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Abstract

This paper is concerned with the design and analysis of pa-
rameterized algorithms for determining read-once refutations
(RORs) in two classes of constraints, viz., unsatisfiable 2CNF
formulas and unsatisfiable UCS+s. These two problems are
respectively known as the R2CNF and the RUCS+ prob-
lems. Previous work has established that both these problems
are NP-complete; the current work establishes that they are
fixed-parameter tractable for suitably chosen parameters.
The problem of identifying refutations is an important one,
especially in domains such as artificial intelligence and real-
time systems, in which certification is an important aspect of
computation. In this context, read-once refutations are of par-
ticular importance, since these refutations are by definition
“short”, i.e., at most linear in the size of the input.

1 Introduction
This paper is concerned with the design of practical al-
gorithms for two problems, viz., the R2CNF problem and
the RUCS+ problem. The R2CNF problem is concerned
with finding a read-once refutation (ROR) in an unsatisfi-
able 2CNF formula, whereas the RUCS+ problem is con-
cerned with finding a read-once refutation in an unsatisfi-
able UTVPI constraint system containing additional non-
UTVPI constraints. Both these problems are known to be
NP-complete (see Section 3). In this paper, we show that
both these problems are in the complexity class FPT (fixed-
parameter tractable), for suitably chosen natural parameters.

Both 2CNF Boolean formulas and UTPVI constraints find
applications in a number of domains such as artificial in-
telligence and program verification. However, this paper is
concerned with certification. It is well-known that making
an algorithm certifying enhances trust in its output (Blum,
Luby, and Rubinfeld 1993). Refutations are a form of certifi-
cation for negative instances. In other words, if a 2CNF for-
mula is unsatisfiable, then a refutation serves to “certify” its
unsatisfiability. In general, refutations need not be “short”,
i.e., polynomial in the size of the input. Likewise, identify-
ing a “natural” certificate for a problem is not always easy
(McConnell et al. 2011).
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An interesting line of research is therefore to focus on
restricted classes of refutations, which are provably short.
Read-once refutations are one such class of refutations
(Iwama and Miyano 1995). This paper focuses on the read-
once refutation problem for two classes of constraints, as
mentioned above.

The principal contributions of this paper are as follows:
1. An FPT algorithm for finding a read-once resolution refu-

tation of a 2-CNF formula parameterized by the length of
the refutation. We also show that this algorithm can be
modified to find the shortest read-once refutation in the
input formula.

2. An FPT algorithm for finding a read-once linear refuta-
tion of a system of UTVPI constraints containing several
non-UTVPI constraints parameterized by the number of
non-UTVPI constraints.
The rest of this paper is organized as follows: In Section

2, we describe the problems under consideration. Section 3
motivates our work and discusses existing work in related
problems. In section 4, we provide our FPT algorithm for
2-CNF formulas. Section 5 contains our algorithm for sys-
tems of UTVPI constraints containing several non-UTVPI
constraints. Finally, in Section 6, we summarize our results
and describe avenues for future research.

2 Statement of Problems
In this section, we describe the problems under consider-
ation. We are concerned with read-once refutations in two
different systems.

First, we examine 2-CNF formulas.
Definition 2.1. A 2-CNF clause is a CNF clause with at
most 2 literals.
Example 2.1. The clause (x1 ∨ ¬x2) is a 2-CNF clause.
However, (x1 ∨ x2 ∨ ¬x3) is not since it has 3 literals.
Definition 2.2. A 2-CNF formula is a Boolean formula in
which each clause is a 2-CNF clause.

We are also concerned with UTVPI constraint systems.
Definition 2.3. A constraint of the form ai ·xi + aj ·xj ≤ b
where ai, aj ∈ {−1, 0, 1} and b ∈ Z, is called a unit two
variable per inequality (UTVPI) constraint.



Note that if only one of ai or aj in a UTVPI constraint
is non-zero then the constraint is called an absolute con-
straint.
Example 2.2. The following are UTVPI constraints:
• x1 − x2 ≤ 3.
• x2 + x4 ≤ 5.
• −x3 − x4 ≤ 2.
Definition 2.4. A conjunction of UTVPI constraints is called
a UTVPI Constraint System (UCS).

We are interested in a generalization of UCSs which al-
lows for the inclusion of several constraints of the form∑n

i=1 ai·xi ≤ b. We refer to these constraints as non-UTVPI
constraints.
Definition 2.5. A UCS+k is a UCS with k non-UTVPI con-
straints.

For both 2-CNF formulas and UCS+
k s we are interested in

the problem of finding read-once refutations. However, for
each system, the inference rules used in those refutations are
different.

For 2-CNF formulas we prove infeasibility by resolution
refutation. In such a refutation, each new clause is derived
by a resolution step.
Definition 2.6. A resolution step derives a resolvent clause
from two parent clauses. A resolution step which resolves
(α∨β) from parent clauses (α∨x) and (¬x∨β) is denoted
as

(α ∨ x) ∧ (¬x ∨ β) | 1
RES (α ∨ β).

A sequence of resolution steps that proves the infeasibil-
ity of a CNF formula Φ (by deriving the empty clause t) is
known as a resolution refutation. Such a refutation is de-
noted as Φ | RES t.

In UCS+
k s we are interested in refutations which prove

that the system has no rational solutions. Such a refutation
is called a linear refutation. In such a refutation, each new
constraint is derived by the addition rule.

Definition 2.7.

ADD :

∑n
i=1 ai · xi ≤ b1

∑n
i=1 a

′
i · xi ≤ b2∑n

i=1(ai + a′i) · xi ≤ b1 + b2
(1)

We refer to Rule (1) as the addition (ADD) rule.
A sequence of applications of the ADD rule that proves

the infeasibility of a UCS+
k U (by deriving the contradiction

0 ≤ b where b < 0) is known as a linear refutation.
For both systems, we are interested in refutations in which

each clause or constraint is used at most once. such a refuta-
tion is called a read-once refutation.
Definition 2.8. A Read-Once refutation is a refutation in
which each constraint (or clause) can be used in at most one
inference. This applies to constraints present in the original
system as well as those derived as a result of previous infer-
ences.

Note that if a constraint (or clause) can be re-derived from
a different set input constraints, then the constraint can be
reused.

We can now define the problems examined in this paper.

Definition 2.9. 2-CNF k-ROR: Given 2-CNF formula Φ
and positive integer k, does Φ have a read-once resolution
refutation that uses at most k clauses of Φ?

In a read-once resolution refutation, each resolution step
decreases the number of clauses by 1, since the parent
clauses cannot be re-used. Thus, a read-once resolution refu-
tation of a 2-CNF formula Φ that uses at most k clauses from
Φ has at most (k − 1) resolution steps.

Definition 2.10. UCS+
k ROR: Given a UCS+k U, does U

have a read-once refutation using the ADD rule?

3 Motivation and Related work
In this section, we motivate our work and discuss related
work in the literature.

2CNF formulas form the basis of several applications
in logic (Papadimitriou 1994) and AI (Böckenhauer et al.
2010). It is well-known that 2CNF Satisfiability is in P (As-
pvall, Plass, and Tarjan 1979). Likewise, Unit Two Variable
Per Inequality (UTVPI) constraints occur in a wide variety
of domains, including but not limited to program verifica-
tion (Miné 2006), array bounds checking (Lahiri and Musu-
vathi 2005), and abstract interpretation (Singh et al. 2019).
More recently, we demonstrated the existence of polynomial
time certifying algorithms for linear feasibility (Subramani
and Wojciechowski 2017) and integer feasibility (Subramani
and Wojciechowski 2018) in UTVPI constraint systems. As
mentioned before, the focus of this paper is not on algorithm
design for satisfiability. Indeed our focus is on obtaining al-
gorithms for “certification”, i.e., refutation problems.

Read-once resolution as a proof system for clausal
boolean formulas has been detailed in (Iwama 1997). By
construction, read-once resolutions are succinct. If such
a proof system is complete as well, then the complexity
classes NP and coNP would coincide. (Iwama 1997) argues
that this proof system is valuable, despite its incomplete-
ness, since read-once proofs can be easily “visualized.” One
of the results in (Iwama 1997) is that asking if a 3CNF for-
mula has a read-once refutation is NP-complete. We im-
proved upon this result in (Kleine Büning, Wojciechowski,
and Subramani 2018), wherein it was shown that the prob-
lem of read-once resolution existence is NP-complete even
for 2CNF formulas, i.e. R2CNF is NP-complete.

In (Subramani 2009), it was shown that the ROR prob-
lem is solvable in polynomial time for difference constraint
systems. This result was recently generalized to UTVPI
constraint systems (Subramani and Wojciechowki 2019).
We also investigated the existence of read-once refuta-
tions in Horn constraint systems and read-once unit reso-
lution refutations in Horn constraint systems. We showed
that these problems are NP-complete (Kleine Büning, Wo-
jciechowski, and Subramani 2019b; 2019a). From these re-
sults, it follows that the RUCS+ problem is NP-complete as
well.

4 An FPT algorithm 2-CNF k-ROR
In this section, we describe an FPT algorithm for finding a
read-once resolution refutation of a 2-CNF formula Φ. This



algorithm is parameterized by the number of clauses from Φ
used in the refutation.

First we provide a randomized algorithm for solving the
2-CNF m-ROR problem for a 2-CNF formula Φ with m
clauses over n variables. This algorithm proceeds as follows:

1. For each variable xi in Φ.
(a) Create the sets Φ+

i and Φ−i .
(b) For each clause φj ∈ Φ uniformly and at random

choose whether φj is added to the set Φ+
i or the set

Φ−i .
(c) If the clause (xi) can be derived from Φ+

i and the
clause (¬xi) can be derived from Φ−i , then return true.

2. Return false.

Note that checking if (xi) can be derived from Φ+
i can be

done as follows:
1. Construct the implication graph G+

i corresponding to Φ+
i

using the construction in (Cormen et al. 2009).
2. Check if the node x+i is reachable from the node x−i in

G+
i .

Using the same technique, we can check if (¬xi) can be
derived from Φ−i .

This can be accomplished in O(m) time. Thus, this entire
procedure runs in O(m · n) time.

We now show that Φ has a read-once resolution refutation
if the algorithm returns true. We also show that if Φ has
a read-once refutation that uses k clauses from Φ, the the
algorithm returns true with probability at least 1

2k
.

Theorem 4.1. If the randomized algorithm returns true,
then Φ has a read-once resolution refutation.

Proof. If the algorithm returns true, then for some xi there
exist set Φ+

i and Φ−i such that the clause (xi) can be de-
rived from Φ+

i and the clause (¬xi) can be derived from
Φ−i . If the clause (xi) can be derived from Φ+

i , then it can
be derived using each clause at most once (Kleine Büning,
Wojciechowski, and Subramani 2018). The same holds for
deriving (¬xi) from Φ−i .

Since Φ+
i and Φ−i are disjoint, these two derivations can

be combined with the final resolution (xi) ∧ (¬xi) | 1
RES t

to obtain a read-once resolution refutation of Φ.

Theorem 4.2. If Φ has a read-once resolution refutation that
uses at most k clauses from Φ, then the randomized algo-
rithm will return true with probability at least 1

2k
.

Proof. Let R be a read-once resolution refutation of Φ of
that uses at most k clauses from Φ. Let (xi)∧ (¬xi) | 1

RES t
be the last resolution step of R. Since R is a read-once reso-
lution refutation of Φ, (xi) and (¬xi) must be derived from
disjoint subsets of Φ. Let R+ ⊆ Φ be the set of clauses used
to derive (xi) and let R− ⊆ Φ be the set of clauses used to
derive (¬xi).

The randomized algorithm will find R if every clause in
R+ is added to the set Φ+

i and every clause in R− is added
to the set Φ−i . The probability of this happening is 1

2k
.

To obtain an FPT algorithm for solving the 2-CNF k-
ROR problem we will de-randomize this algorithm. This de-
randomization utilizes (m, k)-universal sets which are de-
fined as follows:
Definition 4.1. Let S be a set of sizem. An (m, k)-universal
set is a family U of subsets of S such that for any set R ⊆ S
of size k the family {A ∩R : A ∈ U} contains every subset
of R.

As in the proof of Theorem 4.2, let R be a read-once res-
olution refutation of Φ of that uses at most k clauses from
Φ. Let U be an (m, k)-universal set for Φ. Then, for some
A ∈ U, we have that A ∩ R = R+. Thus, R+ ⊆ A and
R− ⊆ Φ \A. This means that the clause (xi) can be derived
from A and the clause (¬xi) can be derived from Φ \A.

Note that we can construct an (m, k)-universal set for Φ
of size 2k · kO(log k) · logm in O(2k · kO(log k) ·m · logm)
time (Naor, Schulman, and Srinivasan 1995).

Thus, given k, checking if Φ has a read-once resolution
refutation using at most k clauses from Φ can be done as
follows:

1. Construct an (m, k)-universal set U for Φ. Note that U
contains 2k · kO(log k) · logm subsets of Φ. This can be
done in time O(2k · kO(log k) ·m · logm).

2. For each A ∈ U and each variable xi if the clause (xi)
can be derived fromA and the clause (¬xi) can be derived
from Φ \A then Φ has a read-once refutation.

This algorithm runs in timeO(2k ·kO(log k) ·n ·m · logm).
Thus, this is an FPT algorithm for the 2-CNF k-ROR prob-
lem.

Note that this algorithm can be easily updated to find the
shortest read-once refutation. Let R∗ be the shortest read-
once refutation of a 2-CNF formula Φ. If R∗ uses at most
k clauses of Φ, then for some xi, R∗ can be split into the
clauses used to derive (xi) and the clauses used to derive
(¬xi). Since R∗ uses at most k clauses of Φ, then this split
is found by some set A in the universal set U. Thus, finding
the shortest derivation of (xi) and (¬xi) will find R∗. Thus,
to find the shortest read-once refutation of Φ we need to do
the following:

1. Construct an (m, k)-universal set U for Φ. Note that U
contains 2k · kO(log k) · logm subsets of Φ. This can be
done in time O(2k · kO(log k) ·m · logm).

2. For each A ∈ U and each variable xi if the clause (xi)
can be derived fromA and the clause (¬xi) can be derived
from Φ \ A then find the shortest derivation of (xi) and
the shortest derivation (¬xi). These together form a read-
once refutation of Φ.

3. Return the shortest refutation found by the algorithm.

5 An FPT algorithm for UCS+
k ROR

In this section, we describe an FPT algorithm for finding a
read-once linear refutation of a system of UTVPI constraints
containing several non-UTVPI constraints. This algorithm is
parameterized by the number of non-UTVPI constraints.

Let U be a UCS+
k with m constraints over n variables.

We will use k as the parameter for our algorithm.



This algorithm reduces the problem to the problem of
finding a minimum weight perfect matching (MWPM) in
an undirected, weighted graph. This problem is defined as
follows:
Definition 5.1. Let G = 〈V,E,w〉 denote an undirected
graph, with vertex set V, edge set E and edge cost func-
tion w. Let n = |V| and let m = |E|. A matching is any
collection of vertex-disjoint edges. A perfect matching is a
matching in which each vertex v ∈ V is matched.

The fastest strongly polynomial combinatorial algorithm
for the MWPM problem runs in time O(m · n+ n2 · log n)
(Gabow 1990). This is the bound that we use in our paper.

For each variable xi let di be the total number of con-
straints in U that use the variable xi. Additionally let d0
denote the number of absolute constraints rounded up to the
nearest even number. Also let UU denote the set of UTVPI
constraints in U.

From UU, we can construct an undirected graph G as
follows:

1. For each variable xi, create the vertices x+i,1, . . ., x+i,di
and

x−i,1, . . ., x−i,di
. Also create the edges x+i,1

0
x−i,1, . . .,

x+i,di

0
x−i,di

.

2. Create the vertices x0,1, . . ., x0,d0
. Also create the edges

x0,1
0
x0,2,x0,3

0
x0,4, . . ., x0,d0−1

0
x−0,d0

.

3. For each constraint lh in UU, create the vertices yh and
y′h. Also create the edge yh

0
y′h.

(a) If lh is of the form xi + xj ≤ bh, then create the

edges x+i,1
bh
2
yh, . . ., x+i,di

bh
2
yh and x+j,1

bh
2
y′h,

. . ., x+j,dj

bh
2
y′h.

(b) If lh is of the form xi − xj ≤ bh, then create the

edges x+i,1
bh
2
yh, . . ., x+i,di

bh
2
yh and x−j,1

bh
2
y′h,

. . ., x−j,dj

bh
2
y′h.

(c) If lh is of the form −xi − xj ≤ bh, then create the

edges x−i,1
bh
2
yh, . . ., x−i,di

bh
2
yh and x−j,1

bh
2
y′h,

. . ., x−j,dj

bh
2
y′h.

(d) If lh is of the form xi ≤ bh, then create the edges

x+i,1

bh
2

yh, . . ., x+i,di

bh
2

yh and x0,1

bh
2

y′h, . . .,

x0,d0

bh
2
y′h.

(e) If lh is of the form −xi ≤ bh, then create the edges

x−i,1

bh
2

yh, . . ., x−i,di

bh
2

yh and x0,1

bh
2

y′h, . . .,

x0,d0

bh
2
y′h.

Example 5.1. Let us consider UCS (2).
l1 : −x1 + x2 ≤ −2
l2 : x1 + x3 ≤ −2
l3 : −x2 − x3 ≤ 2

(2)

x+
1,1

x+
1,2

x−1,1

x−1,2

x+
2,1

x+
2,2

x−2,1

x−2,2

x−3,1

x−3,2

x+
3,1

x+
3,2

y1

y′1

y2

y′2

y3 y′3

0

0

0

0

0

0

0

00

1

1

1

1

−1

−1

−1

−1

−1

−1

−1

−1

Figure 1: Undirected Graph Corresponding to UCS (2).

Applying the construction discussed above to UCS (2),
we get the undirected graph in Figure 1.

This construction is a modified version of the graph con-
struction used in (Subramani and Wojciechowki 2019). It
differs in the following ways:
1. For each variable, xi, we now have di pairs of vertices

associated with that variable instead of 2. We will be uti-
lizing this construction to derive more general constraints
thus we may need to use each variable more than twice.

2. We no longer have a singe pair of vertices to handle abso-
lute constraints. Instead, we have d0 pairs. This allows the
refutation to use all d0 absolute constraints if necessary.

3. Despite these changes G still has a negative weight per-
fect matching if and only if UU has a read-once refutation
using only the ADD rule (Theorem 5.1).
We now relate read-once refutations of UU to negative

weight perfect matchings of the corresponding graph G.
This is broken up into two parts:

1. Using a read-once refutation of UU to construct a nega-
tive weight perfect matching of G.

2. Using a negative weight perfect matching of G to con-
struct a read-once refutation of UU.

Theorem 5.1. G has a negative weight perfect matching if
and only if UU has a read-once refutation using only the
ADD rule.

Proof. First assume that UU has a read-once refutation R.
We construct a negative weight perfect matching P of G

as follows:

1. For each variable xi:
(a) Let ci be the number of constraints from UU in R that

contain the term xi. Note that this is also the number of
constraints that contain the term −xi.

(b) Add the edges x+i,ci+1

0
x−i,ci+1, . . ., x+i,di

0
x−i,di

to P .



2. Assume that the constraints in UU are assigned an arbi-
trary order. For each constraint lh in UU:

(a) If lh 6∈ R, add the edge yh
0
y′h to P .

(b) If lh ∈ R is of the form ai · xi + aj · xj ≤ bh such that
ai, aj 6= 0:

i. If lh is the rth constraint to use the term xi, add the

edge x+i,r
bh
2
yh to P .

ii. If lh is the rth constraint to use the term −xi, add the

edge x−i,r
bh
2
yh to P .

iii. If lh is the rth constraint to use the term xj , add the

edge x+j,r
bh
2
yh to P .

iv. If lh is the rth constraint to use the term −xj , add the

edge x−j,r
bh
2
yh to P .

(c) If lk ∈ R is of the form ai · xi ≤ bk:
i. If lh is the rth constraint to use the term xi, add the

edge x+i,r
bh
2
yh to P .

ii. If lh is the rth constraint to use the term −xi, add the

edge x−i,r
bh
2
yh to P .

iii. If lh is the rth absolute constraint, then add the edge

x0,r

bh
2
y′h to P .

(d) If R has c0 absolute constraints, then add the edges

x0,c0+1
0
x0,c0+2 through x0,d0−1

0
x0,d0 to P .

We now make the following observations:

1. For each variable xi:
(a) The vertices x+i,ci+1 through x+i,di

and x−i,ci+1 through

x−i,di
are the end points of the edges x+i,ci+1

0
x−i,ci+1

through x+i,di

0
x−i,di

which are in P .

(b) For each r = 1 . . . ci, the vertex x+i,r is the endpoint of

the edge x+i,r
bh

yh or x+i,r
bh

y′h where lh is the rth
constraint in R with the term xi.

(c) For each r = 1 . . . ci, the vertex x−i,r is the endpoint of

the edge x−i,r
bh

yh or x−i,r
bh

y′h where lh is the rth
constraint in R with the term −xi.

2. For each constraint lk:
(a) If lk ∈ R, then, by construction, P contains two edges

of weight bk
2 one with end point yk and one with end-

point y′k. Thus both lk and l′k are the endpoints of ex-
actly one edge in P .

(b) If lk 6∈ R, then, by construction, P contains the edge

yk
0
y′k and none of the weight bk

2 edges. Thus both
yk and y′k are the endpoints of exactly one edge in P .

3. The vertices x0,c0+1 through x0,d0
are the end points of

the edges x0,c0+1
0
x0,c0+2 through x0,d0−1

0
x0,d0

which are in P .

4. For each r = 1 . . . c0, the vertex x0,r is the endpoint of the

edge x0,r
bh

y′h where lh is the rth absolute constraint in
R.

Thus, every vertex in G is an endpoint of exactly one edge
in P . It follows that P is a perfect matching. Additionally,
for each constraint lk ∈ R, P has two edges of weight bk

2
and all other edge in P have weight 0. Thus,∑

e∈P
c′(e) =

∑
lk∈R

(
bk
2

+
bk
2

)
=
∑
lk∈R

bk < 0.

This means that P has negative weight.
Now assume that G has a negative weight perfect match-

ing P . We construct a read-once refutation R as follows:

1. For each constraint lh in U, if P does not use the edge

yh
0
y′h, then add the constraint lh to R.

P is a perfect matching. Thus, for each variable xi, we
have the following:

1. If a constraint lh ∈ R contains the term xi, then for some

r, the edge yh
bh
2
x+i,r or y′h

bh
2
x+i,r is in P . Thus, the

edge x+i,r
0
x−i,r is not in P . This means that for some h′,

one of the edges yh′
b
h′
2
x−i,r or y′h′

b
h′
2
x−i,r is in P . Thus,

the term xi is used contained in the constraint lh′ ∈ R.
Note that each constraint in R that contains the term xi
corresponds to a different constraint in R that contains
the term −xi.

2. Similarly, each constraint in R that contains the term −xi
corresponds to a different constraint inR that contains the
term xi.

Thus, the term xi appears in the same number of con-
straints in R as the term −xi.

If a constraint lk ∈ R, then the edge yk
0
y′k is not in P .

Thus, P contains two edges of weight bk
2 one with end point

yk and one with endpoint y′k. Conversely, if the constraint

lk 6∈ R, then the edge yk
0
y′k is in P . It follows that none

of the edges of weight bj
2 from yj and y′j are in P . Thus, for

each constraint lk ∈ R, P has two edges of weight bk
2 and

all other edge in P have weight 0
Thus, summing the constraints in R yields

0 ≤
∑
lj∈R

bj =
∑
lj∈R

(
bj
2

+
bj
2

)
=
∑
e∈P

c(e) < 0.

By construction, each constraint appears at most once in
R. Thus, R is a read- once refutation of U.

The number of vertices in G can be counted as follows:

1. The constraints in U contribute O(m) vertices to G.

2. The variable xi contributes 2 · di vertices to G.



3. In total the variables contribute
∑n

i=1 2 · di vertices to G.
Since G is made from the UTVPI constraints in U, we
have that this value is in O(m).

4. G has O(m) total vertices.

The number of edges in G can be counted as follows:

1. For each variable xi, there are di edges between the ver-
tices corresponding to xi. This contributes a total ofO(m)
edges.

2. For each variable xi, there are at most d2i edges between
the variable and constraint vertices. This contributes a to-
tal of

∑n
i=1 d

2
i ≤ n ·

∑n
i=1 di. Thus, this contributes

O(n ·m) edges.

3. Each constraint contributes a constant number of addi-
tional edges, 1 for non-absolute constraints and 4 for ab-
solute constraints. Thus this accounts forO(m) additional
edges.

4. G has O(n ·m) total edges.

Thus, finding the MWPM of G takesO(m2 ·(n+logm))
time.

We need to modify G to account for the non-UTVPI con-
straints in U. Let S be an arbitrary subset of U\UU. Let lS
be the constraint derived by summing all of the constraints in
S. This constraint is of the form

∑n
i=1 ai,S ·xi ≤ bS . To ob-

tain a read-once refutation, we want to derive the constraint∑n
i=1−ai,S · xi ≤ −b where b > bS from UU.
We now modify G to account for the constraint lS . Let

GS be the modified graph. Initially GS = G. We modify
GS as follows:

1. For each xi:

(a) If ai,S > 0, then remove the vertices x+i,1, . . ., x+i,ai,S

from GS . This forces a read-once derivation corre-
sponding to a perfect matching of GS to use the term
−xi exactly ai,S more times than it used xi. Thus the
coefficient of xi in the derived constraint is −ai,S as
desired.

(b) If ai,S < 0, then remove the vertices x−i,1, . . ., x−i,|ai,S |
from GS . This forces a read-once derivation corre-
sponding to a perfect matching of GS to use the
term xi exactly |ai,S | more times than it uses −xi.
Thus the coefficient of xi in the derived constraint is
|ai,S | = −ai,S as desired.

2. If
∑n

i=1 ai,S is odd, then remove the vertex x0,1 from GS .
This forces the refutation to use an odd number of abso-
lute constraints. It also ensures that an even number of
vertices have been removed from GS .

3. Add the vertices y+S and y−S to GS also add the edge

y+S
bS

y−S to GS . Note that this edge must be in any
perfect matching. Thus, the remaining edges in a negative
weight perfect matching must have total weight−b where
b > bS .

From these observations and arguments analogous to
those made in the proof of Theorem 5.1, we have the fol-
lowing corollary.

Corollary 5.1. For a UCS+k U and set S ⊆ U \ UU, U
has a read-once refutation using all of the constraints in S
if and only if the graph GS has a negative weight perfect
matching.

We can now make an FPT algorithm for finding a read-
once refutation of U.

1. Construct the graph G from UU.
2. For each S ⊆ U \UU (there are 2k such subsets).

(a) Modify G to construct GS .
(b) Find the minimum weight perfect matching P of GS.
(c) If P has negative weight, return that U has a read-once

refutation.
3. If no S resulted in a GS with a negative weight perfect

matching, then return that U has no read-once refutation.

Since finding the MWPM of G takesO(m2 ·(n+logm))
time, this algorithm runs in O(2k ·m2 · (n + logm)) time.
Thus, this is an FPT algorithm for the UCS+

k ROR problem.

6 Conclusion
In this paper, we constructed FPT algorithms for the follow-
ing problems:

1. The 2-CNF k-ROR problem when parameterized by k,
the number of clauses used by the refutation.

2. The UCS+
k ROR problem when parameterized by k, the

number of non-UTVPI constraints.
We are interested in the following problems from the per-

spective of future research:

1. Without a value for k, the algorithm in this paper for de-
termining if a 2-CNF formula Φ has a read-once refuta-
tion would need to check all 2m possible partitionings of
Φ into Φ+

i and Φ−i . This results in an O∗(2m) time ex-
ponential algorithm. Is there a more efficient way to do
this?

2. Using the FPT algorithm in this paper, we can solve the
UCS+

k ROR problem in polynomial time for any fixed
k. The problem of finding a read-once refutation of a
general linear program is NP-hard (Kleine Büning, Wo-
jciechowski, and Subramani 2019a). If we allow k to
change depending on the size of the UCS, for what val-
ues of k does this problem remain solvable in polynomial
time?
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