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Abstract

Privacy has traditionally been a major motivation of dis-
tributed problem solving. In this paper, we focus on pri-
vacy issues when solving Distributed Constraint Optimiza-
tion Problems (DCOPs) using a local search approach. Two
such popular algorithms exist to find good solutions to
DCOP: DSA and GDBA. However, these were not designed
with privacy in mind.
In this paper, we propose DSAB, a new algorithm that merges
ideas from both algorithms to allow extensive handling of
constraint privacy. We also study how algorithms behave
when solving Utilitarian DCOPs, where utilitarian agents
want to reach an agreement while reducing the privacy loss.
We show experimentally that this allows us reductions of do-
main privacy loss by a factor 2 to 3 with no significant impact
on the quality of the solution.

Introduction
The Distributed Constraint Optimization Problem (DCOP)
is a general framework used to model and solve distributed
NP-hard challenges. To solve a DCOP, agents negotiate to
find a solution that satisfies as well as possible a given set
of constraints. Privacy is an important issue in a lot of dis-
tributed applications. Therefore, besides the constraint costs
entailed by the solution, the cost of privacy loss during
the process should also be considered (Greenstadt, Pearce,
and Tambe 2006; Yokoo et al. 1998; Hamadi, Bessiere,
and Quinqueton 1998). Confidentiality is lost when data
is exchanged between agents. For example, in distributed
scheduling problems, participants may not want to reveal
their unavailable time slots because the explanation concerns
their private life, and it should not be publicized. We know
that the assignment of time slots can be difficult if partici-
pants do not want to reveal their constraints (Freuder, Minca,
and Wallace 2001; Crépin et al. 2009; Faltings, Léauté, and
Petcu 2008). When an agent is concerned with its privacy, it
practically associates a cost to the revelation of each piece of
information in its local problem. This cost may be embedded
into utility driven reasoning (Silaghi and Mitra 2004; Doshi
et al. 2008; Savaux et al. 2017). Local search algorithms
such as the Distributed Stochastic Algorithm (DSA) (Zhang,
Wang, and Wittenburg 2002) and (Generalized) Distributed
Breakout Algorithm (GDBA) (Yokoo and Hirayama 1996;
Hirayama and Yokoo 2005; Okamoto, Zivan, and Nahon

2016) allow for taking into account utilities quite easily, i. e.,
without impact on their soundness.

Distributed local search algorithms are prone to oscilla-
tions, when two agents keep changing their values with-
out ever reaching an agreement. As most traditional local
search techniques, they are also at the risk to get stuck in
local minima. DSA and GDBA implement strategies to pre-
vent oscillations and/or local minima. Although incomplete,
these algorithms allow for finding suboptimal solutions of
good quality relatively quickly and have the anytime prop-
erty (Wallace and Freuder 1996; Zivan, Okamoto, and Peled
2014).

In this paper, we propose a new algorithm we call Dis-
tributed Stochastic Algorithm with Breakouts (DSAB) that
uses strategies inspired from DSA and GDBA to prevent os-
cillations, to get out of local optima, and to allow extensive
handling of constraint privacy. We also study how the algo-
rithms behave when solving Utilitarian DCOPs, where utili-
tarian agents want to reach an agreement while reducing the
privacy loss. Previous works have shown the interest of util-
ities to improve privacy in complete algorithms (Savaux et
al. 2019).

In the following sections, after reviewing background, we
introduce DSAB, then show how domain privacy can be en-
hanced for both DSAB, DSA and GDBA with Utilitarian
agents. Then, we observe the impact on both constraint and
domain privacy costs on academic and realistic problems.

Background
In this paper, we make the following assumptions, without
loss of generality, in order to simplify our descriptions:
• an agent encapsulates exactly one variable,
• domains are finite subsets of integers (any finite and

countable set can actually be used),
• a constraint involves at most two variables.

The following definition embraces the Open Constraint
Programming model for domains (Faltings and Macho-
Gonzalez 2005). This allows to add values to domains dy-
namically during search. In our context, this means that do-
mains are initially private, and values are revealed only when
the search process requires it.
Definition 1. A Distributed Constraint Optimization Prob-
lem (DCOP) is defined as a tuple 〈A,X ,D, C〉, where:



A = {A1, A2, . . . , An} is a finite set of n agents.
X = {x1, x2, . . . , xn} is a set of n variables. Each agent
Ai encapsulates the variable xi.

D = {D1,D2, . . . ,Dn} is a set of n domains, with d =
max(|Di|).1 Each variable xi can be instantiated to a
value v ∈ Di. An assignment of X ⊆ X is a set of in-
stantiations for each variable of X .

C = {C1, C2, . . . , Ce} is a finite set of e valued constraints.
Each constraint Ci involves variables X (Ci) ⊆ X , and
defines a non-negative cost for each assignment of its
variables.2 We denote with Ci(X) the cost of the assign-
ment of X (Ci) ⊆ X for Ci. We also denote by C(Ai) the
set of constraints that involve xi, i. e., C(Ai) = {Cj ∈ C |
xi ∈ X (Cj)}.
The objective is to find an optimal solution S, i. e., an as-

signment for X that minimizes the total cost of constraints∑e
i=1 Ci(S).

DSA (Zhang, Wang, and Wittenburg 2002) and GDBA
(Okamoto, Zivan, and Nahon 2016) are local search (in-
complete) synchronized algorithms designed to find good
quality solutions to DCOP quickly. As most incomplete al-
gorithms, DSA and GDBA cannot handle hard constraints,
i. e., infinite costs,3 and cannot prove that a given solu-
tion is optimal. However, proving optimality is NP-hard
and local search algorithms are much more scalable than
exponential complete algorithms such as ABT, DPOP or
Sync-BB (Hirayama and Yokoo 1997; Yokoo et al. 1998;
Petcu and Faltings 2005).

A greedy approach to distributed local search is for each
agent to assign the value that entails the lowest cost at each
iteration. However, consider for example two agents A1 and
A2 holding respectively the two variables x1 and x2, both
with domain {1, 2}, associated by an inequality constraint
(x1 6= x2). If x1 and x2 are both instantiated to 1, it contra-
dicts the inequality constraint. On the next step, both agents
will change their value simultaneously to 2, and the con-
straint will still be violated. If no strategy is implemented to
avoid such oscillations, the two agents will keep on chang-
ing values at every cycle and no solution will ever be found.
DSA avoids oscillations by stochastically “skipping” itera-
tions according to a given parameter p, which allows only
the neighbor agent to change its assignment. GDBA adds an
additional cycle: agents share the improvement they can get
to their neighbors via an “improve” message. Only the agent
that entails the best improvement will change its assignment.

Another common issue in local search is local optima,
where no local change can improve the current solution even
if one exists in the search space. GDBA use the “breakout”

1d is only used to infer worst-case complexities. If values are
added dynamically during search, d considers the “final” domain
sizes.

2We chose to avoid negative constraint costs because they are
not intuitive, but they would not affect the algorithms described in
this paper.

3In practice, we use some large constant K to represent “infi-
nite” costs.

strategy (Morris 1993) to escape local minima: when im-
provements are sent to neighbors, if all improvements are
non-positive, a quasi local minima is detected and a break-
out is performed by incrementing the weight of all violated
constraints. DSA does not implement any technique to avoid
local minima.

Okamoto, Zivan, and Nahon (2016) (resp. Zhang, Wang,
and Wittenburg (2002)) describe several variants of GDBA
(resp. DSA). In the following, we will only consider the
variant called (M,NM , T ) (resp. B), which gave the best
results. Adapting DSA for private domains is trivial. For
GDBA, it requires to adapt the way that constraints are con-
sidered to be unsatisfied in the “NM” variant. This will be
further described in the “Constraint Privacy” Section.

Privacy is the property that agents benefit from conserv-
ing the secrecy of their personal information. This is a broad
concept that several authors tried to categorize (Grinshpoun
2012; Greenstadt, Grosz, and Smith 2007; Léauté and Falt-
ings 2013). According to Grinshpoun (2012), agents’ pri-
vacy may concern domains, constraints, assignments, and
algorithms. From these three papers, it is the only one that
mentions domain privacy, although the author states that it
cannot be achieved by the traditional DCOP model. Indeed,
Grinshpoun takes for granted that constraints costs are rep-
resented using extensive tables that covers the full cartesian
product of involved variable domains. This entails that each
agent is aware of its neighbours’ domains even before reso-
lution starts. Here, we consider a more general model, where
costs for each constraint Ci are defined by some function
fi : Z|X (Ci)| 7→ N. Note that the function is defined on
supersets of variable domains (more details in the “Domain
Privacy with DSAB” Section).

Advanced stochastic algorithms rely on mediator agents
that handle groups of agents, and use complete algorithms to
prove optimal partial solutions for such groups. Assignment
privacy in this context requires sophisticated, cryptograph-
ically secure protocols (Léauté and Faltings 2013; Grinsh-
poun and Tassa 2016; Tassa, Zivan, and Grinshpoun 2016;
2017). However, these approaches do not consider domain
privacy. In the following, we consider that initial domains
and intra-agent constraints are private, whereas assignments
are sent and shared inter-agent constraints are known to
neighbors. Every time an agent sends a message, it contains
information (i. e., constraint costs or domain values) that en-
tails an irremediable loss of privacy. We want to enhance
privacy by minimizing the amount of leaked private infor-
mation.

We do not consider algorithm privacy in this paper, and
assume that all agents follow the same algorithm. In the fol-
lowing sections, we will consider constraint costs and do-
main privacy.

Distributed Stochastic Algorithm with
Breakouts

Our motivating example is an Agent A that wants to sched-
ule a meeting with several peers. It is available at every
hour from 8am to 8pm, with variable preferences, and does



not want the nature of these preferences to be known. The
DCOP framework allows modeling these preferences as
constraint costs, and using a distributed environment allows
for keeping these constraints private. However, to avoid os-
cillations and escape local minima, GDBA requires agents
to send “improve” messages, containing the delta between
the cost of its current assignment and the best cost it can
achieve by changing the value of its variable. This has two
drawbacks: firstly, although the delta is the result of the sum
of several costs, it can give clues about the constraint costs of
the agent. It is well known that even such statistical informa-
tion can be used to derive initial data (Adam and Worthmann
1989). Secondly, it brings questions about whether and how
privacy costs should be incorporated in the computation of
deltas (privacy costs will be detailed in the next section).

With the Distributed Stochastic Algorithm with Breakouts
(DSAB), we propose to use the stochastic strategy of DSA
to avoid oscillations, and implement local minima detection
and escape using breakouts. For the stochastic part, DSAB
allows agents to randomly “yield” every now and then, so
that alternative assignments can be eventually tried to reach
the best agreement. This “yield” technique is controlled by a
parameter 0 ≤ p ≤ 1, as for DSA. p defines the probability
to change the value, which means that p = 1 corresponds to
the “greedy” approach, and p = 0 means that agents keep
their initial assignment forever. p is not an excessively cru-
cial parameter and experiments show that p = 0.95 is good
for most applications.

If an agent cannot improve its current solution, it sends
a “stalled” message to detect quasi local minima and per-
form breakouts. In a nutshell, an agent Ai running DSAB-p
performs one action at each step:
• if there exists a value v′ in Di that improves the current

cost function, Ai may change its instantiation to xi = v′

with a probability p, or
• if a better value exists, with a probability 1− p, Ai yields

its chance to switch its value. Either way, it sends an “ok?”
message to its acquaintances containing the final value.

• If no better value exists, Ai stalls and sends a “stalled”
message to its acquaintances. If all its neighbors have
stalled on the previous step, a quasi local minimum is de-
tected and constraints C(Ai) are weighted. “Stalled” mes-
sages are required to distinguish yields from stalls.
Our algorithm is further described on Algorithm 1: v rep-

resents the agent’s current instantiation. agentView is an as-
signment containing the known instantiations of the neigh-
bors. v is initialized to the best possible value (Line 2) and
sent to neighbors (Line 3). As agentView is empty at this
step, the cost evaluation can only consider unary constraints
and domain privacy costs (cf. next section).

Lines 6–8 process incoming messages. DSAB-p agents
send and receive only one message per neighbor at each step.
Line 9 selects the best value v′ according to the COST func-
tion, taking into account the agentView and the set of re-
vealed values Ri (cf. next section). Line 10 checks whether
v′ improves the current solution. In this case, v′ is assigned
with a probability p (Line 11). The chosen value is added
toRi (Line 12) and sent to the neighbors (Line 13).

Algorithm 1: DSAB-p running on agent Ai

1 Initialize constraint weights to 1
2 v ← arg min

j∈Di

COST(j, ∅, ∅)

3 Send v to all neighbors
4 while termination condition not met do
5 stallCount ← 0
6 Receive messages from all neighbors:
7 when “ok?”: update agentView and

minCosts
8 when “stalled”: increment stallCount
9 v′ ← arg min

j∈Di

COST(j, agentView ,Ri)

10 if COST(v′, agentView ,Ri) <
COST(v, agentView ,Ri) then

11 With a probability p: v ← v′

12 Ri ← Ri ∪ {v}
13 Send “ok?(v)” to all neighbors
14 else
15 if stallCount = |Ni| then // all

neighbors have stalled
16 foreach Cj ∈ C(Ai) |

Cj(agentView) > minCosts(Cj) do
17 Increase Cj weight

18 Send “stalled” to all neighbors

19 Assign best v to xi

If v′ does not improve the current solution, Line 15 con-
trols whether a quasi local minima has been encountered
(|Ni| is the number of neighbors). In this case, Lines 16–17
weight the non-minimally (NM) violated constraints. Fol-
lowing Okamoto, Zivan, and Nahon (2016), a constraint is
NM-violated if the cost corresponding to the current solu-
tion is higher than the best cost that can be obtained with
this constraint. However, the “best cost” of the constraint
is not necessarily known when the algorithm starts. Indeed,
the best cost for constraint Ci is defined as the smallest cost
entailed by the cartesian product of the domains of X (Ci).
If X (Ci) contains variables from neighbor agents, their do-
main is unknown. To settle this, we maintain minCosts ,
which maps for each constraint Ci the lowest known cost
that the constraint may entail. When a neighbor reveals a
new value on Line 7, minCosts is partly recomputed. The
same change must be implemented in GDBA in order to al-
low dynamic or private domains.

Only assignments containing the new value need to be
evaluated. In the worst case, over the full search process,
maintaining minCosts requires to evaluate every possible
assignment exactly once, i. e., for each constraint Ci, at most
d|X (Ci)| constraint checks are performed. In order to avoid
the exponential factor if non-binary intentional or global
constraints are to be considered, some polynomial function
or approximation to compute minCosts will probably have
to be added to the constraint definition.

The value of minCosts(Ci) can only decrease throughout



the search. This means that Ci might be considered satisfied
early in the search but NM-violated later by the same as-
signment. The space complexity of minCosts is Θ(|C(Ai)|)
for each agent. It is also required to keep track of values
revealed by acquaintances, which is a Θ(|Ni| · d) data struc-
ture. DSAB-p has the same time and space complexities of
GDBA. The algorithm runs until some termination condi-
tion is met (Line 4), usually by setting an upper bound on
the number of cycles.

Domain Privacy with Utilities
We take again our motivating example from the previous
section. Although agent A is available at every hour from
8am to 8pm, it would like to avoid confessing that he has so
much availabilities, so as to avoid being highly solicited in
the future. This can be achieved by keeping its initial domain
private, and by revealing as few values as possible during
search.

The matters presented in this section can be applied to ei-
ther DSAB-p, GDBA, and DSA, assuming they embrace the
Open Constraint Programming principle for domains (Falt-
ings and Macho-Gonzalez 2005). Although DCOP models
traditionally assume that constraints are represented using
extensive tables, which implies that agents know their neigh-
bors’ initial domains, our more general model from Defini-
tion 1 allows to define cost functions on supersets of vari-
able domains. We do not make assumptions on how the
functions are implemented: it might be a table, but also
in intention, e. g., a simple arithmetic expression such as
f(x, y) 7→ (x − y)2 for a quadratic soft equality constraint,
or by a global property such as the number of different val-
ues that appear in the assignment.4 Further on, a default cost
(e. g., 0 or some large constant K) can be provided if an un-
expected value is encountered, and even more sophisticated
compressed representations can be used (Mairy, Deville, and
Lecoutre 2015).

When the agent reveals its instantiation, it reveals that
the concerned value belongs to its domain. The Utilitarian
DCOP model allows to set a cost to the leak of this informa-
tion (Doshi et al. 2008; Savaux et al. 2017; 2019). If an agent
wishes to protect its privacy, we can consider that the com-
putation is now performed by utility-based agents that are
partly self-interested: they make decisions aiming at mini-
mizing a utility function, which involves both minimizing
the constraint cost, and the privacy loss. This is formalized
as follows:

Definition 2. A Utilitarian Distributed Constraint Opti-
mization Problem is defined as a tuple 〈A,X ,D, C,P〉, i. e.,
a DCOP with an additional matrix P of domain privacy
costs. Pi,j is the non-negative cost5 for Ai to reveal whether
j ∈ Di.

4This property corresponds to the soft all-equal constraint (He-
brard et al. 2011).

5Assigning negative privacy costs implies that the agent has an
interest in leaking information. Although this is not very intuitive,
it does not really prevent the algorithms described in this paper to
behave normally. Those values are simply assigned as soon as they
do not entail excessive constraint costs.

Algorithm 2: COST(v, agentView ,Ri)
1 constraintCost ←∑

Cj∈C(Ai)

weight(Cj)×Cj(agentView ∪ {xi = v})

2 privacyCost ←(
max

Cj∈C(Ai)
weight(Cj)

)
×

∑
j∈Ri∪{v}

Pi,j

3 return constraintCost + privacyCost

The objective is to find an optimal solution while minimiz-
ing the privacy loss

∑n
i=1

∑
j∈Ri

Pi,j , where Ri ⊆ Di is
the set of values that Ai revealed during the solving process.

Note that privacy loss is a function that depends on the
search process itself and is not represented in traditional
DCOPs. The two objectives are somewhat contradicting:
the privacy loss can only increase during the search pro-
cess as new messages are sent, whereas the constraint costs
are likely to decrease as new, hopefully better solutions are
found. What we want is to control the search process to find
good compromises. In our implementation, the utility func-
tion of each agent is based on the sum of constraint costs and
privacy losses.

An issue we have with this strategy in GDBA and
DSAB-p is that when constraints are heavily weighted,
then the privacy costs may become negligible. We found
out that weighting the privacy costs as much as the most
weighted constraint, i. e., give as much importance to pri-
vacy as to the most weighted constraint, brings good re-
sults.6 For DSA the issue does not exist as constraints are
not weighted (∀j,weight(Cj) = 1). We summarize our
COST function on Algorithm 2. The function returns the
total cost (both constraint and privacy) that would be en-
tailed if the value v was instantiated during the current step,
given current agentView and Ri. The privacyCost vari-
able implements domain privacy control (DPC). Note that
privacyCost does not need to be recomputed from scratch
at every call to COST function. We simply maintain the max-
imum constraint weight (constant-time operation every time
a constraint is weighted), as well as the sum of the privacy
costs of already revealed values (constant-time every time a
new value is revealed), to compute privacyCost in constant
time. This allows DPC to have no impact on the worst-case
complexity of algorithms.

This strategy also works when agents encapsulate several
variables. Although sending values between internal vari-
ables does not actually entail privacy loss, there is actually
two cases for a given variable xi: 1. xi is purely internal,
and we can define ∀j,Pi,j = 0 so that privacy is ignored,
or 2. xi is an interface variable, i.e., is involved by at least
one inter-agent constraint. In this case, data is leaked every
time its value is changed, so penalty costs must be consid-
ered anyway.

6Preliminary experiments where we weighted privacy costs as
much as the average of constraint weights were inconclusive.
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Figure 1: Anytime total constraint costs over cycles for GDBA and DSAB-p

Experiments
We implemented DSAB-p, GDBA, and DSA with and
without domain privacy control (DPC) over the Akka 2.5
platform (Bonér and the Akka Team at Lightbend 2009).
Akka is a modern, performant implementation of the Actor
Model (Hewitt, Bishop, and Steiger 1973) for the Java Vir-
tual Machine, suitable for managing DCOP agents in our ex-
perimental context. We used the B variant of DSA described
in (Zhang, Wang, and Wittenburg 2002), that gave best re-
sults on graph coloring problems.

We test the algorithms on 150 instances of the follow-
ing benchmarks and compute the average of anytime costs
at each cycle. Unless noted, we used a log-normal proba-
bility distribution with given mean and standard deviation
(std. dev.), rounded to the nearest integer, to generate non-
negative values.
MultiDMS is a distributed meeting scheduling problem: 40

meetings must be scheduled over d = 30 time slots. A
pool of 100 people are involved in these meetings. For
each meeting, each individual may be selected to partici-
pate in the meeting with a probability of 5 %. Each event
has a duration with mean = 2.5 and std. dev. = 1.12.
Moreover, participants must have time to travel from a
meeting to another. For each pair of meetings, a generated
distance of mean = 1.5 and std. dev. = 0.5 must be re-
spected. For each pair of attendees of a meeting, a penalty
of K = 100 is given if the two participants are not sched-
uled at the same time. Another penalty of K = 100 is
given for each attendee if two meetings overlap or do not
respect the distance constraint.
A unary cost constraint is generated for each variable,
giving each domain value a cost with mean = 20 and
std. dev. = 6.06. A privacy domain cost is generated for
each value, with mean = 10 and std. dev. = 3.

RDO is a randomly generated problem with n = 200 vari-
ables with a domain of d = 30 values. A random graph

with variables as vertices and binary constraints as edges
is generated with a density of 2 % (e = 398). For each
constraint, a constraint cost is enforced on each pair of
possible instantiations with mean = 50 and std. dev. =
50.
A privacy domain cost is generated for each value, with
mean = 10 and std. dev. = 10.

WGC is a variant of weighted random coloring problem
over n = 200 variables with d = 30 colors. A random
graph with variables as vertices and binary constraints as
edges is generated with a density of 20 % (e = 3.980). Bi-
nary constraints are “hard” (K = 1,000) inequality con-
straints. A unary cost constraint is generated for each vari-
able, with mean = 50 and std. dev. = 50.
A privacy domain cost is generated for each value, with
mean = 10 and std. dev. = 10.

We chose the parameters for MultiDMS to roughly
match our target problem of generating a weekly time table
for our organization. The number of attendees of a meeting
follows a binomial distribution with a mean of 100× 5 % =
5. Each (meeting, attendee) pair requires one variable. It re-
sults in 200 variables on average for each instance.

For this problem, our implementation can run 10,000 cy-
cles of GDBA in about 20 seconds wallclock time on a Java
OpenJDK 11 64-Bit Server VM running on a 4-core Intel i7-
5600U CPU @ 2.6 GHz with 4 GiB allowed heap space. For
the two other problem classes, which are more academic, we
tuned the parameters to obtain the same number of variables
and domain size, and similar running times.

A first experiment compares DSA-0.95, GDBA and
DSAB-p for various p. Domain privacy control is dis-
abled by removing Line 2 of Algorithm 2, only constraint
costs are observed. Results are illustrated in Figure 1. These
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Figure 2: Impact of DPC on anytime constraint and privacy costs for DSAB-0.95

plots show that DSAB-0.90 is always better than GDBA
on these benchmarks. However, DSAB-0.95 is better than
DSAB-0.90 by a relatively large margin on RDO problems,
and the difference is nearly imperceptible on the others.
DSAB-0.99 peforms surprisingly well on RDO problems.
Probably oscillations are not really an issue on such homo-
geneous problems. For DSA, we ran a preliminary experi-
ment to devise the best p parameter, and it turned it was 0.95
as well. DSA does not have any mechanism to escape local
minima and quickly jams on a bad solution. Note that this
results in very few leaked domain values.

A second experiment compares constraint and privacy
costs for DSAB-p, with and without domain privacy con-
trol We chose to include the domain privacy costs when
computing and transmitting deltas for the “improve” mes-
sages of GDBA. This means that (unmeasured) information
on privacy costs is leaked, but it reduces the domain privacy
costs themselves. Results are displayed in Figure 2. We can
observe that DPC allows to reduce privacy costs by a factor
of 2 to 3 on average, while having a low impact on the con-
straint costs. We obtained similar results with GDBA (omit-
ted due to space constraints). We also note that DSAB-0.95
tends to increase the number of values revealed w.r.t. GDBA.

Conclusion and Outlook
In this paper, we proposed a new algorithm, called Dis-
tributed Stochastic Algorithm with Breakouts (DSAB-p),

which uses a stochastic technique to avoid oscillations and
breakouts to escape local minima. Compared to the legacy
GDBA algorithm, DSAB-p does not send any information
about constraint costs. As a second contribution, we em-
braced the Open Constraint Programming model for do-
mains (Faltings and Macho-Gonzalez 2005), implemented
and experimented domain privacy control for DSA, GDBA
and DSAB-p, exploiting the Utilitarian DCOP model pro-
posed by (Doshi et al. 2008; Savaux et al. 2017). Our results
show that implementing privacy control has a low impact on
the quality of solutions w.r.t. constraint costs, but allows for
reducing domain privacy loss by a factor of two to three.

Future work may consider agents encapsulating more than
one variable and non-binary constraints. A better evalua-
tion of the quality of the obtained solutions w.r.t the optimal
would allow to improve local search algorithms, while keep-
ing privacy in mind. Heuristics more sophisticated than the
sum of constraint and privacy costs should be considered,
e. g., weighted sums or products, dynamic weights, games,
etc. Also, it would be interesting to introduce a malevolent
agent that exploits the solving protocol in order to gather
more information than required to solve the problem. A
more formal study of what can be derived from data sent by
the various algorithms should be performed. Event though
DSAB-p hides constraint costs, the order in which values
are sent is meaningful. This may be countered by preserving
the k-anonymity of the constraint relations (Sweeney 2002).

In our experiments, agents know the constraints that they



share with their neighbors and their associated cost function.
This is not a hard requirement in the algorithms we studied.
Models similar to Partially Know Constraints (PKC) (Brito
et al. 2009; Grinshpoun et al. 2013), where the actual cost
function of a constraint is held by only one agent, could
easily be designed. The behavior of the algorithms on such
models should be investigated. For example, if a constraint
is one-sided, one agent will not have to reveal its assignment
to its neighbour. This will improve domain privacy and rein-
troduce a form of assignment privacy.
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