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Abstract
Skeptical c-inference for a knowledge base containing con-
ditionals of the form If A then usually B is defined by taking
the set of all c-representations into account. C-representations
are ranking functions induced by impact vectors encoding the
conditional impact of the conditionals on each possible world.
We deal with the question of determining a maximal impact
factor u ∈ N such that c-inference can be implemented by a
finite domain constraint problem with solutions bounded by
u. While in general, determining a sufficient upper bound for
these CSPs is an open problem, we prove that for a knowledge
base with n conditionals with a world verifying all condition-
als it follows that n− 1 is a sufficient maximal impact factor.
Furthermore, we show that the conjecture supported by previ-
ous work that the number of conditionals is sufficient does not
hold. By constructing suitable knowledge bases with n condi-
tionals we establish that the exponential lower bound 2n−1 is
needed as possible impact factor for solutions of these finite
domains problems to fully realize skeptical c-inference.

1 Introduction
In the area of knowledge representation and reasoning, rules
play a prominent role. Nonmonotonic reasoning investi-
gates default rules of the form ”If A then normally/usual-
ly/preferably B”, and various semantical approaches have
been proposed for inductive inferences based on knowl-
edge bases of such rules. Calculi to compute inductive in-
ferences like Adam’s system P (Adams 1975), probabilistic
approaches like p-entailment (Goldszmidt and Pearl 1991),
or possibilistic inference methods (Dubois and Prade 2015)
have been developed, as well as inductive methods based
on Spohn’s ordinal conditional functions (OCFs) (Spohn
1988; 2012) like Pearl’s system Z (Pearl 1990) or c-
representations (Kern-Isberner 2001; 2004). OCFs assign
a degree of surprise to each world ω inducing a non-
monotonic inference relation (Dubois and Prade 2015; Pearl
1990; Spohn 1988). C-representations are special ranking
functions exhibiting desirable inference properties (Kern-
Isberner 2001; 2004). In this paper we focus on skeptical
c-inference which is introduced in (Beierle, Eichhorn, and
Kern-Isberner 2016) as skeptical inference relation taking
all c-representations into account. The authors show that c-
inference can be reduced to solve a constraint satisfaction
problem (CSP). In (Beierle et al. 2018) c-inference under
a maximal impact factor is introduced as skeptical inference

operation taking c-representations as solutions of a finite do-
main CSP into account. Let us follow (Beierle and Kutsch
2017) and call u ∈ N sufficient for R if c-inference under
a maximal impact u fully realizes skeptical c-inference and
l ∈ N minimally sufficient if this property is not fulfilled for
l − 1. The present paper deals with upper and lower bounds
for u ∈ N to be sufficient and minimally sufficient, respec-
tively. We provide the following main contributions.

• We formulate and prove a criterion generalizing (Beierle
and Kutsch 2019, Proposition 19) such that u = |R| − 1
is sufficient for R: If there is a world verifying all condi-
tionals fromR (Proposition 13).

• We prove that for every given verification/ falsification be-
haviour of conditionals on worlds there is a knowledge
base realizing this behaviour (Proposition 14).

• All experiments made with a reasoning platform InfOCF
in (Beierle and Kutsch 2019) supported the conjecture
that a maximal impact u = |R| is sufficient for R. How-
ever, here we construct a knowledge base with n con-
ditionals such that 2n−1 is minimally sufficient. Conse-
quently there is no polynomial bound for u ∈ N to be
minimally sufficient for all knowledge bases with n con-
ditionals (Proposition 16).

The rest of the paper is organized as follows. After briefly
recalling the basics of conditional logic, ranking functions,
skeptical c-inference and its formulation as a constraint sat-
isfaction problem (CSP) we deal in Section 3 with resource
bounded c-inference and the concept of sufficient and reg-
ular bounds for finite domain CSPs. The topic of Section 4
is a criterion on a knowledge base R such that |R| − 1 is a
sufficient bound for R. In Section 5, we deal with the con-
struction of knowledge bases whose existence will establish
the exponential lower bound for skeptical inference under
maximal impact u to be equivalent to skeptical c-inference
for all knowledge bases. In the final section we conclude and
point out future work.

2 Conditional logic, OCFS, c-representations
and the constraint satisfaction problem

Conditional Logic and OCFs Let Σ = {v1, ..., vm} be
a propositional alphabet. A literal is the positive (vi) or
negated (vi) form of a propositional variable, v̇i stands for



either vi or vi. From these we obtain the propositional lan-
guage L as the set of formulas of Σ closed under negation ¬,
conjunction ∧, and disjunction ∨. For shorter formulas, we
abbreviate conjunction by juxtaposition (i.e., AB stands for
A ∧ B), and negation by overlining (i.e., A is equivalent to
¬A). Let ΩΣ denote the set of possible worlds over L; ΩΣ

will be taken here simply as the set of all propositional in-
terpretations over L and can be identified with the set of all
complete conjunctions over Σ; we will often just write Ω in-
stead of ΩΣ. For ω ∈ Ω, ω |= Ameans that the propositional
formula A ∈ L holds in the possible world ω.

A conditional (B|A) with A,B ∈ L encodes the defea-
sible rule “if A then normally B” and is a trivalent logical
entity with the evaluation (de Finetti 1937; Kern-Isberner
2001) (with u for unknown or indeterminate)

J(B|A)Kω =


1 iff ω |= AB (verification)
0 iff ω |= AB (falsification)
u iff ω |= A (not applicable)

(1)

An Ordinal Conditional Function (OCF, ranking func-
tion) (Spohn 1988; 2012) is a function κ : Ω → N0 ∪ {∞}
that assigns to each world ω ∈ Ω an implausibility rank
κ(ω): the higher κ(ω), the more surprising ω is. OCFs have
to satisfy the normalization condition that there has to be
a world that is maximally plausible, i.e., κ−1(0) 6= ∅. The
rank of a formula A is defined by κ(A) = min{κ(ω) | ω |=
A}. An OCF κ accepts a conditional (B|A), denoted by
κ |= (B|A), iff the verification of the conditional is less sur-
prising than its falsification, i.e., iff κ(AB) < κ(AB). This
can also be understood as a nonmonotonic inference relation
between the premise A and the conclusion B: We say that
A κ-entails B, written A |∼ κ

B, iff A = ⊥ or κ accepts the
conditional (B|A): κ |= (B|A) iff κ(AB) < κ(AB) iff
A |∼κB. The acceptance relation is extended as usual to a
set R of conditionals, called a knowledge base, by defining
κ |= R iff κ |= (B|A) for all (B|A) ∈ R. This is syn-
onymous to saying that κ is admissible with respect to R
(Goldszmidt and Pearl 1996), or that κ is a ranking model of
R.R is consistent iff it has a ranking model.

Among the models of R, c-representations are special
models obtained by assigning an individual impact to each
conditional and generating the world ranks as the sum of
impacts of falsified conditionals. C-inference is an inference
relation taking all c-representations ofR into account.
Definition 1 (c-representation (Kern-Isberner 2001; 2004)).
A c-representation of a knowledge baseR is a ranking func-
tion κ #»η constructed from #»η = (η1 , . . . , ηn) with integer
impacts ηi ∈ N0 , i ∈ {1 , . . . , n} assigned to each condi-
tional (Bi|Ai) such that κ acceptsR and is given by:

κ #»η (ω) =
∑

16i6n
ω|=AiBi

ηi (2)

We will denote the set of all c-representations of R by
O(CR(R)).
Definition 2 (c-inference, |∼ c

R (Beierle, Eichhorn, and
Kern-Isberner 2016)). Let R be a knowledge base and let

A, B be formulas. B is a (skeptical) c-inference from A in
the context of R, denoted by A |∼ c

RB, iff A |∼ κ
B holds for

all c-representations κ forR.
In (Beierle, Eichhorn, and Kern-Isberner 2016), a model-

ing of c-representations as solutions of a constraint satisfac-
tion problem CR(R) is given and shown to be correct and
complete with respect to the set of all c-representations of
R.
Definition 3 (CR(R) (Beierle, Eichhorn, and Kern-Is-
berner 2013)). Let R = {(B1|A1), . . . , (Bn|An)}. The
constraint satisfaction problem for c-representations of
R, denoted by CR(R), on the constraint variables
{η1, . . . , ηn} ranging over N0 is given by the conjunction
of the constraints, for all i ∈ {1, . . . , n}:

ηi > 0 (3)

ηi > min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj (4)

A solution of CR(R) is an n-tuple (η1, . . . , ηn) ∈ Nn0 .
For a constraint satisfaction problem CSP , the set of so-
lutions is denoted by Sol(CSP). Thus, with Sol(CR(R))
we denote the set of all solutions of CR(R). Let us
recall the soundness and completeness of constructing
c-representations by integer impacts from solutions of
CR(R).
Proposition 4 ((Beierle, Eichhorn, and Kern-Isberner 2016;
Beierle et al. 2018)). Let R = {(Bi|Ai) , i = 1 , . . . , n} be
a knowledge base. Then we have

O(CR(R)) = {κ #»η | #»η ∈ Sol(CR(R))} (5)

where κ #»η is defined as in (2).

3 Resource bounded c-inference
If a knowledge base R is consistent, there are in general
infinitely many c-representations acceptingR, including in-
ferentially equivalent ones.
Definition 5 (≡|∼ ). Two ranking functions κ, κ′ are infer-
entially equivalent, denoted by κ ≡|∼ κ′ iff for all (B|A) it
is the case that κ |= (B|A) iff κ′ |= (B|A).

For instance, if there is a k ∈ N such that κ′(ω) = k ·κ(ω)
for all worlds ω, then κ ≡|∼ κ′; in general, two rank-
ing functions are inferentially equivalent iff they induce the
same total preorder on worlds.
Proposition 6 ((Beierle et al. 2018)). For ranking functions
κ and κ′, we have κ ≡|∼ κ′ iff for all ω1, ω2 ∈ Ω it is the
case that κ(ω1) 6 κ(ω2) iff κ′(ω1) 6 κ′(ω2).

For a set O of OCFs, O/≡|∼ denotes the set of induced
equivalence classes. Recently, it has been suggested to take
inferential equivalence of c-representations into account and
to sharpen CR(R) by introducing an upper bound for the
impact values ηi.
Definition 7 (CRu(R) (Beierle et al. 2018)). Let R =
{(B1|A1), . . . , (Bn|An)} and u ∈ N. The finite domain
constraint satisfaction problem CRu(R) on the constraint
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variables {η1, . . . , ηn} ranging over N0 is given by the con-
junction of the constraints, for all i ∈ {1, . . . , n}:

ηi > 0 (6)

ηi > min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj (7)

ηi 6 u (8)

A solution of CRu(R) is an n-tuple (η1, . . . , ηn) ∈ Nn0 ,
its set of solutions is denoted by Sol(CRu(R)). For #»η ∈
Sol(CRu(R)) and κ as in equation (2), κ is the OCF in-
duced by #»η , denoted by κ #»η , and the set of all induced OCFs
is denoted by O(CRu(R)) = {κ #»η | #»η ∈ Sol(CRu(R))}.

C-inference defined with respect to a maximal impact
value can be viewed as a kind of resource-bounded infer-
ence operation.
Definition 8 (c-inference under maximal impact value,
|∼c,u

R (Beierle et al. 2018)). Let R be a knowledge base,
u ∈ N, and let A, B be formulas. B is a (skeptical) c-
inference from A in the context of R under maximal im-
pact value u, denoted by A |∼c,uR B, iff A |∼ κ

B holds for all
c-representations κ with κ ∈ O(CRu(R)).

The following definition introduces a criterion for a max-
imal impact value ensuring that |∼c,uR fully realizes skeptical
c-inference. For an OCF κ, the definition uses the total pre-
order 4κ on worlds given by ω1 4κ ω2 iff κ(ω1) 6
κ(ω2).

Definition 9 (regular, minimally regular (Beierle et al. 2018;
Beierle and Kutsch 2017)). For R let û ∈ N be the
smallest number such that |{4κ| κ ∈ O(CRû(R))}| =
|{4κ| κ ∈ O(CR(R))|. Then CRu(R) is called regular iff
u > û, and CRû(R) is minimally regular; we also say that
u is regular forR and û is minimally regular forR.

While CR(R) correctly and completely models the set
of all c-representations for R (Beierle, Eichhorn, and
Kern-Isberner 2016), every regular CRu(R) is correct and
complete when taking inferential equivalence into account
(Beierle et al. 2018). Thus, for regular u, |∼cR and |∼c,uR co-
incide.
Proposition 10 ((Beierle et al. 2018)). Let R be a knowl-
edge base, CRu(R) regular, and A, B be formulas. Then
A |∼cRB iff A |∼c,uR B.

When we are not interested in capturing all c-
representations as done by a regular CRu(R), but aim at
capturing c-inference instead, we can specify a maximal im-
pact value from this perspective in order to obtain a finite
domain CSP.
Definition 11 (sufficient, minimally sufficient (Beierle et al.
2018; Beierle and Kutsch 2017)). Let R be a knowledge
base and let u ∈ N. Then CRu(R) is called sufficient iff for
all formulas A,B we have

A |∼cRB iff A |∼c,uR B. (9)

If CRu(R) is sufficient, we will also call u sufficient for R.
If û is sufficient forR and û− 1 is not sufficient forR, then
û is minimally sufficient forR.

The condition that CRl(R) is regular is only a sufficient
condition for (9) but not necessary, see (Beierle and Kutsch
2019, Proposition 5). Let us introduce the following concept
of a minimal solution.
Definition 12 (minimal solution). Let R be a knowledge
base and let #»η = (η1 , . . . , ηn) be a solution to the con-
straint satisfaction problem CR(R). Then #»η is called mini-
mal solution to CR(R) if for every solution (η′1 , . . . , η

′
n) to

CR(R) we have ηi 6 η′i for all i ∈ {1 , . . . , n}.
It follows immediately from the definition that a minimal

solution to CR(R), if such a solution exists, is uniquely de-
termined. Further a minimal solution in the sense of Defini-
tion 12 is also cw-minimal, ind-minimal and sum-minimal
in the sense of (Beierle, Eichhorn, and Kutsch 2017).

4 A criterion such that CRn−1(R) is
sufficient

The scope of this section is to prove for a knowledge base
R = {r1 , . . . , rn} with a world ω ∈ Ω verifying all condi-
tionals fromR we have that CRn−1(R) is sufficient.
Proposition 13. Let n ∈ N , n > 1, and let R =
{(Bi|Ai) , i = 1 , . . . , n} be a knowledge base. We as-
sume that there exists ω ∈ Ω with ω |= AiBi for all
i ∈ {1 , . . . n}. Then the knowledge base is consistent and
CRn−1(R) is sufficient.

Proof. Choose ω̃ ∈ Ω accepting all conditionals from R.
Then

min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj

= − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj

for all i ∈ {1 , . . . , n}. Thus, the constraint (4) reduces to

ηi > − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj (10)

for all i ∈ {1 , . . . , n}.
The implication ” =⇒ ” from (9) is obvious since

O(CRn−1(R)) ⊆ O(CR(R)). For the proof of the other
implication ”⇐= ” fix formulas A ,B such that

A `c,n−1
R B. (11)

We have to showA `cR B. Due to Proposition 4 this requires
κ #»η (AB) < κ #»η (AB) for all κ #»η (defined in (2)) where #»η =
(η1 , . . . , ηn) ∈ Sol(CR(R)). That is, in turn, equivalent to

∀ω0 ∈ ΩAB ∃ω
1 ∈ ΩAB with κ #»η (ω1) < κ #»η (ω0) . (12)

Fix any c-representation κ #»η ∈ O(CR(R)) with #»η =
(η1 , . . . , ηn) and ηi > 0 , i ∈ {1 , . . . , n} . Further, fix
ω0 ∈ ΩAB . Let us define the set of all indices such that
ηi > 0 and the corresponding conditional is falsified by ω0

as

J := {i ∈ {1 , . . . , n}; ηi > 0 and ω0 |= AiBi}. (13)
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Our goal is to construct ω1 ∈ ΩAB such that{
i ∈ {1 , . . . , n} ; ηi > 0 and ω1 |= AiBi

}
(
{
i ∈ {1 , . . . , n} ; ηi > 0 and ω0 |= AiBi

}
.

(14)

Indeed, assume that (14) is proven. From (14) we get imme-
diately

κ #»η (ω1) =
∑

i∈{1 ,... ,n}
ω1|=AiBi

ηi <
∑

i∈{1 ,... ,n}
ω0|=AiBi

ηi = κ #»η (ω0)

implying that (12) is fulfilled. Altogether, to finish the proof
we have to show the existence of ω1 ∈ ΩAB with (14). We
distinguish the cases as follows.

Case (i). First, let us consider the case |J | = n. Choose
arbitrary η′i ∈ {1 , . . . , n − 1} for i ∈ {1 , . . . , n}. Since
η′i > 0 it follows that (10) holds (which is equivalent to (4))
and so #»η ′ fulfils (3), (4). Due to Proposition 4 it follows
κ #»η ′ ∈ O(CRn−1(R)). From (11) we get ω1 ∈ ΩAB with

κ #»η ′(ω
1) < κ #»η ′(ω

0). Thus
∑

i∈{1 ,... ,n}
ω1|=AiBi

η′i <

n∑
i=1

η′i . How-

ever, this yields{
i ∈ {1 , . . . , n} ; ω1 |= AiBi

}
( {1 , . . . , n} .

Consequently (14) holds.
Case (ii). Let us consider the case |J | < n. We define

#»η ′ = (η′1 , . . . , η
′
n) by

η′i :=


0 , if i ∈ {1 , . . . n} with ηi = 0 ,

1 , if i ∈ J ,
n− 1 , otherwise .

(15)

Since η′i > 0 , i ∈ {1 , . . . , n} it remains to prove the
constraint (4) which we know is equivalent to (10). If i ∈
{1 , . . . , n} such that η′i > 0 then obviously (10) holds.
Therefore let us consider i ∈ {1 , . . . , n} such that η′i = 0.
Since ηi = 0 we know that (10) holds. Thus

0 > − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj

and so min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj ∈ N∞ (i.e. 6= 0). By (15) we have

ηj > 0 implies η′j > 0 and so min
ω|=AiBi

∑
j 6=i

ω|=AjBj

η′j ∈ N∞.

Consequently (4) is also satisfied for η′i = 0. Making use of
Proposition 4 it follows that κ #»η ′ ∈ O(CRn−1(R)). By (11)
we know A `κ #»η ′ B. Therefore, there is ω1 ∈ ΩAB with
κ #»η ′(ω

1) < κ #»η ′(ω
0). Thus∑

i∈{1 ,... ,n}
ω1|=AiBi

η′i <
∑

i∈{1 ,... ,n}
ω0|=AiBi

η′i . (16)

By definition of J and #»η ′, see (13), (15), it holds for all
i ∈ {1 , . . . , n} with ηi > 0 and ω0 |= AiBi that η′i = 1.
Therefore

∑
i∈{1 ,... ,n}
ω0|=AiBi

η′i = |J |. By (16) we get

∑
i∈{1 ,... ,n}
ω1|=AiBi

η′i < |J | 6 n− 1. (17)

We finish the proof of (14) by contradiction. Suppose
that (14) is wrong. Due to (16) the two sets in (14) can not be
identical. Therefore, there must be an k ∈ {1 , . . . , n} such
that ηk > 0 and ω1 |= AkBk but not k ∈ J . Since k /∈ J ,
by (15), there holds η′k = n− 1. But then∑

i∈{1 ,... ,n}
ω1|=AiBi

η′i = n− 1 +
∑
i 6=k

ω1|=AiBi

η′i > n− 1 ,

contradicting (17). Altogether the existence of ω1 with (14)
is also proven in the case (ii). The proof is complete.

Remark. In (Beierle and Kutsch 2019) the knowledge
base Rn = {(a1|>) , . . . , (an|>)} of n conditionals facts
over Σn = {a1 , . . . , an} is introduced and it is proven
that CRn−1(Rn) is sufficient for n > 1. Since ω =
(a1 , . . . , an) accepts all conditionals from Rn, our more
general Proposition 13 yields the same conclusion in that
case but makes no use of the special structure of the condi-
tionals fromRn.

5 Existence of a knowledge base such that
2n−1 is minimally sufficient and minimally

regular
In this section we deal with the construction of a knowledge
base R = {(Bi|Ai) , i = 1 , . . . , n} where 2n−1 is mini-
mally sufficient and minimally regular. Further we will clar-
ify the construction and present an explicit knowledge base
for n = 5.

Let Ω = {ωi ; i = 1 , . . . ,m}. For conditionals
(Bj |Aj)j=1 ,... ,,n a matrix (mi,j) with mi,j ∈ {v , f,−}
describing the evaluation according to (1) can be defined by

mi,j = [[(Bj |Aj)]]ωi . (18)

In (18) mi,j = v means that ωi verifies (Bj |Aj), the mean-
ing of mi,j = f is that ωi falsifies (Bj |Aj) and we write
mi,j = − if ωi |= Aj .

In the following proposition we tackle the ”inverse prob-
lem”: For a given evaluation matrix (mi,j)i=1,...,m ; j=1 ,... ,n

we construct a (not necessarily consistent) knowledge base
R = {(Bj |Aj) , j = 1, . . . , n} such that the evaluation is
just given by (18).

Proposition 14. Let n ,m ∈ N , let Σ = {v1, . . . , vm} be a
propositional alphabet and let Ω = {ω1, . . . , ω2m}. For all
i ∈ {1, . . . , 2m} and j ∈ {1, . . . , n} letmi,j ∈ {v , f , /} be
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worlds r1 r2 r3 . . . rn
ω1 m1,1 m1,2 m1,3 . . . m1,n

ω2 m2,1 m2,2 m2,3 . . . m2,n

ω3 m3,1 m3,2 m3,3 . . . m3,n

. . .
ω2m m2m,1 m2m,2 m2m,3 . . . m2m,n

Table 1: Evaluation tableau

given. Then there exists a (not necessarily consistent) knowl-
edge base R = {(Bj |Aj) , j = 1, . . . , n} such that the fol-
lowing holds:

If mi,j = v then ωi |= AjBj , (19)

If mi,j = f then ωi |= AjBj , (20)

If mi,j = − then ωi |= Aj . (21)

Proof. We have to construct rj = (Bj |Aj) such thatmi,j =
[[(Bi|Ai)]]ωi . To do so we define the formulas

Aj :=
∨

{ωi∈Ω;mi,j∈{+ ,−}}

ωi , (22)

Bj :=
∨

{ωi∈Ω;mi,j∈{+}}

ωi (23)

for all j ∈ {1, . . . , n}. Due to construction we see
that (19), (20), (21) hold.

Proposition 14 can be summarized as follows: Every eval-
uation table (see Table 1), described by an evaluation matrix
(mi,j)i=1,...,m ; j=1 ,... ,n , can be generated by a knowledge
baseR = {(Bj |Aj) , j = 1, . . . , n}.
Proposition 15. There exists a consistent knowledge base
R = {(Bi|Ai) , i = 1 , . . . , n}, such that the constraint
satisfaction problem CR(R) is given by the conjunction of
the constraints

ηi >

i−1∑
j=1

ηj (24)

for all i ∈ {1 , . . . , n}. (If i = 1 then
∑i−1
j=1 ηj = 0 and

so (24) means η1 > 0.) The constraint satisfaction prob-
lem (24) has the minimal solution

#»η = (1, 2, 4, 8, . . . , 2n−1) . (25)

Proof. Consider disjoint subsets Ω+ ,Ω− ⊆ Ω where
|Ω+| = n and |Ω−| = n. Let us write Ω = Ω+ ∪Ω− ∪Ωrest
where

Ω− = {ω−1 , ω−2 , . . . , ω−n } ,
Ω+ = {ω+

1 , ω
+
2 , . . . , ω

+
n } ,

Ωrest := Ω \ (Ω− ∪ Ω+) .

Looking at Proposition 14 there exists a knowledge base
R = {ri = (Bi|Ai) , i = 1 , , . . . , n} fulfilling the follow-
ing evaluation tableau:

worlds r1 r2 r3 . . . rn−1 rn
ω+

1 v − − . . . − −
ω+

2 f v − . . . − −
ω+

3 f f v . . . − −
. . .
ω+
n−1 f f f . . . v −
ω+
n f f f . . . f v
ω−1 f − − . . . − −
ω−2 − f − . . . − −
ω−3 − − f . . . − −
. . .
ω−n−1 − − − . . . f −
ω−n − − − . . . − f
all other worlds − − − . . . − −

By (22), (23) in the proof of Proposition 14 it follows that
we can choose the knowledge baseR = {ri = (Bi|Ai) , i =
1 , . . . , n} in the following way

Ai :=
∨

{ω∈Ω; [[ri]]ω∈{+ ,−}}

ω = ω−i ∨ ω
+
i ∨ . . . ∨ ω

+
n ,

Bi :=
∨

{ω∈Ω; [[ri]]ω∈{+}}

ω = ω+
i

for all i ∈ {1, . . . , n}. Consequently we obtain

ri =
(
ω+
i | ω

−
i ∨ ω

+
i ∨ . . . ∨ ω

+
n

)
.

Fix i ∈ {1 , . . . , n}. Due to construction

min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj − min
ω|=AiBi

∑
j 6=i

ω|=AjBj

ηj =

i−1∑
j=1

ηj

for all i ∈ {1 , . . . , n}. Consequently (4) transforms to (24)
and so CR(R) is given by (24) for all i ∈ {1 , . . . , n}. (In-
equality (24) implies (3).) It follows immediately that there
exists a minimal solution #»η = (η1 , . . . , ηn) to CR(R) sat-
isfying

ηi = 1 +

i−1∑
j=1

ηj

for all i ∈ {1 , . . . , n}. The proof of the representation (25)
is by induction. For i = 1 we have η1 = 1 = 21−1. The
proof of the inductive step follows from

ηi = 1 +

i−1∑
j=1

ηj = 1 +

i−2∑
j=0

2j = 1 +
1− 2i−1

1− 2
= 2i−1 .

Consequently (25) holds.

The following remarkable lemma states that all c-
representations ofR are inferentially equivalent.
Lemma 1. Let R = {(Bi|Ai) , i = 1 , . . . , n} de-
note a knowledge base with constraint satisfaction prob-
lem CR(R) given by (25). Then every c-representation
κ ∈ O(CR(R)) is inferentially equivalent to κ #»η (defined
in (2)) where #»η is the minimal solution to CR(R) given by
#»η = (1, 2, 4, 8, . . . , 2n−1).
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Proof. Let κ ∈ O(CR(R)) denote an arbitrary c-
representation and let ω1 , ω2 ∈ Ω. Let us define

J1 := {i ∈ {1 , . . . , n};ω1 |= AiBi} ,
J2 := {i ∈ {1 , . . . , n};ω2 |= AiBi} .

Let us write maxM = 0 if M ⊆ {1 , . . . , n} with M = ∅.
Assertion. We have

κ(ω1) > κ(ω2) ⇐⇒ max(J1 \ J2) > max(J2 \ J1) ,
(26)

κ(ω1) = κ(ω2) ⇐⇒ J1 = J2 . (27)

Proof of the assertion. Due to Proposition 4 we have κ =
κ #»η ′ with #»η ′ = (η′1 , . . . , η

′
n) ∈ Sol(CR(R)). Since (26)

implies (27) it remains to show (26). We obtain

κ(ω1)−κ(ω2) =
∑
j∈J1

ηj−
∑
j∈J2

η′j =
∑

j∈J1\J2

η′j−
∑

j∈J2\J1

η′j .

Define q1 := max J1 and q2 := max J2. Assume max(J1 \
J2) > max(J2 \ J1). Then q1 > q2 and it follows

κ(ω1)− κ(ω2) =
∑

j∈J1\J2

ηj −
∑

j∈J2\J1

ηj

> ηq1 −
∑

j∈{1 ,... ,q1−1}

ηj > 0

due to the structure of CR(R). On the other hand if∑
j∈J1\J2

η′j −
∑

j∈J2\J1

η′j = κ(ω1)− κ(ω2) > 0

it follows due to the structure ofCR(R) that max(J1\J2) >
max(J2 \ J1). The proof of the assertion is complete.

Let κ , κ′ ∈ O(CR(R)) be c-representations. Making use
of the proven assertion we see that

κ(ω1) 6 κ(ω2) ⇐⇒ κ′(ω1) 6 κ′(ω2)

for all ω1 , ω2 ∈ Ω. Due to Proposition 6 we get that κ and
κ′ are inferentially equivalent. The claim follows.

Now we have all ingredients at hand to prove the main
result of this section

Proposition 16. For every n ∈ N there exists a consistent
knowledge base R = {(Bi|Ai) , i = 1 , . . . , n} such that
2n−1 is minimally sufficient and minimally regular.

Proof. Let R be the knowledge base whose existence is
proven in Proposition 15. Due to Lemma 1 we know that
CR2n−1

(R) is regular and, see Proposition 10, also suffi-
cient. By (25) we have #»η = (1, 2, 4, 8, . . . , 2n−1) for the
minimal solution of R. Since ηn = 2n−1, by the definition
of a minimal solution, Sol(CRl(R))) = ∅ if l < 2n−1. For
a consistent knowledge base a regular CRl(R) necessarily
has a non empty set of solutions Sol(CRl(R))). Therefore
CRl(R) is not regular and, by Proposition 10, also not suf-
ficient see for l < 2n−1. Altogether 2n−1 is minimally suf-
ficient and minimally regular forR.

Example 17. In this example (see Proposition 16 for n = 5)
we want to clarify and explain the construction of a knowl-
edge base R = {ri = (Bi|Ai) , i = 1 , . . . , 5} with n = 5
conditionals such that 24 = 16 is minimally sufficient and
minimally regular for R. Looking at the proof of Proposi-
tion 16 our goal is to constructR such that CR(R) is given
by:
η1 > 0 η4 > η1 + η2 + η3

η2 > η1 η5 > η1 + η2 + η3 + η4

η3 > η1 + η2

An inspection of the proof of Proposition 15 yields that
R can be constructed such that the following evaluation
tableau is fulfilled:

worlds r1 r2 r3 r4 r5

a b c d e v − − − −
a b c d e f v − − −
a b c d e f f v − −
a b c d e f f f v −
a b c d e f f f f v
a b c d e f − − − −
a b c d e − f − − −
a b c d e − − f − −
a b c d e − − − f −
a b c d e − − − − f
all other worlds − − − − −

Due to (22), (23) we finally arrive at the following ”ex-
plicit” knowledge base

r1 = ( a b c d e | a b c d e ∨ a b c d e ∨ a b c d e

∨ a b c d e ∨ a b c d e ∨ a b c d e ) ,
r2 = ( a b c d e | a b c d e ∨ a b c d e ∨ a b c d e

∨a b c d e ∨ a b c d e ) ,
r3 = ( a b c d e | a b c d e ∨ a b c d e

∨a b c d e ∨ a b c d e ) ,
r4 = ( a b c d e | a b c d e ∨ a b c d e ∨ a b c d e ) ,
r5 = ( a b c d e | a b c d e ∨ a b c d e )

6 Conclusions and Further Work

We presented a criterion on a knowledge base R such that
using |R| − 1 as an upper bound is sufficient for realizing
skeptical c-inference forR by a finite domain constraint sys-
tem. Given any verification/ falsification behaviour of con-
ditionals on worlds, we developed a constructive approach
yielding a knowledge base realizing this behaviour. Further-
more, and in contrast to the previous conjecture that a max-
imal impact u = |R| is sufficient for R, due to the present
paper, we know that there is no polynomial bound for u ∈ N
to be minimally sufficient for all knowledge bases with n
conditionals for realizing skeptical c-inference over R. The
problem of proving a sufficient upper bound for all knowl-
edge bases remains open and will be addressed in a future
work.
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