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Abstract

Nguyen et al. (2016) introduced altruistic hedonic games in
which agents’ utilities depend not only on their own prefer-
ences but also on those of their friends that are in the same
coalition. We propose to extend their model to coalition for-
mation games in general, considering also the preferences of
friends in other coalitions. In this model, an agent might not
get any immediate advantage from a friend being happy in
another coalition but might still be happy for that friend, on
purely altruistic grounds. We study the common stability no-
tions for this model and provide a computational analysis of
the associated verification and existence problems.

1 Introduction
We consider coalition formation games where agents have
to form coalitions based on their preferences. Inspired by
the work of Nguyen et al. (2016) who introduced altruistic
hedonic games, we extend their idea of altruism to a more
general case. In their model, agents gain utility not only
from their own satisfaction but also from their friends’ sat-
isfaction. However, Nguyen et al. (2016) specifically con-
sidered hedonic games only, which require that an agent’s
utility only depends on his or her own coalition. In their in-
terpretation of altruism, the utility of an agent is composed
of the agent’s own valuation of his or her coalition and the
valuations of all this agent’s friends in this coalition.

By contrast, we propose a model where agents behave al-
truistically to all their friends, not only to the friends in their
own coalition. We think that this better reflects the idea of
altruism. An agent might not get any immediate advantage
from a friend being happy in another coalition but might still
be happy for that friend, on purely altruistic grounds. Such
behavior might nurture and cement their friendship, and
perhaps such an unselfish agent might, unintentionally of
course, benefit from this friendship in a subsequent coalition
formation process. In fact, examples show that our model
crucially differs from the model due to Nguyen et al. (2016)
and provides a more intuitive interpretation of altruism.

As a motivating example of altruism, consider the follow-
ing scenario. Let 1, 2, 3, and 4 be agents, where 1 and 2 are
friends of each other, 2 and 3 are friends, and 3 and 4 are
friends. Furthermore, assume that all other pairs of players

are enemies of each other. This scenario is represented by
the corresponding network of friends in Figure 1.

1 2 3 4

Figure 1: A network of friends

Possible partitions of the players into coalitions are, for
example, Γ = {{1, 2, 3}, {4}} and ∆ = {{1, 2}, {3, 4}}. If
player 2 were selfish, it is clear that she would prefer Γ to
∆ because she would be together with both her friends in Γ
but only with one friend in ∆. If, however, player 2 were
truly altruistic, she might prefer ∆ to Γ for the following
reason. Player 2 has two friends, 1 and 3, and she wants
them to be happy. In Γ, players 1 and 3 both are together
with one of their friends and with one of their enemies. But
in ∆, both 1 and 3 are together with just one friend. This is
obviously better than to also have enemies in one’s coalition.
Hence, player 2 might prefer ∆ to Γ if she cares more for her
friends’ satisfaction than for her own.

2 Preliminaries
We will now provide some basic definitions. First, we will
define coalition formation games. After that, we will ex-
plain the “friends and enemies” encoding due to Dimitrov et
al. (2006) (see also the work of Sung and Dimitrov (2007)),
which we will use for the representation of the players’
preferences. Finally, we provide some basic background on
graph theory which will be needed later.

2.1 Coalition Formation Games
Let N = {1, . . . , n} be a set of agents (or players). Each
subset ofN is called a coalition. We denote the set of all pos-
sible coalitions containing an agent i ∈ N by N i = {C ⊆
N | i ∈ C}. A coalition structure Γ is a partition of N . The
set of all possible coalition structures for a set of agentsN is
denoted by CN . For a player i ∈ N and a coalition structure
Γ ∈ CN , Γ(i) is the coalition in Γ containing i.

The objective of a coalition formation game is to form
a coalition structure based on the agents’ preferences over
all possible coalitions they might be in. Hence, a coalition
formation game is a pair (N,�), whereN = {1, . . . , n} is a



set of agents, � = (�1, . . . ,�n) is a profile of preferences,
and every preference �i is a complete weak order over N i.

2.2 The “Friends and Enemies” Encoding
Since |N i|, the number of coalitions containing agent i,
is exponential in the number of agents, it is not reason-
able to ask every agent for his or her complete preference
overN i. Instead, many ways of how to compactly represent
the agents’ preferences have been proposed in the literature,
such as the additive encoding (Sung and Dimitrov 2007;
2010; Aziz, Brandt, and Seedig 2013; Woeginger 2013),
the singleton encoding due to Cechlárová and Romero-
Medina (2001) and further studied by Cechlárová and Ha-
jduková (2003; 2004), the “friends and enemies” encoding
due to Dimitrov et al. (2006), and FEN-hedonic games due
to Lang et al. (2015) and also used by Rothe, Schadrack, and
Schend (2018) and Kerkmann and Rothe (2019).

Here, we will consider the friend-and-enemy encoding
due to Dimitrov et al. (2006). We focus on the friend-
oriented model and will later adapt it to our altruistic model.

In the friend-oriented model, the preferences of the agents
N are given by a network of friends, i.e., a (simple) graph
G = (N,A) whose vertices are the players and where two
players i, j ∈ N are connected by an edge {i, j} ∈ A
exactly if they are each other’s friends. Agents not con-
nected by an edge consider each other as enemies. For an
agent i ∈ N , we denote the set of i’s friends by Fi =
{j ∈ N | {i, j} ∈ A} and the set of i’s enemies by
Ei = {j ∈ N | j 6= i ∧ {i, j} /∈ A} = N \ (Fi ∪ {i}).

Based on the network of friends, each agent i ∈ N values
a coalitionC ∈ N i with vi(C) = n|C∩Fi|−|C∩Ei|. Note
that−(n−1) ≤ vi(C) ≤ n(n−1) and vi(C) > 0 if and only
if there is at least one friend of i’s in C (i.e., |C ∩ Fi| > 0).
For a given coalition structure Γ ∈ CN , we also write vi(Γ)
for player i’s value of Γ(i). We, furthermore, denote the sum
of the values of i’s friends by sumF

i (Γ) =
∑

f∈Fi
vf (Γ).

2.3 Some Fundamentals of Graph Theory
An undirected graph is a pair G = (V,E), where V is a set
of vertices and E ⊆ {{u, v} | u, v ∈ V } is a set of edges.
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Figure 2: An undirected graph G

A path in an undirected graph G = (V,E) is a se-
quence (v1, e1, v2, . . . , ek−1, vk) of vertices v1, . . . , vk ∈ V
and edges e1, . . . , ek−1 ∈ E, where ei = {vi, vi+1} for
all i, 1 ≤ i ≤ k − 1. The length of a path is the number of
edges on it. For example, (4, {4, 2}, 2, {2, 1}, 1) is a path of
length 2 in the graph of Figure 2.

A graph G = (V,E) is connected if there exists a path
between every pair u, v ∈ V of vertices. For a subset V ′ ⊆
V of the vertices, the subgraph ofG induced by V ′ is defined
by G[V ′] = (V ′, {{u, v} ∈ E|u, v ∈ V ′}). For example,

the subgraph of the graph G from Figure 2 induced by V ′ =
{1, 2, 3, 4, 6} is shown in Figure 3.
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Figure 3: Subgraph G[V ′] of G from Figure 2 induced by
V ′ = {1, 2, 3, 4, 6}

A connected component of graph G = (V,E) is a nonex-
tendable subset of the vertices V ′ ⊆ V such that G[V ′] is
connected. Here, “nonextendable” means that adding any
further vertex v to V ′ will result in G[V ′ ∪ {v}] being dis-
connected. A subset V ′ ⊆ V of the vertices is a clique if
and only if for each two distinct vertices u, v ∈ V ′, there
is an edge {u, v} ∈ E. The distance between two vertices
u, v ∈ V is the length of a shortest path between u and v,
or ∞ if there is no path between u and v. For example, 1
and 6 have a distance of 2 in Figure 2, yet a distance of 3
in Figure 3. Let k ∈ N. A subset V ′ ⊆ V of the vertices is
a k-clan if and only if for each two vertices u, v ∈ V ′, the
distance between u and v in G[V ′] is less than or equal to k.

Note that several of the just defined properties can be
checked in polynomial time. In particular, the following
statements will be used later on. The connected components
of a graph can be determined in polynomial time. It is easy
to verify whether a given subset of the vertices is a clique.
Checking whether a subset of the vertices is a k-clan is pos-
sible in polynomial time.1 More details about graph theory
and graph algorithms can be found, e.g., in the textbooks by
McHugh (1990) and Krumke and Noltemeier (2012).

3 Altruism in Coalition Formation Games
The main question in coalition formation games is which
coalition structures might form. There are several notions of
stability, each indicating whether a given coalition structure
would be accepted by the agents or if there are other coali-
tion structures that are more likely to form. To evaluate sta-
bility notions based on the agents’ preferences, we first need
to define when an agent prefers one coalition structure to
another. Therefore, we now define the utility that an agents
gains from a given coalition structure. Since we focus on al-
truistic agents, the utility will be composed of the agent’s
value for the coalition structure and her friends’ values.

3.1 The Three Degrees of Altruism
Nguyen et al. (2016) introduced three degrees of altruism:
selfish first, equal treatment, and altruistic treatment. We will
also distinguish these three degrees, but adapt them to our
model, extending the agents’ altruism to all their friends.

1We can determine the shortest paths between all pairs of ver-
tices in polynomial time. For more details, see the ALL-PAIRS-
SHORTEST-PATH-PROBLEM that can be efficiently solved, for ex-
ample, by the algorithm of Dijkstra (1959), the algorithm of Bell-
man (1958) and Ford Jr. (1956), or the algorithm of Floyd (1962)
and Warshall (1962), see also Seidel (1995).



• Selfish First: Under this model, agents rank different
coalition structures mainly based on their own valuations.
Only in the case of a tie between two coalition structures,
their friends’ valuations are considered as well.

• Equal Treatment: Under equal treatment, agents treat
themselves and their friends the same. That means that
an agent i ∈ N and all of i’s friends have the same impact
on i’s utility.

• Altruistic Treatment: Under altruistic treatment, agents
rank coalition structures based on their friends’ valua-
tions. They only consider their one valuation in the case
of a tie.

Formally, for an agent i ∈ N and a coalition structure Γ ∈
CN , we denote i’s utility for Γ under selfish-first preferences
by uSFi (Γ), under equal treatment by uEQ

i (Γ), and under
altruistic treatment by uAL

i (Γ). They are defined as

uSFi (Γ) = M · vi(Γ) + sumF
i (Γ) with M ≥ n3,

uEQ
i (Γ) = vi(Γ) + sumF

i (Γ), and

uAL
i (Γ) = vi(Γ) +M · sumF

i (Γ) with M ≥ n2.

For any coalition structures Γ,∆ ∈ CN , agent i ∈ N
weakly prefers Γ to ∆ under the selfish-first model (un-
der equal treatment; under altruistic treatment), denoted by
Γ �SF

i ∆ (Γ �EQ
i ∆; Γ �AL

i ∆), if uSFi (Γ) ≥ uSFi (∆)

(uEQ
i (Γ) ≥ uEQ

i (∆); uAL
i (Γ) ≥ uAL

i (∆)). Analogously, i
prefers Γ to ∆, denoted by Γ �SF

i ∆ (Γ �EQ
i ∆; Γ �AL

i

∆), if uSFi (Γ) > uSFi (∆) (uEQ
i (Γ) > uEQ

i (∆); uAL
i (Γ) >

uAL
i (∆)). The factor M , which is used for the selfish-first

model and for altruistic treatment, ensures that an agent’s
utility is first determined by the agent’s own valuation in the
selfish-first model and by the friends’ valuations in the al-
truistic model. Propositions 1 and 2 are shown similarly as
the corresponding properties by Nguyen et al. (2016); these
proofs are omitted due to space constraints.
Proposition 1. ForM ≥ n3, vi(Γ) > vi(∆) implies Γ �SF

i
∆.
Proposition 2. For M ≥ n2, sumF

i (Γ) > sumF
i (∆) im-

plies Γ �AL
i ∆.

An altruistic coalition formation game (ACFG) is a coali-
tion formation game where the agents’ preferences were ob-
tained by a network of friends via one of these three cases of
altruism. Since an ACFG is completely determined by the
underlying network of friends, we usually just specify this
graph.

3.2 Comparison to Altruism in Hedonic Games
As mentioned before, Nguyen et al. (2016) focus on altru-
ism in hedonic games where an agent’s utility only depends
on his or her own coalition. That means that, in their model,
agents only consider friends that are in their own coalition.
The following example shows that our model crucially dif-
fers from the model of Nguyen et al. (2016).
Example 3. Consider an ACFG with five agents, N =
{1, 2, 3, 4, 5}, and the network of friends in Figure 4.
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5

Figure 4: Network of friends for Example 3

The following table shows the values vi(Γ), 1 ≤ i ≤
5, and the sum of the values of player 1’s friends for
coalition structures Γ1 = {{1, 2, 3, 4}, {5}} and Γ2 =
{{1, 2}, {3, 4, 5}}:

vi(Γ) 1 2 3 4 5 sumF
1 (Γ)

Γ1 15 3 9 9 0 21

Γ2 5 5 10 10 10 25

Under the selfish-first model, agent 1 prefers Γ1 to Γ2

(Γ1 �SF
1 Γ2) because in Γ1 she is together with all her

friends while in Γ2 she is only together with one friend.
Under altruistic treatment, however, she prefers Γ2 to Γ1

(Γ2 �AL
1 Γ1). Here, she would rather form a coalition with

only 2 than being with all her friends. This is because 2
doesn’t like 3 and 4, and 3 and 4 don’t like 2. Since 1 is
altruistic to all her friends, she prefers the coalition struc-
ture that is valued higher by her friends.

This shows that our model crucially differs from the model
of Nguyen et al. (2016). In their model, agents only consider
friends in their own coalition. Thus, under their model of
altruistic treatment, 1 prefers Γ1 to Γ2 and would rather be
with 2, 3, and 4 because the average valuation of her friends
in her coalition would then be 21

3 = 7 instead of 5
1 = 5

when being alone with 2. Their model does not pay attention
to the fact that all of agent 1’s friends are even happier when
agents 3 and 4 are in a coalition with 5. Since considering
all friends and increasing their happiness better reflects the
idea of altruism, we think that this example gives a good
motivation of why our definitions make sense.

4 Computing the Utilities
For any altruistic coalition formation game (given by a net-
work of friends), the players’ utilities can be computed in
polynomial time by the following proposition the proof of
which again is omitted due to space constraints.

Proposition 4. Let G = (N,A) be a network of friends,
i ∈ N a player, and Γ a coalition structure. Let further λ be
the number of friends that i has in her coalition (i.e., λ =∣∣{{i, j} ∈ A | j ∈ Γ(i)}

∣∣ =
∣∣Γ(i) ∩ Fi

∣∣), µ be the number
of edges between friends of i that are together in a coalition
(i.e., µ = |{{j, k} ∈ A | j ∈ Fi, k ∈ Fi, k ∈ Γ(j)}| =
1
2

∑
j∈Fi
|Fi ∩ Fj ∩ Γ(j)|), and ν be the number of edges

between friends of i and enemies of i that are together in a
coalition (i.e., ν = |{{j, k} ∈ A | j ∈ Fi, k /∈ Fi, k ∈
Γ(j)}| =

∑
j∈Fi
|Ei ∩ Fj ∩ Γ(j)|). Then, i’s utility can

be computed by using vi(Γ) = (n + 1)λ − |Γ(i)| + 1 and
sumF

i (Γ) = (n+2)|Fi|+(n+1)(2µ+ν)−
∑

f∈Fi
|Γ(f)|.



5 Stability
There are several stability concepts that are well-studied for
hedonic games, a class of coalition formation games where
an agent’s utility depends on his or her own coalition only;
see, e.g., the book chapter by Aziz and Savani (2016). Al-
though we consider more general coalition formation games,
we can easily adapt these definitions to our framework.

5.1 Stability Notions
Let (N,�) be an altruistic coalition formation game with
agents N = {1, . . . , n} and preferences � = (�1, . . . ,�n

) obtained from a network of friends via one of the three
degrees of altruism. A coalition structure Γ is said to be
• Nash stable if no player prefers moving to another coali-

tion; formally: (∀i ∈ N)(∀C ∈ Γ ∪ {∅})[Γ �i Γi→C ],
where Γi→C denotes the coalition structure that arises
from Γ when moving i to C, i.e., Γi→C = Γ\{Γ(i), C}∪
{Γ(i) \ {i}, C ∪ {i}};

• individual rational if no player would prefer being alone:
(∀i ∈ N)[Γ �i Γi→∅];

• individually stable if no player prefers moving to another
coalition and could deviate to it without harming any
player in that coalition: (∀i ∈ N)(∀C ∈ Γ ∪ {∅})

[
Γ �i

Γi→C ∨ (∃j ∈ C)[Γ �j Γi→C ]
]
;

• contractually individually stable if no player prefers an-
other coalition and could deviate to it without harming
any player in the new or the old coalition: (∀i ∈ N)(∀C ∈
Γ ∪ {∅})

[
Γ �i Γi→C ∨ (∃j ∈ C)[Γ �j Γi→C ] ∨ (∃k ∈

Γ(i))[Γ �k Γi→C ]
]
;

• totally individually stable if no player prefers another
coalition and could deviate to it without harming any
other player: (∀i ∈ N)(∀C ∈ Γ ∪ {∅})

[
Γ �i Γi→C ∨

(∃l ∈ N \ {i})[Γ �l Γi→C ]
]
;

• core stable if no nonempty coalition blocks Γ: (∀C ⊆
N,C 6= ∅)(∃i ∈ C)[Γ �i ΓC→∅], where ΓC→∅ denotes
the coalition structure that arises from Γ when all players
in C leave their coalitions to form the new coalition C,
i.e., ΓC→∅ = Γ\{Γ(j)|j ∈ C}∪{Γ(j)\C|j ∈ C}∪{C};

• strictly core stable if no coalition weakly blocks Γ: (∀C ⊆
N)(∃i ∈ C)[Γ �i ΓC→∅] ∨ (∀i ∈ C)[Γ ∼i ΓC→∅];

• popular if for every other coalition structure ∆, at least
as many players prefer Γ to ∆ as there are players who
prefer ∆ to Γ: (∀∆ ∈ CN ,∆ 6= Γ)

[
|{i ∈ N | Γ(i) �i

∆(i)}| ≥ |{i ∈ N | ∆(i) �i Γ(i)}|
]
;

• strictly popular if for every other coalition structure ∆,
more players prefer Γ to ∆ than there are players who
prefer ∆ to Γ: (∀∆ ∈ CN ,∆ 6= Γ)

[
|{i ∈ N | Γ(i) �i

∆(i)}| > |{i ∈ N | ∆(i) �i Γ(i)}|
]
; and

• perfect if there is no player who prefers any coalition
structure to Γ: (∀i ∈ N)(∀∆ ∈ CN )[Γ �i ∆].

6 How Hard are Verification and Existence?
We now study the associated verification and existence prob-
lems and conduct a computational analysis for them. Given
a stability concept α, these problems are defined as follows:

α-VERIFICATION

Given: An ACFG (N,�) and a coalition structure Γ ∈ CN .
Question: Does Γ satisfy α?

α-EXISTENCE

Given: An ACFG (N,�).
Question: Does there exist a coalition structure Γ ∈ CN that

satisfies α?

6.1 Individual Rationality
Verifying individual rationality is easy since we just need
to iterate all agents and compare two coalition structures
in each iteration. Since players’ utilities can be computed
in polynomial time, individual rationality can be verified in
polynomial time (polynomial in the number of agents). The
existence problem is trivial, since Γ = {{1}, . . . , {n}} is
always individually rational. Furthermore, we give the fol-
lowing characterization for individual rationality.
Theorem 5. Let (N,�) be an ACFG where the preferences
were obtained from a network of friends via one of the three
degrees of altruism and let Γ be a coalition structure. Γ is
individually rational if and only if it holds for all players i ∈
N that Γ(i) contains a friend of i’s or i is alone, formally:
(∀i ∈ N)[Γ(i) ∩ Fi 6= ∅ ∨ Γ(i) = {i}].
Proof. Γ is individually rational if and only if (∀i ∈
N)[Γ �i Γi→∅]. In the selfish-first model, Γ �SF

i Γi→∅
is equivalent to

M
(
vi(Γ)−vi(Γi→∅)

)
+
(

sumF
i (Γ)− sumF

i (Γi→∅)
)
≥ 0;

for equal treatment, Γ �EQ
i Γi→∅ is equivalent to(

vi(Γ)− vi(Γi→∅)
)

+
(

sumF
i (Γ)− sumF

i (Γi→∅)
)
≥ 0;

and for altruistic treatment, Γ �AL
i Γi→∅ is equivalent to(

vi(Γ)−vi(Γi→∅)
)

+M
(

sumF
i (Γ)− sumF

i (Γi→∅)
)
≥ 0.

For all f ∈ Fi with f /∈ Γ(i), we have vf (Γ) =
vf (Γi→∅) because f ’s coalition stays the same when i de-
viates to a new coalition. For all f ∈ Fi ∩ Γ(i), it holds that
vf (Γi→∅) = vf (Γ) − n because Γi→∅(f) contains exactly
one friend of f less than Γ(f), namely i. Hence, we have
sumF

i (Γ)−sumF
i (Γi→∅) =

∑
f∈Fi

(
vf (Γ)−vf (Γi→∅)

)
=∑

f∈Fi∩Γ(i) n = |Fi ∩ Γ(i)| · n. Furthermore, it holds that
vi(Γi→∅) = 0 since Γi→∅(i) = {i} contains no friends and
no enemies of i’s. We then have
• Γ �SF

i Γi→∅ if and only ifM ·vi(Γ)+ |Fi∩Γ(i)| ·n ≥ 0;

• Γ �EQ
i Γi→∅ if and only if vi(Γ) + |Fi ∩ Γ(i)| · n ≥ 0;

• Γ �AL
i Γi→∅ if and only if vi(Γ)+M · |Fi∩Γ(i)| ·n ≥ 0.

Note that vi(Γ) > 0 is equivalent to Γ(i) ∩ Fi 6= ∅, and
vi(Γ) = 0 is equivalent to Γ(i) = {i}. It is easy to see that
all three inequalities above are equivalent to Γ(i) ∩ Fi 6=
∅ ∨ Γ(i) = {i}, which completes the proof. q



6.2 Nash Stability
Since there are at most n coalitions in a coalition structure
Γ ∈ CN , we can verify Nash stability in polynomial time:
We just iterate all agents i ∈ N (|N | = n) and all coalitions
C ∈ Γ∪{∅} (at most n+1) and check whether Γ �i Γi→C .
Since we can check a player’s preference over two coalition
structures in polynomial time and since we have at most a
quadratic number of iterations (n · (n+ 1)), verification is in
P for Nash stability.

Existence is trivially in P for Nash stability; indeed, the
same example that Nguyen et al. (2016) gave for altruistic
hedonic games works here as well. Specifically, for C =
{i ∈ N | Fi = ∅} = {c1, . . . , ck} the coalition structure
{{c1}, . . . , {ck}, N \ C} is Nash stable.

Theorem 6. Let (N,�) be an ACFG where the preferences
were obtained by a network of friends via one of the three
degrees of altruism and let Γ be a coalition structure. Γ is
Nash stable if and only if

(∀i ∈ N)(∀C ∈ Γ ∪ {∅})
[
|Γ(i) ∩ Fi| > |C ∩ Fi|

∨
(
|Γ(i) ∩ Fi| = |C ∩ Fi| ∧ |Γ(i) ∩ Ei| ≤ |C ∩ Ei|

)]
,

The proof of Theorem 6 can be conducted similarly to the
proof of Theorem 5 and is also omitted here.

6.3 Individual Stability
For individual stability, contractual individual stability, and
total individual stability, existence is trivially in P. Nash sta-
bility implies all these three concepts, hence, the Nash stable
coalition structure from above is also (contractually; totally)
individually stable.

Verification is also in P for these concepts. Similarly to
Nash stability, we iterate all players and all coalitions and
check the particular conditions in polynomial time.

6.4 Core Stability and Strict Core Stability
The next theorem shows that the existence problem is trivial
for (strict) core stability if the preferences are obtained via
the selfish-first model.

Theorem 7. Let (N,�SF ) be an ACFG where the pref-
erences �SF were obtained from a network of friends G
via the selfish-first model. Let further C1, . . . , Ck be the
vertex sets of the connected components of G. Then Γ =
{C1, . . . , Ck} is strictly core stable (and thus core stable).

Proof. For the sake of contradiction, assume that Γ is not
strictly core stable, i.e., that there is a coalition D 6= ∅ that
weakly blocks Γ. We then have

(∀i ∈ D)[Γ �SF
i ΓD→∅] ∧ (∃j ∈ D)[Γ ≺SF

j ΓD→∅].

Since every player i inD weakly prefers deviating from Γ(i)
to D, there have to be at least as many friends of i’s in D as
in Γ(i). Since Γ(i) contains all of i’s friends, D also has to
contain all friends of i’s. Additionally,D cannot contain any
players k /∈ Γ(i) because these players are enemies of i’s
and i wouldn’t like to deviate to a coalition with the same
number of friends but more enemies than in Γ(i). Hence, D

is a subset of Γ(i) (D ⊆ Γ(i)). Since one player j ∈ D
strictly prefers deviating from Γ(j) to D, D cannot equal
Γ(i) and thus has to be a strict subset of it (D ⊂ Γ(i)).
However, since the subgraph ofG that is induced by the ver-
tices in Γ(i) is connected, there is an edge between a vertex
k in D and a vertex ` in Γ(i) \ D. Then, k ∈ D does not
have all his friends in D, which is a contradiction to the fact
that k weakly prefers deviating to D. q

We now show that the coalition structure from the proof
of Theorem 7 is not always core stable under equal treatment
or altruistic treatment.
Example 8. Let N = {1, . . . , 10} and let the preferences
be given by the network of friends G shown in Figure 5.

1 2 3 4 5 6 7 8

9

10

Figure 5: Network of friends for Example 8

Consider the coalition structure consisting of the con-
nected components of G, i.e., Γ = {{1, . . . , 10}}, and the
coalition C = {8, 9, 10}. It holds that C blocks Γ under
equal treatment and altruistic treatment. To see this, we con-
sider how players 7 to 10 value Γ and ΓC→∅ and compute
the utilities for players 8, 9, and 10.

Omitting the details due to space constraints, for all i ∈
C = {8, 9, 10}we have that uEQ

i (Γ) < uEQ
i (ΓC→∅), which

implies Γ ≺EQ
i ΓC→∅, and that sumF

i (Γ) < sumF
i (ΓC→∅),

which implies uAL
i (Γ) < uAL

i (ΓC→∅) and Γ ≺AL
i ΓC→∅.

Hence, C blocks Γ for equal treatment and altruistic treat-
ment.
Lemma 9. Let (N,�) be an ACFG where the preferences
were obtained from a network of friends G via one of the
three degrees of altruism. Let Γ be a coalition structure. If
there is a coalition C ∈ Γ that does not induce a connected
subgraph of G, Γ is not core stable.
Proof. Assume that C ∈ Γ does not induce a connected
subgraph in the network of friends G. Let D ⊂ C be a max-
imal subset of C such that D induces a connected subgraph
in G. It then holds that D blocks Γ: For all i ∈ D, i has
the same number of friends in D and C but |C| − |D| en-
emies less in D. Hence, it holds that vi(ΓD→∅) = vi(Γ) +
|C| − |D| > vi(Γ) for all i ∈ D. This directly implies
ΓD→∅ �SF

i Γ for all i ∈ D. This completes the proof for
the selfish-first model.

Moreover, all friends f of i ∈ D are either in D or not
in C. (There are no edges between D and C \D.) For f ∈
D, we already know that vf (ΓD→∅) > vf (Γ). For f /∈ C,
vf (ΓD→∅) = vf (Γ) because f ’s coalition does not change
when D deviates. Hence, sumF

i (ΓD→∅) ≥ sumF
i (Γ) for all

i ∈ D. This implies vi(ΓD→∅) + sumF
i (ΓD→∅) ≥ vi(Γ) +

sumF
i (Γ) for all i ∈ D. Thus ΓD→∅ �EQ

i Γ for all i ∈ D.
This completes the proof for equal treatment.

If |D| > 1, then each i ∈ D has at least one friend in D.
Then sumF

i (ΓD→∅) > sumF
i (Γ) and ΓD→∅ �AL

i Γ follows



for all i ∈ D. If |D| = 1, then i ∈ D only has friends f /∈
C (or no friends at all). Then sumF

i (ΓD→∅) = sumF
i (Γ).

Since vi(ΓD→∅) > vi(Γ), it follows that ΓD→∅ �AL
i Γ.

This completes the proof for altruistic treatment. q

Theorem 10. (Strict) core stability verification can be done
in coNP for all three degrees of altruism.
Proof. Let G be a network of friends on agents N and
Γ a coalition structure. Γ is not (strictly) core stable if
there is a coalition C ⊆ N that (weakly) blocks Γ, i.e.,
(∀i ∈ C)[ΓC→∅ �i Γ]((∀i ∈ C)[ΓC→∅ �i Γ] ∧ (∃j ∈
C)[ΓC→∅ �j Γ]). Hence, we nondeterministically guess a
coalitionC ⊆ N and check whetherC blocks Γ. This can be
done in polynomial time since ΓC→∅ �i Γ can be verified
in polynomial time for all three degrees of altruism. q

We can even show a lower bound for the selfish-first
model. The proof is omitted due to space constraints.
Theorem 11. Core stability verification is coNP-complete
for the selfish-first model.

6.5 Popularity and Strict Popularity
Under all three degrees of altruism, there does not always
exist a (strictly) popular coalition structure.
Example 12. Let N = {1, . . . , 7} and let the preferences
be given by the network of friends shown in Figure 6.

1 2 3 4 5

6 7

Figure 6: Network of friends for Example 12

Then there is no (strictly) popular coalition structure for
any of the three degrees of altruism. Since perfectness im-
plies popularity, there is also no perfect coalition structure.

We now show that under the selfish-first model it is hard
to verify if a given coalition structure is strictly popular and
it is also hard to decide whether there exists a strictly popular
coalition structure for a given ACFG.
Theorem 13. Strict popularity verification is coNP-
complete under the selfish-first model.
Proof. First recall that a coalition structure Γ ∈ CN
is not popular in an ACFG (N,�) (given by a network
of friends G) if and only if there is a coalition structure
∆ ∈ CN ,∆ 6= Γ such that |{i ∈ N | Γ(i) �i ∆(i)}| ≤
|{i ∈ N | ∆(i) �i Γ(i)}|. Since we can nondeterministi-
cally choose the coalition structure ∆ and verify the above
condition in polynomial time, strict popularity verification
belongs to coNP.

To show coNP-hardness, we use a restricted version
of EXACT COVER BY 3-SETS (X3C) (Garey, Johnson, and
Stockmeyer 1976), which we denote by RX3C and which
is shown to remain NP-complete by Gonzalez (1985). We
provide a polynomial-time many-one reduction from RX3C
to the complement of strict popularity verification.

An instance (B,S ) of RX3C consists of a set B =
{1, . . . , 3k} and a collection S = {S1, . . . , S3k} of 3-
element subsets ofB (Si ⊆ B and |Si| = 3 for 1 ≤ i ≤ 3k).
The instance is restricted such that each element ofB occurs
in exactly three sets in S . Given this instance, the question
is whether S contains an exact cover for B, i.e., a subset
S ′ ⊆ S such that every element of B occurs in exactly
one set in S ′.

Given an instance (B,S ) of RX3C, we construct the fol-
lowing ACFG. The set of players is given by
N = {α1, . . . , α5k} ∪ {βb|b ∈ B} ∪ {ζS , ηS |S ∈ S }.

We denote Alpha = {α1, . . . , α5k}, Beta = {βb|b ∈ B},
andQS = {ζS , ηS} for each S ∈ S . The network of friends
is given in Figure 7, where a dashed circle around a group
of players means that all these players are friends of each
other:
• All players in Alpha ∪Beta are friends of each other.
• For every S ∈ S , ζS and ηS are friends.
• For every S ∈ S , ζS is friend with every βb with b ∈ S.

α1

...

α5k

β1

...

βb

...

β3k

ζS1

...

ζSj

b ∈ Sj

...

ζS3k

ηS1

...

ηSj

...

ηS3k

QS1

QSj

QS3k

Alpha ∪Beta

Figure 7: Network of friends in the proof of Theorem 13.

Furthermore, consider the coalition structure Γ =
{Alpha∪Beta,QS1 , . . . , QS3k

}. We show that S contains
an exact cover for B if and only if Γ is not strictly popular.

Only if: Assume that there is an exact cover S ′ ⊆ S
for B. Since every set in S contains three elements of B,
we have |S ′| = k. Consider the coalition structure ∆ =
{Alpha ∪ Beta ∪

⋃
S∈S ′ QS} ∪ {QS |S ∈ S \ S ′}. It

holds that
• All βb, b ∈ B prefer ∆ to Γ since they have 8k−1 friends

in Γ(βb) but 8k friends in ∆(βb).
• All αl, 1 ≤ l ≤ 5k prefer Γ to ∆ because they have the

same number of friends in both coalition structures but no
enemies in Γ(αl) and 2k enemies in ∆(αl).

• All ζS with S ∈ S ′ prefer ∆ to Γ because they have one
friend in Γ(ζS) but four friends in ∆(ζS).

• For all ζS with S ∈ S \S ′, it holds that ∆(ζS) = Γ(ζS).
Hence, they decide their preferences according to their
friends valuations. They are friend of ηS who values Γ
and ∆ the same and friend of three βb with b ∈ S who all
value ∆ better than Γ. Hence ζS prefers ∆ to Γ.



• All ηS with S ∈ S ′ prefer Γ to ∆ because they have
the same number of friends in Γ(ηS) and ∆(ηS) but less
enemies in Γ(ηS).

• All ηS with S ∈ S \S ′ are indifferent between Γ and ∆
because ∆(ηS) = Γ(ηS) and their only friend ζS values
Γ and ∆ the same.

We then have

#∆�Γ = |{i ∈ N | ∆(i) �i Γ(i)}|
= |{β1, . . . , β3k, ζS1

, . . . , ζS3k
}| = 6k and

#Γ�∆ = |{i ∈ N | Γ(i) �i ∆(i)}|
= |{α1, . . . , α5k} ∪ {ηS |S ∈ S ′}| = 5k + k = 6k.

Since #∆�Γ = #Γ�∆, Γ is not strictly popular.
If: Assume that Γ is not strictly popular, i.e., that there is

a coalition structure ∆ ∈ CN ,∆ 6= Γ with #Γ�∆ ≤ #∆�Γ.
We first deduce the following statements:
• For every αl, 1 ≤ l ≤ 5k it holds that Alpha ∪ Beta

is her best valued coalition since she is together with all
her friends and non of her enemies. Every other coalition
is valued worse. Hence, αl prefers Γ to every coalition
structure where she is not in Alpha∪Beta. Furthermore,
she is indifferent between Γ and coalition structure ∆ if
∆(αl) = Alpha ∪Beta.

• If Alpha ∪ Beta was a coalition in ∆ then some of the
players fromQS1

, . . . , QS3k
would be partitioned in a dif-

ferent way than in Γ. However, this would not cause any
player to be happier. There would be at least two players
who prefer Γ to ∆ but no player who prefers ∆ to Γ. This
is a contradiction to the assumption.

Hence, Alpha ∪ Beta is not a coalition in ∆ and all 5k α-
players prefer Γ to ∆. Furthermore, for every ηS , S ∈ S it
holds that QS is her best valued coalition. Again, ηS prefers
Γ to ∆ if ∆(ηS) 6= QS and is indifferent between Γ and ∆
if ∆(ηS) = QS .

We now deduce that there is a coalition structure ∆′ ∈ CN
with #Γ�∆′ ≤ #∆′�Γ where Alpha∪Beta are together in
a coalition and for all S ∈ S QS are together. We obtain ∆′

by slightly changing ∆:
• If βb, b ∈ B are not together in ∆ then ∆(βb), b ∈ B are

unified.
• If αl, 1 ≤ l ≤ 5k are not together with βb, b ∈ B then
αl, 1 ≤ l ≤ 5k leave their coalitions and join βb, b ∈ B.

• If ζS and ηS are not together for any S ∈ S , then ηS
joins ∆(ζS).

In each step, it holds that
• all players who preferred ∆ to Γ do still prefer the new

coalition structure ∆′ to Γ (#∆�Γ ≤ #∆′�Γ) and
• no player who didn’t prefer Γ to ∆ will now prefer Γ to

∆′ (#Γ�∆′ ≤ #Γ�∆).
We denote the number of QS sets that are together with

Alpha ∪ Beta by k′. Then k′ ≤ k because otherwise there
were at least 5k + k + 1 = 6k + 1 players who prefer Γ to
∆′ which is a contradiction to #Γ�∆′ ≤ #∆′�Γ. (There are
at most 6k players who prefer ∆′ to Γ.) Moreover k′ ≥ k

because if k′ < k then #Γ�∆ ≥ 5k + k′ + (3k − 3k′) =
8k − 2k′ > 6k′ = 3k′ + 3k′ ≥ #∆�Γ which again is a
contradiction. Hence, k′ = k. It follows that exactly k of
the η-players prefer Γ to ∆. Thus, #Γ�∆ ≥ 5k + k = 6k.
Then, all of the β-players and all ζ-players have to prefer
∆ to Γ. Consequently, all β-players need to have an edge to
one of the k ζ-players who are with Alpha ∪ Beta. Then,
{S ∈ S |QS is with Alpha∪Beta in ∆′} is an exact cover
for B. q

We get bounds for two more problems by slightly chang-
ing the reduction from Theorem 13.
Theorem 14. Strict popularity existence is coNP-hard un-
der the selfish-first model.
Proof. We consider the same reduction as in Theorem 13
with the difference that Γ is not given by the construction. If
there is an exact cover for B then there is no strictly popular
coalition structure. Γ and ∆ as defined above are in a tie and
every other coalition structure is beaten by Γ. If there is no
exact cover forB then Γ beats every other coalition structure
and is strictly popular. q

Theorem 15. Popularity verification is coNP-complete un-
der the selfish-first model.
Proof. The proof is very similar to the proof of Theo-
rem 13. The only difference is that in the construction of the
ACFG, we only define 5k − 1 α-players. Then, S contains
an exact cover for B if and only if Γ is not popular. q

6.6 Perfectness
Turning to perfectness, we start with the selfish-first model.
Theorem 16. Let G be a network of friends on a set of
agents N . A coalition structure Γ ∈ CN is perfect under the
selfish-first model if and only if it consists of the connected
components of G and all them are cliques.
Proof. From left to right, assume that the coalition struc-
ture Γ ∈ CN is perfect. It then holds for all agents i ∈ N
and all coalition structures ∆ ∈ CN , ∆ 6= Γ, that i weakly
prefers Γ to ∆ (Γ �SF

i ∆). It follows that vi(Γ) ≥ vi(∆)
for all ∆ ∈ CN , ∆ 6= Γ.

We consider a coalition structure ∆ ∈ CN where i is to-
gether with all her friends and none of her enemies (i.e.,
Fi ⊂ ∆(i) and Ei ∩ ∆(i) = ∅). Then, for Γ to satisfy
vi(Γ) ≥ vi(∆), Γ(i) also has to contain all friends and no
enemies. Hence, i has an edge to every agent in Γ(i) and to
no agent outside of Γ(i). Since this holds for every i ∈ N ,
all coalitions in Γ are cliques and there is no edge between
any two coalitions in Γ. Thus Γ consists of the connected
components of G and these components are cliques.

From right to left, note that all agents i ∈ N value Γ with
vi(Γ) = n · |Fi|, which is the maximum value possible. q

Since it is easy to check this characterization, perfect
coalition structures can be verified in polynomial time for
the selfish-first model. It follows directly from Theorem 16
that the corresponding existence problem is also in P:



Theorem 17. Let N be a set of agents and G a network of
friends on N . There exists a perfect coalition structure un-
der the selfish-first model if and only if all connected com-
ponents of G are cliques.

We now turn to equal treatment. The proofs of Lem-
mas 18, 19, and 20 are omitted due to space constraints.
Lemma 18. Let G be a network of friends on a set of
agents N . If a coalition structure Γ ∈ CN is perfect un-
der equal treatment then each i ∈ N has at least one friend
in Γ(i) or has no friends at all.

As the following lemma shows, perfectness under equal
treatment even implies that every player is together with all
her friends.
Lemma 19. Let G be a network of friends on a set of
agents N . If a coalition structure Γ ∈ CN is perfect un-
der equal treatment then each agent is together with all her
friends, i.e., (∀i ∈ N)[Fi ⊂ Γ(i)].

Note that each agent is together with all her friends in a
coalition structure Γ if and only if Γ consists of the con-
nected components of the underlying network of friends.
Lemma 20. Let G be a network of friends on a set of
agents N . If a coalition structure Γ ∈ CN is perfect under
equal treatment then each coalition in Γ is a 2-clan.

By combining Lemmas 19 and 20, we get the following.
Lemma 21. Let G be a network of friends on a set of
agents N . If a coalition structure Γ ∈ CN is perfect under
equal treatment then Γ consists of the connected components
of G and these components are 2-clans.

However, Lemma 21 is not an equivalence. The converse
does not hold as the following example shows.
Example 22. Let N = {1, . . . , 9} and let the network of
friends G be given by Figure 8.

1

2 3 4 5

9

7 8

6

Figure 8: Network of friends for Example 22

Γ = {{1, . . . , 9}} consists of the only connected com-
ponent of G, which is a 2-clan. However, Γ is not per-
fect under equal treatment because agent 1 prefers ∆ =
{{1, . . . , 6}, {7, 8, 9}} to Γ: Omitting the details, we can
show that uEQ

1 (∆) = 113 > 112 = uEQ
1 (Γ).

Theorem 23. Perfectness verification can be done in coNP
for all three degrees of altruism.

Proof. Let (N,�) be an ACFG and G the underlying net-
work of friends. A coalition structure Γ ∈ CN is not perfect
if and only if there is an agent i ∈ N and a coalition struc-
ture ∆ ∈ CN such that ∆ �i Γ. Hence, we can nondeter-
ministically guess an agent i ∈ N and a coalition structure

∆ ∈ CN and, by Proposition 4, we can verify in polynomial
time whether ∆ �i Γ. q

Using Lemma 21, we can also show an upper bound for
perfectness existence under equal treatment.
Theorem 24. Perfectness existence is in coNP for equal
treatment.

Proof. Let (N,�) be an ACFG and G the underlying net-
work of friends. Let, furthermore, Γ ∈ CN be the coalition
structure that consists of the connected components of G.
From Lemma 21 we know that if a coalition structure does
not consist of the connected components of G, it is not per-
fect. Hence, Γ is the only coalition structure which possibly
is perfect. Therefore, there exists a coalition structure that
is perfect under equal treatment if and only if Γ is perfect.
Since perfectness verification is in coNP, it follows from
this equivalence that existence is in coNP. q

7 Conclusions and Open Problems
We have proposed to extend the model of altruistic hedo-
nic games due to Nguyen et al. (2016) to coalition forma-
tion games in general. We have compared this more general
model to altruism in hedonic games and have motivated our
work by giving an example with crucial differences between
the models. We have studied the common stability notions
and have initiated a computational analysis of the associ-
ated verification and existence problems. While these prob-
lems are solvable in polynomial for some stability notions
such as individual rationality and Nash stability, for others
they are coNP-complete. We were also able to give char-
acterizations for some of the stability notions, using graph-
theoretical properties of the underlying network of friends.
For future work we propose to complete this analysis and get
a full characterization for all stability notions. Furthermore,
it would be interesting to see if those problems, for which
we could only show coNP upper bounds, are also coNP-
complete.

Another interesting research topic could be the considera-
tion of altruism for other representations of the players’ pref-
erences. First, it could be interesting to consider the friends-
and-enemies encoding due to Dimitrov et al. (2006) with
enemy-oriented preferences. Furthermore, it might also be
revealing to consider weak rankings with double thresholds
as introduced by Lang et al. (2015).
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