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Abstract

We investigate new equivalence relations on the set D of Dyck
paths relatively to the three statistics of double rises, peaks and val-
leys. Two Dyck paths are r-equivalent (respectively p-equivalent and
v-equivalent) whenever the positions of their double rises (respectively
peaks and valleys) are the same. Then, we provide generating functions
for the numbers of r-, p- and v-equivalence classes of D.
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1 Introduction and notations

A large number of various classes of combinatorial objects are enumerated
by the Catalan numbers (A000108 in the on-line encyclopedia of integer se-
quences [10]). It is the case, among others, for planar trees, Young tableaux,
stack sortable permutations, Dyck paths, and so on (see [12]).

A Dyck path of semilength n, n ≥ 0, is a lattice path starting at (0, 0),
ending at (2n, 0), and never going below the x-axis, consisting of up steps
U = (1, 1) and down steps D = (1,−1). Let D be the set of all Dyck paths.
Any non-empty Dyck path P ∈ D has a unique first return decomposition
of the form P = UαDβ where α and β are two Dyck paths (see [1]).

A double rise of a Dyck path is an occurrence UU of two consecutive
up steps. A peak (resp. valley, resp. zigzag) is an occurrence of UD (resp.
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DU , resp. DUD). More generally, a pattern consists of consecutive steps of
a Dyck path. We will say that a pattern is at position i, i ≥ 1, in a Dyck
path whenever the first step of the pattern appears at the i-th step of the
Dyck path. The height of a pattern is the minimal ordinate reached by this
pattern. For instance, the path P = UUDUDUUDDD contains two double
rises at positions 1 and 6, three peaks at positions 2, 4, 7, and one zigzag of
height one at position 3.

In the literature, many statistics on Dyck paths have been studied. Al-
most always, it is shown how we can enumerate Dyck paths according to
several parameters, such as length, number of peaks or valleys, number of
double rises, number of returns to the x-axis (see for instance [1, 2, 3, 4, 5,
6, 7, 8, 9, 11]). Here, we take a new approach to study these statistics. We
define three equivalence relations on D.
Two Dyck paths of the same semilength are r-equivalent (resp. p-equivalent
and v-equivalent) whenever the positions of their double rises (resp. peaks
and valleys) are the same.

For instance, the path UDUUDDUD is r-equivalent to UDUUDUDD

since they coincide on the unique double rise at position 3. The paths
UUDUUDDDUDUUDD and UUDDUDUUUDDUDD are p-equivalent
since they coincide on their four peaks at positions 2, 5, 9 and 12.

In this paper, we provide generating functions for the numbers of r-, p-
and v-equivalence classes in D, with respect to the semilength (see Table
1). The general method used in Sections 2,3 and 4 consists of exhibiting
one-to-one correspondences between some subsets of Dyck paths and the
different sets of equivalence classes by using combinatorial reasonings, and
then, evaluating algebraically the generating functions for these subsets.

Pattern Sequence Sloane an, 1 ≤ n ≤ 9

{UU}, {DD} 1−x+
√
1−2x−3x2

1−3x+x2+x3+(1−x2)
√
1−2x−3x2

New 1, 2, 4, 9, 22, 56, 147, 393, 1065

{UD} 1−6x+12x2−8x3+x4

(1−2x)2(1−3x+x2)
New 1, 2, 5, 14, 41, 121, 354, 1021, 2901

{DU} 1−2x
1−3x+x2 A001519 1, 2, 5, 13, 34, 89, 233, 610, 1597

Table 1: Number of equivalence classes for Dyck paths.

2 Equivalence classes modulo double rises

Throughout this section, we study the r-equivalence in D.

2



Let A be the set of Dyck paths where all occurrences of DUD are
at height 0 or 1, and where the pattern DUDD does not appear. For
instance, the Dyck path UUDUDDUDUD does not belong to A, while
UUDUDUUDDD ∈ A, and the Dyck paths of semilength three in A are
UDUDUD, UDUUDD, UUUDDD and UUDDUD.

Lemma 1 There is a bijection between A and the set of r-equivalence classes
of D .

Proof. Let P be a Dyck path in D. Let us prove that there exists a Dyck
path P ′ ∈ A (with the same semilength as P ) such that P and P ′ belong to
the same class.

Before describing the construction of P ′, it is worth to notice the follow-
ing fact.

If a Dyck path P avoids DUDD then for any zigzag DUD at height
h ≥ 2 there is an occurrence of DDD at height h− 1 on its right.

Indeed, a zigzag DUD at height h ≥ 2 is followed by a subpath Q ∈ D,
which is followed by the first D reaching height h − 1 after this zigzag.
Obviously, Q is neither empty nor it ends with UD, since otherwise an
occurrence of DUDD would appear. Hence, Q ends with DD, thus forming
an occurrence of DDD at height h−1. This occurrence DDD will be called
the right abutment of the zigzag DUD.

Now, we define a sequence of Dyck paths P0 = P,P1, P2, . . . , Pk−1, Pk =
P ′, k ≥ 1.

For any i, 1 ≤ i ≤ k, the Dyck path Pi is obtained from Pi−1 by per-
forming successively the two following processes (1) and (2):

(1) If Pi−1 = a0
∏k

j=1 U
rjaj, where a0 = (UD)λ, λ ≥ 0, aj avoids UU , j ∈

[k] and each rj is taken to be maximal, then set P ′
i−1 = a0

∏k
j=1 U

rjDµj (UD)νj ,
where νj and νj + µj are the number of U ’s and the number of D’s in
aj respectively.

(2) Swap the leftmost zigzag of height at least two in P ′
i−1 with its right

abutment, to obtain Pi.

The process finishes because performing (1) and (2) necessarily shifts to
the right the position of the leftmost zigzag of height at least two. At the
end of the process, the Dyck path P ′ belongs to A since it contains neither
an occurrence of DUDD nor a zigzag at height of at least two. Moreover, all
Dyck paths P0 = P,P1, . . . , Pk = P ′ belong to the same equivalence class.
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P = P0 =
(1)−→

(2)−→ P1 =
(1),(2)−→ P2 = P ′ =

Figure 1: Illustration of the example described in the proof of Lemma 1.

For instance, let us define P = P0 = UUUUDUDDUUUDDUDDDD.
Performing (1), we obtain UUUUDDUDUUUDDDDDUD and after (2)
we have P1 = UUUUDDDDUUUDDUDDUD. The process continues
since there is an occurrence ofDUDD in P1. After (1), we have UUUUDDDDUUUDDDUDUD

that does not contain any occurrence of zigzag at height at least two. The
process finishes with P ′ = P2 = UUUUDDDDUUUDDDUDUD. See
Figure 1 for an illustration of this example.

Now, it suffices to prove that two different Dyck paths P and P ′ with the
same semilength in A cannot belong to the same class. Let us assume that
P and P ′ belong to the same class. In the case where P does not contain any
double rise, we necessarily have P = P ′ = (UD)n. Whenever P contains at
least one double rise, we decompose P and P ′ as follows:

P = α0U
r1α1U

r2α2 . . . U
rkαk and P ′ = α′

0U
r1α′

1U
r2α′

2 . . . U
rkα′

k

where k ≥ 1, αi, α
′
i, 0 ≤ i ≤ k, do not contain any double rise and where

each ri ≥ 2, 1 ≤ i ≤ k, is maximal.
Obviously, we necessarily have α0 = α′

0 = (UD)s0 for some s0 ≥ 0.
Moreover, for i ≥ 0, αi (resp. α′

i) contains neither a double rise nor an
occurrence of DUDD which means that αi (resp. α′

i) is necessarily of the
form αi = Dti(UD)si for some ti ≥ 1 and si ≥ 0 (resp. α′

i = Dt′i(UD)s
′

i for
some t′i ≥ 1 and s′i ≥ 0).

Since P and P ′ belong to the same class, we have ti + 2si = t′i + 2s′i for
all i ≥ 0. For a contradiction, let us assume that there is j ≥ 0 such that
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sj 6= s′j (we choose the smallest j ≥ 0). Without loss of generality, we set
sj < s′j.

So, the difference between the height h of the first point of αj (which
also is the height of the first point of α′

j) and the height of the last point
of αj (resp. α′

j) is tj (resp. t′j). The equality tj + 2sj = t′j + 2s′j induces
that tj − t′j ≥ 2 which implies that α′

j has the height of its last point out
of the interval [0, 1]. Since P and P ′ do not have any zigzag at height at
least two, we deduce that α′

j does not contain any zigzag, that is s′j = 0. A
contradiction is obtained, since sj < s′j . Finally we necessarily have αi = α′

i

for 1 ≤ i ≤ k, and then P = P ′ which completes the proof. 2

Before proving Theorem 1, we give a preliminary result in Lemma 2. Let
B be the set of Dyck paths where all zigzags are at height 0, and without
zigzag at the end. For instance, the Dyck paths of semilength three in B are
UDUUDD and UUUDDD.

Lemma 2 The generating function of the set B with respect to the semilength
is given by

2− x2 − x+ x
√
1− 2x− 3x2

1− x+
√
1− 2x− 3x2

.

Proof. Let B(x) be the generating function of the set B with respect to
the semilength. Let P be a non-empty Dyck path of D and P = UαDβ

its first return decomposition where α and β are two Dyck paths. Then, a
non-empty Dyck path P belongs to B if and only if α avoids DUD, and β

belongs to B. It is well known (see for instance [11]) that the generating
function for the set of Dyck paths avoiding DUD is given by 1 + xM(x),
where

M(x) =
1− x−

√
1− 2x− 3x2

2x2

is the generating function for the classical Motzkin sequence (A001006 in
[10]). Therefore, we deduce the functional equation

B(x) = 1 + x · (1 + x ·M(x)) · (B(x)− x)

where M(x) is the generating function for the Motzkin sequence defined
above. A simple calculation provides the expected result. 2

Theorem 1 The generating function for the set of r-equivalence classes
in D (i.e., modulo the positions of the double rises) with respect to the
semilength is given by

1− x+
√
1− 2x− 3x2

1− 3x+ x2 + x3 + (1− x2)
√
1− 2x− 3x2

.
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Proof. By Lemma 1, it suffices to provide the generating function A(x)
for the the set A, with respect to the semilength. Let P be a non-empty
Dyck path of A. It has a unique first return decomposition of the form
P = UαDβ where α belongs to B and β belongs to A. This induces the
functional equation A(x) = 1+ x ·B(x) ·A(x) where B(x) is the generating
function for the set B (see Lemma 2 for the calculation of B(x)), giving the
required result. 2

3 Equivalence classes modulo peaks

Throughout this section, we study the p-equivalence in D.
Let E be the set of Dyck paths such that there is no peak UD both

on the right of an occurrence of DD and on the left of an occurrence of
UU . For instance, UUDDUUDDUUUDDD does not belong to E , while
UUDUUUDDUUDDDD belongs to E .

Lemma 3 There is a bijection between E and the set of p-equivalence classes
of D.

Proof. Let P be a Dyck path in D\E . Let us prove that there exists a Dyck
path P ′ ∈ E of the same semilength as P such that P and P ′ belong to the
same class.

We define a sequence of Dyck paths P0 = P,P1, P2, . . . , Pk−1, Pk = P ′,
k ≥ 1.

For any i, 1 ≤ i ≤ k, the Dyck path Pi is obtained from Pi−1 by per-
forming the following process.

We write
Pi−1 = αUDrβU sDγ

where r, s ≥ 2, α (resp. γ) avoids DD (resp. UU) and β = UδD for some
δ. Notice that this decomposition is unique.

We set
Pi = αUDr−tU tβDtU s−tDγ

where t = min{r − 1, s − 1}.
Now, let us consider the decomposition of Pi (as above)

Pi = α′UDr′β′U s′Dγ′

where α′, β′, γ′, r′ and s′ satisfy the same properties as α, β, γ, r and
s. Since at least one of the two values r − t and s − t is equal to one,
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we can assume r − t = 1 without loss of generality. So, we deduce that
α′ begins with αUDU tU and γ′ ends with γ which implies that the length
of Dr′β′U s′ is smaller than the length of DrβU s. Thus, the process fin-
ishes whenever either β′ becomes empty or there is no occurrence of DD

lying on the left of an occurrence of UU , i.e., Pk ∈ E . Moreover, this
construction preserves the positions of peaks which implies that Pi−1 and
Pi belong to the same class. So, at the end of the process P ′ belongs
to E and to the same p-equivalence class of P . See Figure 2 for an il-
lustration whenever Pi−1 = UUDDUUUDUDDUUUDDDD and Pi =
UUDUUUUDUDDDUUDDDD (α, β and γ appear respectively in un-
derlined type, bold face and overlined type in Pi−1).

Pi−1 = −→ Pi =

UUDDUUUDUDDUUUDDDD → UUDUUUUDUDDDUUDDDD

Figure 2: Illustration of the example described in the proof of Lemma 3.

Now, it suffices to prove that two different Dyck paths P and P ′ in E
cannot belong to the same class. Let us assume that P and P ′ belong to the
same class. Whenever P and P ′ contain k peaks, k ≥ 1, we can decompose
uniquely P and P ′ as follows:

P = U r1Ds1U r2Ds2 . . . U rkDsk and P ′ = U r′
1Ds′

1U r′
2Ds′

2 . . . U r′
kDs′

k

where ri, si ≥ 1 and r′i, s
′
i ≥ 1 for 1 ≤ i ≤ k.

Since the positions of peaks in P and P ′ are the same, we have r1 = r′1,
sk = s′k and si + ri+1 = s′i + r′i+1 for 1 ≤ i ≤ k − 1.

For a contradiction, let us assume that there is j ≥ 1 such that sj 6= s′j
(we choose the smallest j ≥ 1). Without loss of generality, we consider
sj < s′j and thus s′j ≥ 2. Since P ′ belongs to E , we necessarily have r′ℓ = 1
for all ℓ ≥ j+2. As sj < s′j the height of the (j +1)-th peak of P is greater
than the height of the (j + 1)-th peak of P ′. Since r′ℓ(= 1) is minimal for
any ℓ ≥ j + 2, the height of the ℓ-th peak of P is greater than the height of
the ℓ-th peak of P ′ for all ℓ ≥ j+1. We obtain a contradiction with sk = s′k
which means that the k-th peak of P and P ′ are located at the same height.
Thus, we necessarily have P = P ′ which completes the proof. 2
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Theorem 2 The generating function for the set of p-equivalence classes of
D (i.e., modulo the positions of peaks) with respect to the semilength is given
by

1− 6x+ 12x2 − 8x3 + x4

(1− 2x)2(1− 3x+ x2)
.

Proof. By Lemma 3, it suffices to provide the generating function E(x) of
the set E , with respect to the semilength. Every nonempty path P ∈ E is
decomposed as P = UαDβ, where either α is empty and β ∈ E , or α is a
nonempty element of E that contains DDU and β = (UD)λ, λ ≥ 0, or α

avoids DDU and β avoids DUU . It is known that the generating function
of Dyck paths avoiding DDU (equivalently DUU) is equal to 1−x

1−2x (see [1]).
The above decomposition gives that

E(x) = 1+xE(x)+x

(

E(x)− 1− 1− x

1− 2x

)

1

1− x
+x

(

1− x

1− 2x
− 1

)

1− x

1− 2x
,

which implies the results. 2

4 Equivalence classes modulo valleys

Throughout this section, we study the v-equivalence in D.
Let H be the set of Dyck paths such that the height of any valley

DU is at most one. For instance, UUDDUUDUDD belongs to H, while
UUUDUDDUDD does not belong toH since its first valley DU is at height
2.

Lemma 4 There is a bijection between H and the set of v-equivalence classes
of D.

Proof. Let P be a Dyck path in D. Let us prove that there exists a Dyck
path P ′ ∈ H of the same semilength as P such that P and P ′ belong to the
same class.

Before describing the construction of P ′, it is easy but worth to notice
the following fact.

If a Dyck path P contains a valley DU of height at least one, then there
exists an occurrence of UU on its left and an occurrence of DD on its right.

Let DU be a valley of height h ≥ 2. We call left-abutment (resp. right-
abutment) of this valley the rightmost occurrence of UU located on the left
of the valley (resp. the leftmost occurrence of DD located on the right of
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the valley). Of course, the right- and left-abutments are at height at least
h− 1.

For instance, if P = UUUUDUDDUUUDDUDDDD then the second
valley DU (bold face) has its left-abutment at position 3 (underlined) and
its right-abutment at position 12 (overlined).

Now, we define a sequence of Dyck paths P0 = P,P1, P2, . . . , Pk = P ′,
k ≥ 1.

For any i, 1 ≤ i ≤ k, the Dyck path Pi is obtained from Pi−1 by per-
forming the following process.

We consider the leftmost valley of height at least two and we replace its
left-abutment UU with UD and its right-abutment DD with UD.

The process finishes because at each step the leftmost valley of Pi−1 at
height h ≥ 2 is moved into a valley in Pi at height h− 2. At the end of the
process, the Dyck path P ′ belongs to H since it does not contain any valley
of height at least two. Moreover, all Dyck paths P0, P1, . . . , Pk belong to the
same equivalence class.

For instance, if we perform the above process on P = UUUUDUDDUDDUUDDDUD,
then we obtain P1 = UUUDDUUDUDDUUDDDUD and P2 = P ′ is given
by UUUDDUDDUUDUUDDDUD (see Figure 3 for an illustration of this
example).

P0 = P = −→ P1 =

−→ P2 =

Figure 3: Illustration of the example described in the proof of Lemma 4.

Now, it suffices to prove that two different Dyck paths P and P ′ of the
same semilength in H cannot belong to the same class. Let us assume that
P and P ′ belong to the same class. Whenever P and P ′ contain k valleys
(k ≥ 0), we can uniquely decompose P and P ′ as follows:

P = U r1Ds1U r2Ds2 . . . U rk+1Dsk+1 and P ′ = U r′1Ds′1U r′2Ds′2 . . . U r′
k+1Ds′

k+1

where ri, si ≥ 1 and r′i, s
′
i ≥ 1 for 1 ≤ i ≤ k + 1.

Since the positions of valleys are the same in P and P ′, we have si+ri =
s′i + r′i for 1 ≤ i ≤ k + 1. For a contradiction, let us assume that there is
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j ≥ 1 such that sj 6= s′j (we choose the smallest j ≥ 1). Without loss of
generality, we assume s′j < sj . Considering sj + rj = s′j + r′j we deduce from
s′j ≤ sj − 1 the inequality r′j − s′j ≥ rj − sj + 2.

Notice that the height of the j-th valley in P (resp. P ′) is given by
j
∑

i=1
(ri − si) (resp.

j
∑

i=1
(r′i − s′i)). Therefore, as P and P ′ belong to H, we

necessarily have 0 ≤
j
∑

i=1
(ri − si) ≤ 1 and 0 ≤

j
∑

i=1
(r′i − s′i) ≤ 1.

Thus, we have:

j
∑

i=1
(r′i − s′i) =

j−1
∑

i=1
(r′i − s′i) + r′j − s′j

=
j−1
∑

i=1
(ri − si) + r′j − s′j

≥
j−1
∑

i=1
(ri − si) + rj − sj + 2 = 2 +

j
∑

i=1
(ri − si) ≥ 2

This means that P ′ has its j-th valley of height greater than or equal
two, which is a contradiction. Thus, we necessarily have P = P ′, which
completes the proof. 2

Theorem 3 The generating function for the set of v-equivalence classes of
D (i.e., modulo the positions of valleys) with respect to the semilength is
given by the generating function for the Fibonacci sequence restricted to the
odd ranks (see A001519 in [10])

1− 2x

1− 3x+ x2
.

Proof. By Lemma 4, it suffices to provide the generating function H(x) for
the set H with respect to the semilength. Let P be a non-empty Dyck path
in H and P = UαDβ its first return decomposition where α and β are some
Dyck paths.

So, P = UαDβ does not contain any valley at height at least two if and
only if α has all its valleys at height 0, and β belongs to H. This means
that α = U jDjα′ for some j, 1 ≤ j ≤ n, and where α′ has all its valleys
at height 0. The generating function for the number of such α is given by
1−x
1−2x . Finally we have the functional equation H(x) = 1 + x · 1−x

1−2x · H(x)
which gives the result. 2
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