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ABSTRACT

Methods for spectral analysis of audio signals and their
graphical display are widespread. However, assessing mu-
sic and audio in the visual domain involves a number of
challenges in the translation between auditory images into
mental or symbolically represented concepts. This paper
presents a spectral analysis method that exists entirely in
the auditory domain, and results in an auditory presenta-
tion of a spectrum. It aims to strip a segment of audio sig-
nal of its temporal content, resulting in a quasi-stationary
signal that possesses a similar spectrum to the original sig-
nal. The method is extended and applied for the purpose
of music summarisation.

1. INTRODUCTION

Graphical display is the predominant approach to convey-
ing musical sound analysis information to people, includ-
ing via spectrograms, spectra, waveform graphics and mu-
sical manuscript. While the visual system is dominant in
many information transfer contexts, sonification (the repre-
sentation of information through non-speech sound) offers
many (often complementary) possibilities for information
transfer [1]. As audio and music are data that are experi-
enced primarily in the auditory domain, sonification would
appear to be an appropriate method for analysis and repre-
sentation of audio data, as it sidesteps the translation pro-
cess from the auditory domain to the visual domain that is
inherent in using visual representations.

A variety of simple techniques for sonification of sound
in the context of audio education have been proposed by
Cabrera and Ferguson [2, 3], and Ferguson has developed
techniques for techniques for statistical sonifications of au-
dio in his Ph.D thesis [4]. These sonification methods pro-
vide auditory analogues to common statistical visual dis-
plays (such as cumulative distribution functions and box
plots), but with much richer information than visual charts.
One of the solutions proposed in the thesis is a method of
displaying spectral data, which is the focus of this paper.
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Spectral analysis is one of the most fundamental, pow-
erful, and widely used methods for the investigation of
audio. This paper discusses an approach to spectral dis-
play that does not use Fourier analysis, and exists com-
pletely within the auditory domain. Instead of a Fourier or
related transform implemented through signal processing,
the method uses the spectral analysis of the human audi-
tory system. While almost all listening could be thought
of as involving auditory spectral processing, in listening
that is focused on spectral features, temporal features are
distractions that should be removed. Such features include
rhythm, prosody, language, and more generally, the time
structure of the sound being analysed. Put simply, the tech-
nique blurs temporally fluctuating audio signals to create
quasi-stationary signals with almost identical spectra en-
velopes to the original signals, but without any semblance
to the original time-dependent fluctuation. This technique
is rooted in the theories of Gabor [5, 6] and granular syn-
thesis [7], and has been strongly influenced by the recent
advances in concatenative synthesis by Schwarz [8,9].

Information visualisation literature has focused on meth-
ods for presenting data in ways that present large overviews
of data, but allow a user to ‘zoom and filter’ the representa-
tion to find information that is important [10]. Fry’s Com-
putational Information Design outlines a method for devel-
oping interactive information representation systems [11].
A sonification method that would improve on visual meth-
ods may; use the original audio as the sound material for
the analytic representation; filter the content of that audio
in some way; maintain context and meaning of the audio;
and draw relationships and present pertinent contrasts.

Schenkerian analysis of musical works is well-known
and features in many undergraduate music curricula [12].
This graphical analysis method based on musical manu-
scripts allowed Schenker to reveal the various layers of a
composition. The spectral sonification method described
in this paper has the potential to be used in a similar man-
ner allowing a scaling of perspective from large to small
scale structures depending on the periods analysed.

2. SPECTRAL SUMMARISATION ALGORITHM

The core technique this paper presents is a method for
spectrally summarising a larger audio signal. A represen-
tation that can convey the spectrum using audio without
frequency domain signal processing can be built using a
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simple digital algorithm based on fragmenting the time sig-
nal into potentially overlapping windows, and recombining
them in a way that (i) maintains a roughly constant power
spectral envelope that matches the signal’s long term spec-
trum; and (ii) removes distracting (non-spectral) features.
This can be achieved by concatenating short windows (or
grains) of audio by averaging a large proportion, but not
all, of the original signal windows. A number of unique
but spectrally similar windows need to be concatenated to-
gether, since if a single audio grain is repeated the resulting
sound will be dominated by amplitude modulation related
to the repetition rate. A systematic explanation of a pro-
cess to create and concatenate unique but spectrally similar
grains is as follows:

1. For a user-selected window length w,, samples, ran-
domly select a window length w,,,- from the range of
values between w,, — “* and w,, + “3*.

Randomly select windows of length w,,, from the
signal to be averaged to create a set {wy, wa, ... Wy, }
of m unique windows.

Sum this set of windows, and divide by the square
root of the number of windows (W) to
produce a single frame of w,,,- samples duration.
Repeat steps 1, 2 and 3 (re-randomising each time)

until enough unique but spectrally similar audio frames

are produced to build a stationary sound of a chosen
duration.

Concatenate these audio frames, using overlapping
and adding with a custom window function. Ramps
taken from either side of a Hanning window func-
tion are applied only to the overlapping proportion
(typically only 5-10% of w,,) to maintain a constant
sum between concatenation boundaries (see Figure
3).

This method is simple, but it is successful at creating a
quasi-stationary sound with a spectral profile that matches
the original file, while keeping the time variance to a min-
imum.

2.1 Validation, Tradeoffs and Limitations

To validate the appropriateness of the averaging process we
undertook a comparison of spectra created by this spectral
averaging method against the spectrum of the unmodified
sample. A distinction worth mentioning is that through
mixing we are amplitude (pressure) averaging, rather than
power (pressure squared) averaging. Summing a large num-
ber of randomly selected signals as described above may
be considered to be an operation on incoherent signals,
which is why the square root of the number of windows
is used in the denominator of the algorithms third step.
Hence, the power spectrum of the sonification approxi-
mates the power spectrum of the original wave. While
there is some potential for a substantial discrepancy be-
tween the power of the resulting spectrum and a true long
term power spectrum, tests have shown that discrepancies
are not severe for realistic signals if the averaging method
uses a window size larger than 1024 samples.

There is a significant smearing of energy when using
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Figure 1. A 2kHz sine wave is spectrally averaged using
a variety of window sizes, and compared with the original
sine wave signal. The larger window sizes result in less
spectral smearing.
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Figure 2. A pink noise recording is compared against
spectral representations of pink noise using various win-
dow lengths - longer window length result in less spectral
deviation.

shorter window lengths. We demonstrated this by com-
paring a spectrally averaged sine tone at 2kHz, using a
range of window lengths, to the original signal. Figure
1 demonstrates this effect. Generally, window lengths of
1024 samples or greater decrease smearing and increase
spectral representation quality significantly. Subjectively,
short window lengths tend towards extremely noise-like
signals bearing little resemblance to the tonal spectra ex-
pected.

The window length used in the spectral summarisation
algorithm has a small effect on the low frequency range
of the spectrum reproduced. To investigate this we com-
pared a spectrum of a sample of pink noise (with a 48000
Hz sample rate) against three spectral summarisations, one
using a 4096 point window, one with a 1024 point win-
dow, and one with a 256 point window. The length of the
window determines the frequency below which the spectral
representation begins to attenuate — at 4096 points there is
little effect, but at 256 points it starts to become more sig-
nificant and further reductions in window length result in
the low cutoff frequency increasing proportionally. The
cutoff frequency (fc) is apparently based on the largest
wave period that can be represented by a specific window
length (w,,), summarised by the relationship:
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Figure 3. A custom window is designed to maintain a con-
stant power sum between concatenated windows of audio.
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This investigation tends to support the use of window
sizes of at least 1024 samples and upwards for this spec-
tral averaging technique. Larger window sizes will tend to
allow more temporal fluctuation, depending on the tempo-
ral fluctuation present in the original signal, so there is a
tradeoff present, however window sizes smaller than 1024
samples seem likely to significantly alter the spectrum to a
degree where it is unrecognisable and non-representative.
These parameters are likely to be experienced interactively,
and therefore there is probably a subjective element to a
user’s selection for the most appropriate window size.

The windowing and overlapping at the concatenation
stage must not introduce either discontinuities (clicks) or
amplitude modulation, and thus we have designed a cus-
tom window shape that incorporates a large plateau (simi-
lar to a Tukey window) as well as a Hanning window func-
tion’s ramps at either end. The proportion of the window
devoted to the ramp is determined by the number of over-
lapping samples, and the resulting window shape main-
tains a constant sum at the window boundaries (see Figure
3). Furthermore, the randomisation around a central win-
dow length, ameliorates amplitude modulation effects that
may arise out of periodic selection window length.

3. HARMONY ANALYSIS APPLICATIONS

Harmony analysis typically requires a familiarity with read-
ing musical manuscripts, a difficult skill that is analogous
to learning a new language. This, of course, places an
immediate barrier to those users without these skills, but
it also presumes a level of expertise in cross-modal per-
ception in those users who possess skills in this language.
A user who is presented with a harmony analysis on a
manuscript is expected to ascertain the auditory meaning
of the symbols and their consequences within the musi-
cal structure. This is not necessarily straightforward, and
many users will ‘interact’ with the manuscript by using a
piano to play back the pitches and compare their signif-
icance, while other users develop skills in producing au-
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ditory images of the various pitches. Methods that bridge
the gap between symbolic representations of pitch relation-
ships and auditory pitches are possible alternative solutions
for these issues. Generally, the idea of this exploration is
to make the patterns within music clearer than they are in
a typical musical recording, so that users may understand
harmonic patterns at multiple structural levels, and in intu-
itive manners.

The problem of producing a sonification of the harmony
within the audio recording is therefore one of filtering the
audio recording to contain less information, with an em-
phasis on that information which would be included in a
harmonic representation. Such information may include
musical elements like the fundamental frequency of the
bass notes, and other notes presented either loudly or for
comparatively long periods, while avoiding short decora-
tive notes, or quick scalar passages. It would seek to re-
move, generally speaking, the temporal presentation of the
notes, as well as their amplitude envelopes, resulting in a
stationary sound with each important pitch presented si-
multaneously to build a chordal sound, accentuating the
harmonic contribution each note makes, and diminishing
each note’s individual quality.

A structural representation would also need to describe
how each section of the music relates to each other. The
form of the piece is a crucial element in musicology, but
it can be difficult to understand music at the formal scale
from reading a musical manuscript, or from listening to
an audio recording. Snyder [13] describes three levels of
musical memory: the early processing level — which deals
with characteristics of single notes, the short-term memory
level — which holds musical phrases and rhythmic pattern,
and the long-term memory level — which deals with for-
mal sections, movements or entire pieces. Snyder also de-
scribes how long-term or formal memory deals with sec-
tions of music that are too long to be understood in the
present, and their order needs to be consciously recon-
structed as they do not automatically retain their time-order.

Simplifications or shorter versions of the musical sam-
ple can be used to describe the form of the piece in an
amount of time that can be held within short-term memory.
By presenting an auditory representation that is shorter than
the original audio recording, but is proportional to the orig-
inal, form can be more appropriately presented. Elements
like key changes and voice ledaing become more obvious,
as the ear can compare the short term memory of the old
key to the new.

3.1 Voice Leading and Chord Patterns

The algorithm for building an averaged chord progression
is as follows:

1. Get time information to use for time value bound-
aries — this may be based on extracted symbolic mu-
sical information, rhythmic information, timeseries
descriptor peaks or various other time markup meth-
ods.

. Find the first time boundary and the second time
boundary to be averaged across and find the audio
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Figure 4. Comparing the sonification (top) and the origi-
nal audio (bottom) we can see that the sonification attempts
to blur the spectral components from each bar into a sta-
tionary sound. This sound is changed at every bar-line,
approximately once every 3 seconds. The graphic only
demonstrates the first 25 seconds of the piece.

data in between the two times.

Apply the averaging method to this time interval to
create the same duration of averaged audio, or per-
haps a duration altered by a constant factor.

Place the resulting audio data at the corresponding
sample numbers of the output audio, using appropri-
ate overlapping.

Repeat the process after stepping forward to the sec-
ond and third boundary, and continuing to step for-
ward until the entire recording has been averaged
and the output sonification built.

A simple method for finding time boundaries with which
to segment the chordal structure is to extract the beats and
assume that chord changes will be synchronised with beats,
or more likely with bars. Depending on the meter of the
piece (3/4, 4/4 or 6/8 commonly) we use particular beats
as time boundaries, and in the following examples we have
manually set the meter based on listening to the music, but
advanced beat tracking algorithms may correctly estimate
it as well. We also need to set an anacrusis value, that
describes whether the piece begins on the first beat of the
bar. Beat tracking is well-researched, and we use Dixon’s
Beatroot algorithm [14].

3.2 Harmonic Pattern Examples

We will attempt to use this algorithm to represent the long-
term structure of some pieces of music.

One piece that is defined primarily by its chordal con-
tent (as opposed to its melodic or rhythmic) is Bach’s Pre-
lude No 1. from ‘the Well-tempered Clavier’. A Schenke-
rian analysis has also been published for this piece [12]. By
applying the algorithm to the audio we produce a sonifica-
tion that is presented in Figure 4. The sonification created
is not a completely stationary sound, like a set of tones, nor
is it a sound that has discernible starting or ending notes.
It demonstrates characteristics of the timbre of the instru-
ment, but primarily it presents the notes that have sounded.
The quality of the sound is similar to the sound that would
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Figure 5. A second chord sonification example that

demonstrates the structure of a Beatles song, Norwegian
Wood. The upper graph is a spectrogram of the original au-
dio, and the lower is the spectrally averaged sonification.
The graphic shows only the first 20 seconds.

be produced if the pianist stopped at the end of the bar and
held down all the keys played in the bar.

The averaging across the bar is particularly appropriate
for this particular piece, due to the manner in which Bach
presents a single chord per bar. For other situations this
may result in chords blurring into other chords, resulting
in strong dissonance. Despite this, there are a large ma-
jority of pieces where this simple scheme would be suffi-
cient. The remainder may be dealt with using more sophis-
ticated methods, that employ harmonic and rhythm based
pre-processing to carefully avoid averaging across chord
changes incorrectly.

One purpose of the blurring of the audio is to be able
to place one bar’s harmonic content temporally adjacent to
the next’s. This should allow each harmonic change to be
understood in terms of the notes within each chord, and to
which notes they each move. An example of a pattern that
might be uncovered through this process is the bassline in
this prelude. While these notes are strongly sounded at the
beginning of the bar, they decay by the end of the bar, and
other higher notes are dominant by this stage. The blurring
applied places each of these sounds adjacent to each other,
yielding a legato bassline.

The other useful process possible by using the blurring
of the audio is that the speed of the example can be arbitrar-
ily altered. The blurred audio has no temporal content, so a
bar’s worth of sound may be presented over 3 seconds or in
half a second. By setting an arbitrary compression factor
for the duration, we can proportionally change the duration
of the piece while maintaining the formal structure. This
can be used to alter a 3 minute piece, whose structure can
be ‘remembered’, into a 20 second piece, whose structure
can be ‘heard’.

In the structural sonification of Norwegian Wood (Fig-
ure 5), we hear a clear structure of descending melodic
notes that define the chord structure. The structure is a lot
simpler than that of the Prelude, and each formal section
can be clearly heard.
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Figure 6. There is a 15dB SPL range over the time period
of the musical example. High levels can be heard to cor-
respond to the chords which have the least correlation and
are the most dissonant.

3.3 Chordal Patterns and Context

While we wish to maintain the temporal order of the var-
ious chords, due to their importance to the overall direc-
tion and purpose of a piece of music, it may be interest-
ing to annotate the sonification in terms of the values of
other parameters. A simple parameter to investigate is the
sound pressure level (SPL). From listening to the sonifica-
tion we can hear that often tonic chords are quieter com-
pared with the chords that lead into them. A comparison
of SPL against chord estimates shows the decrease in SPL
that accompanies every return to the tonic (see Figure 6).
We may wish to accentuate this further. By normalising the
level of audio from of each section, and then mapping the
SPL extracted from the audio to an expanded gain func-
tion that is then re-applied to each section, we can experi-
ence the structural implications of the performer’s use of
dynamics more clearly.

While this is a straightforward example, the use of sound
pressure level as the mapping target is arbitrary, and many
other such targets exist. Another candidate parameter to
base a gain function sonification on is the harmonic dis-
tance the chord is from the tonic. One can attempt to ap-
proach this from a chord recognition perspective, but in
this case we will use the chroma pattern only and will com-
pare it against the first (tonic) chord.

The virtual pitch algorithm of Terhardt takes a template
matching approach to finding pitches in the sound [15]. It
applies a peak picking algorithm to find the points in the
spectrum that are peaks. These are then applied to a suc-
cessive template matching algorithm that attempts to place
the peaks under a pitch template. The pattern of pitches
across the audible range can be constrained to create a
chroma pattern, representing the strength of each of the
12 pitches within an octave, regardless of pitch-height.

Using this method we calculate an average chroma pat-
tern for each bar, and then multiply and sum those chroma
pattern vectors to create a number representing the corre-
lation between each bar and the first chord. A high number
represents a high number of similar notes, or low chord
distance, while a low number represents a large amount
of difference. These values are clearly a useful target for
mapping to a gain function. With larger chord distances
associated to greater SPL, and smaller chord distances as-
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Figure 7. The correlation between various chords seems
to follow a predictable pattern. The gain function sonifi-
cation makes that pattern more apparent by exaggerating
it, and highlighting low correlation values. Low values of
correlation are analogous to high values of chord distance.

sociated to low SPL, the effect should be similar to typical
musical approaches.

An alternative approach to expanding parameters such
as sound pressure level is to use a parameter as the basis of
temporallycutting and reorganising the harmonic units or
bars. Any measurable parameter that can be derived from a
steady-state spectrum could be used for this purpose. The
time periods (in this case bars) that are used to average
from in the algorithm described in section 3.1 are then as-
sociated with a median parameter value taken for their time
period. The median parameter value determines the re-
ordering, and then the audio units are rearranged based on
the new order. If the chord correlation values mentioned
above are used to order the bars in ascending order, then
the sonification progresses from chords that are generally
dissimilar to the tonic, to chords that are more consonant
— giving an overall impression of a long cadence. During
this process particular chords can be assessed within the
overall scheme of chords.

3.4 Beyond Chords

Analysis of sections of music larger than individual chords
or bars is easily implemented using this method. The long
term spectra of entire pieces can be sonified into a short
sound, so that, for example, the average spectra of each of
Bachs Preludes and Fugues (one in each major and minor
key) can be quickly compared by ear. The overall spectrum
of the entire collection of preludes could then, for example,
be sonified so as to be compared by ear to those of other
similar collections of preludes or etudes played on piano
(such as those of Chopin or Listz).

4. CONCLUSIONS

We have presented an algorithm for spectral summarisa-
tion, and have applied it to the problem of music summari-
sation. This method is based on concatenative and gran-
ular synthesis and aims to strip musical audio of its fine
temporal content while maintaining the spectral shape and
energy. We have described methods for applying this ba-
sic spectral summarisation technique to the analysis of har-
mony and voice leading, and for using it to compare chords
against the tonic chord of a musical piece.
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4.1 Applications, Limitations and Future Work

These techniques are useful for assessing musical sam-
ples in a semi-automated manner - in a way that hope-
fully falls somewhere between listening to the entire au-
dio file, and an abstract information retrieval algorithm. In
this way it may be possible to apply this method in the de-
sign or checking of music information retrieval algorithms.
This representation method may also be useful in educa-
tion contexts, for the assessment of spectra, and to intro-
duce ideas of structure and tonality. Its application to au-
ditory browsing, for instance of digital archives of musical
recordings, is also worth consideration.

Short signals highlight a limitation of this method — a
certain amount of audio data is required to reliably build
an average window from. For short signals the use of
large windows is also difficult, leading to the tradeoff be-
tween spectral smearing and window length described in
2.1. This method is likely to be experienced in an inter-
active context, due to its reliance on computer technology.
Investigation into good ways to provide interactive user ac-
cess to this algorithm is likely to greatly improve its use-
fulness. Lastly, the suppression of the audio’s temporal
information throws away a lot of temporal qualities that
are fundamental in musical practice. Modifications of this
method that seek to systematically explore aspects of mu-
sic apart from only the spectral and harmonic qualities are
worth careful consideration.

It is easy to forget how powerful auditory analysis can
be when visual and textual presentation of data are over-
whelmingly common. Sonification of audio is more than
a tautology, and extends beyond the trivial case of merely
playing the original audio recording. This paper examines
one simple technique for the sonification of sound record-
ings which focuses on spectral features. One of the attrac-
tive features of this technique is that it does not employ any
spectral analysis using digital signal processing instead the
spectrum analysis is achieved in the ear, and the purpose
of the technique is to prepare the audio so as to provide a
sound that focuses attention on spectral features. In other
work we have examined other spectrum sonification tech-
niques that do use Fourier transforms, such as exaggerat-
ing spectral features through auto-convolution (raising the
spectrum to an integer power) [2].

Applications of this technique extend beyond conven-
tional harmony-based music, and beyond music. Broadly
speaking, it is applicable to audio recordings that have med-
ium or long term spectral features of interest (including
harmony, timbre) that might be difficult to clearly discern
without the removal of temporal structure and/or the com-
pression of duration.
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