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Abstract

Horn functions form a subclass of Boolean functions and ap-
pear in many different areas of computer science and math-
ematics as a general tool to describe implications and de-
pendencies. Finding minimum sized representations for such
functions with respect to most commonly used measures is a
computationally hard problem that remains hard even for the
important subclass of key Horn functions. In this paper we
provide logarithmic factor approximation algorithms for key
Horn functions with respect to all measures studied in the lit-
erature for which the problem is known to be hard.

1 Introduction

A Boolean function of n variables is a mapping from {0, 1}™
to {0, 1}. Boolean functions naturally appear in many areas
of mathematics and computer science and constitute a prin-
cipal concept in complexity theory. In this paper we shall
study an important problem connected to Boolean functions,
the so called Boolean minimization problem, which aims at
finding a shortest possible representation of a given Boolean
function. The formal statement of the Boolean minimization
problem (BM) of course depends on (i) how the input func-
tion is represented, (ii) how it is represented on the output,
and (iii) the way how the output size is measured. One of the
most common representations of Boolean functions are con-
junctive normal forms (CNFs), the conjunctions of clauses
which are elementary disjunctions of literals. There are two
usual ways how to measure the size of a CNF: the number
of clauses and the total number of literals (sum of clause
lengths). BM is known to be computationally very hard
for both measures. It was shown in (Umans 2001) that the
minimum equivalent DNF problem is ¥5-complete, while
a O(n'~¢)-inapproximability result was given in (Umans
1999).

Horn functions form a subclass of Boolean functions
which plays a fundamental role in constructive logic and
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computational logic. They are important in automated the-
orem proving and relational databases. An important feature
of Horn functions is that SAT is solvable for this class in
linear time (Dowling and Gallier 1984). A CNF is Horn
if every clause in it contains at most one positive literal,
and it is pure Horn (or definite Horn in some literature)
if every clause in it contains exactly one positive literal.
A Boolean function is (pure) Horn, if it admits a (pure)
Horn CNF representation. Pure Horn functions represent a
very interesting concept which was studied in many areas of
computer science and mathematics under several different
names. The same concept appears as directed hypergraphs
in graph theory and combinatorics, as implicational systems
in artificial intelligence and database theory, and as lattices
and closure systems in algebra and concept lattice analy-
sis (Caspard and Monjardet 2003). Consider a pure Horn
CNF® =(@vbA(bVa)AN(@vevd) AN(@veVe)
on variables a, b, ¢, d, e, where @ stands for the negation of
a, etc. The equivalent directed hypergraph is H = (V,&)
with vertex set V' = {a,b,c,d, e} and directed hyperarcs
& = {({a},b), {b},a), {a,c},d), ({a,c}, e)}. This latter
can be expressed more concisely using a generalization of
adjacency lists for ordinary digraphs in which all hyperarcs
with the same body (also called source) are grouped together
{a} : b,{b} : a,{a,c} : d, e, or can be represented as an im-
plicational (closure) system on variables a, b, ¢, d, e defined
by rules a — b,b — a, ac — de.

Interestingly, in each of these areas the problem similar to
BM, i.e. a problem of finding the shortest equivalent repre-
sentation of the input data (CNF, directed hypergraph, set
of rules) was studied. For example, such a representation
can be used to reduce the size of knowledge bases in ex-
pert systems, thus improving the performance of the system.
The above examples show that a “natural” way how to mea-
sure the size of the representation depends on the area. Six
different measures and corresponding concepts of minimal-
ity were considered in (Ausiello, D’ Atri, and Sacca 1986;
Crama and Hammer 2011): (B) number of bodies, (BA)
body area, (TA) total area, (C) number of clauses, (BC) num-



ber of bodies and clauses, and (L) number of literals. For
precise definitions, see Section 2. With a slight abuse of no-
tations we shall use (B), (BA), (TA), (C), (BC) and (L) to de-
note both the measures and the corresponding minimization
problems. The only one of these six minimization problems
for which a polynomial time procedure exists to derive a
minimum representation is (B). The first such algorithm ap-
peared in database theory literature (Maier 1980). Different
algorithms for the same task were then independently dis-
covered in hypergraph theory (Ausiello, D’ Atri, and Sacca
1986), and in the theory of closure systems (Guigues and
Duquenne 1986).

For the remaining five measures it is NP-hard to find
the shortest representation. There is an extensive literature
on the intractability results in various contexts for these
minimization problems (Ausiello, D’ Atri, and Sacca 1986;
Hammer and Kogan 1993; Maier 1980). It was shown that
(C) and (L) stay NP-hard even when the inputs are limited to
cubic (bodies of size at most two) pure Horn CNFs (Boros,
éepek, and Kucera 2013), and the same result extends to
the remaining three measures. Note that if all bodies are of
size one then the above problems become equivalent with
the transitive reduction of directed graphs, which is tractable
(Aho, Garey, and Ullman 1972). It should be noted that
there exists many other tractable subclasses, such as acyclic
and quasi-acyclic pure Horn CNFs (Hammer and Kogan
1995), and CQ Horn CNFs (Boros et al. 2009). There are
also few heuristic minimization algorithms for pure Horn
CNFs (Boros, Cepek, and Kogan 1998). It was shown that
(C) and (L) are not only hard to solve exactly but even
hard to approximate. More precisely, (Bhattacharya et al.
2010) shows that these problems are inapproximable within
a factor 218"~ agsuming NP C DTIM E(nrolvlos(m)),
where n denotes the number of variables. In addition, (Boros
and Gruber 2014) shows that they are inapproximable within

a factor 215" """ assuming P C NP even when the in-
put is restricted to 3-CNFs with O(n!*¢) clauses, for some
small € > 0. It is not difficult to see that the same proof ex-
tends to (BC) and (TA) as well. On the positive side, (C),
(BC), (BA), and (TA) admit (n — 1)-approximations and
(L) has an (%)-approximation (Hammer and Kogan 1993).
To the best of our knowledge, no better approximations are
known even for pure Horn 3-CNFs.

Given a relational database, a key is a set of attributes
with the property that a value assignment to this set uniquely
determines the values of all other attributes (Maier 1983;
Ullman 1984). Analogously, we say that a pure Horn func-
tion is key Horn if any of its bodies implies all other vari-
ables, that is, setting all variables in any of its bodies to
one forces all other variables to one. This is a weaker con-
cept than a database key, where setting the attributes in a
key to any set of values determines the values of all re-
maining attributes. Key Horn functions are a generaliza-
tion of a well studied class of hydra functions considered
in (Sloan, Stasi, and Turdn 2017). For this special class de-
fined by the additional requirement that all bodies are of size
two, a 2-approximation algorithm for (C) was presented in
(Sloan, Stasi, and Turdan 2017) while the NP-hardness for

(C) was proved in (Kucera 2017). The latter result implies
NP-hardness for hydra functions also for (BC), (TA), and
(L). It is also easy to see that (B) and (BA) are trivial in this
case.

In this paper we consider the minimization problems for
key Horn functions. Any irredundant representation of a
key Horn function has the same set of bodies, implying
that problems (B) and (BA) are in P. We show that a sim-
ple algorithm gives a 2-approximation for (TA) and a k-
approximation for (C), (BC), and (L), where k is the size
of a largest body. Our paper contains two main results. The
first one improves the (n — 1)-approximation bound for (C)
and (BC) to min{[logn] + 1, [logk] + 2} in the case of
key Horn functions. The second result improves the (7)-
approximation bound for (L) to % [log k] +2. Table 1 sum-
marizes the state of the art of Horn minimization and the
results presented in this paper for key Horn functions.

The structure of our paper is as follows: Section 2 intro-
duces the necessary definitions and notation, Section 3 pro-
vides lower bounds for the measures we introduced, while
Section 4 contains our results about approximation algo-
rithms. Due to space limitations, some of the proofs are
moved to the Appendix, while the NP-hardness of finding
a literal minimum representation is showed in the full ver-

sion of the paper (Bérczi et al. 2018).

2 Preliminaries

Let V' denote a set of variables. Members of V' are called
positive while their negations are called negative literals.
Throughout the paper, the number of variables is denoted by
n. A Boolean function is a mapping f : {0,1}V — {0, 1}.
The characteristic vector of a set Z is denoted by )z, that
is, xz(v) = 1if v € Z and 0 otherwise. We say that a set
Z C Vis atrue set of fif f(xz) = 1, and a false set
otherwise.

Forasubset() # B C Vandv € V' \ B we write B — v
to denote the pure Horn clause C' = v V' \/, . ; u. Here B
and v are called the body and head of the clause, respec-
tively. That is, a pure Horn CNF can be associated with a
directed hypergraph where every clause B — v is consid-
ered to be a directed hyperarc oriented from B to v. The set
of bodies appearing in a CNF representation ® is denoted
by Bs. We will also use the notation B — H to denote
Ay B — v. By grouping the clauses with the same body,
apure HomCNF @ = Ap . A, cpr(p) B — v can be rep-

resented as /\ .3, B — H(DB). The latter representation is
in a one-to-one correspondence with the adjacency list rep-
resentation of the corresponding directed hypergraph. For
any pure Horn function & the family of its true sets is closed
under taking intersection and contains V. This implies that
for any non-empty set Z C V there exists a unique mini-
mal true set containing Z. This set is called the closure of
7 and is denoted by F},(Z). If ® is a pure Horn CNF repre-
sentation of h, then the closure F,(Z) can be computed in
polynomial time by the following forward chaining proce-
dure. Set F(Z) := Z.In a general step, if F(Z) is a true
set then we set Fip(Z) = F(Z). Otherwise, let A C V de-
note the set of all variables v for which there exists a clause



Horn Key Horn
Measure y
Inapprox. Approx. Approx.
(B) P(Maier 1980) P(Maier 1980)
(Ausiello, D’ Atri, and Sacca 1986) __ 1 (Hammer and Kogan 1993)
(BA) 1 n—1 P
(TA) 20 (log! —°™ n) {Boros and Gruber 2014) 1, — ] (Hammerand Kogan 1993) 2
1—0(1) (Boros and Gruber 2014) ] . N .
(C) 20(log n) n— 1(Hdmmer and Kogan 1993) mln{ I’log n‘l _+_ 1, I‘log k‘l _|_ 2, k}
1—0(1) (Boros and Gruber 2014)
(BC) 20(10g n) 1, — ] (Hammer and Kogan 1993) min{ rlOg n'l +1, rlOg k‘| + 2, k}
1—0(1) ,, (Boros and Gruber 2014) (Hammer and Kogan 1993) . 108
(L) 20(log n) (%) min{ T+ [log k] + 2, k}

Table 1: Complexity landscape of Horn and key Horn minimization. Bold letters represent the results obtained in this paper.
Here n and k respectively denote the number of variables and the size of a largest body. All problems except those labeled by P
are NP-hard. Inapproximability bounds for Horn minimization hold even when the size of the bodies are bounded by k (> 2).

B — vof ® with B C Fi(Z) and v ¢ Fi(Z), and set
Fit(Z) := Fi(Z)U A. The result Fy(Z) does not depend
on the particular choice of the representation ®, but only on
the underlying function h, that is, Fo(Z) = Fp,(2).

A pure Horn function h is key Horn if it has a CNF
representation of the form A,z B — (V' \ B) for some
B C 2V \ {V'}. We shall refer to h as h. Assume now that
® is a pure Horn CNF of the form A", B; — H; where
B; # Bj for i # j. Note that the number of clauses in the
CNF is c¢ = Y .-, |H;|. The size of the formula can be
measured in different ways:

e (B) number of bodies: |®|5 := m,

e (BA) body area: |®|p4 :=> ", |Bil,

o (TA) total area: |®|74 := > " (|B;| + |Hi|),

¢ (C) number of clauses (i.e., hyperarcs): |®|c := cg,

e (BC) number of bodies and clauses: |®|pc = m +
co = 3L (1Hil + 1),

e (L) number of literals: |®|, := >, ((|B;|+1)-|H;|).

These measures come up naturally in connection with di-
rected hypergraphs, implicational systems, and CNF rep-
resentations. For example,(L) corresponds to the size of a
CNF when encoded in DIMACS format, a format that is
widely accepted as the standard format for boolean formu-
las in CNF. The number of clauses (C) is an important pa-
rameter for SAT solvers when the Horn formula in question
encodes a constraint which is part of a larger problem. Sim-
ilarly, (TA) is the space needed to store an adjacency list of
the corresponding hypergraph, and might be an important
parameter for an efficient implementations. The Horn mini-
mization problem is to find a representation that is equivalent
to a given Horn formula and has minimum size with respect
to |- |« where * denotes one of the aforementioned functions.

3 Lower bounds for the size of optimal
solutions

The present section provides some simple reductions of the
problem and lower bounds for the size of an optimal solu-
tion. For a family B C 2V \ {V}, we denote by B~ the
family of minimal elements of B. Recall that hi denotes the
function defined by

\I/B:/\B%(V\B). ¢))

BeB

Lemma 1. For any measure () and for any B C 2V \ {V'},
there exists a | - |«-minimum representation of hg that uses
exactly the bodies in B*.

Proof. Take a | - |,-minimum representation ® for which
|Bs \ B*| is as small as possible. First we show By C B+.
Assume that B € Bg \ B+. As B is a false set of h, there
must be a clause B’ — v in U that is falsified by x g, im-
plying that B’ C B. Therefore there exists a B” € B+ such
that B” C B’ C B. If we substitute every clause B — v
of ® by B” — v, then we get another representation of hy
since B” — v is a clause of ¥g. Meanwhile, the | - |, size
of the representation does not increase while |Bg \ B*| de-
creases, contradicting the choice of ®.

Next we prove By 2O B~. If there exists a B € B+ \
Bs, then B is a true set of ® while it is a false set of hp,
contradicting the fact that ® is a representation of hg. [

Recall that a Sperner family is family of subsets of a fi-
nite set in which none of the sets contains another. Lemma 1
has two implications. It suffices to consider Sperner fami-
lies of bodies defining key Horn functions as an input, and
more importantly, it is enough to consider CNFs using bod-
ies from the input Sperner family when searching for min-
imum representations. For non-key Horn functions, this is
not the case. For example, the function defined by implica-
tions ab — cd, abcd — e has exactly two false sets, namely
{a,b} and {a, b, c,d}, and both of these sets have to appear
as bodies in any representation of the function, although one
of them contains the other.



From now on we assume that B is a Sperner family. We
also assume that Jz.3 B = V and (g5 B = (. Indeed,
if a variable v € V'\ |Jcz B is not covered by the bodies,
then there must be a clause with head v and body in B in any
minimum representation of hg, and actually one such clause
suffices. Furthermore, if v € [ BeB B, then we can reduce
the problem by deleting it. None of these reductions affects
the approximability of the problem. Recall that the size of
the ground set is denoted by |V'| = n, while |B| = m. The
size of an optimal solution with respect to measure function
||« is denoted by O PT, (B). Using these notations Lemma 1
implies OPTp(B) = m and OPTpa(B) = Y pcplB|.
Therefore the minimization problems (B) and (BA) are solv-
able in polynomial time. For the remaining measures we
prove the following simple lower bound.

Lemma 2. OPT.(B) > m for all measures *, and
OPT.(B) > n for x € {TA,C,BC,L}. Furthermore,
OPTL(B) > max{n(d + 1),2m}, where ¢ is the size of
a smallest body in B.

For a pair S,T C V of sets, let price,(S,T) denote the
minimum |-|.-size of a pure Horn CNF & for which B C B
and T C F(9), that is,

price, (S, T) = mqin{@h | Bo CB,T C Fo(S)}. (@

The following lemma plays a key role in our approxima-
bility proofs.

Lemma 3. Let B = By U --- U By be a partition of B
and let B; € B; fori = 1,...,q. Then OPT,(B) >
i min{price,(B;,B) | B € B\ B;} for all six mea-

sures *.

Proof. Take a minimum representation ® with respect to
| - |« which uses bodies only from 5. Such a representation
exists by Lemma 1. We claim that the contribution of the
clauses with bodies in 5; to the total size of ® is at least
min{price,(B;,B) | B € B\ B;} foreachi = 1,...,q.
This would prove the lemma as the B;’s form a partition of
B.

To see the claim, take an index ¢ € {1,...,q} and let
B’ be the first body (more precisely, one of the first bodies)
not contained in 5; that is reached by the forward chaining
procedure from B; with respect to ®. Every clause that is
used to reach B’ from B; has its body in B; and their contri-
bution to the size of the representation is lower bounded by
price, (B;, B'), thus concluding the proof. O

4 Approximability results for (TA), (C),
(BC), and (L)
Given a Sperner family B C 2"\ {V'}, we can associate with
it a complete directed graph Dg by defining V (Dg) = B
and F(Dg) = B x B. We refer to Dy as the body graph of
B. For any subset E' C E(Dg), define

/\ B—(B'\B). 3)

(B,B")EE’

@El =

Note that if E' C E(Dg) forms a strongly connected span-
ning subgraph of Dy, then @/ is a representation of hy.

Lemma 4. If E' is a Hamiltonian cycle in Dg, then ® g
defined in (3) provides a k-approximation for all measures,
where k is an upper bound on the sizes of bodies in B.

In fact, for (B) and (BA) (3) gives an optimal representa-
tion for any strongly connected spanning E’. Furthermore,
if £’ is a Hamiltonian cycle, we get a 2-approximation for
(TA) based on the fact that the total area of any representa-
tion is lower bounded by } ;5 | B|.

Theorem 1. If E' is a Hamiltonian cycle in Dg, then ® g
defined in (3) provides a 2-approximation for (TA).

Proof. |®plra = Y7 (1Bl + |Biy1 \ Bil) <
22?:1 |BL| < QOPTTA(B). O

The observation that a strongly connected subgraph of
the body graph corresponds to a representation of hg, as in
(3), suggests the reduction of our problem to the problem
of finding a minimum weight strongly connected spanning
subgraph (MWSCS) in a directed graph with arc-weight
price, (B, B’) for (B,B’) € E(Dg). The optimum solu-
tion to this problem is an upper bound for the minimum
| - |«-size of a representation of hp. As there are efficient
constant-factor approximations for MWSCS (Frederickson
and J4ja 1981), this approach may look promising. There
are however two difficulties: for measure (L), we show that
computing price; is NP-complete (Bérczi et al. 2018), and
even when it is efficiently computable (for measures (C) and
(BQC)), the upper bound obtained in this way may be off by
a factor of 2(n) from the optimum (see (Bérczi et al. 2018)
for a construction).

In what follows, we overcome these difficulties. An in-
arborescence is a directed, rooted tree in which all edges
point towards the root. An in-arborescence is called span-
ning if the underlying tree is spanning. A branching is a
directed forest in which every connected component forms
an in-arborescence. For (C), instead of a strongly connected
spanning subgraph, we compute a minimum weight span-
ning in-arborescence and extend that to a representation of
hg. The same approach works for (BC) as well. For (L), the
situation is more complicated. First, we develop an efficient
approximation algorithm for price;. Next, we compute a
minimum weight spanning in-arborescence where its root
is pre-specified. Finally, we extend the corresponding CNF
to a representation of hi. We show that the cost of the ar-
borescences built is at most a multiple of the optimum by a
logarithmic factor, which in turn ensures the improved ap-
proximation factor.

4.1 Clause and body-clause minimum
representations

In this section we consider (C) and (BC) and show that

the simple algorithm described in Procedure 1 provides the

stated approximation factor. We note that a minimum weight

spanning in-arborescence of a directed graph can be found
in polynomial time, see (Chu 1965; Edmonds 1967).

Lemma 5. First we observe that price~(B, B') = |B’\ B
for B,B' € B. Next, let T denote a minimum price-
weight spanning in-arborescence in Dpg. Then |®7|c <



Procedure 1: Approximation of (C) and (BC)

1 Determine a minimum price-weight spanning
in-arborescence T of Dj.
/* Denote by By the body corresponding to the root of
T. x/

2 Olltpllt b = q)?/\ (B() — (V \ Bo))
/* Here ®7 is defined as in (3). */

[log k]|OPTc(B) + max{0,m — k}, where k is an upper
bound on the sizes of bodies in B.

Proof. We construct a subgraph 7" of Dp such that
(i) it is a spanning in-arborescence, and (ii) |Pr|c <
[log k]OPT¢(B)+ max{0, m — k}. This proves the lemma
as the weight of T upper bounds the weight of T.

We start with the digraph 77 on node set B that has
no arcs. In a general step of the algorithm, 7; will denote
the graph constructed so far. We maintain the property that
T; is a branching, that is, a collection of node-disjoint in-
arborescences spanning all nodes. In an iteration, for each
such in-arborescence we choose an arc of minimum weight
with respect to prices that goes from the root of the in-
arborescence to some other component. We add these arcs
to T3, and for each directed cycle created, we delete one of
its arcs. This results in a graph 7}, with at most half the
number of weakly connected components that 7; has, all
being in-arborescences. We repeat this until the number of
components becomes at most max{1, m/k}. To reach this,
we need at most [log k] iterations. Finally, we choose one
of the roots of the components and add an arc from all the
other roots to this one, obtaining a spanning in-arborescence
T.

It remains to show that 1" also satisfies (ii). In the final
stage, we add at most max{1,m/k} — 1 arcs to T, which
corresponds to at most k(max{1,m/k}—1) < max{0, m—
k} clauses in ®7. Now we bound the rest of ®. In iteration
i, components of T; define a partition B = By U --- U B,
Let us denote by B; the body corresponding to the root of
the arborescence with node-set ;. Let us consider the arcs
{(B;,B}) | j = 1,...,q} chosen to be added in the ith
iteration. Now we obtain

a
P, \1lc < me’ceC(Bj, Bj)
le
= ; Brerg{lBj pricec(Bj, B)
< OPT:(B).

The first inequality follows from the construction of 7'. The
equality follows from the criterion to choose the arcs to be
added. The last inequality follows from Lemma 3. Since we
have at most [log k| iterations, the lemma follows. O

Theorem 2. For key Horn functions, there exists a polyno-
mial time min{[logn] + 1, [logk] + 2, k}-approximation

algorithm for (C) and (BC), where k is an upper bound on
the sizes of bodies in B.

Proof. We first show that ® provided by Procedure 1 is a
min{[logn] + 1, [log k] + 2}-approximation for (C) and
(BC). Note that ® is a subformula of Ui defined by (1)
since all bodies in ® are from 5. Furthermore, by our con-
struction, Fig(B) = V for all B € B. This implies that the
output ® represents hg. Using Lemma 5 and the fact that
we added |V \ By| < n clauses to @7 in Step 2, we ob-
tain |®|c < [log k]OPT¢(B) + max{0,m — k} + n. By
Lemma 2, this gives a ([log k] + 2)-approximation, while
setting k = n gives a ([logn] + 1)-approximation. By
Lemma 1, OPTgc(B) = |B| + OPT¢(B). Since |®|pc =
|B| + |®|c, the same approximation ratios as above follow
for (BC) as well.

Finally, Lemma 4 provides a different CNF that is a k-
approximation for (C) and (BC). O]

4.2 Literal minimum representations

In this section we consider (L). The first difficulty that we
have to overcome is that, unlike in the case of (C) and (BC),
computing price;, is NP-hard (Bérczi et al. 2018). To cir-
cumvent this difficulty, we give an O(1)-approximation al-
gorithm for price; (S, S’) for any pair of sets S, 5" C V.
Note that if S does not contain a body B € B then
price; (S,S") = oo, hence we assume that this is not the
case. We first analyze the structure of a pure Horn CNF &
attaining the minimum in (2) for (L). Starting the forward
chaining procedure from S with respect to ®, let W; denote
the set of variables reached within the first ¢ steps. That is,
S=Wyg C Wy C---CW; OS5 We choose ® in such
a way that ¢ is as small as possible (among those formulas
minimizing (2) for (L)). Let B; € B be a smallest body con-
tained in W; for¢ = 0,...,t — 1 and set B; := 5’.
Proposition1. B, Z W;_; fori=1,...t.

Proposition 1 immediately implies that |By| > |Bi| >
el > |Bt,1 |
Pl'OpOSitiOll 2. Wi+1 \ Wz - B,j+1 fori = 0, . 7t — 1

By Proposition 2, Wi \ W; = Bi1 \ (SUU_, By).
Define () := A= B; — (Biy1 \ (SUUj_; B;)). Ob-
serve that ®(1) has a simple structure which is based on a
linear order of bodies By, ..., B;.

Proposition 3. |®(1|, = |®|;.

The proposition implies that ®() also realizes
price; (S, S"). We know no efficient algorithms to compute
®() | thus, using the next two propositions, we define a
CNF that approximates ®(1) well and can be computed
efficiently.

Let 79 = 0 and for j > 0 let 7; denote the smallest in-

dex for which |B;,| < |B;,_,|/2. Let r — 1 be the largest
value for which B; __, exists and set B;_ := S’. Now define

r—1 ] .
@ = N'Z) Bi, = (Bi,,, \ (SUUj—y Bi,))- It is easy
to see that Fip2) (S) 2 5.

Proposition 4. |®3)|, < 2| .



Although ®() gives a 2-approximation for |®|y, it is
not clear how we could find such a representation. Define
B .= NIZB;, — (By,,, \ (SUBy,)). The only dif-
ference between <I>(2) and ®®) is that we add unnecessary

clauses to the representation. However, the next claim shows
that the size of the formula cannot increase a lot.

Proposition 5. |®()|, < 2Z|$(2)|,.
By Propositions 3, 4 and 5,

27

54
2O, < ZHje|, < o), = el @

_17

Lemma 6. There exists an efficient algorithm to construct
a CNF A(S, S") such that |A(S,S")|r < 52 price, (S, S"),
BA(S s C B, and FA(S S’)(S) 045

Proof. We consider an extension of the body graph by
adding S’ to V(Dg). We also define arc-weights by setting
w(B,B’) :=|B’'\ (SUB)|(|B|+1) for B,B’ € BU{S’}.
Let By be a smallest body contained in S (as defined before
Proposition 1). Compute a shortest path P from By to S’
and define

AS,S)= /N B—=(B\(SUB).

(B,B")eP

Note that, by definition, |A(S,S")|r is the weight of the
shortest path P, while \<I>(3)| 1 is the length of one of the
paths from S to S’. By (4), |A(S,S")|, < [®®)|, <
53|®|;. That is, A(S,S’) provides a 2%-approximation
for price; (S,S’) as required, finishing the proof of the
lemma. O

We prove that the algorithm described in Procedure 2 pro-
vides the stated approximated factor for (L). We note that
a minimum weight spanning in-arborescence of a directed
graph rooted at a fixed node can be found in polynomial
time, see (Chu 1965; Edmonds 1967). Let B, be a small-
estbody in B, let § := | Bpinl, and denote B’ = B\ { Buin }-
We define the weight of an arc (B, B’) in the body graph to
be w(B, B') = |A(B, B")|, for (B, B’) € E(Dg).

Procedure 2: Approximation of (L)
1 Let By, be a smallest body in B.
2 Setw(B, B’) = |A(B, B’)| for (B, B’) € E(Dg).
3 Determine a minimum w-weight spanning

in-arborescence T of Dy such that T is rooted at
Bmin~

4 Output
b= /\(B7B,)67 A(B, B’) A (Bmin — (V' \ Bmin))-
/+ Here A(B, B’) is defined as in (5). */

Lemma 7. Let T denote a minimum w-weight spanning in-
arborescence in Dg such that T is rooted at Byin. Then

Ns,pryer AB, B’)‘L < (LB logk] + 1) OPTL(B),
where k is the size of a largest body in B.

Proof. We construct a subgraph 7" of Dp such that (i)
it is a spanning in-arborescence rooted at B, and (ii)
|/\(B,B’)ETA(B’B/)|L < (2[logk] + 1)OPTy(B). This
clearly proves the lemma as the weight of T" upper bounds
the weight of T'.

We start with the directed graph 77 on node set B that
has no arcs. In a general step of the algorithm, 7; will de-
note the graph constructed so far. We maintain the prop-
erty that 7; is a branching, that is, a collection of node-
disjoint in-arborescences spanning all nodes. In an iteration,
for each such in-arborescence we choose an arc of minimum
weight with respect to w that goes from the root of the in-
arborescence to some other component. We add these arcs to
T;, and for each directed cycle created, we delete one of its
arcs. This results in a graph 754, with at most half the num-
ber of weakly connected components that 7; has, all being
in-arborescences. We repeat this until the number of com-
ponents becomes at most max{1,m/k?}. To reach this, we
need at most [log k2] < 2[log k] iterations. Finally, we add
an arc from all the other roots to By, and delete all the
arcs leaving Bp,;,, obtaining a spanning in-arborescence T’
rooted at B,in.

It remains to show that 7" also satisfies (ii). In the final
stage, we add at most max{1,m/k?} arcs to T' whose to-
tal weight is upper bounded by (k + 1)d max{1,m/k?} <
max{nd,2m} < OPTL(B), where the last inequal-
ity follows by Lemma 2. Now we bound the rest of
Ns,5yer A(B, B'). Initeration i, components of T; define
a partition B = B U---U B,. Let us denote by B; the body
corresponding to the root of the arborescence with node-set
B;. Let us consider the arcs {(B;, B}) | j = 1,...,q} cho-
sen to be added in the 7th iteration. Now we obtain

A A(B, B') :Zw(Bj,B;) =

(B,B")ET;11\T: . J=1
- 54 &
— BIenBl{lB w(B;, B) < 17 ZBI&RBJ price,(B;, B) <

54
< —
< 17OPTL(B),

where the first and second inequalities follow by Lemmas
6 and 3, respectively. Since we have at most 2[log k] itera-
tions, the lemma follows.

Theorem 3. For key Horn functions, there exists a polyno-
mial time min{ %% [log lﬂ + 2, k}-approximation algorithm
for (L), where k: lS the size of a largest body in B.

Proof. We first show that ® provided by Procedure 2 is a
(L% Tlog k] + 2)-approximation for (L). Note that ¥ is a
subformula of WUy defined by (1) since all bodies in ® are
from B. Furthermore, by our construction, Fg(B) = V for
all B € B. This implies that the output ® represents hg.
By Lemma 2, we add at most n(§ + 1) < OPTy(B) lit-
erals to A\ g e A(B, B') in Step 4. This, together with
Lemma 7, implies the theorem. O
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Appendix
Conclusions

In this paper we study the class of key Horn functions which
is a generalization of a well-studied class of hydra func-
tions (Sloan, Stasi, and Turan 2017; Kucera 2017). Given a
CNF representing a key Horn function, we are interested in
finding the minimum size logically equivalent CNF, where
the size of the output CNF is measured in several different
ways. This problem is known to be NP-hard already for hy-
dra CNFs for most common measures of the CNF size.

The main results of this paper are two approximation al-
gorithms for key Horn CNFs, one for minimizing the num-
ber of clauses, and the other for minimizing the total number
of literals in the output CNF. Both algorithms achieve a log-
arithmic approximation bound with respect to the size of the
largest body in the input CNF (denoted by k). This parame-
ter can be also defined as the size of the largest clause in the
input CNF minus one. Note that k is a trivial lower bound
on the number of variables (denoted by n).

These algorithms are (to the best of our knowledge) first
approximation algorithms for NP-hard Horn minimization
problems that guarantee a sublinear approximation bound
with respect to k. It follows, that both algorithms also guar-
antee a sublinear approximation bound with respect to n.
There are two approximation algorithms for Horn minimiza-
tion known in the literature, one for general Horn CNFs
(Hammer and Kogan 1993), and one for hydra CNFs (Sloan,
Stasi, and Turdn 2017), but both of them guarantee only a
linear (or higher) approximation bound with respect to k (see
Table 1 and the relevant text in the introduction section for
details).

Although our analysis of Procedure 1 provides an approx-
imation factor of min{[logn] + 1, [log k] + 2, k} for (C)



and (BC), no example is known for which the solution is
tight. We believe that the proposed algorithm (possibly with
slight modifications) could be used to obtain a constant fac-
tor approximation for (C) and (BC). Similarly, no example
is known for which the solution provided by Procedure 2 at-
tains a tight approximation factor. A better analysis of these
procedures possibly leading to a constant factor approxima-
tion or a better lower bound than the one given in Lemma 3
is subject future research.
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Proof of Lemma 2. By definition, | - | 5 is a lower bound for
all the other measures, implying OPT,(B) > OPTp(B) =
m.

To see the second part, observe that | - | is a lower bound
for the three other measures. Therefore it suffices to prove
OPT¢(B) > n. By the assumption that for every v € V
there exists a B € 3 not containing v, we can conclude by
the fact that the closure Fj,,,(B) = V and by the way the
forward chaining procedure works that every CNF represen-
tation of hp must contain at least one clause with v as its
head. This implies OPT¢(B) > n.

To see the last part note that every variable v € V is the
head of at least one clause, the body of which is of at least
size § > 1. Furthermore, since every body appears at least
once and all clauses are of size at least 2, the claim follows.

O

Proof of Lemma 4. By Lemma 1, there exists a minimum
representation ® of hp such that By = B. Since |B’ \ B|
is at most k for all arcs (B, B’) € E’, the statement fol-
lows. O

Proof of Proposition 1. Suppose to the contrary that B; C
W;_1 for some 1 < i <t — 1. By the definition of forward
chaining, every variable v € W, \ W, is reached through a
clause B — v where BN (W; \ W;_1) # ). Now substitute
each such clause by B; — v. As |B;| < |B], the | - |, size
of the CNF does not increase. However, the number of steps
in the forward chaining procedure decreases by at least one,
contradicting the choice of ®. Finally, S’ = By C W;_;
would contradict the minimality of ¢. O

Proof of Proposition 2. Let i be the smallest index that vio-
lates the condition. Take an arbitrary variable v € W;11 \
W;. Then v is reached in the (¢ + 1)th step of the for-
ward chaining procedure from a body of size at least |B;|.
If we substitute this clause by B; 1 — v, the resulting CNF
still satisfies Fp(By) 2 S’ but has smaller | - |1, size by
|Bi+1| < |Bil, contradicting the minimality of ®. O

Proof of Proposition 3. Take an arbitrary variable v €
Biy1\ (SU U;Zl Bj) for some ¢ = 0,...,t — 1. By the
observation above, v € W1 \ W;. This means that ® has at
least one clause entering v, say B — v, for which B C W,
and so | B| > | B;|. However, ®(1) has exactly one clause en-
tering v, namely B; — v. This implies that |<I>(1)|L <|®|L,
and equality holds by the minimality of ®. O

Proof of Proposition 4. Take an arbitrary variable v €
Bi, ., \(SUU,_, B;,) forsome j = 0,...,r—1.Then both
®M) and ®@ contain a single clause entering v. Namely,
v is reached from B;,,,_; in ) and from B;, in ®).
By the definition of the sequence ig,%1,...,%,—1, We get
|Bi,| < 2|Bj,,,~1|, concluding the proof. O

Proof of Proposition 5. Take an arbitrary variable v that ap-
pears as the head of a clause in the representation ®®).
Let j be the smallest index for which v € B;,,, \ (SU

’_, Bi,). Then ) contains a single clause entering v,
namely B;; — v. On the other hand, the set {B;, —
vl U{B;, - v | ¢ =j54+2,...,7r — 1} contains all
the clauses of ®(3) that enter v. By the definition of the
sequence g, i1,...,0—1, we get ZZ;;H(\BM +1) =

. r—1

(r=3=2)+2 2 21Bi| < [log|Bi;,,[]+|Bi;|/2-1 <
llog | By, |] + |Bi,|/2 — 2. We get at most this many extra
literals in ®®) on top of the |B;,| + 1 literals in ®(*). As
logz|/(x+1)+x/(2(x+ 1)) —2/(z+ 1) < 10/17 for
T € Z4, the statement follows. O



