The Complexity of Controlling Condorcet, Fallback, and k-Veto Elections by
Replacing Candidates or Voters

Marc Neveling, Jorg Rothe, Roman Zorn
Institut fiir Informatik
Heinrich-Heine-Universitit Diisseldorf
Diisseldorf, Germany
{marc.neveling, rothe, roman.zorn} @hhu.de

Abstract

Electoral control models malicious ways of tampering with
the outcome of elections via structural changes and has
turned out to be one of the central themes in computa-
tional social choice. While the standard control types—
adding/deleting/partitioning either voters or candidates—has
been studied quite comprehensively, much less is known for
the control action of replacing voters or candidates. Contin-
uing the work of Loreggia et al. (2014; 2015) and Erdélyi,
Reger, and Yang (2018), we study the computational com-
plexity of control by replacing candidates or voters in Con-
dorcet, fallback, and k-veto elections.

1 Introduction

Bartholdi, Tovey, and Trick (1992) were the first to pro-
pose control of elections as a malicious way of tamper-
ing with their outcome via changing their structure, e.g.,
by adding or deleting voters or candidates. They introduced
the constructive variant where the goal of an election chair
is to make a favorite candidate win. Focusing on plural-
ity and Condorcet elections, they studied the complexity of
the associated control problems, showing either resistance
(NP-hardness) or vulnerability (membership in P). Com-
plementing their work, Hemaspaandra, Hemaspaandra, and
Rothe (2007) introduced the destructive variant of control
where the chair’s goal is to prevent a despised candidate’s
victory. Pinpointing the complexity of destructive control in
plurality and Condorcet, they also studied the constructive
and destructive control complexity of approval voting. Since
then, plenty of voting rules have been analyzed in terms
of their control complexity, as surveyed by Faliszewski and
Rothe (2016) and Baumeister and Rothe (2015).

The computational complexity of replacing voters or can-
didates was first studied by Loreggia et al. (2014; 2015) and
later on by Erdélyi, Reger, and Yang (2018). Compared with
the standard control types (adding/deleting/partitioning vot-
ers or candidates), much less is known for the control action
of replacing voters or candidates. It can be seen as a combi-
nation of adding and deleting them, with the additional con-
straint that the same number of voters/candidates must be
added as have been deleted. Other types of combining con-
trol attacks have been investigated by Faliszewski, Hema-

spaandra, and Hemaspaandra (2011).

Our contribution is to study the complexity of control by
replacing either voters or candidates in Condorcet, fallback,
and k-veto elections. The complexity of control under the
standard types has been studied and completely settled for
Condorcet voting, as pointed out above, by Bartholdi, Tovey,
and Trick (1992) and Hemaspaandra, Hemaspaandra, and
Rothe (2007); for fallback voting by Erdélyi et al. (2015a;
2015b; 2011; 2010); and for veto (i.e., 1-veto) elections
by Lin (2012; 2011) (who also settled some cases of stan-
dard control in k-veto for k > 2), Chen et al. (2015), and
Maushagen and Rothe (2018; 2017; 2016). Among these
rules, fallback voting (a hybrid system due to Brams and
Sanver (2009) that combines Bucklin with approval voting)
is special in that it is one of the two natural voting rules with
a polynomial-time winner problem that are currently known
to have the most resistances against standard control attacks,
the other one being normalized range voting (Menton 2013).

In the related area of judgment aggregation, control by
replacing judges has been introduced by Baumeister et
al. (2012) and further studied by Baumeister, Rothe, and
Selker (2015).

2 Preliminaries

An election is a pair (C,V) with C being a set of m can-
didates and V a set of n voters. Voters express their pref-
erences over the candidates by, e.g., linear orders over C,
such as ¢ b a d for C = {a,b,c,d}, where the leftmost can-
didate is the most preferred one by this voter and preference
(strictly) decreases from left to right. A voting rule & then
maps each election (C,V) to a subset W C C of the can-
didates, called the R winners (or simply the winners if R
is clear from the context) of election (C,V). For candidates
a,b € C, denote the number of votes in (C, V) preferring a to
b by Nicy)(a,b). We will study the following voting rules:

e k-veto: A candidate gains a point from each vote in which
she is ranked higher than in the last k positions (i.e., the
candidates in the last k positions are vetoed). The candi-
date(s) with the most points (i.e., with the fewest vetoes)
win(s) the election.

e Condorcet: A Condorcet winner is a candidate a who
beats all other candidates in pairwise contests, i.e., for



each other candidate b, it holds that N y)(a,b) >
Nc,v)(b,a). Note that a Condorcet winner does not al-
ways exist, but if there is one, he or she is unique.

e Fallback: In a fallback election (C,V), each voter v sub-
mits her preferences as a subset of candidates S, C C that
she approves of and, in addition, a strict linear ordering of
those candidates (e.g., if a voter v approves of the can-
didates S, = {ci,...,cx} and orders them lexicographi-
cally, her vote would be denoted as ¢; -+ ¢x | C\ Sy).
Let scorecy)(c) = [{v €V | c € S,}| be the number of

approvals of ¢ and scoreéc V>(c) be the number of level i

approvals of ¢ (i.e., the number of voters who approve of
¢ and rank c in their top i positions). The fallback win-
ner(s) will then be determined as follows: (1) A candidate
c is a level ¢ winner if scorefciv)(c) > [VI/2. Letting i be

the smallest integer such that there is a level i winner, the
candidate(s) with the most level i approvals win(s). (2) If
there is no fallback winner on any level, the candidate(s)
with the most approvals win(s).

Unlike the original papers on electoral control that in par-
ticular investigated the control actions of adding and delet-
ing either candidates or voters (Bartholdi, Tovey, and Trick
1992; Hemaspaandra, Hemaspaandra, and Rothe 2007), we
will consider control by replacing either candidates or vot-
ers, which combines adding and deleting them and was in-
troduced by Loreggia et al. (2014; 2015) and later on also
studied by Erdélyi, Reger, and Yang (2018).

For a given voting rule &, define the following problems:

R -CONSTRUCTIVE-CONTROL-BY-REPLACING-CANDIDATES

Given: An election (CUD,V), where D with CND =0 is
a set of spoiler candidates, a distinguished candi-
date ¢ € C, and an integer r € N.

Question:  Are there subsets C' CC\ {c} and D' C D of equal
size (at most r) such that c is an & winner of the
election ((C\C')UD',V)?

We are given an election (CUD,V) in this problem, i.e.,
all votes in V express preferences over all the candidates in
CUD. But only the candidates from C are taken into account
before the control action, and some of those have then been
replaced by the same number of candidates from D. In any
case, we implicitly assume that missing candidates do not
show up in the votes, i.e., all votes from V are restricted to
those candidates actually occurring in the election at hand.

R -CONSTRUCTIVE-CONTROL-BY-REPLACING-VOTERS

Given: An election (C,V UU) with registered voters V,
as yet unregistered voters U, a distinguished can-
didate ¢ € C, and an integer r € N.

Question:  Are there subsets V/ CV and U’ C U of equal size
(at most r) such that ¢ is an & winner of the elec-
tion (C,(V\V")UU’)?

In short, we denote the former problem as X -CCRC and
the latter as X -CCRV. We will also consider the destructive
variants of these problems, denoted by ®-DCRC and R -
DCRYV, in which the goal is to prevent the distinguished can-
didate from being an & winner. We focus on the so-called

nonunique-winner model in which we do not care if the dis-
tinguished candidate is the only winner as long as he or she is
a winner (respectively, not even a winner in the destructive
variants). By contrast, in the unique-winner model a con-
trol action is considered successful only if the distinguished
candidate is the unique winner (respectively, not a unique
winner). We note in passing that, with slight modifications,
our proofs work for the unique-winner model as well.

We assume the reader to be familiar with the basic notions
from complexity theory; in particular, with the complexity
classes P and NP and the notions of NP-hardness and NP-
completeness. For our proofs, we define the following well-
known NP-complete problems (Garey and Johnson 1979):

EXACT-COVER-BY-THREE-SETS (X3C)

Given: A set B={by,b,...,b3s} with s > 1 and a family
S ={51,52,...,5:} of subsets S; C B with |S;| =3
foreachi, 1 <i<t.

Question: Is there a subfamily ' C § such that every ele-
ment of B appears in exactly one subset of §?

HITTING-SET

Given: AsetB={b1,by,...,b3s} with s > 1, a family § =
{S1,S82,...,5:} of subsets S; C B, and an integer ¢
with1 <g <s.

Question:  TIs there a subset B’ C B, |B'| < g, such that each
S; € S is hit by B (ic., SiNB #0 for all S; € $)?

We call a voting rule immune to a type of control if it is
never possible for the chair to reach her goal by this control
action; otherwise, the voting rule is said to be susceptible to
this control type. A susceptible voting rule is said to be vul-
nerable to this control type if the associated control problem
is in P, and it is said to be resistant to it if the associated
control problem is NP-hard. Note that all considered control
problems are in NP, so resistance implies NP-completeness.

3 Overview of Results
Table 1 gives an overview of our results.

Problem \ Condorcet  Fallback k-Veto

CCRV R R V (k<2 /R (k>3)F
DCRV \Y A V k>t
CCRC \Y R R (k> 1)*
DCRC A R R (k> 1)*

Table 1: Overview of complexity results. “R” stands for re-
sistant and “V” for vulnerable. Results marked by “f” are
due to Erdélyi, Reger, and Yang (2018) and “}” means that
the case k = 1 is due to Loreggia et al. (2015).

4 Condorcet Voting

We will start with Condorcet and show that it is vulnerable
to three types of control, yet resistant to the forth one.

Theorem 1 Condorcet is resistent to constructive control by
replacing voters.



Proof. We prove NP-hardness by reducing X3C to Con-
dorcet-CCRV. A similar reduction was used by Bartholdi,
Tovey, and Trick (1992) to prove that Condorcet-CCAV
(where CCAV stands for “constructive control by adding
voters”) is NP-hard.

Let (B,S) be an X3C instance with B={b1,...,b3,}, s >
2 (which may be assumed, as X3C is trivially solvable when
s=1),and § = {Si,...,8}, t > 1. The set of candidates is
C = BU{c} with ¢ being the distinguished candidate. The
list V of votes is constructed as follows:

e There are 25 — 3 registered votes of the form by --- b3 ¢
inV and

e for each j, 1 < j <r, there is one unregistered vote of the
form S; ¢ B\ S;inU.
The ordering of candidates in S; and B\ S; does not matter
in any of those votes. Finally, set r = s.
Analyzing the election (C,V), b; is the Condorcet winner;
in particular, ¢ loses against every b; € B with a deficit of
25 — 3 votes, i.e.,

N(C,V) (bi,C) _N(C,V) (C7bi) =2s—3.

We will now show that (B,.S) is a yes-instance of X3C
if and only if ¢ can be made the Condorcet winner of the
election by replacing s votes from V with votes from U.

From left to right, assume there is an exact cover §' C §
of B. We remove s votes of the form b; --- b3, ¢ from the
election and replace them by the votes of the form S; ¢ B\ S;
forall §; € §'. Let (C,V’) be the resulting election. Since .5’
is an exact cover of B, for each b; € B,

N(Cﬁv’)(bhc) 7N(C7V/)(C,b,') = (2S73 -5+ 1) - (S* 1) =—-1<0.

Thus ¢ now defeats each b; € B in pairwise comparison and,
therefore, has been made the Condorcet winner of (C,V’).

From left to right, assume that ¢ can be made a Condorcet
winner of the election by replacing at most s votes. Recall
that ¢ has a deficit of

N(C,V) (bi,C) _N<C,V) (C,bl‘) =2s—3

to every b; € B in the original election. Thus exactly s votes
need to be removed from the election, for otherwise ¢’s
deficit of at least s — 2 to every other candidate cannot be
caught up on, since at least one other candidate is in front
of ¢ in every unregistered vote. With s removed votes, ¢’s
deficit to every other candidate is now decreased to s — 3.
However, none of the s votes from U replacing the removed
votes can rank some b; € B in front of ¢ more than once, as
otherwise we would have

N(C,V’) (bi,C) Z s—1 and N(C,V’) (C,bi) S s—2

for at least one b; € B in the resulting election (C, V'), and ¢
would not win. Let S’ C S be the set such that each S JES !
corresponds to the vote S; ¢ B\ S from U that is added to the
election to replace a removed vote. Every unregistered voter
ranks three candidates of B in front of c. By the pigeonhole
principle, in order for the s new votes to rank each of the 3s
candidates of B in front of ¢ only once, S’ needs to be an
exact cover of B. a

Theorem 2 Condorcet is vulnerable to destructive control
by replacing voters.

Proof. To prove membership in P, we will provide an al-
gorithm that solves the problem in polynomial time and out-
puts, if possible, which of the registered voters must be re-
placed by which unregistered voters for ¢ to not win.

The input to our algorithm is an election (C,V UU), the
distinguished candidate ¢ € C, and an integer r. The algo-
rithm will output either a pair (D,A) withD € V, A € U and
|ID| = |A| < r (i.e., in D are voters that must be removed
and in A are voters that must be added to the election in-
stead for ¢ to not win), or that control is impossible. First,
the algorithm checks whether c is already not winning the
election (C,V) and outputs (0,0) if this is the case, and we
are done. Otherwise, c currently wins, and the algorithm iter-
ates over all candidates d € C\ {c} and first checks whether
Nicy)(e,d) —Ny)(d,c)+1 < 2r (if this is not the case, d
loses to ¢ in any case and we can skip this candidate.) Let
D CV contain at most r votes from V preferring ¢ to d and
let A C U contain at most » votes from U preferring d to c.
If one of them is smaller than the other, remove votes from
the larger one until they are equal in size.

Then we check whether

Ng(C,(VUA)\D)(c,d) < Ng(d,c)

in the election E = (C,(V UA)\ D)). If this is the case, ¢
does not beat d in direct comparison, so ¢ cannot win the
election. The algorithm then outputs (D,A).

Otherwise, d cannot beat ¢ and the algorithm proceeds
to the next candidate. If, after all iterations, no candidate
was found that beats or ties c, the algorithm outputs “control
impossible.”

Obviously, this algorithm runs in polynomial-time and
solves the problem. a

Bartholdi, Tovey, and Trick (1992) observed that, due to
the Weak Axiom of Revealed Preference, Condorcet voting
is immune to constructive control by adding candidates, and
Hemaspaandra, Hemaspaandra, and Rothe (2007) made the
same observation regarding destructive control by deleting
candidates. For control by replacing candidates, however,
Condorcet is susceptible both in the constructive and in the
destructive case.

In the constructive case, for instance, if C = {b,c} and
there is one spoiler candidate in D = {d} and only one vote
b c d over CUD, we can turn ¢ (who does not win according
to b ¢) into a Condorcet winner by replacing b with d (so we
now have ¢ d).

For susceptibility in the destructive case, just consider
C'={c,d} and D' = {b}, and replace d with b, all else being
equal.

Moreover, since in Condorcet elections the direct compar-
ison between two candidates cannot be influenced by delet-
ing or adding other candidates to the election, Condorcet-
CCRC and Condorcet-DCRC are both easy to solve.

Theorem 3 Condorcet is vulnerable to constructive control
by replacing candidates.



Proof. To prove membership in P, we will provide an al-
gorithm that solves the problem in polynomial time and out-
puts, if possible, which of the original candidates must be
replaced by which spoiler candidates for ¢ to win.

The input to our algorithm is an election (CUC’,V), the
distinguished candidate ¢ € C, and an integer r. The algo-
rithm will output either a pair (D,A) with D C C\ {c},
A CC and |D| = |A| <r(ie., in D are candidates that must
be removed and in A are candidates that must be added to
the election for ¢ to win), or that control is impossible.

First, we check whether ¢ already wins the election (C,V)
and output (0,0) if this is the case, and we are done.

Otherwise, let D C C\ {c} be the set of candidates from
C\ {c} that beat or tie c in direct comparison and let A C C’
be a set of at most |D| candidates from C’ that ¢ beats in
direct comparison.

If |D| < rand |D| = |A|, we output (D,A), and otherwise
we output “control impossible.”

Obviously, the algorithm solves the problem and runs in
polynomial time. a

Theorem 4 Condorcet is vulnerable to destructive control
by replacing candidates.

Proof. An algorithm that solves the problem works as fol-
lows: Given an election (CUC’,V), a distinguished candi-
date ¢ € C, and an integer r, it checkes whether c is not win-
ning the election (C,V) and outputs (0,0) if this is the case.

Otherwise, it checks whether there is a candidate d € C’
who beats or ties ¢ in direct comparison, whether there is an-
other candidate b € C with b # ¢ and whether r > 1. If these
conditions are satisfied, it outputs ({b},{d}), and otherwise
“control impossible”.

This algorithm outputs either a successful pair (D,A) with
D CC\{c}, A€, and |D| = |A| < r if ¢ can be pre-
vented from winning by replacing at most » candidates, or
else “control impossible.”

Obviously, the algorithm is correct and runs in polynomial
time.

5 Fallback Voting

We will now consider fallback voting and show that it is
vulnerable to one type of control and resistant to the others.

Theorem S Fallback is resistent to constructive control by
replacing voters.

Proof. To prove NP-hardness, we will modify the reduc-
tion from X3C that Erdélyi and Rothe (2010) (and Erdélyi
et al. (2015a)) used to show NP-hardness of fallback-CCAV.

Let (B,S) be an X3C instance with B={by,... b3}, s>
2,and S = {S1,...,S5:}, t > 1. The set of candidates is C =
BUDU/{c} with ¢ being the distinguished candidate and
D ={dy,...,d,3,_4)} a set of t(3s —4) dummy candidates.
In V (corresponding to the registered voters), there are the
3s — 1 votes:

e 25— 1 votes of the form B | DU{c} and
e foreachi, 1 <i<s,onevoted; | BU(D\{d;})U{c}.

In U (corresponding to the unregistered voters), there are the
following ¢ votes:

e Foreach j, 1 < j<t,let

Dj = {d(j_1)3s—4)+15--dj(35-4)}
and include in U the vote
D;Sjc|(B\S;)U(D\Dj).

Finally, set r = s.

Having no approvals in (C,V), ¢ does not win. We will
show that (B,.S) is a yes-instance of X3C if and only if ¢
can be made a fallback winner of the constructed election by
replacing at most s votes from V with as many votes from U.

From left to right, suppose there is an exact cover S’ C §
of B. Remove s votes B | DU{c} from the election and add,
foreach S; € §', the vote D; S; ¢ | (B\S;)U(D\Dj) instead.
Let (C,V) be the resulting election. It follows that

® score d;) <2 forevery d; € D,

C,\7)(

* score(c (b;) = s for every b; € B (s — 1 approvals from
the non-removed registered voters and one approval from
the added voters since .S’ is an exact cover of B), and

. score(a‘;)(c) =s5.

Thus no candidate has a majority on any level and c is one
of the winners since she ties all candidates of B for the most
approvals overall.

From right to left, suppose ¢ can be made a fallback win-
ner of the election by replacing at most s votes from V with
as many votes from U. Since ¢ has no approvals in (C, V) and
we can only add at most s approvals for ¢, the only chance
for ¢ to win is to have the most approvals in the last stage of
the election. Regardless of which votes we remove or add to
the election, every dummy candidate can have at most two
approvals, which will at least be tied by c if we add s > 2 un-
registered votes to the election. We need to remove s votes
B | DU{c} from the election; otherwise, some b; € B would
have at least s approvals, whereas ¢ could gain no more than
s — 1 approvals from adding unregistered votes. Each b; € B
receives s — 1 approvals from the remaining registered votes
of the original election and ¢ reveices s approvals from the
added votes. Additionally, every added voter approves of
three candidates from B. Hence, in order for ¢ to at least tie
every candidate from B, each b; € B can only be approved
by at most one of the added votes. Since there are s added
votes, there must be an exact cover of B. a

Theorem 6 Fallback is vulnerable to destructive control by
replacing voters.

Proof. @ We provide a polynomial-time algorithm that
solves the problem and computes which voters need to
be removed and which need to be added to make the
distinguished candidate a fallback winner. The algorithm
is inspired by an algorithm designed by Erdélyi and
Rothe (2010) (see also Erdélyi et al. (2015a)) to prove mem-
bership of fallback-DCAYV in P.



For an election (C,V), let maj(V) = |IVl/2] + 1 and let
def’&c‘v) (d) =maj(V) — scoreéav) (d)

be the deficit of candidate d € C to a strict majority in (C,V)
on level i, 1 <i < |C|. Note that the number of voters is
always the same, namely |V|, and so we will use maj(V)
even after we have replaced some voters.

The input of the algorithm is an election (C,V UU), a
distinguished candidate ¢ € C, and an integer r. The algo-
rithm will output either a pair (D,A) with D CV, A CU,
and |D| = |A| < r (i.e., in D are votes that must be removed
and in A are votes that must be added to the election for ¢ to
not win), or that control is impossible.

The algorithm runs through n = max,cy_y |Sy| stages
which we call the majority stages and one final stage which
we call the approval stage. In the majority stages the algo-
rithm checks whether ¢ can be beaten in the first n levels of
the fallback election by replacing at most r voters, and in the
approval stage it checks whether ¢ can be dethroned in the
last stage of the fallback election by this control action.

The algorithm works as follows: If ¢ is already not win-
ning in (C,V'), we output (0,0) and are done.

Majority Stage 1: For every candidate d € C\ {c}, we
check whether d can beat ¢ on the first level by replacing
at most r voters. For this the following must hold:

def ey (d) < 7 (1)

scoreécyv)(d) > score(lcyv)(c)—Zr. (2)

If at least one of (1) and (2) does not hold, d can never
have a strict majority on level one or cannot beat ¢ on level
one, no matter which r votes we replace, and we can skip
d and proceed to the next candidate (or to the next stage if
all candidates failed to beat c in this stage). Otherwise, we
determine the largest U; C U such that |Uy| < r and all votes
of U, approve of d on the first level.

Furthermore, we determine the largest V; C V such that
[V4| < r and all votes of V,; approve of ¢ on the first level.
If |V,| # U4, we fill up the smaller vote list with votes as
follows until they are equal in size.

If V, is the smaller list, we first choose votes of V' \ V; who
approve of other candidates than d and add them to V,;; and
if U, is the smaller list, we first choose votes of U \ U; who
approve of other candidates than ¢ and add them to U,. Only
when we run out of votes to fill up the smaller list before
both lists are equal in size, we will remove voters from the
larger list until they are equal in size.

Then we check whether the following conditions hold:

score(e i\vuy (@) = maj(V); ©)

If at least one of (3) and (4) does not hold, we skip d and
proceed to the next candidate (or, if none is left, to the next
stage).

Otherwise, we output (V;,Uy).

Majority Stage i, 2 < i < n: This stage is reached if we
could not control the election in stages 1 through i — 1. Now,

for every candidate d € C\ {c}, we check whether d can
beat ¢ on level i of the fallback election. First, we check if
the following two equations hold:

cvyld) < n (%)
C,V)(d) > scoreécvv)(c)—Zr. (6)

defé
scoreé

If at least one of (5) and (6) does not hold, d can never
have a strict majority on level i or cannot beat ¢ on this level,
no matter which r votes we replace, and we skip d and pro-
ceed to the next candidate (or the next stage if all candidates
failed to beat c in this stage).

Otherwise, we determine the largest U; C U such that
|Ug| < r and all votes of U; approve of d and disapprove
of ¢ on the first i levels.

Furthermore, we determine the largest V; C V such that
[V4| < r and all votes of V,; approve of ¢ and disapprove of d
on the first i levels.

If |V4| < |Uy|, we fill up V,; with votes of V \ V; who ap-
prove of neither ¢ nor d until we either have |V;| = |Uy| or
run out of those votes, and in the latter case we now keep
adding to V; those votes of V \ V; who approve of both ¢ and
d while prioritizing those votes that approve of ¢ on levels
up to i — 1 over votes that approve of ¢ on level i. Only if this
is still not enough to make these two vote lists equal in size,
we remove votes from Uy until they are equally large.

If [Va| > |Uy|, we fill up Uy with votes of U \ Uy that ap-
prove of both ¢ and d on the first i levels while prioritizing
those votes that approve of ¢ on level i over votes that ap-
prove of ¢ on levels up to i — 1, and if this is not enough to
make these two vote lists equal in size, we add those votes
from U \ Uy to U, that disapprove of both ¢ and d. Again,
only if this is still not enough to make them both equal in
size, we will remove votes from V; while prioritizing votes
that approve of ¢ on level i.

Now, knowing that the resulting lists V; and U, are equal
in size, we check the following condition:

score’(cﬁ(V\VwUUd)(d) > score’(a(V\Vd)UUd)(c). (7
If (7) does not hold or d does not have a strict majority on
the first i levels in (C, (V \ V;) UUy), d cannot beat ¢ and win
on level i, and we skip d and proceed to the next candidate
or the next stage.

Otherwise, we check the following condition:

i1 .
SCOTe(c (y\v, U, (¢) > mai(V). (8)

If (8) does not hold, we output (V;,Uy), as d wins on the ith
level and so prevents ¢ from winning. If (8) does hold, then ¢
wins on an earlier level and we failed to control the election.
We will try to fix this, if at all possible, in two steps.

Firstly, if there are votes in Uy that approve of ¢ on levels
up to i — 1 and of d on the first i levels (this would mean that
all votes in V,; approve of ¢ and disapprove of d on the first
i levels), then we remove, by taking turns, one of them from
U, and one from V that approve of ¢ on level i as long as
possible and as long as

i

score(c v, ), (d) = maj(V)



and (7) still hold.
Secondly, we find the largest vote lists U,y C (U \ U) and
Vea € (V\ Vy) such that:

° |VdUVCd| <r,
L4 |Vcd|:|Ucd|7

e all votes in V.4 approve of ¢ on the first i — 1 levels and of
d on the first i levels,

e all votes in U4 approve of c on level i and of d on the first
i levels, or disapprove of both ¢ and d on the first i levels,
and

o SCOTE(c (17 (v, UL () Z M (V).

Then we check the following condition:

Scorel(C}(V\(VdUVcd))UUJUUcd)(C) > maj(V). ©)
If (9) holds, ¢ cannot be prevented from reaching a strict
majority in the first i levels without d not reaching a strict
majority as well.

Otherwise, d still has a strict majority on level i and ¢
cannot beat d with a strict majority on earlier levels, so we
output (V;UV,q,Uy UU,,) as a successful pair.

Approval Stage: This stage will only be reached if it was
not possible to find a control action in the majority stages 1
through n. We first check whether the following holds:

score(cyy)(c) —r <maj(V). (10)

If (10) does not hold, we output “control impossible” since,
after replacing at most r suitable votes, (1) we could not find
a candidate that beats ¢ in the majority stages and reaches a
strict majority and (2) ¢ cannot be prevented from reaching a
strict majority in overall approvals; so ¢ must win, no matter
which at most r votes are replaced.

Otherwise, we iterate over all candidates d € C\ {c} and
check whether score(cy)(c) — 2r > score(cy)(d). If this is
not the case, we skip d and proceed to the next candidate or,
if none is left, we output “control impossible” since then d
cannot catch up on her deficit to c.

Otherwise, we will try to make d overtake ¢ in overall ap-
provals while decreasing c¢’s overall approvals as much as
possible in order to prevent ¢ from reaching a strict major-
ity. We again determine the largest Uy C U such that |Uy| <r
and all votes of U, approve of d and disapprove of c. Fur-
thermore, we again determine the largest V; C V such that
[V4| < rand all votes of V,; approve of ¢ and disapprove of d.

If |V,4| < |Ug4|, we fill up V,; with votes of V' \ V; who ap-
prove of both ¢ and d until we either have |V,;| = |Uy| or run
out of those votes, and in the latter case we now keep adding
to V; those votes of V \ V; who approve of neither ¢ nor d.
Only if this is still not enough to make the two lists equal in
size, we remove votes from U, until they are equally large.

If |V, > |Ug4l, we fill up Uy with votes of U \ Uy that dis-
approve of both ¢ and d until we either have |V,;| = |Uy| or
run out of those votes, and in the latter case we now keep
adding to Uy those votes of U \ Uy that approve of both ¢
and d. Again, only if this is still not enough to make both
vote lists equal in size, we remove votes from V; until they
are equally large. Afterwards, if there are votes in V' \ V; that

approve of both ¢ and d and votes in U \ Uy that disapprove
of both ¢ and d, we add as many as possible of them to V;
and Uy, respectively, always ensuring that |V;| = |Uy] still
holds.

Then we check the following conditions:

score(c (y\vuuy)(d) > scorec v,y (c), (11)
scorec \v,uu,)(€) < maj(V). (12)

If (11) and (12) are true, output (V;,Uy) since we have pre-
vented ¢ from reaching a strict majority and found a candi-
date d that beats c. Otherwise, we skip to the next candidate
or, if none is left, output “control impossible.”

Correctness of the algorithm follows from the explana-
tions given during its description: The algorithm takes the
safest way possible to guarantee that a yes-instance is veri-
fied. Clearly, the algorithm runs in polynomial time. U

Turning to control by replacing candidates, fallback is re-
sistant in both the constructive and the destructive case.

Theorem 7 Fallback is resistent to constructive and de-
structive control by replacing candidates.

Proof. Erdélyi and Rothe (2010) (see also the subse-
quent journal version by Erdélyi et al. (2015a)) showed that
fallback is resistant to constructive and destructive control
by deleting candidates. In the former problem (denoted by
fallback-CCDC), we are given a fallback election (C,V),
a distinguished candidate ¢ € C, and an integer r, and we
ask whether ¢ can be made a fallback winner by deleting at
most r votes. In the destructive variant (denoted by fallback-
DCDC), for the same input we ask whether we can prevent
¢ from winning by deleting at most r votes. To prove the
theorem, we will reduce

e fallback-CCDC to fallback-CCRC and
o fallback-DCDC to fallback-DCRC, respectively.

Let ((C,V),c,r) be an instance of fallback-CCDC (or
fallback-DCDC). We construct from (C,V) a fallback elec-
tion (CUD,V’) with (dummy) spoiler candidates D =
{di,...,d,}, DNC = 0, where we extend the votes of V to
the set of candidates C U D by letting all voters disapprove
of all candidates in D, thus obtaining V’. Our distinguished
candidate remains ¢, and r remains the limit on the number
of candidates that may be replaced.

Since all candidates from D are irrelevant to the election
and can be added to the election without changing the win-
ner(s), it is clear that ¢ can be made a fallback winner of
(C,V) by deleting up to r candidates from C if and only if
¢ can be made a fallback winner of (CUD,V’) by delet-
ing up to r candidates from C and adding the same num-
ber of dummy spoiler candidates from D. This gives the de-
sired reduction in both the constructive and the destructive
case. d

6 k-Veto
Erdélyi, Reger, and Yang (2018) solved the two cases of con-
trol by replacing voters for k-veto (recall Table 1 in Sec-
tion 3), while Loreggia et al. (2015) solved the two cases of



c | d | delC |yeY | xeX
|

M(s+1)+sq+t [M+q| M | 0

control by replacing candidates for veto only (i.e., for k-veto
with k = 1). We solve these cases for k-veto with k > 2.

Theorem 8 For k > 2, k-veto is resistent to constructive
control by replacing candidates.

Proof. To prove NP-hardness of k-veto-CCRC for k > 2,
we will modify the reduction provided by Lin (2011) to
prove that k-veto-CCAC and k-veto-CCDC are NP-hard.
Since his reduction was designed so as to prove both cases
at once but we only need the “adding candidates” part, we
will simplify the reduction.

Let (B,S,q) be an instance of HITTING-SET with B =
{b1,...,bs}, s > 1,5 ={S1,...,5}, t > 1, and integer ¢,
1 < g < s (without loss of generality, we may assume that
g < s since (B, S,q) is trivially a yes-instance if g > s).

We construct an instance ((C UB,V),c,q) of k-veto-
CCRC with candidates C = {¢,d} UC' UX UY, where

Cl = {0/17...,6';(71},
X = {xi,...,x—1}, and
Y = {y17”'7yq}7

and spoiler candidates B. Let V contain the following votes:
(t+2s)(s—g+1)votesY --- cch -+ ¢ _y;
(t+2s)(s—g+1)—s+qgvotesY --- dxj - xp_1;

foreachi, 1 <i<t,onevoteY --- cxy -+ x_1 S;;

foreachi,1 <i<s,onevoteY --- dx; - - x,_1 b;; and
foreachi, 1 <i<s, (t+2s)(s—qg+1)+q votes
Y --- cB\{b,}xl e+ Xp_1 by

Let M = (t 4+ 2s)(s — g+ 1). Without the spoiler candi-
dates, vetoes are assigned to the other candidates as follows:

We show that (B,.S,q) is a yes-instance of HITTING-SET
if and only if ¢ can be made a k-veto winner of the election
by replacing g candidates from C with candidates from B.

From left to right, assume there is a hitting set B’ C B of S
of size ¢ (since g < s, if B’ is a hitting set of size less than g,
we fill B’ up by adding arbitrary candidates from B\ B’ to B’
until |B'| = g). We then replace the candidates from Y with
the candidates from B’. Since ¢, d, and candidates from C’
have (¢ +2s)(s — g+ 1) vetoes and candidates from X and
B’ have at least (¢ 4+ 2s)(s — g+ 1) + g vetoes, c is a k-veto
winner.

From right to left, assume ¢ can be made a k-veto winner
of the election by replacing g candidates. Since the g candi-
dates from Y have zero vetoes but ¢ has at least one veto, we
need to remove each candidate of Y (and no other candidate),
and in turn we need to add g candidates from B. Note that ¢
cannot have more than (z + 2s)(s — g+ 1) vetoes, for other-
wise ¢ would lose to the candidates from C'. Let B' C B be
the set of g candidates from B that are added to the election.
Since |B'| = ¢ > 0, ¢ will lose all s((r+2s)(s—q+1)+q)
vetoes from the last group of voters. Furthermore, in order
to tie the candidates in C’, ¢ cannot gain any vetoes from the

third group of voters. Thus the g added candidates from B

| M(s+1)+2s+qreld to be a hitting set of 5. Also note that with the ¢ added

candidates from B, c also ties d (who lost g vetoes from the
fourth group of voters) and beats the candidates from X and
the added candidates from B. a

Theorem 9 For k > 2, k-veto is resistent to destructive con-
trol by replacing candidates.

Proof. As in the proof of Theorem 8, we will prove NP-
hardness of k-veto-DCRC, k > 2, by providing a reduction
from HITTING-SET to k-veto-DCRC that is a simplified and
slightly modified variant of a reduction used by Lin (2011)
to show that k-veto-DCAC and k-veto-DCDC are NP-hard.

Let (B,S,q) be an instance of HITTING-SET with B =
{b1,...,bs}, s > 1,5 ={S1,...,5}, t > 1, and integer ¢,
1 < g <s. We construct an instance ((CUB,V),c,q) of
k-veto-DCRC with candidates C = {c,c’} UX UY, where
X ={x1,....x-1} and Y = {y1,...,y,}, and spoiler candi-
dates B. Let V contain the following votes:

o 2(s—q)+2t(qg+1)+4votes -+~ c ¥ xy -+ x4

e 2t(g+1)+5votes -+ ' x1 -+ x4—1 ¢

o foreachi, 1 <i<t,2(q+1)votes--- ¢’ x; -+ x,_1 Si;
e foreachi, 1 <i<s,twovotes--- cY xy--- xx_1 bj;

o for each i, 1 <i<gq, 2(s —q)+2t(qg+ 1)+ 6 votes
cc - yixy -+ x¢_1; and

e for each i, 1 <i <y, 2(s—¢q)+2t(g+1)+6 votes
CCI o bi-xl s Xg—1-

In (C,V), ¢ wins the election with 27(g+ 1) +5 vetoes
while ¢’ has 2(s — q) +4¢(g+ 1) + 4 vetoes and every other
candidate has at least 2(s — ¢) + 2¢t(g+ 1) + 6 vetoes.

To complete the proof of Theorem 9, we will now show
that (B, .S, q) is a yes-instance of HITTING-SET if and only if
¢ can be prevented from being a k-veto winner of the election
by replacing g candidates from C with candidates from B.

From left to right, assume there is a hitting set B’ C B of
S of size g (since g < s, if B’ is a hitting set of size less
than g, we fill B’ up by adding arbitrary candidates from
B\ B’ to B’ until |B'| = g). Replacing the candidates from
Y with the candidates from B', ¢ gains 2(s — g) vetoes and
now has 2(s—q) +2¢(g+1) +5 vetoes and ¢’ loses 2¢(g+1)
vetoes and now has 2(s —¢q) +2t(g+ 1) +4 vetoes, so ¢ does
no longer win the election.

From right to left, assume ¢ can be prevented from be-
ing a k-veto winner of the election by replacing at most g
candidates. We first argue why we must remove all ¢ can-
didates from Y. Firstly, from removing ¢’ from the election,
¢’s strongest rival, ¢ does not gain any vetoes and then there
won’t be any candidate in the election that can beat c. Sec-
ondly, removing any candidate in X from the election will
lead to ¢’ gaining vetoes (which ¢’ cannot afford) while ¢
can in the best case gain the same number of vetoes as ¢
would gain by replacing candidates from Y. Thus removing
candidates from Y is the best choice. All g candidates from
Y need to be removed, for otherwise ¢ does not gain any ve-
toes. Then g candidates from B need to be added to the elec-
tion. Note that ¢ will always gain 2(s — ¢) vetoes from those



replacements, which will bring ¢ to 2(s —q) +2t(g+ 1) +5
vetoes, so every candidate other than ¢’ cannot beat c. In
order for ¢’ to beat ¢, ¢ cannot gain any vetoes from the
third group of voters. Therefore, for each S; € S at least
one b; € S; needs to be added to the election. Thus the g
added candidates from B need to correspond to a hitting set
of S. Q

7 Conclusions and Open Problems

We have extended to Condorcet, fallback, and k-veto elec-
tions the study of control by replacing voters or candidates
initiated by Loreggia et al. (2014; 2015) and pursued later
on by Erdélyi, Reger, and Yang (2018). Our complexity re-
sults for the associated control problems are summarized in
Table 1. We propose to continue the study of electoral con-
trol by replacing voters or candidates for other natural voting
rules. It would be especially interesting to find a natural vot-
ing rule for which the complexity of the standard controls
types—in particular, control by adding or deleting voters or
candidates—differs from the complexity of control by re-
placing them.

Admittedly, resistance in terms of NP-hardness—being a
worst-case measure of complexity only—may not be the last
word in wisdom. Indeed, Walsh (2011a; 2011b) and Rothe
and Schend (2013) address this issue in electoral control and
other manipulative attacks and survey approaches of how to
circumvent it. As an ambitious long-term goal, we therefore
propose to complement our worst-case complexity analysis
by a typical-case analysis of the problems considered here.

Acknowledgements: This work was supported in part by
DFG grant RO 1202/14-2.

References

Bartholdi II1, J.; Tovey, C.; and Trick, M. 1992. How hard
is it to control an election? Mathematical and Computer
Modelling 16(8/9):27-40.

Baumeister, D., and Rothe, J. 2015. Preference aggrega-
tion by voting. In Rothe, J., ed., Economics and Computa-
tion. An Introduction to Algorithmic Game Theory, Compu-
tational Social Choice, and Fair Division, Springer Texts in
Business and Economics. Springer-Verlag. chapter 4, 197-
325.

Baumeister, D.; Erdélyi, G.; Erdélyi, O.; and Rothe, J. 2012.
Control in judgment aggregation. In Proceedings of the 6th
European Starting Al Researcher Symposium, 23-34. 10S
Press.

Baumeister, D.; Rothe, J.; and Selker, A. 2015. Complex-
ity of bribery and control for uniform premise-based quota
rules under various preference types. In Proceedings of the
4th International Conference on Algorithmic Decision The-
ory, 432-448. Springer-Verlag Lecture Notes in Artificial
Intelligence #9346.

Brams, S., and Sanver, R. 2009. Voting systems that
combine approval and preference. In Brams, S.; Gehrlein,
W.; and Roberts, F., eds., The Mathematics of Preference,

Choice, and Order: Essays in Honor of Peter C. Fishburn.
Springer. 215-237.

Chen, J.; Faliszewski, P.; Niedermeier, R.; and Talmon, N.
2015. Elections with few voters: Candidate control can be
easy. In Proceedings of the 29th AAAI Conference on Artifi-
cial Intelligence, 2045-2051. AAAI Press.

Erdélyi, G., and Rothe, J. 2010. Control complexity in fall-
back voting. In Proceedings of Computing: the 16th Aus-
tralasian Theory Symposium, 39-48. Australian Computer
Society Conferences in Research and Practice in Informa-
tion Technology Series, vol. 32, no. 8.

Erdélyi, G.; Fellows, M.; Rothe, J.; and Schend, L. 2015a.
Control complexity in Bucklin and fallback voting: A theo-
retical analysis. Journal of Computer and System Sciences
81(4):632-660.

Erdélyi, G.; Fellows, M.; Rothe, J.; and Schend, L. 2015b.
Control complexity in Bucklin and fallback voting: An ex-

perimental analysis. Journal of Computer and System Sci-
ences 81(4):661-670.

Erdélyi, G.; Piras, L.; and Rothe, J. 2011. The complexity of
voter partition in Bucklin and fallback voting: Solving three
open problems. In Proceedings of the 10th International
Conference on Autonomous Agents and Multiagent Systems,
837-844. IFAAMAS.

Erdélyi, G.; Reger, C.; and Yang, Y. 2018. Completing
the puzzle: Solving open problems for control in elections.
In Nonarchival website proceedings of the 11th Multidisci-
plinary Workshop on Advances in Preference Handling.

Faliszewski, P., and Rothe, J. 2016. Control and bribery
in voting. In Brandt, F.; Conitzer, V.; Endriss, U.; Lang, J.;
and Procaccia, A., eds., Handbook of Computational Social
Choice. Cambridge University Press. chapter 7, 146-168.

Faliszewski, P.; Hemaspaandra, E.; and Hemaspaandra, L.
2011. Multimode control attacks on elections. Journal of
Artificial Intelligence Research 40:305-351.

Garey, M., and Johnson, D. 1979. Computers and In-
tractability: A Guide to the Theory of NP-Completeness. W.
H. Freeman and Company.

Hemaspaandra, E.; Hemaspaandra, L.; and Rothe, J. 2007.
Anyone but him: The complexity of precluding an alterna-
tive. Artificial Intelligence 171(5-6):255-285.

Lin, A. 2011. The complexity of manipulating k-approval
elections. In Proceedings of the 3rd International Con-
ference on Agents and Artificial Intelligence, 212-218.
SciTePress.

Lin, A. 2012. Solving Hard Problems in Election Sys-
tems. Ph.D. Dissertation, Rochester Institute of Technology,
Rochester, NY, USA.

Loreggia, A.; Narodytska, N.; Rossi, F.; Venable, B.; and
Walsh, T. 2015. Controlling elections by replacing can-
didates or votes (extended abstract). In Proceedings of the

14th International Conference on Autonomous Agents and
Multiagent Systems, 1737-1738. IFAAMAS.
Loreggia, A. 2014. Iterative voting and multi-mode control

in preference aggregation. Intelligenza Artificiale 8(1):39—
51.



Maushagen, C., and Rothe, J. 2016. Complexity of control
by partitioning veto and maximin elections and of control
by adding candidates to plurality elections. In Proceedings
of the 22nd European Conference on Artificial Intelligence,
277-285. 10S Press.

Maushagen, C., and Rothe, J. 2017. Complexity of control
by partition of voters and of voter groups in veto and other
scoring protocols. In Proceedings of the 16th International
Conference on Autonomous Agents and Multiagent Systems,
615-623. IFAAMAS.

Maushagen, C., and Rothe, J. 2018. Complexity of control
by partitioning veto elections and of control by adding can-
didates to plurality elections. Annals of Mathematics and
Artificial Intelligence 82(4):219-244.

Menton, C. 2013. Normalized range voting broadly resists
control. Theory of Computing Systems 53(4):507-531.
Rothe, J., and Schend, L. 2013. Challenges to complexity
shields that are supposed to protect elections against manip-
ulation and control: A survey. Annals of Mathematics and
Artificial Intelligence 68(1-3):161-193.

Walsh, T. 2011a. Is computational complexity a barrier to
manipulation? Annals of Mathematics and Artificial Intelli-
gence 62(1-2):7-26.

Walsh, T. 2011b. Where are the hard manipulation prob-
lems? Journal of Artificial Intelligence Research 42:1-29.



