
Compiling SL representations of Boolean functions into OBDDs

Ondřej Čepek, Miloš Chromý∗

Department of Theoretical Computer Science and Mathematical Logic
Faculty of Mathematics and Physics, Charles University

Prague, Czech Republic
{cepek,chromy}@ktiml.mff.cuni.cz

Abstract

Given a truth table representation of a Boolean function f the
switch-list (SL) representation of f consists of the function
value f(0) at the all-zero vector and the list of all Boolean
vectors from the truth table of f which have a different func-
tion value then the preceding vector. The main result of this
paper is a polynomial time compilation algorithm from a SL
representation of a given function f to an Ordered Binary De-
cision Diagram (OBDD) representation of f where the output
OBDD respects some prescribed order of variables possibly
different than the input order used by the SL representation
of f . Furthermore we provide a lower bound construction
which shows that the presented compilation algorithm yields
an asymptotically optimal size OBDD of f respecting the pre-
scribed output order of variables.

1 Introduction
A Boolean function on n variables is a mapping from
{0, 1}n to {0, 1}. There are many different ways in which
a Boolean function may be represented. Common represen-
tations include truth tables (TT – with 2n rows where a
function value is explicitly given for every binary vector),
list of models (MODS – list of binary vectors on which the
function evaluates to 1), various types of Boolean formu-
las (including CNF and DNF representations), various types
of binary decision diagrams (BDDs, FBDDs, OBDDs), and
Boolean circuits.

The task of transforming one of the representations of
a given function f into another representation of f (e.g.
transforming a MODS representation into an OBDD or
a circuit into a DNF) is called knowledge compilation.
For a comprehensive review paper on knowledge compi-
lation see (Darwiche and Marquis 2002), where a Knowl-
edge Compilation Map is introduced. This map systemati-
cally investigates different representation languages with re-
spect to the complexity of common transformations (nega-
tion, conjunction, disjunction, conditioning, forgetting) and
common queries (consistency check, validity check, clausal
and sentential entailment, model counting, model enumera-
tion). The time complexity of particular transformations and

∗Contact author

queries of course differs dramatically from trivial to NP-hard
depending on the chosen representation language.

In this paper we shall study less common representations
of Boolean functions, namely the representation by inter-
vals of truepoints and the closely related representation by
switch-lists. Let f be a Boolean function and let us fix some
order of its n variables. The input binary vectors can be now
thought of as binary numbers (with bits in the prescribed or-
der) ranging form 0 to 2n − 1. An interval representation is
then an abbreviated TT or MODS representation, where in-
stead of writing out all the input vectors (binary numbers)
with their function values, we write out only those binary
numbers x for which f(x) = 1 (x is a truepoint of f) and
simultaneously f(x−1) = 0 (x−1 is a falsepoint of f) and
those binary numbers y for which f(y) = 1 (y is a truepoint
of f) and simultaneously f(y + 1) = 0 (y + 1 is a false-
point of f). Thus the function is represented by an ordered
list of such pairs [x, y] of integers, each pair specifying one
interval of truepoints. Note that x = y for those pairs which
represent an interval with a single truepoint.

Interval representation of Boolean functions was intro-
duced in (Schieber, Geist, and Zaks 2005), where the input
was considered to be a function represented by a single in-
terval (two n-bit numbers x, y) and the output was a DNF
representing the same Boolean function f on n variables,
i.e. a function which is true exactly on binary vectors (num-
bers) from the interval [x, y]. This knowledge compilation
task originated from the field of automatic generation of test
patterns for hardware verification (Lewin et al. 1995; Huang
and Cheng 1999). In fact, the paper (Schieber, Geist, and
Zaks 2005) achieves more than just finding some DNF rep-
resentation of the input 1-interval function – it finds in poly-
nomial time the shortest such DNF, where “shortest” means
a DNF with the least number of terms. Thus (Schieber,
Geist, and Zaks 2005) combines a knowledge compila-
tion problem (transforming an interval representation into
a DNF representation) with a knowledge compression prob-
lem (finding the shortest DNF representation).

In (Čepek, Kronus, and Kučera 2008) the reverse knowl-
edge compilation problem was considered. Given a DNF,
decide whether it can be represented by a single interval
of truepoints with respect to some permutation of variables,

and in the affirmative case output the permutation and the
two n-bit numbers defining the interval. This problem can
be easily shown to be co-NP hard in general (it contains tau-
tology testing for DNFs as a subproblem), but was shown
in (Čepek, Kronus, and Kučera 2008) to be solvable in poly-
nomial time for tractable classes of DNFs (where tractable
means that DNF falsifiability can be decided in polyno-
mial time for the inputs from the given class). The algo-
rithm presented in (Čepek, Kronus, and Kučera 2008) runs
in O(n`f(n, `)) time, where n is the number of variables
and ` the total number of literals in the input DNF, while
f(n, `) is the time complexity of falsifiability testing on a
DNF on at most n variables with at most ` total literals. This
algorithm serves as a recognition algorithm for 1-interval
functions given by tractable DNFs. This result was later ex-
tended in (Kronus and Čepek 2008) to monotone 2-interval
functions, where anO(`) recognition algorithm for the men-
tioned class was designed. Recently, these results were fur-
ther extended to k-interval functions for arbitrary k (a func-
tion is k-interval if there exists a permutation of variables for
which the interval representation consist of at most k inter-
vals). Paper (Čepek and Hušek 2017) presents a recognition
algorithm which runs in polynomial time in the length of the
input DNF for any constant k (the complexity is of course
exponential in k).

In fact, (Čepek and Hušek 2017) departs from inter-
val representations and introduces switch-list representa-
tions which we shall use in this paper. A switch point is
a vector (binary number) x such that f(x − 1) 6= f(x).
A switch-list is an ordered list of all switches of a given
function. A switch-list of f together with the function value
f(0, 0, . . . , 0) forms a switch-list representation of f .

Switch-list representations have an added advantage over
the truepoint intervals representations. Given a DNF, its log-
ical negation can be represented by a CNF of the same length
(and vice versa), and the transformation is purely mechan-
ical (replace disjunctions by conjunctions, conjunctions by
disjunctions, and negate all literals). Clearly, both the func-
tion and its negation have the same switch-lists and the rep-
resentations differ only by opposite values of f(0, 0, . . . , 0).
Thus the results relating switch-list representations to DNFs
can be easily rewritten into results relating them to CNFs.
This is not true for interval representations because an in-
terval of truepoints turns into an interval of falsepoints by
negation, and hence the truepoint intervals representations
of a function and its negation significantly differ, and even
the number of intervals may be different (although the differ-
ence is at most one). For this reason, we shall use the switch-
list representations throughout this paper. It is not a limiting
assumption in any way: clearly, the list of intervals can be
easily compiled in linear time from the list of switches and
the function value f(0, 0, . . . , 0), and vice versa.

Switch-list representations directly support many queries
from (Darwiche and Marquis 2002) in polynomial time.
Validity and consistency checks are trivial (constant time),
clausal entailment, implicant check and model counting
take linear time (w.r.t. the input size), and model enumer-
ation takes linear time w.r.t. the output size (Čepek and

Chromý 2019). On the other hand, switch-list representa-
tions do not directly support sentential entailment and equiv-
alence check. It is a well known fact (Darwiche and Mar-
quis 2002) that OBDDs with a fixed order of variables (i.e.
input OBDDS respect the same order) do support both of
these queries in polynomial time. Thus, to guarantee the
same for switch-list representations, it suffices to design a
polynomial time compilation algorithm from switch-lists to
OBDDs. Such an algorithm is the main result of this paper.
In fact the presented polynomial time algorithm compiles a
switch list to an OBDD which respects an arbitrary given
order of variables different form the order on the input. This
of course implies that sentential entailment and equivalence
check can be decided in polynomial time even for switch-list
representations defined on two distinct variable orders.

As a final remark let us note that the combination of re-
sults from (Čepek, Kronus, and Kučera 2008) and (Schieber,
Geist, and Zaks 2005) gives a polynomial time minimiza-
tion algorithm for the 1-interval subclass of functions in-
side any tractable class of functions given by DNFs (and
similarly for CNFs but we shall recall results in the DNF
context). DNF minimization is a notoriously hard problem
(Σp2-complete (Umans 2001)) when there is no restriction
on the input. It is also long known that this problem is
NP-hard for some tractable classes of DNFs such as Horn
DNFs (Ausiello, D’Atri, and Sacca 1986; Hammer and Ko-
gan 1993) and even cubic Horn DNFs in (Boros, Čepek,
and Kučera 2013). On the other hand, there exists a hier-
archy of subclasses of Horn DNFs for which there are poly-
nomial time minimization algorithms, namely acyclic and
quasi-acyclic Horn DNFs (Hammer and Kogan 1995), and
CQ Horn DNFs (Boros et al. 2009). Suppose we are given
a Horn DNF. We can test in polynomial time using the al-
gorithm from (Čepek, Kronus, and Kučera 2008) whether
it represents a 1-interval function and then (in the affirma-
tive case) use the algorithm from (Schieber, Geist, and Zaks
2005) to construct a minimum DNF representing the same
function as the input DNF. Thus we have a minimization
algorithm for 1-interval Horn DNFs. It is an interesting re-
search question in what relation (with respect to inclusion)
is this class with respect to the already known hierarchy
of polynomial time compressible subclasses of Horn DNFs
(acyclic Horn, quasi-acyclic Horn, and CQ-Horn DNFs).

2 Definitions and notation
A Boolean function (function in short) in n propositional
variables is a mapping f : {0, 1}n → {0, 1}. Here x ∈
{0, 1}n is a Boolean vector (vector in short).

A Binary Decision Diagram (BDD) is a rooted directed
graph with two terminals labeled 0 and 1. Each non-terminal
node is a decision node with exactly two outgoing edges.
Each decision node corresponds to a propositional variable
and the two outgoing edges correspond to the assignments
of 0 and 1 to this variable. Each directed path from the root
to a terminal thus corresponds to a (possibly partial) assign-
ment of truth values to variables and the terminal specifies
the function value for such an assignment. Let < be a total
order on the set of propositional variables. An Ordered Bi-

nary Decision Diagram (OBDD) with respect to< is a BDD
such that on every path from the root to a terminal no two
decision nodes correspond to the same variable and more-
over every such path respects the prescribed order <. The
second condition means that there does not exist a directed
path p from the root to a terminal and two variables x < y,
such that the decision node corresponding to y precedes the
decision node corresponding to x on path p. If the underly-
ing graph of BDD is a tree, we say it is a Binary decision
Tree (BDT).

Finally, let us define switch-list representations. Again, let
< be a total order on the set X of n propositional variables,
and let f be a function on variables fromX . Consider vector
x ∈ {0, 1}n where the bits of x correspond to the variables
ofX in the prescribed order<. Each such vector x can be in
natural way identified with a binary number from [0, 2n−1],
so for every x > 0 the vector x − 1 is well defined. We
call x ∈ {0, 1}n a switch of f with respect to order <, if
f(x − 1) 6= f(x). The list of all switches of f with respect
to < is called the switch-list of f with respect to <. The
switch-list of f with respect to < together with the function
value f(0) is called the switch-list representation of f with
respect to <.

3 Compilation from SL to OBDD
Our compilation algorithm works in two steps. First it com-
piles the input SL representation of function f into a binary
decision tree (BDT) which respects the same order of vari-
ables as the SL representation. In the second step it uses that
BDT to create an OBDD of f which respects a given pre-
scribed order of variables which may differ from the order
used by the input SL representation. Note, that if the input
order and the prescribed output order are the same, then the
first step suffices, and the constructed linear size BDT gives
the output OBDD simply by unifying all zero terminals into
u single zero terminal and the same for one terminals.

3.1 Compilation from SL to BDT
Let us consider a SL representation of a k-switch function
f and construct from it an equivalent decision tree represen-
tation with respect to the same order of variables. The idea
behind the construction is quite simple. Fix the order of vari-
ables of the given function f , say x1, x2, . . . , xn. Consider
the complete binary decision tree of f which branches in the
prescribed order, i.e. a tree with n levels of decision nodes
and 2n function values on level n+1. Then start a bottom-up
process of eliminating redundant decision nodes. In this pro-
cess, every decision node with both outgoing edges leading
to the same function value t is deleted and replaced by an
edge from its parent node to function value t. This process
obviously stops with a binary decision tree that represents f .
Note that this output tree is unique, it depends only on func-
tion f , and does not not depend on the order in which nodes
are contracted. What is the size of this unique contracted de-
cision tree? Consider the leaf decision nodes, that is decision
nodes with both outgoing edges going to terminals (function
values). Obviously, for every leaf decision node these two
edges necessarily go to different function values (otherwise

the node would have been eliminated) and so the path from
the root to any leaf decision node encodes a prefix of some
switch of f . Moreover, by the definition of a leaf node, no
two leaf nodes can encode a prefix of the same switch, so
the number of leaf nodes is upper bounded by the number of
switches. It follows that the number of decision nodes in the
constructed decision tree is at most n times the number of
leaf nodes, which is at most n times the number of switches,
which is exactly the size of the input switch-list represen-
tation (each switch is a vector of length n). Therefore the
constructed decision tree has a linear size with respect to the
size of the input SL representation.

The above considerations suffice for a proof of an exis-
tence of a linear size decision tree equivalent to the input SL
representation. However, if we want to obtain also a poly-
nomial time compilation procedure that constructs the out-
put decision tree, we have to avoid building the exponen-
tially large initial decision tree. This can be easily avoided by
building the output decision tree from top to bottom rather
than bottom-up. We start by creating the root node, assign-
ing the interval [0, 2n − 1] and variable x1 to the root node,
and inserting the root node into a queue. Then we start pro-
cessing the nodes from the queue in the following manner.
Extract the first node v with an assigned interval [a, b] and a
variable xk from the queue. Scan the input switch-list until
one of the following two situations occurs:

1. (Non-constant interval) Switch x in the switch-list is
found, such that, if interpreted as a binary number, a <
x ≤ b holds. In this case construct two children nodes
vL, vR of v, assign variable xk+1 to both vL and vR, and
assign interval [a, (a+b+1)/2−1] (the left half of [a, b])
to vL and interval [(a+b+1)/2, b] (the right half of [a, b])
to vR (a is always even, b is always odd, and the length of
[a, b] is always a power of 2, so there are no issues with
rounding). Insert vL and vR to the end of the queue.

2. (Constant interval) Two consecutive switches x, y in the
switch-list are found, such that, if interpreted as binary
numbers, x ≤ a and b < y hold. This means that there is
no switch in the interval [a + 1, b] and hence all vectors
in the interval [a, b] share the function value of x. So node
v can be deleted from the tree of decision nodes and re-
placed by an edge from the parent node of v to a terminal
with function value f(x).

The procedure stops when the queue is empty and constructs
exactly the same unique decision tree as the bottom-up pro-
cedure described above. The work per decision node is lin-
ear in the size of the input switch-list (we scan the switch-list
once per node), so the overall complexity of the compilation
procedure is at most quadratic in the size of the input switch-
list1.

1In fact, since the tree is built in a BFS manner level by level, the
procedure can be modified to restart the scan of the switch-list from
the beginning only once per level, improving the complexity upper
bound to n times the size of the input switch-list. Using a smarter
data structures which for each decision node define not only the
relevant interval of binary numbers but also the relevant interval in
the switch-list, the overall complexity can be brought further down
to linear time complexity by eliminating the factor n.

3.2 Compilation from BDT to OBDD
Now we shall show how to compile a BDT of f which
respects the identical order of variables x1, . . . , xn into a
polynomial size OBDD of f which respects some other pre-
scribed order of variables y1, . . . , yn, where yj = xσ(i) for
a given permutation σ. Let us start by defining a special type
of binary decision tree.

Definition 1. Let T be a binary decision tree on vari-
ables x1, . . . , xn which branches on the variables (on every
branch) in this prescribed order. Then T is called a prefix
BDT if every branch in T of length l contains the first l deci-
sion variables x1, . . . , xl, and T is called a contracted BDT
if for every decision node x the subtree of T rooted at x con-
tains both terminals 0 and 1.

Note that the BDT constructed from the input SL repre-
sentation of function f as described in Section 3.1 is a con-
tracted prefix BDT representing f . It is also an easy obser-
vation that given a function h on variables z1, . . . , zk it has
a one-to-one correspondence with its contracted prefix BDT
which respects the given order of variables. We have already
observed in in Section 3.1 that given h and a fixed order of
variables, the resulting contracted prefix BDT is unique. The
reverse direction is trivial, given a contracted prefix BDT it
of course represents exactly one function h.

The principal idea behind our algorithm is to build a min-
imum size OBDD of f (which respects the order of vari-
ables y1, . . . , yn) level by level in a BFS manner, where each
node u on a level i of the constructed OBDD will be asso-
ciated with a contracted prefix BDT representing the corre-
sponding subfunction fu of f in variables yi, . . . , yn defined
by fu(yi, . . . , yn) = f(u1, . . . , ui−1, yi, . . . , yn), where the
vector (u1, . . . , ui−1) ∈ {0, 1}i−1 represents the path from
the root of the OBDD to the node u. The uniqueness of the
contracted prefix BDT representations will allow us to effi-
ciently detect whether two subfunctions on the same level
of the OBDD are logically equivalent, which is necessary to
build a minimum size OBDD of f .

We can encode a contracted prefix BDT T representing
function h into a string on an alphabet Σ = {0, 1, `, r, b}
using a DFS traversal of T which writes ` when traversing
from a parent to its left descendant (we assume that DFS first
branches left, i.e. on value 0, at every decision node of T),
writes r when traversing from a parent to its right descen-
dant, writes b when backtracking from a decision node, and
writes 0 or 1 when traversing from a terminal with that func-
tion value. This procedure yields a string of length O(|T |)
which is of course also unique for h. Therefore we can check
the equivalence of two functions h1 and h2 (defined on the
same set of variables) simply by comparing the encodings
of their contracted prefix BDTs which both respect the same
prescribed order of variables. A reasonable data structure to
support such string comparisons is a trie. Recall, that given
a trie which represents a set R of strings and a string s of
length t, one can test in O(t) time whether s ∈ R, in the
positive case output the node of the trie that represents s,
and in the negative case update the trie by inserting s intoR.
This gives us the following observation.

Observation 2. Let R be a set of encodings of contracted
prefix BDTs stored in a trie and let T be a contracted prefix
BDT. Then encoding T into a string s and checking if s is in
the trie storing R can be done in O(|T |) time. Moreover, if
s is not in the trie storing R, we can add it to the trie in time
O(|T |).

Our construction of the output OBDD will start with a
root node (the only node on level 1) and the associated con-
tracted prefix BDT in variables y1, . . . , yn which respects
the order x1, . . . , xn, constructed from the input SL repre-
sentation as described in Section 3.1. During the processing
of nodes on level i (of the OBDD that is being built), the
algorithm will keep a trie S containing encodings of con-
tracted prefix BDTs associated with nodes on level i + 1
(starting with an empty S before the first node on level i is
processed).

In a step which processes node u on level i with an as-
sociated contracted prefix BDT Tu, let V denote the (possi-
bly empty) set of all already created nodes on level i + 1,
let T denote the set of all contracted prefix BDTs asso-
ciated which nodes in V , and let S denote the trie which
contains encodings of all BDTs from T . Now consider the
assignment yi = 0. It is easy to modify Tu represent-
ing f(u1, . . . , ui−1, yi, . . . , yn) into BDT T 0

u representing
f(u1, . . . , ui−1, 0, yi+1 . . . , yn). Note that Tu respects the
original variable order given by x1, . . . , xn. If Tu branches
on yi in its root, then T 0

u is simply the root subtree of Tu
corresponding to yi = 0, otherwise T 0

u originates from Tu
by connecting the parent of every node u that branches on
yi directly to the child of u which corresponds yi = 0 (and
deleting u). Note that T 0

u is a prefix BDT, on the other hand
it is not necessarily contracted. However, we can transform
T 0
u into a contracted prefix tree by a single DFS pass over
T 0
u . When DFS gets to a node u for which both descendants

are terminals with the same value c, it connects a parent of
u to a terminal c.

After building contracted prefix BDT T 0
u we can check if

T 0
u is equivalent to some Tv ∈ T using Observation 2. If

we find such Tv associated with a node v, we connect the
branch corresponding to yi = 0 at node u to node v. If such
Tv does not exist we create a new node w with an associated
contracted prefix BDT Tw = T 0

u and connect the branch
corresponding to yi = 0 at a node u to a node w. Moreover,
we add w into V , add Tw into T , insert the encoding of Tw
into S, and associate the corresponding node in the trie S
with w (so that we have a constant time access to w next
time the encoding of Tw is found in S). The procedure for
yi = 1 is symmetric.

Assuming that the input k-switch function f is given by
a switch-list of size kn, the constructed OBDD has size
O(kn2) (proof in (Čepek and Chromý 2019)), and its con-
struction takes O(k2n3) time. This complexity bound fol-
lows from the fact that for each of the O(kn2) nodes in
the OBDD the associated contracted prefix BDT has size
O(kn), and everything the above described procedure does
when processing a given node of the OBDD is linear in the
size of the associated BDT.

4 Lower bound for construction
In this section we shall show that the quadratic blowup
in the number of variables in the compilation algorithm
from Section 3 which produces an output OBDD of size
O(kn2) is unavoidable. We shall consider a situation with
k = 1 (the input switch-list representation contains a single
switch point) and construct a 1-switch function for which
any OBDD w.r.t. a certain prescribed order of variables has
size Ω(n2).

We will accomplish this by considering a function f with
on n variables where n is even and the only switch point of f
with respect to the natural ordering π : x1 < x2 < . . . < xn
is s = (010101 . . . 01) (see Figure 1 for an example with
n = 8). For an OBDD representation of f we will prescribe
the ordering σ : xn < xn−2 < xn−4 < . . . < x2 < x1 <
x3 < . . . < xn−3 < xn−1 (see Figure 2). We shall prove
that any OBDD representation of f with respect to the or-
dering σ must have at least i distinct nodes on every level
i ≤ n/2. Thus the total number of nodes on the first n/2
levels is at least

∑n/2
i=1 i which is Ω(n2) proving the claim.

Let us proceed by induction on i. Starting the in-
duction is trivial, there is a single node on the first
level of any OBDD. For the induction step let us as-
sume that we have i nodes denoted n0, . . . , ni−1 on
the i-th level of an OBDD representing f (this level
branches on variable xn+2−2i) and these nodes correspond
to pairwise distinct subfunctions f0, . . . , fi−1 in variables
xn+2−2i, xn−2i, . . . , x2, x1, x3, . . . , xn−3, xn−1. We shall
show, that there exist i + 1 pairwise distinct subfunctions
g0, . . . , gi that originate from f0, . . . , fi−1 by fixing a value
of xn+2−2i. This will of course imply that there must be at
least i + 1 distinct nodes m0, . . .mi on level i + 1 in any
OBDD representing f and respecting the order σ.

First let us consider the case xn+2−2i = 0. It is clear form
Figure 1 that when branching on an even variable in the nat-
ural order π the value of f is either decided earlier or the
latest when setting this variable (in our case xn+2−2i = 0).
In other words, in this situation f does not depend on any
variable xk for k > n+2−2i and thus in particular on vari-
ables xn−2i, . . . , xn−2, xn, i.e. on those variables on which
the OBDD branches on the first i − 1 levels in the order
σ. Therefore substituting xn+2−2i = 0 into f0, . . . , fi−1

produces a single function gi. This moreover implies, that
every pair of vectors Xj , Xk for j 6= k that guarantees
fj 6= fk (note that Xj , Xk are defined only on variables
xn−2i, . . . , xn−2, xn) must haveXj

n+2−2i = Xk
n+2−2i = 1.

Thus substituting xn+2−2i = 1 into f0, . . . , fi−1 produces
i pairwise distinct functions g0, . . . , gi−1. Now it remains
to show that gi is distinct from every function in this set.
So let 0 ≤ j ≤ i − 1 be arbitrary and consider a vector
X = (0, 1, 0, 1, . . . 0, p, 1) where p is in position n+ 2− 2i.
Notice, that all variables that on which OBDD branched on
levels 1, . . . , i−1 are outside of the scope of indices used by
X . Now gi(X) originates from fj(X) by setting p = 0 and
so clearly gi(X) = 0 while gj(X) originates from fj(X) by
setting p = 1 and so clearly gj(X) = 1 (this is easy to see
from Figure 1). Thus gi is distinct from gj which finishes the
proof of the main claim.

x1

x2

x3

x4

x5

x6

x7

x8

0 1

0

1

Figure 1: Original BDT.

x8

x6 x6

x4 x4 x4

x2 x2 x2 x2

x1 x1 x1 x1

x3 x3 x3

x5 x5

x7

0 1

0
1

Figure 2: Compiled OBDD.

5 Conclusion
Section 3 describes an algorithm which compiles a SL rep-
resentation of a k-switch function f on n variables which
respects some input order π to an OBDD representation of
f which respects some different output order σ of variables.
The algorithm works in O(k2n3) time and produces an out-
put OBDD of size O(kn2). Section 4 introduces a family
of 1-switch functions for which any output OBDD has size
Ω(n2) with respect to a prescribed variable ordering. This
shows that our compilation algorithm creates asymptotically
smallest OBDDs with respect to the number of variables.
It is an interesting open research question whether the con-
struction from Section 4 can be generalized to a family of
k-switch functions for any k > 1, guaranteeing an output
OBDD of size Ω(kn2).

ACKNOWLEDGEMENTS
The authors gratefully acknowledge a support by Czech Sci-
ence Foundation (Grant 19-19463S). This research was par-
tially supported by SVV project number 260 453.

References
Ausiello, G.; D’Atri, A.; and Sacca, D. 1986. Minimal rep-
resentation of directed hypergraphs. SIAM Journal on Com-
puting 418–431.

Boros, E.; Čepek, O.; Kogan, A.; and Kučera, P. 2009. A
subclass of Horn CNFs optimally compressible in polyno-
mial time. Annals of Mathematics and Artificial Intelligence
57:249–291.
Boros, E.; Čepek, O.; and Kučera, P. 2013. A decomposition
method for CNF minimality proofs. Theoretical Computer
Science 510:111–126.
Čepek, O., and Chromý, M. 2019. Switch-list repre-
sentations in a knowledge compilation map. Unpublished
manuscript available from the authors.

Čepek, O., and Hušek, R. 2017. Recognition of tractable
dnfs representable by a constant number of intervals. Dis-
crete Optimization 23:1–19.

Čepek, O.; Kronus, D.; and Kučera, P. 2008. Recognition
of interval Boolean functions. Annals of Mathematics and
Artificial Intelligence 52(1):1–24.
Darwiche, A., and Marquis, P. 2002. A knowledge com-
pilation map. Journal Of Artificial Intelligence Research
17:229–264.
Hammer, P. L., and Kogan, A. 1993. Optimal compression
of propositional Horn knowledge bases: Complexity and ap-
proximation. Artificial Intelligence 64:131–145.
Hammer, P. L., and Kogan, A. 1995. Quasi-acyclic
propositional Horn knowledge bases: Optimal compression.
IEEE Transactions on Knowledge and Data Engineering
7(5):751–762.
Huang, C., and Cheng, K. 1999. Solving constraint satisfi-
ability problem for automatic generation of design verifica-
tion vectors. In Proceedings of the IEEE International High
Level Design Validation and Test Workshop.

Kronus, D., and Čepek, O. 2008. Recognition of positive
2-interval Boolean functions. In Proceedings of 11th Czech-
Japan Seminar on Data Analysis and Decision Making un-
der Uncertainty, 115–122.
Lewin, D.; Fournier, L.; Levinger, M.; Roytman, E.; and
Shurek, G. 1995. Constraint satisfaction for test program
generation. In IEEE 14th Phoenix Conference on Comput-
ers and Communications, 45–48.
Schieber, B.; Geist, D.; and Zaks, A. 2005. Computing the
minimum DNF representation of boolean functions defined
by intervals. Discrete Applied Mathematics 149:154–173.
Umans, C. 2001. The minimum equivalent DNF problem
and shortest implicants. J. Comput. Syst. Sci. 63(4):597–
611.

