
Another Way to Browse the Search Space For Some Transformations from CSP to
SAT

Richard Ostrowski and Lionel Paris and Adrien Varet
Aix Marseille Univ, Université de Toulon, CNRS, LIS, Marseille, France

{richard.ostrowski, lionel.paris}@univ-amu.fr
adrien.varet@lis-lab.fr

Aix-Marseille Universite

Abstract

In this paper, we study a new way of browsing the search
space when solving CSP (Constraint Satisfaction Problem)
encoded in SAT (Satisfiability problem), using direct and sup-
port encodings. We exploit a different splitting rule during
the exploration of the search tree from that used in classi-
cal solvers. Usually, for solving SAT problem, the Conflict
Driven Clause Learning (CDCL) algorithms are based on
the Davis–Putnam–Logemann–Loveland (DPLL) procedure.
It consists in choosing the next variable to instantiate thanks
to a heuristic, then to assign it to true (or false) and check if,
after some simplifications via unit propagation, there exists
a model or not under this hypothesis. If a conflict arises, a
clause is learned and a backtrack (usually non-chronological,
i.e. a backjump) is operated in order to check the other branch
of the search tree. This splitting rule (one literal and its op-
posite) can be generalized to any formula between some vari-
ables, with some restrictions: firstly, its negation is easily cal-
culated (with respect to the CNF formalism), secondly the
formula must simplify the instance, and thirdly, the complex-
ity must not be higher than the SAT problem complexity. Us-
ing, for the beginning, the direct encoding of a CSP in SAT
instance, we propose an algorithm for the resulting SAT for-
mula with a better theoretical complexity. This allows us to
reach a better complexity for solving CSP too. Furthermore,
this paper explains how we have adapted the existing CDCL
mechanisms (clause learning, implication graph) to our algo-
rithm.

INTRODUCTION
The satisfaction problem (SAT) and the constraints satisfac-
tion problem (CSP) are two fairly close problems. On the
one hand, SAT consists in determining whether a Boolean
formula in conjunctive normal form is satisfiable. On the
other hand, CSP problems are represented by a set of vari-
ables taking their values in finite domains and linked by con-
straints. Each constraint can be described either in terms of
permitted or forbidden pairs. Solving a CSP consists in find-
ing an instantiation of the variables satisfying all the con-
straints of the problem.

These two formalisms are widely used in artificial in-
telligence. They allow modelling and solving both aca-

Copyright c© 2019, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

demic problems (pigeon hole problem, n-queens problem)
and real-world and industrial problems (formal verification,
planning, etc.)

The efficiency of these solvers is largely due to the ex-
ploitation of structural properties naturally present in the
coding of problems such as logical gates (or more generally
Boolean functions), symmetries, equivalences of variables,
etc.

Recently, a mathematical problem (Heule, Kullmann, and
Marek 2016) that has remained open until now, was solved
by providing a counter-example using a SAT solver. The size
of the proof, which was verified, was close to 200TB.

Although it is possible to express any problem of con-
straints in different formalisms, it often happens that a for-
malism is more suitable than another. For example, it is eas-
ier to consider a graph colouring problem as a CSP than to
formalize it as a set of propositional formulas. However,
many works have focused on transformations from CSP
to SAT. De Kleer (Kleer 1989) introduced direct encoding
while Kasif (Kasif 1990) proposed the encoding of binary
CSP including supports (AC) to maintain the property of arc
consistency by unit propagation in SAT. Finally, Bessière et
al. (Bessière, Hebrard, and Walsh 2003) generalized the en-
coding of supports (k -AC) to non-binary CSPs.

Other transformations exist (Ansótegui and Manyà 2005;
Barahona, Hölldobler, and Nguyen 2014; Gavanelli 2007;
Argelich et al. 2012) and we believe that our new splitting
rule can be easily adapted to them.

Furthermore, CDCL solvers (Silva and Sakallah 1996) are
very effective to solve the SAT problem. They use the same
basis as the DPLL algorithms, but at each new choice, they
maintain an implication graph with all the consequences
of all choices. This graph is used when a conflict arises,
to learn a new clause in order to avoid getting the same
conflict and perform backjumping (non-chronological back-
tracking). This kind of solvers also perform ”restarting”
whose frequency can be defined in different ways. This pa-
per introduces the way that we adapted theses methods to
our algorithm.

The main contribution of this paper is to provide a
CSP solving algorithm having a theoretical complexity of
O(d

2
n × f iltering cost) instead of O(dn × cost f iltering)

for a classic algorithm. The paper is organized as follows: as

a first step, we recall some definitions concerning SAT and
CSP formalisms and about the two encoding methods used.
Then, we present a different way of browsing the search tree
to provide a complete algorithm with the same complexity
as the stochastic algorithm proposed in (Schöning 1999) and
how we adapt the CDCL methods to this algorithm.

PRELIMINARIES DEFINITIONS
Boolean Satisfiability Problem (SAT)
Let B be a Boolean (i.e. propositional) language of formulas
built in the standard way, using usual connectives (∨, ∧, ¬,
⇒,⇔) and a set of propositional variables. A CNF formula
Σ is a set (interpreted as a conjunction) of clauses, where
a clause is a set (interpreted as a disjunction) of literals. A
literal is a positive or negative propositional variable.

Let us recall that any Boolean formula can be translated to
CNF using linear Tseitin encoding (Tseitin 1968). The size
of CNF Σ is defined by ∑c∈Σ |c| where |c| is the number of
literals in c.

A truth assignment of a Boolean formula is an assign-
ment of truth values {true, f alse} to its variables. A lit-
eral l is satisfied (resp. falsified) under I if l is positive and
I[l] = true or l is negative and I[l] = f alse (resp. l is negative
and I[l] = f alse or l is positive and I[l] = true). A model of a
formula is a truth assignment that satisfies the formula. Ac-
cordingly, the decision problem associated to SAT consists
in determining if the formula admits a model.

A functional dependency is of the form y = f (x1, ...,xn)
where f is a standard connective among {∨, ∧,⇔} and
where y and xi are propositional variables.

Constraints Satisfaction Problem (CSP)
A CSP is a statement P = (X ,D,C,R) where
X = {X1,X2, . . . ,Xn} is a set of n variables,
D = {DX1 ,DX2 , . . . ,DXn} is a set of finite domains where DXi
is the domain of possible values for Xi, C = {C1,C2, . . . ,Cm}
is a set of m extensional constraints, where the constraint Ci
is defined on a subset of variables {Xi1 ,Xi2 , . . . ,Xiai

} ⊂ X .
The arity of the constraint Ci is ai and R= {R1,R2, . . . ,Rk}

is a set of k relations, where Ri is the relation corresponding
to the constraint Ci. Ri contains the forbidden combinations
of values for the variables involved in the constraint Ci. A
binary CSP is a CSP whose constraints are all of arity two
(binary constraints). A CSP is non-binary if it involves at
least a constraint whose arity is greater than 2 (a n-ary con-
straint).

An instantiation I is a mapping which assigns each vari-
able Xi a value of its domain DXi . A constraint Ci is satisfied
by the instantiation I if the projection of I on the variables
involved in Ci is different of all tuples of Ri. An instantiation
I of a CSP P is consistent (or called a solution of P) if it
satisfies all the constraints of P. A CSP P is consistent if it
admits at least one solution. Otherwise P is not consistent.

For the rest of the paper, we denote by n the number of
variables of the CSP, by m its number of constraints, by a
its maximal constraint arity and by d the size of its largest
domain.

Encoding CSP into SAT
There are different classical transformations from CSP to
SAT. Some are more efficient than others because they allow
to find good properties with respect to unit propagation or
to model in a more efficient way certain constraints of the
initial problem. In this article we focus on the direct and
support encodings and show in perspective adaptations to
other transformations.

Direct Encoding This is the most used and the oldest one.
It was introduced by De Kleer(Kleer 1989).In this encod-
ing, we associate a propositional variable to each value in
the domain of each CSP variable. For example, a CSP vari-
able X with domain DX = {v1,v2, . . . ,vk} is associated with
k Boolean variables: xv1 ,xv2 , . . . ,xvk . The assignment xvi =
true means that value vi is assigned to variable X . These
propositional variables appears in three kind of clauses :
• at-least-one clauses: There is one such clause per CSP

variable. They encode the domains of the CSP, expressing
the fact that each CSP variable must be assigned to one
value of its domain. Lets consider a CSP variable X with
domain DX = {v1,v2,v3}. The clause cX = xv1 ∨ xv2 ∨ xv3
is added to encode DX . These clauses will be noted a.l.o.
clauses in the sequel.

• at-most-one clauses: There is one such clause for each
pair of values in each domain. These are binary clauses
encoding the fact that a CSP variable can only be assigned
to one value of its domain. Lets consider the previous ex-
ample. For the domain DX = {v1,v2,v3}, we have to add
3 binary clauses: ¬xv1 ∨¬xv2 , ¬xv2 ∨¬xv3 et ¬xv1 ∨¬xv3 .
These clauses will be noted a.m.o clauses in the sequel.
It is usually possible to get rid of this set of clauses. In-
deed, if a model assigning several values to the same CSP
variable is found, it is possible to choose one randomly
and to ignore others. Another way to see that we can pos-
sibly get rid of these a.m.o clauses is to see that they are
blocked clauses (Kullmann 2001). A clause c is blocked if
there is a literal l in this clause such that all the resolutions
produced on this literal are tautological. The suppression
of the blocked clauses preserves the satisfiability of the
formula: they do not participate in the proof of the incon-
sistency of the formula.

• conflict clauses: There is a conflict clause for every for-
bidden tuple of each constraint of the CSP. They express
the constraints by coding all the combinations forbidden
by them. For example, consider a constraint between three
variables CSP X ,Y and Z and [u ∈ DX ,v ∈ DY ,w ∈ DZ] a
constrained tuple CXY Z (that is, [u,v,w]∈ RXY Z). The con-
flict clause cXY Z = ¬xu ∨¬yv ∨¬zw is added to prohibit
the simultaneous assignment of X to u, Y to v and Z to w.
Let P be a CSP and ΣDir the CNF formula resulting from

the direct encoding of P . Walsh proved that performing Arc
consistency filtering on P is stronger than performing unit
propagation on ΣDir (Walsh 2001). He also demonstrated, as
it had been by Génisson and Jégou (Génisson and Jégou
1996) that with equivalent branching heuristics, FC applied
to P and DP applied to ΣDir were equivalent.

The complexity of the direct coding of a CSP is in
O(mda), remembering that m represents the number of con-

straints of the CSP, a the largest arity of the CSP constraints
and d the size of the largest domain of the CSP. More pre-
cisely, in the direct encoding of a CSP in CNF, we find n
a.l.o. clauses of size d. Each CSP variable add d(d−1)

2 a.l.o.
clauses of size 2. Finally each constraint can contain at most
da forbidden tuples of length a. This gives a total complexity
of (nd +2n d(d−1)

2 +mada)≡ O(mda).

Support Encoding (AC-Encoding) The support encod-
ing was introduced by Kasif (Kasif 1990) and specially de-
signed for the binary CSP. In this encoding, we find the same
propositional variables as for the direct encoding. There is
also the same a.l.o. and a.m.o. clauses. The only difference
lies in the conflict clauses that are replaced by clauses called
support clauses. Firstly, remember that a support of a value
is defined as follows :

Definition 1. Let P = (X ,D,C,R) a CSP, x,y ∈ X two vari-
ables, vx ∈ Dx and vy ∈ Dy two values. We say that vy is
a support of vx in Dy if and only if the affectation (x,y) =
(vx,vy) is allowed by the constaint between x and y.

• support clauses : A support clause is added for each
pair (value, list of supports) of each binary constraint.
It encodes the fact that as long as a value remains in
the domain of one of the variables involved in the con-
straint, then at least one of these supports must remain
in the domain of the second variable involved. For ex-
ample, consider X and Y two CSP variables and the pair
(v ∈ DX ,{s1,s2, . . . ,sk} ∈ DY) where v is a value of the
domain X and {s1,s2, . . . ,sk} are the supports of X = v
in the domain of Y for the constraint CXY . The clause
¬xv ∨ ys1 ∨ ys2 ∨ . . .∨ ysk is added to express the fact that
as long as v is not removed (filtered) from the domain of
X , at least one of its supports in DY should not be deleted.
This clause is equivalent to xv→ (ys1 ∨ ys2 ∨ . . .∨ ysk). So
we see that if all the supports are removed (falsified), ¬xv
is implied, that is, v is removed from the domain of X
when filtering by arc consistency.

We see the value of this encoding for binary CSPs com-
pared to direct coding. This encoding allows recovering the
arc consistency in the CNF. Let P be a CSP and ΣSup the
CNF formula resulting from the support encoding of P .
Kasif showed that the unit propagation applied to ΣSup is
equivalent to arc consistency filtering on P . This allowed
Gent (Gent 2002) to show that with equivalent branching
heuristics, DP applied to ΣSup is equivalent to MAC applied
to P .

The complexity of the support encoding of a CSP is in
O(nd2 +md2). Precisely, we find the same a.l.o. and a.m.o.
clauses in (nd2), and for each clause, there is 2d possible
pairs (value, list of supports), each list being able to con-
tain at most d values (2md2). The total complexity is hence
(nd2 +2md2)≡ O((n+m)d2).

Some classes of CSP instances are tractable and translat-
ing them using some common standard encodings results in
SAT instances which do not fall into known tractable classes
(Petke and Jeavons 2011).

A NEW ALGORITHM
A New Splitting Rule
The idea of this article is to propose a new splitting rule,
more general than what is currently used for CDCL like
solvers. These solvers are based on the following proposi-
tion:
Proposition 1. Let Σ be a CNF and v a propositional vari-
able. Σ is satisfiable if and only if (Σ∧ v) is satisfiable or
(Σ∧¬v) is satisfiable.

By repeating this property to the different variables of Σ,
we can build a backtracking algorithm to test if an interpre-
tation satisfies Σ. We propose to generalize this property as
follows:
Proposition 2. Let Σ be a CNF and f a Boolean formula
built on the propositional variables of Σ. Σ is satisfiable if
and only if (Σ∧ f) is satisfiable or (Σ∧¬ f) is satisfiable.

In the same way, by considering successively different
Boolean functions (as points of choice), we can also build
a backtracking algorithm allowing this time to determine if
the set of Boolean functions satisfies the original formula.
The proposition 1 can be seen as a special case of the propo-
sition 2 where the formula f is reduced to a single literal.

However, the chosen functions must respect some con-
straints: (1) in order to remain in the CNF formalism,
the negation of the formula must be computed easily (and
quickly), (2) the formulas chosen as a point of choice must
simplify Σ, (3) the complexity, in terms of the number of
nodes, must be lower or equal than 2n where n is the number
of variables of the formula Σ. The last point requires us to
focus on the functional dependencies between the proposi-
tional variables of the problem.

Indeed, by considering a functional dependency of the
form y = f (x1, ...,xn) as a point of choice,we can eliminate a
propositional variable (y), at each step,by substituting it with
its definition. As a result,we are sure not to have a greater
complexity than 2n.

The generalization of the splitting rule to other formulas
for the SAT problem are perspectives for future work. In-
deed, many points have to be studied, such as the storage
of the points of choice, learning, backjumping, restarts and
heuristics in order to obtain experimental results that can
compete with the best current CDCL solvers.

We initially restrict ourselves to the CSP solving. Our ap-
proach rely on two well known transformations from CSP
into SAT, namely the direct encoding and the support en-
coding.

Another Way to Browse The Search Tree
In this part, relying first of all on the direct encoding of
a CSP, we propose a different way to browse the search
tree. To this aim, in relation with Proposition 2, we use
as formula f a functional dependencie of difference be-
tween two propositional variables of the direct encoding.
However, the choice of these two variables will have to be
made in a a.l.o clause. Let’s take the example of a CSP
variable X with a domain DX = {v1,v2,v3,v4}. The clause
cX = xv1 ∨ xv2 ∨ xv3 ∨ xv4 represents the a.l.o clause to en-
code the domain DX . By choosing, for example, as point of

choice, a formula of the type f = (xv1 6= xv2) it is assumed
that there is a model where either xv1 is true or xv2 is true
(only one of them must be true). This implies for the other
propositional variables of the a.l.o clause (i.e. xv3 and xv4)
to have the value false. We will see later how to detect this
truth value in Algorithm 1. We repeat this separation rule to
other pairs of propositional variables, always choosing them
in a.l.o clauses. If there is no solution under the hypothe-
sis f = (xv1 6= xv2) , we must test the other branch, namely
¬ f . This negation becomes the formula ¬ f = (xv1 = xv2).
As these two variables are part of a a.l.o clause, we de-
duce that xv1 = false and xv2 = false. The next point of
choice, compared to the example, will consist in assuming
that f = (xv3 6= xv4).

This algorithm is quite close to an algorithm consisting of
dichotomously separating the domain of a CSP variable in
two, while performing arc consistency before separating the
sub-domains again (Larrosa 1997). Thus, if a CSP variable X
has a domain DX = {v1,v2,v3,v4,v5,v6}, the domain is sep-
arated in two sub-domains: {v1,v2,v3} and {v4,v5,v6}. The
process is repeated as long as the size of the sub domains is
at least equal to 2.

Another work on the partitioning of domains is used
in (Sule 2013)(Sule 2014). Our algorithm differs from the
works above in that we do not partition below a size of do-
main at least equal to 2. Indeed, suppose that there are no
constraints between 3 variables X Y and Z from a CSP with
DX = {x1,x2}, DY = {y1,y2} and DZ = {z1,z2}. Partitioning
domains will successively try the {x1,y1,z1}, {x1,y1,z2},
. . . ,{x2,y2,z2} assignments. If the remaining sub-problem is
not consistent, 23 assignments will have been made. In our
case, by selecting as points of choice (x1 6= x2), (y1 6= y2)
and (z1 6= z2) a single assignment is sufficient.

About the other types of solvers, this kind of branching
has already been used especialy graph colouring solvers.
The idea was the same: being able to test two different colors
for a node at each branching.

From a CSP point of view, the way we parse the search
tree by considering constraints of differences on domain val-
ues, consists in incrementally building a bi-valued binary
CSP. Polynomial algorithms exist to determine whether such
a CSP admits a solution. From a SAT point of view, for direct
encoding, this parsing consists in incrementally constructing
a 2-SAT formula which is also a polynomial class.

The question that must be asked here is: do we have to
check, at each points of choice, whether the CSP or the 2-
SAT formula is inconsistent?

In our case, for the direct encoding, determining whether
a 2-SAT formula is inconsistent can be done either in cal-
culating the strongly connected components by the Tarjan
algorithm (Tarjan 1972) or by showing that there exists a
variable v of the 2-SAT formula which is inconsistent by as-
signing it to true or false.

Lets consider for example the following 2-SAT formula
Σ = {(¬a∨b)∧ (¬b∨ c)∧ (¬c∨a)}. The graph of strongly
connected components is given in Figure 1a. There is no
path linking a literal and its opposite in both directions. The
formula is therefore satisfiable. Now, if we assume the hy-
pothesis (a 6= b), the graph becomes the one in the figure
1b. In this graph, there is a path from a to ¬a and a path

a

b

c

-a

-c

-b

(a)

a

b

-b

c-a

-c

(b) hypothesis (a 6= b)

Figure 1: Strongly Connected Components Graphs

from ¬a to a. Under this hypothesis the formula is therefore
unsatisfiable.

Remark 1. In general, it is the last hypothesis (or choice
point) that builds bidirectional bridges between the strongly
connected components.

We can deduce the following proposition:

Proposition 3. Let Σ be a consistent 2-SAT formula, and
constraint of difference (l1 6= l2) representing our point of
choice. The formula (Σ∧ (l1 6= l2)) is unsatisfiable if and
only if (Σ∧ l1∧¬l2) is unsatisfiable and (Σ∧¬l1∧ l2) too.

Unit propagation in this case is sufficient to determine the
satisfiability of the formula.

In the case where the unit propagation leads to a conflict
on one of both branches, the other branch is implied. If there
is no contradiction on both branches, we take advantage of
the work carried out by the unit propagation to infer literals
implied on both sides. This work (of implied literals) is the
filtering method of our algorithm.

If we consider the following formula: Σ = {(xv1 ∨ xv2 ∨
xv3)∧ (¬xv1∨¬xv2)∧ (¬xv1∨¬xv3)∧ (¬xv2∨¬xv3)} repre-
senting a domain clause of a CSP variable. Under the hy-
pothesis (xv1 6= xv2) we deduce an implied literal ¬xv3.

Filtering the domains of other variables is done by the de-
tection of implied literals. For example, for the formula Σ =
{(xv1 ∨ xv2 ∨ xv3)∧ (¬xv1 ∨¬xv2)∧ (¬xv1 ∨¬xv3)∧ (¬xv2 ∨
¬xv3) ∧ (yv1 ∨ yv2 ∨ yv3) ∧ (¬yv1 ∨ ¬yv2) ∧ (¬yv1 ∨ ¬yv3) ∧
(¬yv2∨¬yv3)∧ (¬xv1∨¬yv1)∨ (¬xv2∨¬yv1))}. And, under
the hypothesis (xv1 6= xv2), it is possible to imply the literal
¬xv3 and ¬yv1.

Algorithm 1 summarizes our approach. It takes as input
a CNF formula resulting from the direct encoding of a CSP
problem. At each step, we choose a domain clause (line 1). If
none is available, it means that we are on a satisfiable branch
and the algorithm stops. In the opposite case, we choose
two unassigned variables to constitute our point of choice
(line 6). If only one variable is available, we propagate it
and continue the search (line 8). In case of contradiction, a
backtracking is performed. If two unassigned variables are
available (for example x and y), the point of choice becomes

(x 6= y) . Then we test (line 11) the propagation of {x,¬y} on
one side and {¬x,y} on the other side. If both branches lead
to a conflict by this propagation, we directly infer {¬x,¬y}.
In the opposite case, the unit propagation of the literals in
common (calculated previously) is carried out and the search
is continued (line 17).
Remark 2. From a CSP point of view, our algorithm con-
sists in iteratively restricting the sizes of the variable do-
mains to 2 while performing a filtering. In case of a conflict,
we can directly test two other values of the domain of the
last chosen variable.
Remark 3. Regarding the support encoding, search tree ex-
ploration carried out by our algorithm works in an identi-
cal way and allows inferring more literals. Indeed, the unit
propagation is equivalent to the arc consistency. Finally, we
do not need to check the satisfiability of the formula pro-
duced by the points of choice, because the unit propagation,
performed in both branches, detects this inconsistency.
Proposition 4. The theoretical complexity of our algorithm
from a CSP point of view is O ((d

2)
n × f ilering cost) where

d represents the size of the largest domain and n the number
of variables.

Algorithm 1 FCEquiv

Require: Σ,L
Ensure: Solve φ

1: cla← choose clause domain(Σ)
2: if (cla = null) then
3: return Satis f iable
4: end if
5: while (true) do
6: (x,y)← choose couple litteral(cla)
7: if (x 6= null AND y = null) then
8: solve(Σ, level +1)
9: return

10: end if
11: L← test and f ilter(Σ,x,y)
12: if (⊥ ∈ L) then
13: if (BCP(Σ,{¬x,¬y}) =⊥ then
14: return ⊥
15: end if
16: else
17: return solve(Σ, level +1)
18: end if
19: end while

ADAPT CDCL COMPONENTS
A New Implication Graph
As a reminder, CDCL algorithms maintain an implication
graph at each new choice. It is used when a conflict happens
to learn a new clause, in order to avoid to get the same con-
flict later and to achieve non-chronological backtracking.

With the intention to improve our algorithm’s efficiency,
we wanted to use these methods. But, because we choose
constraints of difference and CDCL algorithms choose sim-
ple literals as points of choice, our implication graph must

Figure 2: Example of implication graph

have a different behaviour. At each new choice (x 6= y)
(and after having tested the two sub-branches (x∧¬y) and
(y∧¬x), we’ll update it as follows:

1. One sub-branch is satisfiable: create a node (x 6= y@p)
(where p is the current decision level), a new node l for
each literal l in the satisfiable sub-branch and add a di-
rected edge between two nodes v1 and v2 if the literal v2
is a consequence of v1.

2. Two sub-branches are satisfiable: create a node (x 6=
y@p), a new node l for each literal l in the intersection
of the two sub-branches and, for each choice (x′¬y′@p′)
responsible of the deduction of l in one of the two sub-
branches, add an arc between (x′¬y′@p′) and l.

3. Two sub-branches are unsatisfiable: Develop the graph
for each sub-branch (in the same way that case 1). Then,
for each branch, start from the literal(s) responsible(s) of
the conflict and explore the graph backward in order to
find all responsible choice(s). The figure 2 shows an ex-
ample of implication graph with 12 and ¬12 as conflict
literals.

Two New Clause Learning Methods
Now, we are able when a conflict happens to get the set of re-
sponsible choices (we just have to take the union of conflict
choices in each sub-branches), let C = {(x1 6= y1@p1),(x2 6=
y2@p2)...,(xc 6= yc@pc)} be this set. We’ve tested two ways
to represent a conflict clause.

The first one consists in taking all choices (xi 6= yi@pi) ∈
C and add to a new clause the literals in the associated a.l.o
clause, except xi and yi. For example, we can consider a
problem who has the following a.l.o clauses:

{x1∨ x2∨ x3, x4∨ x5∨ x6, x7∨ x8∨ x9}
Then let’s assume that a conflict happens due to the fol-

lowing choices {(x1 6= x2@0),(x4 6= x5@1),(x7 6= x8@2)},
we learn the clause c= x3∨x4∨x5. Now, if after a restart, we
choose (x1 6= x2@l1) and (x4 6= x5@l2)∀l1, l2, ¬x3 is a con-
sequence of the first choice (because x3 is in the same a.l.o
clause as x1 and x2), and ¬x6 will be a consequence of the
second choice for the same reason. Because of this x3 and x6

will be deleted in c. Then, c will become unitary and x9 will
be deduced, the consequence of the affectation of x9 will be
(¬x7∧¬x8), ie (x7 = x8) which is equivalent to ¬(x7 6= x8).
So, the previous conflict is avoided.

The advantage of this method is that we only learn one
clause and we don’t learn new variables. But on the other
hand, it doesn’t work for problems with d > 3 (d is the size
of the biggest domain). For example, if we keep the previ-
ous example and we add x10 to the last a.l.o clause, then the
learned clause will be c= x3∨x6∨x9∨x10. After the choices
(x1 6= x2@l1) and (x3 6= x4@l2)∀l1, l2, c will not became uni-
tary, so 6= x7, 6= x8 will not be deduced and we can always
choose (x7 6= x8@l3)∀l3.

In order to deal with this issue, we implemented a second
method. This one is quite similar to the previous, in the idea,
we just used new variables as propagators to directly infers
the negation of the both literals of a choice when necessary.
Let’s take a problem which has the followings a.l.o clauses
as example:

{x1∨ x2∨ x3∨ x4, x5∨ x6∨ x7∨ x8, x9∨ x10∨ x11∨ x12}
Then let’s assume that a conflict happens due to the fol-

lowing choices {(x1 6= x2@0),(x5 6= x6@1),(x9 6= x10@2)},
then we’ll learn the following clauses:

{c1 = y1∨ y2∨ y3, c2 = ¬y1∨¬x1, c3 = ¬y1∨¬x2,
c4 = ¬y2∨¬x5, c5 = ¬y2∨¬x6, c6 = ¬y3∨¬x9,

c7 = ¬y3∨¬x10}
Now, let’s assume that after a restart we made the choice

(x1 6= x2@l1). During the filtering procedure, we’ll test the
sub-branches (x1∧¬x2) and (¬x1∧x2). In the first one, ¬y1
will be a consequence of x1, and of x2 in the second one. So,
¬y1 is in the intersection of the two sub-branches and will be
deduced by the filtering procedure. Then, if we choose (x5 6=
x6@l2), ¬y2 will be deduced for the same reason. In this
case, c1 will become unitary, y3 will be deduced, thus ¬x9
and ¬x10 will be direct consequences of y3. Now, we cannot
choose (x9 6= x10@l3) again, so the conflict is avoided.

This method has the advantage to works even with prob-
lems having domains sizes greater than 3. But if a conflict
that implies c choices happens, then we’ll learn c new vari-
ables and 2|c|+1 new clauses.

Backjumping and Restarts
We saw in previous part that when a conflict happens, we
can easily retrieve all choices C = {(x1 6= y1@p1),(x2 6=
y2@p2)...,(xc 6= yc@pc)}who caused it. To perform a back-
jumping, we just have to go back just after the second
higher level of C. For example, let’s suppose we made the
choices: {(x1 6= y1@1),(x2 6= y2@2),(x3 6= y3@3),(x4 6=
y4@4),(x5 6= y5@5)} and the set of conflict choices is:
{(x1 6= y1@1),(x2 6= y2@2),(x5 6= y5@5)}. In this case, 2
is the second higher level, so we will go back to the level 3
and propagate (¬x3∧¬y3).

Concerning the restart strategy, we decide to use Luby’s
strategy.

EXPERIMENTAL RESULTS
In this part, we present preliminary results with and without
clause learning methods.

Without Clause Learning Methods

We made a first series of tests on pigeon-hole problems who
still remain a challenge for CDCL solvers because they can’t
exploit symmetries and clause learning is useless. These re-
sults are detailed in Table 1. The first column refers to the
size of the problem, then we compare our algorithm with
a basic Forward Checking solver (without clause learning,
backjumping, etc...) and minisat (Eén and Sörensson 2003).
These tests are done with direct and support encodings. For
each instance, we wrote the execution time (in milliseconds)
and the number of nodes. We can easily see that after n= 12,
minisat shows its limits (we had a 5min timeout), but our al-
gorithm solves it in one minute. To conclude, we can see that
results for support encoding are less interesting.

Secondly, we tested our algorithm with the same config-
uration on random graph coloration problem. We fixed the
number of vertices between 20 and 30, its roughness be-
tween 0.6 and 0.9 and the number of colors is defined ac-
cording to its roughness. For the three algorithms, we chose
to use the DSATUR heuristic (Brélaz 1979) (choosing the
vertices with the less remaining colors). These results are
detailed in Table 2. These results are similar to the previous,
indeed our solver had better results than minisat, in terms of
time and number of nodes. In the two tables, the results are
given as follows : time(number of choices).

With Clause Learning Methods

This part presents our first preliminary results using clause
learning methods. We firstly made a series of tests on ran-
dom with 5 colors and a large amount of vertices (500). For
each density (between 0.1 and 0.9), we tested 5 instances and
took the average time/number of nodes. We compared our
results with minisat and we only used the direct encoding
version of the problem. We can see that our algorithm has
some difficulties with a low density, but with a higher den-
sity, it is clearly better than minisat and, in terms of number
of nodes, our algorithm is also better than minisat. Figure 3
sums up the behaviour of both solver:

Figure 3: Behaviour on graph coloration problem (500 ver-
tices, 5 colours)

Direct encoding Support encoding
n FCEquiv FC minisat FCEquiv FC minisat
7 3(252) 3(1438) 6(1407) 6(252) 6(1438) 7(1139)
8 6(1660) 7(10078) 24(7664) 25(1660) 39(10078) 42(7411)
9 27(7004) 63(80638) 180(44545) 125(7004) 390(80638) 307(40534)
10 140(60161) 453(725758) 6120(1000172) 1301(60161) 4643(725758) 5959(525536)
11 814(313410) 5111(7257598) 124356(11828510) 8707(313410) 59995(7257598) 119739(6277093)
12 9256(3322496) 64081(79833598) TIMEOUT 113000(3322496) TIMEOUT TIMEOUT
13 64720(20615382) TIMEOUT TIMEOUT TIMEOUT TIMEOUT TIMEOUT

Table 1: Pigeon-hole results without clause learning

Direct encoding Support encoding
n color density FCEquiv FC minisat FCEquiv FC minisat
20 6 0.6 0(2448) 0(1438) 0(1921) 0.1(2448) 0.1(1438) 0.1(2163)
20 7 0.7 0.18(30637) 0.12(50398) 0.18(24994) 1.4(30637) 1(50398) 0.5(32776)
20 9 0.8 7(1385001) 14(3628798) 42(201141) 93(1385001) 165(3628798) 36(1200601)
20 10 0.9 6.36(1386975) 12(7257598) 124(5380698) 105(1386975) 211(7257598) 288(6256227)
30 8 0.6 25(3165468) 14(4677118) 257(8979189) 313(3165468) 159(4677118) 141(3027918)
30 9 0.7 9(1252857) 14(4354558) 44(1754928) 132(1252857) 208(4354558) 78(1490465)

Table 2: Graph coloration problem without clause learning

PERSPECTIVES AND CONCLUSION
In this article, we proposed a generalization of the com-
monly used splitting rule for CDCL type SAT solvers. In-
stead of choosing as branching strategy, a literal and its op-
posite, we considered a difference and an equality between
two propositional variables. The idea, at this stage, is not to
apply it for solving the SAT problem in a general way. We
have restricted our splitting rule to CNF problems obtained
from the basic transformations of a CSP to SAT (direct and
support encodings). Compared to a Forward Checking al-
gorithm, the theoretical complexity is reduced from O (dn

× f iltering cost) to O ((d
2)

n × f iltering cost) with d the size
of the largest domain and n the number of variables. The first
experimental results, although preliminary, are very encour-
aging. The problem of pigeons holes can be solved more
effectively without adding, for example a treatment on the
detection symmetries. We also proposed a way to adapt the
method widely used in classic CDCL solvers to our algo-
rithm (a new implication graph, conflict clause, etc).

In perspectives, it can be interesting to consider other
splitting rules respecting the three conditions like for exam-
ple the and or the or functional dependencie between some
variables. It can also be interesting to test our algorithm with
other kinds of encoding, we think for example to the or-
der encoding with which CDCL solvers obtained good re-
sults (Tamura, Banbara, and Soh ; Ohrimenko, Stuckey, and
Codish 2009).

To conclude, this paper only presents preliminary results
and many points deserve to be studied.

References
Ansótegui, C., and Manyà, F. 2005. Mapping problems with
finite-domain variables to problems with boolean variables.
SAT’04.
Argelich, J.; Cabiscol, A.; Lynce, I.; and Manyà, F. 2012.

Efficient encodings from csp into sat, and from maxcsp into
maxsat. Journal of Multiple-Valued Logic and Soft Comput-
ing.
Barahona, P.; Hölldobler, S.; and Nguyen, V.-H. 2014.
Representative encodings to translate finite CSPs into SAT.
CPAIOR’14.
Bessière, C.; Hebrard, E.; and Walsh, T. 2003. Local con-
sistency in SAT. SAT’03.
Brélaz, D. 1979. New methods to color the vertices of a
graph. Commun. ACM 22(4).
Eén, N., and Sörensson, N. 2003. An extensible sat-solver.
In Sixth International Conference on Theory and Applica-
tions of Satisfiability Testing (SAT2003), 502–518.
Gavanelli, M. 2007. The log-support encoding of csp into
sat. CP’07.
Génisson, R., and Jégou, P. 1996. Davis and Putnam were
already forward checking. ECAI’96.
Gent, I. P. Arc consistency in SAT. ECAI’02.
Heule, M. J. H.; Kullmann, O.; and Marek, V. W. 2016.
Solving and verifying the boolean pythagorean triples prob-
lem via cube-and-conquer. SAT’16.
Kasif, S. 1990. On the Parallel Complexity of Discrete Re-
laxation in Constraint Satisafaction Networks. Journal of
Artificial Intelligence.
Kleer, J. D. 1989. A comparison of ATMS and CSP tech-
niques. In IJCAI’89, 290–296.
Kullmann, O. 2001. On the use of autarkies for satisfiability
decision. Electronic Notes in Discrete Mathematics.
Larrosa, J. 1997. Merging constraint satisfaction subprob-
lems to avoid redundant search. IJCAI’97.
Ohrimenko, O.; Stuckey, P. J.; and Codish, M. 2009. Prop-
agation via lazy clause generation. Constraints.

Petke, J., and Jeavons, P. 2011. The order encoding: From
tractable csp to tractable sat. SAT’11.
Schöning, U. 1999. A probabilistic algorithm for k-sat and
constraint satisfaction problems. FOCS ’99.
Silva, J. P. M., and Sakallah, K. A. 1996. GRASP: A new
search algorithm for satisfiability. ICCAD’96, 220–227.
Sule, V. 2013. Generalization of boole-shannon expan-
sion, consistency of boolean equations and elimination by
orthonormal expansion. CoRR abs/1306.2484.
Sule, V. 2014. An algorithm for boolean satisfiabil-
ity based on generalized orthonormal expansion. CoRR
abs/1406.4712.
Tamura, N.; Banbara, M.; and Soh, T. Compiling pseudo-
boolean constraints to SAT with order encoding. ICTAI’13.
Tarjan, R. E. 1972. Depth first search and linear graph algo-
rithms. SIAM J. Comput. 1:146–160.
Tseitin, G. 1968. On the complexity of derivations in the
propositional calculus. In Structures in Constructives Math-
ematics and Mathematical Logic, Part II, 115–125.

