox
assertions are assigned weights reflecting the fact that some
pieces of information are deemed as more reliable than oth-
ers. A nice feature of possibilistic DL-Lite is that query an-
swering is tractable. Hence, there is no extra cost despite the
fact that the expressiveness of standard DL-Lite is enhanced
with a total preorder over ABox assertions.

Nonetheless, in several applications and notably ontolo-
gies, reliability is partially defined, usually as a result of ob-
taining information from multiple sources that do not share
the same opinions. This implies the application of a partial
preorder instead of a total preorder over the weights assigned
to formulas or assertions.

Extensions of SPL have been proposed to support rea-
soning with partially preordered information. In (Benferhat,
Lagrue, and Papini 2004), the core notions of SPL such as
possibilistic inference are revisited by assigning degrees to
propositional logic formulas that belong to a partially or-
dered uncertainty scale instead of the unit interval [0, 1].
In (Touazi, Cayrol, and Dubois 2015), the idea of assigning
partially ordered symbolic weights to beliefs is also studied
extensively. The main drawback of such approaches is that
their computational complexity is expensive (at least ∆2

p),
which makes them not suitable in a context where queries
need to be efficiently answered.

Against this background, we are interested in proposing
an extension of standard possibilistic DL-Lite (Benferhat
and Bouraoui 2017) to the case where knowledge is par-
tially preordered, without increasing its computational com-
plexity. The idea of handling inconsistency in partially pre-
ordered lightweight ontologies has been recently investi-
gated in (Belabbes, Benferhat, and Chomicki 2019). An effi-
cient method, called “Elect”, has been proposed for comput-
ing a single repair for a partially preordered ABox. Elect of-
fers an extension of the well-known IAR semantics (Lembo
et al. 2010) for partially preordered ABoxes. Basically, a
partially preordered ABox is interpreted as a family of to-
tally preordered ABoxes for which repairs can be computed.
These repairs are then intersected to produce a single repair
for the partially preordered ABox.

A natural question is then whether possibilistic DL-Lite



can be extended to partial preorders in a tractable way (in
the spirit of Elect). This paper provides a positive answer.

To achieve this aim, we consider a family of compatible
ABoxes (which amount to possibilistic DL-Lite ABoxes)
and compute the possibilistic repair associated with each
compatible base. Finally, we compute a single repair for
the partially preordered weighted ABox from the intersec-
tion of all possibilistic repairs. Our main contribution is the
provision of an equivalent characterization that identifies ac-
cepted assertions, called π-accepted, without explicitly com-
puting all the compatible bases. We show that the set of
π-accepted assertions is consistent and that it can be com-
puted in polynomial time. Moreover, we show that when the
preference relation is a total preorder, the produced repair
amounts to the possibilistic repair as computed in standard
possibilistic DL-Lite.

The outline of the paper is as follows. We start by briefly
recalling the basics of DL-Lite in description logic followed
by its extension to possibilistic logic. We introduce our
tractable method for computing a repair for a partially pre-
ordered weighted ABox. We then discuss future work and
conclude the paper.

The Description Logic DL-Lite
The Description Logic DL-Lite (Calvanese et al. 2007) is
a family of knowledge representation languages that have
gained popularity in several application domains such as
formalizing lightweight ontologies, thanks to their expres-
sive power and good computational properties. For instance,
query answering from a DL-Lite knowledge base can be car-
ried out efficiently using query rewriting (Kontchakov et al.
2010). In this paper, we present the DL-LiteR dialect of DL-
Lite, without loss of generality.

A Knowledge Base (KB) is built upon a finite set of con-
cept names C, a finite set of role names R and a finite set
of individual names I, where sets C, R and I are mutually
disjoint. The DL-LiteR language is defined according to the
following BNF rules:
R −→ P | P− E −→ R | ¬R
B −→ A | ∃R C −→ B | ¬B

where A denotes a concept name, P is a role name, and P−
is the inverse of P . Also, R stands for a basic role and E
denotes a complex role. Furthermore, B is a basic concept
while C is a complex concept.
A DL-Lite knowledge base K is composed of two compo-
nents, K = 〈T ,A〉, where:

• T is a finite set of inclusion axioms, also known as TBox.
An inclusion axiom on concepts (resp. on roles) is a state-
ment of the form B v C (resp. R v E). Concept in-
clusions are said to be negative inclusion axioms if they
contain the symbol “¬” to the right of the inclusion, oth-
erwise they are called positive inclusion axioms.

• A is a finite set of assertions (ground facts), also known
as ABox. An assertion is a statement of the form A(a) or
P (a, b), where a, b ∈ I.

A knowledge base K is said to be consistent if it admits at
least one model, otherwise it is inconsistent.

A TBox T is incoherent if there is a concept name A ∈ C
such that A is empty in every model of T , otherwise it is
coherent.

In the rest of this paper, we shall refer to DL-LiteR as
DL-Lite to simplify notations.

We shall use the following running example throughout
the paper and adapt it as needed.

Example 1
Let K = 〈T ,A〉 be a DL-Lite KB.
Let T = {A v¬B,B v¬C,C v¬D} be a TBox.
Let A = {A(a), A(b), B(a), B(c), C(a), C(b), D(a),
D(b), D(c), E(a)} be a flat ABox (i.e., no weights are as-
signed to assertions).
One can easily check that K is inconsistent. �

Several strategies have been proposed for reasoning with
inconsistent KBs (e.g. (Baget et al. 2016; Calvanese et al.
2010; Bienvenu and Bourgaux 2016; Trivela, Stoilos, and
Vassalos 2019). The main idea consists in computing repairs
for the ABox, where a repair is defined as a maximal (w.r.t.
set inclusion) subset of the ABox that is consistent with re-
spect to the TBox. Amongst these strategies, one can cite the
ABox Repair (AR) semantics (Lembo et al. 2010) in which
queries are evaluated over the intersection of all the repairs.
There is also the Intersection ABox Repair (IAR) seman-
tics (Lembo et al. 2010) which queries one consistent sub-
base of the ABox obtained from the intersection of all the
repairs. Furthermore, the so-called non-defeated repair se-
mantics (Benferhat, Bouraoui, and Tabia 2015) amounts to
a prioritized version of IAR semantics.

In the present paper, we shall focus on possibilistic re-
pairs, especially in the case of partially preordered knowl-
edge. Let us first recall the underpinnings of standard possi-
bilistic DL-Lite.

Possibilistic DL-Lite Knowledge Base
Possibilistic Description Logics (Hollunder 1995; Dubois,
Mengin, and Prade 2006) are extensions of standard De-
scription Logics frameworks based on possibility theory
that support reasoning with uncertain and inconsistent
knowledge. Extensions to possibilistic DL-Lite (Benferhat
and Bouraoui 2017) have recently been proposed for the
lightweight fragments DL-Lite. The main idea consists in
assigning priority degrees (or weights) to TBox axioms and
ABox assertions to express their relative certainty (or confi-
dence) in an inconsistent knowledge base. The inconsistency
degree of the knowledge base can then be computed from
those weights, making provision for possibilistic inference.

In this section, we consider a possibilistic DL-Lite knowl-
edge base WK = 〈T ,WA〉, henceforth referred to as
weighted KB. We assume axioms of the TBox T to be fully
certain (or fully reliable) while assertions in the ABoxWA
(for weighted ABox) are equipped with priority degrees de-
fined over the unit interval ]0, 1] as follows:
WA = {(f, α) | f is a DL-Lite assertion, α ∈]0, 1]}.

Assertions inWA with a priority degree α = 1 are consid-
ered as fully certain and cannot be questionable, whereas as-
sertions with a priority degree 0 < α < 1 are somewhat cer-
tain. Assertions with higher priority degrees are more certain



than those with lower priority degrees. We ignore assertions
whose degree α = 0, thus only assertions that are somewhat
certain are stated explicitly.

In the rest of this paper, for any given weighted assertional
base B, we shall denote by B∗ the set of assertions without
priority degrees. We shall denote by WK∗ the KB whose
ABox component is the set of assertions B∗.

We also assume that the weighted KBWK may be incon-
sistent. Furthermore we assume the TBox component to be
coherent and stable, thus the inconsistency ofWK is caused
by conflicts between assertions ofWA w.r.t. axioms of T .

An assertional conflict is defined as a minimal (w.r.t. set
inclusion) subset of assertions that is inconsistent with the
TBox, where inconsistency is understood in the sense of
standard DL-Lite. Formally:

Definition 1
LetWK = 〈T ,WA〉 be a weighted KB.
A sub-base C ⊆ WA is an assertional conflict inWK iff:

• WK∗ = 〈T , C∗〉 is inconsistent, and
• ∀f ∈ C∗,WK∗ = 〈T , C∗ \ {f}〉 is consistent.

We denote by C(WA) the set of all assertional conflicts
ofWA. It is important to note that computing the set of con-
flicts is done in polynomial time in DL-Lite (Calvanese et
al. 2010). Furthermore, assertional conflicts in coherent DL-
Lite knowledge bases are binary, i.e., ∀C ∈ C(WA), |C| =
2 (Calvanese et al. 2010). Thus we denote an asser-
tional conflict by a pair C = {(f1, α1), (f2, α2)}, where
(f1, α1), (f2, α2) ∈ WA, and say that assertions f1, f2 ∈
WA∗ are conflicting w.r.t. T .

Example 2
We continue Example 1 and equip the ABox with weights.
Let WK = 〈T ,WA〉 be a weighted KB, where the TBox
T = {A v¬B,B v¬C,C v¬D}, and the weighted ABox

WA =



(A(a), 0.9), (A(b), 0.9),
(B(c), 0.8),
(E(a), 0.7),
(D(b), 0.6),
(C(a), 0.5),
(D(a), 0.4),
(B(a), 0.3), (D(c), 0.3),
(C(b), 0.1)


The set of assertional conflicts ofWA is given by:

C(WA) =


{(A(a), 0.9), (B(a), 0.3)},
{(D(b), 0.6), (C(b), 0.1)},
{(C(a), 0.5), (D(a), 0.4)},
{(C(a), 0.5), (B(a), 0.3)}


�

As shall be made clear later, we are interested in the high-
est priority degree where inconsistency is met in the ABox,
known as the inconsistency degree. Formally:

Definition 2
LetWK = 〈T ,WA〉 be a weighted KB. Consider a weight
β ∈]0, 1].
Let A≥β = {f | (f, α) ∈ WA, α ≥ β} denote the β-cut of

the weighted assertional baseWA.
Let A>β = {f | (f, α) ∈ WA, α > β} denote the strict
β-cut ofWA.
The inconsistency degree ofWA, denoted by Inc(WA), is:

Inc(WA) =

 0 iff 〈T ,WA∗〉 is consistent
β iff 〈T ,A≥β〉 is inconsistent

and 〈T ,A>β〉 is consistent

Example 3
One can easily check that for β = 0.4, we have:

• A>β = {A(a), A(b), B(c), E(a), D(b), C(a)} is consis-
tent w.r.t. T , whereas

• A≥β = A>β ∪ {D(a)} is inconsistent w.r.t. T .

Therefore: Inc(WA) = 0.4. �

The inconsistency degree serves as a means for restoring
consistency of an inconsistent ABox. This is due to the fact
that only assertions whose certainty degree is strictly higher
than the inconsistency degree are included in the possibilis-
tic repair, which ensures safety of the results. Moreover,
this method has the advantage of being efficient. Indeed,
for a weighted ABox WA, Inc(WA) can be computed in
a tractable way using log2(n) (where n is the number of
different weights in |WA|) consistency checks of a classic
ABox (without weights).

The possibilistic repair, henceforth referred to as π-repair,
is formally defined as follows:

Definition 3
LetWK = 〈T ,WA〉 be a weighted KB and Inc(WA) the
inconsistency degree.
The π-repair ofWA, denoted by π(WA), is:

π(WA) = {f | (f, α) ∈ WA, α > Inc(WA)}.

The π-repair π(WA) is composed of those assertions
of WA whose priority degree is strictly higher than
Inc(WA). Hence by Definition 2, π(WA) is consis-
tent with T . Also note that priority degrees are omit-
ted in π(WA). Moreover, when WK is consistent (i.e.,
Inc(WA) = 0), then π(WA) amounts to WA∗ (i.e., the
ABox without priority degrees).

Example 4
The π-repair ofWA is:
π(WA) = {A(a), A(b), B(c), C(a), D(b), E(a)}. �

So far, we have considered weighted ABoxes such that
the weights attached to assertions can be used to induce a
total preorder on the ABox. In the next section, we scale
the results to the case where priority degrees are partially
preordered.

Partially Preordered Knowledge Base
In this section, we still assume TBox axioms are fully reli-
able. However, priorities associated with ABox assertions
are partially preordered, i.e., reliability levels associated
with some assertions may be incomparable. This is often the
case when information is obtained from multiple sources.
Thus we may not be able to decide on a preference between



two assertions f and g because according to one source, as-
sertion f should be preferred to g, whereas according to an-
other source, it should be the opposite.

Let us introduce the notion of partially ordered uncer-
tainty scale L = (U,B), defined over a non-empty set of
elements U , called a partially ordered set (POS), and a strict
partial preorder B (irreflexive and transitive relation).

Intuitively, elements of U represent priority degrees ap-
plied to ABox assertions. We assume that U contains a spe-
cial element denoted by 1, where 1 represents full certainty,
such that for all u ∈ U , 1 B u. Moreover, if u 7 v and
v 7 u, we say that u and v are incomparable and denote it
by u ∼ v.

A partially preordered DL-Lite KB is a triple KB =
〈T ,AB,L〉, where AB = {(f, u) | f is a DL-Lite asser-
tion, u ∈ U} and L = (U,B).

Given two assertions (f, u), (g, v) ∈ AB, we shall abuse
notations and write f B g to mean uB v and f ∼ g to mean
u ∼ v.

Compatible bases
A natural way of representing a partially preordered ABox is
to consider the set of all compatible ABoxes, namely those
that preserve the strict preference ordering between asser-
tions, in the spirit of the proposals made in the context of
propositional logic (Benferhat, Lagrue, and Papini 2004).
Formally:

Definition 4
Let L = (U,B) be an uncertainty scale.
LetKB = 〈T ,AB,L〉 be a partially preordered DL-Lite KB.
LetWK = 〈T ,WA〉 be a weighted KB, obtained from KB
by replacing each element u by a real number in the unit
interval ]0, 1], where:

WA = {(f, α) | (f, u) ∈ AB, α ∈]0, 1]}.

The weighted ABoxWA is said to be compatible withAB if
and only if:

∀(fi, αi), (fj , αj) ∈ WA, if fi B fj then αi > αj .

Note that compatible bases are not unique, actually there
is an infinite number thereof. In fact, the actual values of
weights do not really matter, only the ordering between as-
sertions matters, as shall be shown later.

Example 5
Let L = (U,B) be an uncertainty scale defined over the
set U = {u1, . . . , un}, n ≥ 4, such that: u4 B u3 B u1,
u4 B u2 B u1 and u2 ∼ u3.
Let KB = 〈T ,AB,L〉 be a partially preordered KB.
Let T = {A v¬B,B v¬C,C v¬D}.

AB =


(A(a), u4), (A(b), u4), (B(c), u4),
(C(a), u3), (D(b), u3), (E(a), u3),
(C(b), u2),
(B(a), u1), (D(a), u1), (D(c), u1)


Consider a set of weights {α1, . . . , αm}, m ≥ 4, such that:
1 > α4 > α3 > α2 > α1 > 0.

The following bases are compatible with AB:

WA1 =


(A(a), α4), (A(b), α4), (B(c), α4),
(C(a), α3), (D(b), α3), (E(a), α3),
(C(b), α2),
(B(a), α1), (D(a), α1), (D(c), α1)


WA2 =


(A(a), α4), (A(b), α4), (B(c), α4),
(C(b), α3),
(C(a), α2), (D(b), α2), (E(a), α2),
(B(a), α1), (D(a), α1), (D(c), α1)


WA3 =


(A(a), α3), (A(b), α3), (B(c), α3),
(C(a), α2), (D(b), α2),
(E(a), α2), (C(b), α2),
(B(a), α1), (D(a), α1), (D(c), α1)


�

Computing partially preordered repair
We are interested in computing a single repair for a par-
tially preordered ABox. However, the family of compatible
ABoxes is infinite, which means that selecting one compati-
ble ABox over others would be arbitrary. A better approach
for computing the partially preordered repair consists in:

(i) defining the compatible ABoxes (Definition 4),
(ii) computing the π-repair associated with each compati-

ble ABox (Definition 3), and finally
(iii) intersecting all π-repairs.

This ensures the safety of the results since all compatible
ABoxes are taken into account.
Definition 5
Let L = (U,B) be an uncertainty scale.
LetKB = 〈T ,AB,L〉 be a partially preordered DL-Lite KB.
Let F(AB) = {π(WA) | WA is compatible with AB}
be the set of π-repairs associated with all compatible bases
of AB.
The partially preordered repair of AB, denoted by π(AB),
is given by:

π(AB) =
⋂
{π(WA) | π(WA) ∈ F(AB)}.

Namely, π(AB) = {f | (f, u) ∈ AB,∀WA compatible
with AB, f ∈ π(WA)}.

Note that weights are omitted in the partially preordered
repair π(AB), similarly to the π-repair π(WA).

The set F(AB) is infinite because there are infinitely
many weighted ABoxes that are compatible with the par-
tially preordered ABox AB. However, we do not need to
consider all compatible bases of AB in order to compute
the partially preordered repair π(AB). Indeed, it is enough
to consider only the compatible bases (and their associated
repairs) that define a different ordering between assertions.
This is captured by the following lemma.
Lemma 1
Let WA1 be a weighted ABox. Let S = {α | (f, α) ∈
WA1} be the set of weights attached to assertions ofWA1.
Consider an assignment function ω : S −→]0, 1] such that
∀α1, α2 ∈ S, α1 ≥ α2 iff ω(α1) ≥ ω(α2).
Let WA2 = {(f, ω(α)) | (f, α) ∈ WA1} be a weighted



ABox obtained by applying the assignment function ω to the
weights attached to assertions ofWA1. Then:

π(WA1) = π(WA2).

Although ABox WA2 is different from ABox WA1,
the former preserves the ordering on the latter’s assertions.
Thus WA2 is said to be order-preserving and in this case,
the two weighted bases generate the same repairs.

Proof:
It is easy to see that Inc(WA1) = β iff Inc(WA2) = ω(β).

Note first that if C1 = {(f1, α1), (f2, α2)} and C2 =
{(f3, α3), (f4, α4)} are two conflicts of WA1, then ob-
viously C′1 = {(f1, ω(α1)), (f2, ω(α2))} and C′2 =
{(f3, ω(α3)), (f4, ω(α4))} are also two conflicts ofWA2.

By definition of function ω(.), if we have min{α |
(f, α) ∈ C1} = α1 (resp. α2), then we also have
min{ω(α) | (f, ω(α)) ∈ C′1} = ω(α1) (resp. ω(α2)).

Similarly, if min{α | (f, α) ∈ C1} > min{α | (f, α) ∈
C2}, then min{ω(α) | (f, ω(α)) ∈ C′1} > min{ω(α) |
(f, ω(α)) ∈ C′2}. Hence, if:
Inc(WA1) = β, then trivially Inc(WA2) = ω(β).
Assume Inc(WA1) = β. Let (f, α) ∈ WA1 s.t. α > β.
Then f ∈ π(WA1). By definition of ω(.), we get ω(α) >
ω(β) = Inc(WA2). This means f ∈ π(WA2).
Similarly, let (f, α) ∈ WA1 s.t. α ≤ β. Then f /∈ π(WA1).
Again by definition of ω(.), we get ω(α) ≤ ω(β) =
Inc(WA2). This means f /∈ π(WA2).
Therefore:
π(WA1) = π(WA2). �

Let us illustrate these notions on our running example.

Example 6
Thanks to Lemma 1, in order to compute the repair π(AB),
it is enough to consider only the three bases WA1, WA2

and WA3 as compatible bases of AB. Their associated π-
repairs are given by:

• π(WA1) = {A(a), A(b), B(c), C(a), D(b), E(a)}.
• π(WA2) = {A(a), A(b), B(c), C(b)}.
• π(WA3) = {A(a), A(b), B(c)}.
The partially preordered repair is:

π(AB) =
⋂

i=1...3

π(WAi) = {A(a), A(b), B(c)}.

�

The next section addresses the question of how to com-
pute π(AB) without enumerating all compatible bases.

Characterization of partially preordered repair
In order to avoid the computation of all assertional bases
that are compatible with a partially preordered ABox AB,
we provide a characterization for Definition 5 by introducing
the notion of π-accepted assertions. Basically, an assertion is
π-accepted if it is strictly preferred to at least one assertion
of each assertional conflict of AB.

Definition 6
Let L = (U,B) be an uncertainty scale.
LetKB = 〈T ,AB,L〉 be a partially preordered DL-Lite KB.
Let C(AB) denote the set of conflicts of AB.
An assertion (f, u) ∈ AB is π-accepted iff:

∀C ∈ C(AB),∃(g, v) ∈ C, g 6= f, s.t. f B g( i.e., uB v).

Note that the set of assertional conflicts C(AB) is ob-
tained using Definition 1 where the weighted KB WK and
weighted ABox WA are replaced with the partially pre-
ordered KB KB and ABox AB.

Example 7
The set of assertional conflicts of AB is:

C(AB) =


{(A(a), u4), (B(a), u1)},
{(C(a), u3), (D(a), u1)},
{(D(b), u3), (C(b), u2)},
{(C(a), u3), (B(a), u1)}


One can easily check that assertions (A(a), u4), (A(b), u4)
and (B(c), u4) are strictly preferred to at least one assertion
of each conflict. Hence they are π-accepted assertions. �

An important result of this paper is that the set of π-
accepted assertions corresponds to the repair of the partially
preordered ABox AB (where weights are omitted).

Proposition 1
An assertion (f, u) ∈ AB is π-accepted iff f ∈ π(AB).

Proof:

(i) Assume that (f, u) ∈ AB is π-accepted but f /∈ π(AB).
This means that there is a compatible baseWA ofAB and
a weight αi ∈]0, 1] s.t. (f, αi) ∈ WA and f /∈ π(WA).
Let Inc(WA) = β. By Definition 2, this means thatA≥β
is inconsistent but A>β is consistent.
Consider a conflict {(g, αj), (h, αk)} ∈ C(WA) where
assertions g, h ∈ A≥β (such conflict exists since A≥β
is inconsistent). Thus, necessarily αj ≥ β and αk ≥ β
(since A≥β is inconsistent).
By Definition 3, f /∈ π(WA) means that αi ≤ β. Hence
αj ≥ αi and αk ≥ αi. But this contradicts the fact that
(f, u) is π-accepted, which ensures that f B g or f B h,
i.e., αi > αj or αi > αk.

(ii) Assume now that assertion (f, u) is not π-accepted but
f ∈ π(AB). Assertion (f, u) is not π-accepted means
that there is a conflict {(g, v), (h, x)} ∈ C(AB) such that
f 7 g and f 7 h, i.e., u 7 v and u 7 x.
Three distinct cases need to be considered:

(a) Both g B f and hB f hold, i.e., v B u and xB u. This
means that in all compatible bases withAB, both asser-
tions g and h are preferred to f . LetWA be a compat-
ible base containing (f, αi), (g, αj) and (h, αk), with
αi, αj , αk ∈]0, 1]. Hence αj > αi and αk > αi.
Assertions g and h are conflicting means that
Inc(WA) ≥ min(αj , αk). Hence Inc(WA) ≥ αi,
thus f /∈ π(WA). But this contradicts the fact that
f ∈ π(AB).



(b) Both f ∼ g and hBf hold, i.e., u ∼ v and xBu. In this
case, it is enough to have a compatible baseWA con-
taining (f, αi), (g, αj) and (h, αk), with αi, αj , αk ∈
]0, 1], αj > αi and αk > αi. Such compatible base al-
ways exists. Hence, f /∈ π(WA). But this contradicts
the assumption that f ∈ π(AB).
Note that the case where g B f but f ∼ h is also valid
by symmetry.

(c) Both f ∼ g and f ∼ h hold, i.e., we have u ∼ v
and u ∼ x. Then it is enough to have a compatible
baseWA containing (f, αi), (g, αj) and (h, αk) where
αj > αi and αk > αi. This amounts to case (a) above.

�

Example 8
From Examples 6 and 7, we see that π-accepted asser-
tions (without weights) are exactly those of π(AB), namely:
{A(a), A(b), B(c)}. �

Properties of partially preordered repair
Thanks to the characterization provided in Definition 6, we
are able to state the following results.

Proposition 2
1. The base π(AB) is consistent w.r.t. the TBox.
2. Computing π(AB) is done in polynomial time w.r.t. the

size of the ABox.

Proof:
1. The consistency of π(AB) is straightforward. Since the
π-repair π(WA) of each compatible base WA of AB is
consistent, the intersection of all π-repairs is necessarily
consistent.

2. Regarding computational complexity, we recall that com-
puting the set of conflicts C(AB) is done in polynomial
time w.r.t. the size of AB in DL-Lite. Hence, computing
π(AB) is also done in polynomial time. Indeed, check-
ing if some assertion (f, u) ∈ AB is π-accepted amounts
to parsing all assertional conflicts in C(AB). This is done
in linear time w.r.t. the size of C(AB) (the size is itself
bounded by O(|AB|2)).

�
In addition to the two above results, by construction of

π(AB), it is straightforward to see that when the partial pre-
order B is a total preorder denoted by >, then π(AB) col-
lapses with the π-repair π(A>).

We conclude that reasoning (i.e., answering queries) from
a partially preordered inconsistent knowledge base amounts
to replacing the original ABox AB with its repair π(AB).
Indeed, we have established consistency of the repair with
respect to the TBox but also tractability of its computation.
Furthermore, we have shown that when the preference rela-
tion is a total preorder, our method amounts to computing a
standard possibilistic repair.

Conclusion
In this paper, we proposed an extension of possibilistic DL-
Lite to the case of partially preordered knowledge bases in

order to handle inconsistency. The main idea consists in in-
terpreting a partially preordered ABox as a family of com-
patible weighted ABoxes, then to compute the possibilis-
tic repair of each compatible base and finally to consider
the intersection of all possibilistic repairs to produce a sin-
gle repair for the partially preordered ABox. We proposed
a characterization by introducing the notion of π-accepted
assertions and showed that the partially preordered repair
amounts to computing the set of π-accepted assertions. Most
notably, we showed that this computation can be achieved in
polynomial time in DL-Lite.

In future work, we plan to investigate methods for enhanc-
ing the productivity of the partial repair. For instance, one
could consider the closure of possibilistic repairs associated
with the compatible ABoxes. A crucial question is whether
the computation of the closed partial possibilistic repair can
be achieved in polynomial time in DL-Lite. We expect to
show that this is indeed the case by reducing the problem to
answering an instance checking query. More generally, we
plan to investigate whether methods for computing repairs
that are polynomial in the flat and prioritized cases are also
polynomial in presence of a partial preorder.

In the context of our research project called AniAge, we
plan to apply our findings to the problem of query answer-
ing from ontologies representing Southeast Asian dances.
The idea is to ask experts in traditional dances to capture
the cultural knowledge conveyed by particular dance move-
ments, postures, costumes and props, by semantically en-
riching dance videos. This is achieved by annotating dance
videos w.r.t. the ontology (i.e., the TBox). Experts may as-
sign confidence degrees to their annotations to reflect var-
ious reliability levels of the information. This corresponds
to defining a priority relation, namely a total preorder, over
the assertions of the ABox. However different experts may
not share the same meaning of confidence scales. This can
be expressed by applying a partial preorder to the ABox.
Conflicts may emerge when the same video is annotated dif-
ferently by several experts. This stresses the importance of
handling inconsistency efficiently in order to compute query
answers.
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