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Abstract

The inner representation of deep neural networks (DNNs) is
indecipherable, making it difficult to tune DNN models, con-
trol their training process, and interpret their outputs. In this
paper, we propose a novel approach to investigate the inner
representation of DNNs through topological data analysis.
We constructed simplicial complexes on DNNs based on deep
Taylor decomposition and calculated the persistent homology
(PH) of DNNs. Evaluation results demonstrated that the PH
of DNNs reflected both the excess of neurons and problem
difficulty, making PH one of the prominent methods for in-
vestigating the inner representation of DNNs.

Introduction
Deep neural networks (DNNs) have demonstrated a remark-
able performance in various fields including image anal-
ysis, speech recognition, and text classification (Zhang et
al. 2018; Hatcher and Yu 2018). However, the inner rep-
resentations of DNNs are indecipherable, making it diffi-
cult to tune DNN models, control their training process,
and interpret their outputs. Many approaches that enable
the understanding of the inner representation of DNNs have
been investigated, including the input identification of spe-
cific results (Bach et al. 2015; Zeiler and Fergus 2014;
Samek et al. 2016; Montavon et al. 2017) and similarity
evaluation between different networks (Raghu et al. 2017;
Morcos, Raghu, and Bengio 2018; Kornblith et al. 2019).

In this paper, we propose a novel approach to inves-
tigate the inner representation of DNNs using topologi-
cal data analysis (TDA). TDA employs results from ge-
ometry and topology (Otter et al. 2017; Wasserman 2018),
which has provided new insights into various fields such as
neuroscience (Sizemore et al. 2018; Cassidy et al. 2018;
Curto 2017; Yoo et al. 2016; Petri et al. 2014), proteins
(Cang and Wei 2018; Gameiro et al. 2015; Xia and Wei
2014), and material science (Hiraoka et al. 2016; Kramar
et al. 2013). However, to the best of our knowledge, there is
no previous work to employ TDA for investigating the inner
representation of DNNs.

Persistent homology (PH) is one of the prominent meth-
ods in TDA owing to its three advantages: theoretical foun-
dation, computability in practice, and robustness with small

perturbations (Otter et al. 2017). These advantages are ben-
eficial for investigating DNNs. The theoretical foundation
and computability are fundamental in constructing knowl-
edge from empirical observations, while the robustness is
indispensable for investigating DNNs involving parameter
perturbations (Szegedy et al. 2013).

In this study, we constructed simplicial complexes on a
DNN based on deep Taylor decomposition (DTD) (Mon-
tavon et al. 2017; Lapuschkin et al. 2019). Further, we cal-
culated the PH of the DNN trained to recognize handwritten
digits for the purpose of demonstrating the effectiveness of
TDA as a measurement method of DNNs.

Intuition behind topological measurement of
DNNs

DNNs work as knowledge distilling pipelines, meaning that
the degree of feature abstraction increases with the depth of
DNN layers (LeCun, Bengio, and Hinton 2015). For exam-
ple, images of cats are incrementally abstracted from pixels
to diagonal lines and ear shapes. Additionally, DNNs can de-
tect cats based on feature combinations (Chollet 2017). Fea-
ture relationships represent the implementation of knowl-
edge in DNNs, which can be investigated from their network
structures.

Previous studies have demonstrated that PH can be used
for comparing and characterizing human brains. Cassidy et
al. employed PH as a tool for comparing human brains us-
ing functional magnetic resonance imaging (fMRI) (Cas-
sidy et al. 2018). Petri et al. showed that psilocybin affects
the homological structure of the brain’s functional patterns
(Petri et al. 2014). Further, Sizemore et al. employed PH to
highlight the crucial features of human brains from diffu-
sion spectrum imaging (DSI) (Sizemore et al. 2018). How-
ever, it is often difficult to quantify the activation of neurons
from fMRIs and DSIs. Hence, PH is more useful for analyz-
ing DNNs because their network structures and activation of
neurons can be described mathematically. In this study, we
employed PH to investigate the process of training a DNN
and evaluate its knowledge representation complexities.



Background
We introduce the terms of TDA and PH based on previous
studies (Edelsbrunner and Harer 2010; Horak, Maletić, and
Rajković 2009; Otter et al. 2017). Introductory videos ex-
plaining TDA and PH can be found on on-demand video
services1.

Persistent homology
Persistent homology is a method for computing the topolog-
ical features of a space. Namely, the homology groups of or-
der zero and one represent the number of connected compo-
nents and holes, respectively. The formal definition of PH is
provided in this subsection. However, this subsection can be
bypassed with the intuitive understanding because the sub-
ject matters are computed by the libraries we employed.

Definition 1 An abstract simplicial complex is a finite col-
lection of sets K such that X ∈ K and Y ⊆ X implies
Y ∈ K.

We call the sets X in K as its simplices, and the dimen-
sion of a simplex is dimX = cardX − 1 where cardX is
the cardinality of X . The dimension of abstract simplicial
complex is the maximum dimension of any of its simplices.
The vertex set is the set of all elements that lie in at least one
simplex, and the face of a simplex X is a non-empty subset
Y ⊆ X .

A p-chain c of a simplicial complex K is a formal sum
of p-simplices in K, that is, c =

∑
aiXi where Xi are p-

simplices and ai are the coefficients. We employ module 2
coefficients, that is, ai are either 0 or 1 and 1 + 1 = 0. A
binary arithmetic of two p-chains c =

∑
aiXi and c′ =∑

biXi is defined as c + c′ =
∑

(ai + bi)Xi where the
coefficients are modulo 2. The p-chain forms a group and
the group is denoted as Cp.

A boundary operator ∂p is a map from a p-simplex
to the sum of its (p − 1)-simplices. Formally, ∂pX =∑p

j=0[v0, . . . , v̂j , . . . , vp] where [v0, . . . , vp] is the simplex
with the vertices and the hat indicates that vj is removed. A
chain complex is the sequence of chain groups connected

by boundary operators,· · · ∂p+2−−−→ Cp+1
∂p+1−−−→ Cp

∂p−→
Cp−1

∂p−1−−−→ · · · . A p-cycle is a p-chain with empty bound-
ary which forms a group and we denote the group as Zp =
ker ∂p. A p-boundary is a p-chain that is the boundary of a
(p+1)-chain which forms a group and we denote the group
as Bp = im ∂p+1.

Definition 2 The p-th homology group is the p-th cycle
group modulo the p-th boundary group. We denotes the p-th
homology group as Hp(= Zp/Bp). The p-th Betti number
βp is the rank of Hp.

Definition 3 A filtration of the simplicial complex K is a
sequence of simplicial complex such that ∅ = K0 ⊂ K1 ⊂
· · · ⊂ Kn = K.

For every i ≤ j we have an induced homomorphism in
each dimension p, f i,jp : Hp(Ki) → Hp(Kj). f i,jp satisfies

1https://www.youtube.com/watch?v=akgU8nRNIp0,
https://www.youtube.com/watch?v=2PSqWBIrn90

that fk,jp ◦ f i,kp = f i,jp for all 0 ≤ i ≤ k ≤ j ≤ n and closes
in the filtration.

Definition 4 Let ∅ = K0 ⊂ K1 ⊂ · · · ⊂ Kn = K
be a filtration. The p-th persistent homology of K is the
pair ({Hp(Ki)}0≤i≤n, {f i,jp }0≤i≤j≤n) where the homo-
morphism f i,jp : Hp(Ki) → Hp(Kj) are the maps induced
by the inclusion maps Ki → Kj .

We say that a homology γ ∈ Hp(Ki) is born at Ki if γ /∈
imf i−1,ip . Furthermore, if γ is born at Ki, then it dies enter-
ing Kj if f i,j−1p (γ) /∈ imf i−1,j−1p but f i,jp (γ) ∈ imf i−1,jp .
The lifetime of γ is represented by the half-open interval
[i, j). If f i,jp (γ) 6= 0 (i ≤ ∀j ≤ n), we say that γ lives
forever and its lifetime is the interval [i,∞).

Diagrams
A persistent homology diagram illustrates the birth and
death of homologies in a filtration. Fig.1(a) shows points
with oblique lined circles in R2. When the radius of the cir-
cles is small, the points are isolated. We gradually enlarge
the circles, then two encircled regions appear in R2. The ap-
pearance of the encircled regions corresponds to the birth of
homologies. The regions disappear if we continue to enlarge
the circles, and the disappearances correspond to the death
of homologies.

Fig.1(b) shows the persistent homology diagram of
Fig.1(a). The two points in Fig.1(b) correspond to the births
and deaths of the two regions. The large region in Fig.1(a) is
stable with regard to the enlargement of the circles. In con-
trast, the small region is less stable compared to the large
region. The stability of the regions is indicated by the dis-
tance from the dialog line in Fig.1(b), i.e., the small region
is pointed near the dialog line and the large region is pointed
in a distance from the dialog line.

Barcode is another diagram that gives the same informa-
tion with the persistent homology diagram. Barcode diagram
of Fig.1(a) is illustrated in Fig.1(c), which illustrates the
births and deaths by lines parallel to the x-axis. The short
and long lines correspond to the small and large regions, re-
spectively. The stability of regions is indicated by the length
of bars in barcode diagrams.

Construction of simplicial complexes on DNNs
We consider a set of neurons as vertexes (V = {v0, . . . , vn})
and DNNs as directed graphs with weights wij . We de-
fined the value of relevance of identical neurons is one.
If two neurons are not connected in a directed graph, the
value between the two neurons is zero. We define the rel-
evance between two neurons, vi1 and vik , as Ri1ik =
maxL=(vi1 ,...,vik )

(Ri1i2Ri2i3 · · ·Rik−1ik), where L denotes
possible paths from vi1 to vik , and Rij is defined based on
DTD formally defined in Eq.(1).

Fig.2(a) illustrates a four-layered DNN with an output
neuron v0. The values adjacent to the arrows denote the rele-
vance between two neurons, and the relevance matrix is pre-
sented in Fig.3(a). Fig.2(b) illustrates the simplicial complex
of Kr=1.0 with Betti number β0 = 9. We observe the de-
crease of Betti number β0 according to the filtration from
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Figure 1: (a) Examples of persistent homology diagrams; (b) persistent homology diagram of (a); (c) barcode diagram of (a);
(d) DNN for handwritten number recognition.
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Figure 2: (a) Example of DNN with weights; (b–h) simplicial complexes and betti numbers corresponding to the filtration.

Fig.2(c) to (h). Fig.2(e) has a 2-simplex and we illustrate it
with the gray triangle.

Fig.2(g) and (h) illustrate the increase of Betti number
β1 corresponding to the occurrences of cycle. If the ver-
texes which represent features of input images are connected
straightforwardly to output neurons, the knowledge in the
DNN is considered simple because it is equivalent to feature
detection. Contrary, the increase of Betti number β1 indi-
cates that the DNN classifies the input based on the combi-
nation of features. From these viewpoints, we can consider
the increase of Betti number β1 reflects the complexity of
knowledge in the DNN. Filtration 10 (Fig.2(i)) has Betti
number β1 = 1. Although [0, 2] is a simplex in Filtration
10, it is not included in another simplex [0,. . .,10], and it
produces β1 = 1.

The computation of PH involves the explosion of com-
plexity caused by the increase of vertexes, and several imple-
mentations are publicly available (Otter et al. 2017). We em-
ployed GIDHI (Rouvreau 2016; The GUDHI Project 2015;
Boissonnat and Maria 2014), JavaPlex (Tausz, Vejdemo-
Johansson, and Adams 2014), and dyonysus 2 (Edelsbrunner
and Morozov 2012; Edelsbrunner, Letscher, and Zomoro-
dian 2000; Morozov 2005) libraries for our computation and
visualization. These libraries require to register simplexies

in each filtration to calculate PH.
The algorithm shown in Fig.4 identifies all simplexis from

a vertex v up to the limit of a threshold t of relevance us-
ing recursive procedure call. We identifies all simplexes in
each filtration by the procedure and register them to the li-
braries. Fig.3(b) and (c) are barcode and persistent homol-
ogy diagrams illustrated by GUDHI. Betti numbers corre-
spond to the number of intersections between the bars and
perpendicular lines to x-axis in Fig.3(b) (remembering that
the lifetime of homologies is defined by the half-open in-
terval [birth, death)). GUDHI illustrates Betti numbers us-
ing a shade of color in PH diagrams as shown in Fig.3(c).
We also calculate the PH with Dionysus 2 and JavaPlex, and
confirmed that same diagrams are obtained.

Evaluation setup
The MNIST data set of handwritten digits was used in this
study (LeCun et al. 1998). We considered a fully-connected
neural network with two hidden layers of sizes 300 and 100,
ReLU activation function in the hidden layers and ten out-
put neurons with sigmoid activation function illustrated in
Fig.1(d).

The relevance among neurons is formulated by Deep



1   0   0   0   0   0   0   0   0   0   0  
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(a) Relevance value matrix of Figure. 1
before propagation. (b) Barcode diagram. (c) Persistent homology diagram.
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Figure 3: (a) Relevance matrix of Fig.2(a); (b,c) barcode and persistent homology diagrams illustrated with GUDIHI.

Figure 4 Algorithm for getting simplexes from vertex s with threshold t.

procedure GETSIMPLEX(M , s, t) . where M : n× n-matrix, s: array, t: threshold
relevance← 1.0, result← ∅, startPoint← s[0]
for point in s do

relevance← relevance×M [startPoint][point]
startPoint← point

if relevance ≥ t then
result.append(combination(s))
lastPoint← s[−1] . s[−1] is the last element of s
for i in [0, · · · , n− 1] do

if M [lastPoint][i] > 0 and i 6= lastPoint then
ss←deep copy of s
recResult← getSimplex(M, ss.append(i), t) . recursive call of procedure
for e in recResult do

result.append(combination(e))
return unique(result) . return deduplicated array

Taylor Decomposition (DTD) which propagates the ac-
tivation of output neurons by their z+-rule, Ri =∑

j{xiw
+
ij/
∑

i xiw
+
ij}Rj , where w+

ij denotes the positive
part of the weight, and xi is the input of neurons (Montavon
et al. 2017; Lapuschkin et al. 2019). Our purpose is to inves-
tigate network structures, and we focus on the relevance be-
tween two neurons that do not depend on input images. We
made two modifications to their formulation; (i) calculate
the relevance between i-th and j-th neurons; (ii) remove the
effects of input images. Formally, we define the relevance
between i-th and j-th neurons by

Rij =

{
1 (i = j)
w+

ij/
∑

i,i 6=j w
+
ij (i 6= j).

(1)

Rij defines the relevance matrix, and we construct simpli-
cial complexes on the DNN with the procedure described in
Fig.4. Although zB-rule of DTD propagates the activation
to input pixels, we define the relevance up to the first hidden
layer for investigating the inner representations of DNNs.
Therefore, the size of the relevance matrix is 410 × 410(=
300 + 100 + 10) unless noted otherwise.

We defined a filtration using thresholds of relevance. The
threshold took eight values 1.00, . . . , 1.0−7 and eight in-
terval values between the adjacent values. Overall, the fil-
tration was defined as K1(r=1.0) ⊂ K2(r=0.9) ⊂ · · · ⊂
K10(r=1.0−1) ⊂ K11(r=0.09) ⊂ · · · ⊂ K64(r=1.0−7).

Evaluation results
Figs.5(a–j) illustrate PH diagrams produced using Dyony-
sus 2, where the number of digits was varied. We extracted
images of the target digits from MNIST data set and trained
using images of digits 0–9 represented in Fig.5(a), digits 0–8
represented in Fig.5(b), and so on. We trained models for ten
epochs with a batch size of 64, and all models achieved over
97% test data accuracy. PH diagram indicates the stability of
homologies by the distance from the dialog line, i.e. stable
homologies are pointed in a distance from the dialog line,
and unstable homologies are pointed near the dialog line.
Dyonysus 2 illustrates the overlapping quantity of homolo-
gies using different colors, and the color legend provided for
Fig.5(a) is applicable to all diagrams.

The following three observations were made from
Figs.5(a–j): (1) points are plotted in the belt-like area
(birth + 5 < death < birth + 20) parallel to the dialog
line; (2) some figures have points below the belt-like area;
(3) some figures have points over the belt-like area.

With respect to observation (2), the number of points be-
low the belt-like area increases from Fig.5(a) to Fig.5(g) and
decreases from Fig.5(h) to Fig.5(j). It reflects both the excess
of the output neurons and problem difficulty. We observed
that the diagrams seem to reflect the degree of confidence
of the DNN, i.e., the excess of the output neurons harms the
confidence, whereas the simplicity of problems mitigates it.
For further investigation, we classified five digits using five



(a) 10 digits classification. (b) 9 digits classification. (c) 8 digits classification.

(d) 7 digits classification. (f) 5 digits classification.(e) 6 digits classification.

(g) 4 digits classification. (h) 3 digits classification. (i) 2 digits classification.

(j) 1 digit classification. (k) 5 digits classification 
with 5 output neurons.

(l) 10 digits classification 
with 20 output neurons.

Figure 5: (a–j) Persistent diagrams of DNN trained to classify handwritten digits based on a varying number of input digits
from 10 to 1; (k) persistent diagram of DNN trained to classify five digits using five output neurons; (l) persistent diagram of
DNN trained to classify ten digits using 20 output neurons.

Table 1: Number of points in Figs. 5(a)–5(e), 5(i), and 5(j).

(a) (b) (c) (d) (e) (i) (j)

Total number 16,420 16,399 16,150 16,222 16,133 15,857 15,531
(c1) N/A 1,317 2,034 1,700 2,972 8,226 13,123
(c2) 0 45 26 254 273 0 0
(c1) and (c2) N/A 45 26 254 40 0 0



output neurons (Fig.5(k)) and ten digits using 20 output neu-
rons (Fig.5(l)). In contrast to Fig.5(f), the points below the
belt-like area disappeared in Fig.5(k). The opposite can be
observed in Figs.5(a) and (l).

Table 1 shows the number of points in Fig.5. We cate-
gorized the points based on the following two conditions:
(c1) the homology includes unused output neurons; (c2) the
points are under the belt-like area (death ≤ birth + 5).
While Figs.5(i) and 5(j) have points that include unused out-
put neurons more than twice of Fig.5(e), these points are
not plotted below the belt-like area. The simplicity of the
problem results in no points being plotted under the belt-like
area.

Discussion
In this section, the assumptions used in this paper are ex-
plained and the application of topological measurement of
DNNs is discussed.

Our assumptions
Our assumptions are summarized as follows: (1) the knowl-
edge in DNNs can be investigated from their network
weights among neurons; (2) PH reveals the knowledge com-
plexity of DNNs. The first assumption is acceptable because
the weights are the outcome of the training process. The
second assumption is based on the observations of previ-
ous works described in Section “Intuition behind topological
measurement of DNNs.” PH reveals the births and deaths of
feature combinations, which are difficult to be overviewed
without using PH. The effectiveness of the second assump-
tion can be evaluated from the usability in applications, and
it changes depending on them.

Application
One of the most important applications is the distinguishing
of properly trained DNNs. The performance of DNNs can
deteriorate for many reasons, including a shortage of data,
overfitting, and improper hyper-parameter setting (Bergstra
et al. 2011; Srivastava et al. 2014). Our results imply that
the shortage of data can be indicated by the PH, that is
the excess of output neurons produces homologies near the
dialog line. Furthermore, it will be beneficial to the selec-
tion of proper DNN architecture, which is one of the major
challenges for utilizing DNNs (Saxena and Verbeek 2016;
Zoph and Le 2016).

Future work
The methods for constructing simplicial complexes and
defining the filtration are developed on the basis of our at-
tempts. The development of these methods will, however,
include many research areas, especially due to large vari-
ety of network types, including convolutional neural net-
works (CNNs) and recursive neural networks (RNNs). Fur-
thermore, with regard to computation, the development will
also require considerable efforts for applying the topolog-
ical measurement to enlarged neural networks, which can
have more than 1,000 layers (He et al. 2016). However, our

assumptions, we believe, support that topological measure-
ment of DNNs is worth further investigation.

Related work
Bianchini et al. investigated the upper and lower bounds of
network complexity from the viewpoint of PH (Bianchini
and Scarselli 2014). Based on their results, Guss et al. em-
pirically analyzed the relationship between the upper bound
of network complexity and data complexity measured by
PH to determine the proper network architecture for a given
data (Guss and Salakhutdinov 2018). However, these two
types of complexities are not homogeneous, and their com-
parability is uncertain. Under these considerations, we ad-
dressed the inner representations of DNNs with small per-
turbations. Our evaluation results revealed that small pertur-
bations, such as the number of output neurons or a variety of
input data, have significant impact on PH. Thus, the sensi-
tivity of PH requires careful investigation for securing com-
parability.

Conclusion
We proposed a novel approach to investigate the inner rep-
resentation of DNNs using PH. Evaluation results demon-
strated that the PH of DNNs reflected both the excess of
neurons and problem difficulty. They implied that PH can
be used as one of the prominent methods for investigating
the inner representation of DNNs.
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