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Abstract

A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and
atormic collisions is presented. There is nowadays a vivid interest in this field due to the construction
of relativistic heavy ion accelerators. Certainly, the most important purpose of these relativistic
heavy ion machines is the study of nuclear matter under extreme conditions. In central nucleus-
nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma.
On the other hand, very strong electromagnetic fields for a very short time are present in distant
collisions with no nuclear contact. Such fields can also lead to interesting effects, which are dis-
cussed here. '

There has been many interesting theoretical and experimental developments on this subject, and
new areas of research were opened. Of special interest is, e.g., the case of nuclear fragmentation.
This is accomplished through the excitation of giant resonances or by direct break-up of the nuclei
by means of their electromagnetic interaction. It is shown that this process can be used to study
nuclear structure properties which are not accessible by means of the traditional electromagnetic
excitation at nonreclativistic energies. The creation of particles is also of interest due the large cross
sections, specially in the case of electron-positron pair creation.

Although to explain the many processes onginated in this way one can develop very elaborate
and complicated calculations, the results can be understood in very simple terms because of our
almost complete comprehension of the electromagnetic interaction. For those processes where the
electromagnetic interaction plays the dominant role this is clearly a very useful tool for the investi-
gation of the structures creaied by the strong interaction in the nuclei or hadrons.
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1.0 Introduction

For a very long time elcctromagnetic processes in nonrelativistic nuclear collisions, like e.g.
Coulomb excitation, has been a subiect of considerable theoretical and also experimental interest.
The basic assumption of these kind of reactions is that the nuclei do not penetrate each other. When
they penetrate the reactions are overwhelmingly due to the strong interaction, what complicates the
analysis of these reactions in the relativistic regime where the two possibilities occur. But, since the
photon exchange amplitude is singular at four-momentum transfer g, g, = 0, the virtual photon
exchange makes a larger contribution to the amplitude for forward scatiering angles than the ex-
change of strongly interacting particles. This allows to separate the electromagnetic contribution for
certain processes, and with certain experimental setups. Also, the passage of a relativistic charge by
a nuclear target provides an electromagnetic pulse of short duration and enhanced due to the
Lorentz contraction. Such pulse can be sufficiently energetic to excite giant resonances in the nu-
cleus, or to create particles ( e~e® -pairs, pions, heavy leptons, etc.). The long range of the
electromagnetic interaction leads to very large cross sections in some cases, which can be casily
verified experimentally.

The simplest way to describe the reaction mechanism in relativistic glectromagnetic collisions
is provided by the equivalent photon method, which is originally due to Fermi (Fe-24} and later
on developed by Weizsicker (We-34) and Williams (Wi-34, Wi-35). In the literature it 1s also
commonly referred to as the Weizsicker-Williams method. Let us present a resume of the 1deas
involved in this method. A more complete description can be found in the excellent textbook of
Jackson (Ja-75, p. 719) on classical electrodynamics.

We shall consider the target nucleus as fixed, neglecting its recoil, and we place the origin of our
coordinate system in its center of mass. In this way we analyse the effects of the electromagnetic
field generated by the projectile on the target. This is a simple matter of convention, to simplify the
notations, since the role of the target and of the projectile can be exchanged, i.c. we can consider
the case of internal excitation of the projectile by the electromagnetic field of the target, and vice-
versa. The charges and mass numbers of the projectile and target are given by
(Z,, 4) and (Z,, A,), respectively. The projectile is assumed to move in a straight line with ve-
locity v and impact parameter . When v = ¢, where ¢ is the velocity of light, the electromagnetic
field generated by the projectile looks contracted in the direction perpendicular to its motion (see
figure 1.1a) and is given by

L Zieyvi (1.1a)
[b2+y2v2t2]3’2
Ep=- [+ le};bz]m ’ (118)
b+ vy vt
By=- xEr, and B,=0, (1.1c)

where the z(7') indices denote the direction parallel (transverse} to the velocity of the projectile,
and '

y=(1=vYH)?, (1.2)

is the relativistic Lorentz factor. _
When y > 1, these fields will act during a very short time, of order

b
. At R o . S (1.3)
and they are equivalent to two pulses of plane polarized radiation incident on the target (see figure
1.1b): one in the beam direction (P}, and another perpendicular to it (£). In the case of the pulse
P, the equivalency is exact. Since the electric field in the z-direction 1s not accompanied by a cor-
responding ‘magnetic field, the equivalency is not complete for the pulse ‘P, ‘but - this will -not
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appreciably affect the dyramics of the problesn since the effects of the field F, are of minor relevance
when v =~ c¢. Therefore, we add a field B, = vE,{c to egs. (1.1) in order to treat also P, as a plane
wave pulse of radiation. This analogy permits to calculate the amount of energy incident on the
target per unit area and per frequency interval as

I{w, b):TilE(w)xB(w)l, (1.4)

where E(w) and B(w) are the Fourler transforms of the fields given by (1.1).

VIB.

W

bl

= (bl

Figure 1.1.(a) A relativistic charged projectile incident on & target with impact parameter larger
than the strong interaction radius. A sketch of the electric field generated by it is also shown. One
of the effects of this field 1s to induce collective vibrations of the nuclear charges. (b) Two pulses
of plane wave of light which produce the same effect on the target as the electromagnetic field cre-
ated by the projectile’s motion.

Now, we associate the specirom of the virtual radiation as obtained by means of (1.4} to the
one of a real pulse of light incident on the target. Then we can obtain the probability for a certain
glectromagnetic process in a relativistic nuclear collision to occus, in terms of the cross sections for
the same process generated by an cquivalent pulse of hight, as

P(b):f{(w, b)d?(ﬁw)d(ﬁco)xf;\’(w, By (w) 42 (1.5)

where o, {w) is the photo cross section for the photon energy E, = fw, and the integral runs over
all the frequency spectrum of the virtual radiation. The quantities N (w, &) can be interpreted as the
number of equivalent photons incident on the target per unit area. Performing a calculation of (1.4)
from (1.1), and using the definition (1.5), we find

)
N, =25 (2 (L) [Kf‘(xn _—fZ—KS(x)}, (L6)

¥V
nt M ¥

where x = wbfyv, K, (K,} is the modified Bessel function of order zero {one), and « = e¥}/#ic is the
fine structure constant. In the equation (1.6) the first term inside brackets comes from the con-
tribution of the pulse P, , whereas the second term comes from the contribution of the pulse P,.
One immediately sees that the contribution of pulse £, becomes negligible for y > 1. The shape
of the equivalent photon spectrum for a given impact parameter can be expressed in terms of the
adimensional function @(x)=x?K}(x}, if we neglect the pulse P, . In a crude approximation,
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@ =0forx>1,and ¢ = 1 for x< 1, as can be seen from figure 1.2. This implies that, ina collision
with impact parameter b, the spectrum will contain equivalent photons with energies up to a
maximum value of order

max he
£, el (1.7)
which we call by adiabatic cutoff energy. This means that in an electromagnetic collision of two
nuclei the excitation of states with energies up to the above value can be reached. Although this
result was obtained classically, we can make a quantum analogy to it by obscerving that in a collision
with interaction time given by (1.3) only states satisfying the condition T/At>> I, where T 15 the
period of the quantum states, will have an appreciable chance to be excited. Otherwise, the quan-
tum system will respond adiabatically to the interaction. Later we shall see that quantum mechan-
ical calculations confirm these expectations. In a collision with a typical impact parameter of
b= 10 fm one can reach states with energy around Em> ~ 20y MeV. Among the many possi-
bilities, we cite the following: for £, ~ 10— 20 MeV (already small values of y) the excitation of
giant resonances, with subsequent nucleon emission; for £, ~ 20— 100 MeV the quasideuteron
effect which corresponds to a photon absorption of a correlated N-N pair in the nucleus; and for
E, > 100 MeV pion production through A-isobar excitation which has a maximum at £, ~ 200
MeV. Also the production of lepton pairs (e*e™, pty~, 1777) are accessible with increasing value
of y.

Figure 1.2. The shape of the equivalent photon spectrum as a function of x = whfyv.

The cross sections for electromagnetic processes in relativistic nuclear collisions are obtained
by integrating (1.5) from a minimum impact parameter, b= R, t0 b = co. The value of R depends
on the process considered. In the case of internal nuclear excitation, i.e. Coulomb excitation, R
will be equal to the sum of the two nuclear radii. We obtain '

| a=f:2an(b)db=fn(w)ay(m)%ﬂl, E 18

 where
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n{w)= foo 2nb N{w, b)db
R
(1.9)

2 2 ey vie o o
:?ZIIX(—V—) é:KoK]* 2 5 (K]"'Ko) )
C

where the modified Bessel functions are functions of the adiabaticity parameter

P ‘*;5 . (1.10)

For y>1 ({except for extreme low-energy frequencies, satisfying the relationship
wRfc< 1 ) one can use the approximation

n(@)=—Zix In [<%)2+ 1} > 27k (%) (1.11a)

K

where é = (1.681... is a number related to the Euler’s constant. This implies that the cross sections
as given by (1.8) will tend to increase logarithmically with the value of y. Except for minor differ-
ences, this general behaviour will be found in the applications we shall study.

In the limit of very large frequencies, w = yv/R, an adiabatic cutoff sets in and we have

led —2{wRiyy)
n(m)=Te A (1.115)

Although the above formulation of the electromagnetic collision of two fast nuclei was already
developed in the thirties with applications to many processes (see Ja-75), it was specially in the case
of relativistic heavy ion (RHI) collisions, where these concepts were more uscful. In some cases, the
agreement of calculcations based on the equivalent photon method and more exact quanturn cal-
culations are very good. This makes it a powerful tool for obtaining the values of probabilities and
cross sections of a given eleciromagnetic process in R collisions with reasonable results, as
compared to more complicated calculations.

We fecl that a review of electromagnetic processes in RHI collisions is appropniate at this time.
There is a fairly complete and coherent theoretical framework which descnbe such processes. Al-
ready well stablished experimental work {mainly at BEVALAC) on Coulomb fragmentation has
been analysed. There are new RHI accelerators being built (like SIS, Darmstadt, whith energies in
the GeV/A range), or already in operation (Brookhaven, with 15 GeV/A oxygen beams; CERN,
with 60 and 200 GeV/A oxygen bearns), or it the planning stage (relativistic heavy ion collider in
the USA). New experments related to eleciromagnetic processcs are planned at these accelerators
and many more could be envisaged. In view of these new possibilities, a review seems interesting
for a large group of theoretical and experimental physicists at the present stage.

In chapter 2 we present more elaborate scmiclassical and quantum calculations of the proba-
bility amplitudes and cross sections for relativistic Coulomb excitation. There we shall sce that, for
not too high values of y , there will be small deviations from the above results. We show that the
equivalent photon spectrum can be decomposed in terms of a sum of different electric and magnetic
multipolarities, which reproduces the limits (1.11) fory = 1 . The study of the contributions of the
different multipolarities 1s specially important for Coulomb excitation.

In low-energy nuclear physics Coulomb excitation plays a key role in the study of collective
low-lying states and multiple excitation has become a powerful tool to extract mfermation about
these states. In relativistic Coulomb collisions it is possible to excite high-lying states, like the giant
El and E2 resonances, which mostly decay by particle emission. We consider these processes in
chapter 3 together with the possibilitites for multiple Coulomb excitation of giant resonances which
could. lead to a disruption of the nuclei in fragments far from the stability line. In that chapter we
also study the direct dissociation of weakily-bound nuclei is relevant for coincidence experiments.
The different behaviour of the contributions of the electromagnétic and of the nuclear interaction
to the differential and to the total cross sections is examinated.

In chapter 4 the relativistic Coulomb excitation of hadrons in the field of a nucleus with large
charge (Primakoff effect) is studied on the same grounds. It is shown how uscful this process can
be in order to obtain informations about the internal structure of these particles. The sucessful ex-
perimental study of the measurement of the lifetime of the L° particle is shown as a nice application
of the theory of relativistic Coulomb excitation. Due to the enhancement of the cross sections with
the charges of the ions, the production of particles in the fwo — photon process is also of great in-
terest.

Although contributing little to the total emission of real photons {Bremssirahiung) in RI1
collisions, the Coulomb bremsstrahlung possesses interesting features which are studied in chapter

5.
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The ionization of atomic electrons in RHI collisons has very large cross sections and is an ex-
tensively studied process, and we show in chapter 6 the main theoretical aspects of it.

Chapter 7 is dedicated to the production of lepton pairs in RHI collisions. The consequences
of the large cross sections for the production of electron-positron pairs are analysed. Of special in-
terest for the development of relativistic heavy ion colliders is the case of electron-positron pair
production with capture of the electron in an atomic orbit in the ions.

Conclusions and an outlook are given in chapter 8.
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2.0 Theory of Relativistic Coulomb Excitation

Recently, a new interest on the theory of relativistic Coulomb excitation was appeared. Among
others, we cite the works of Faldt, Pilkuhn, and collaborators (Fa-74, Ja-75). In particular, Jackle
and Pilkuhn have deduced equivalent photon numbers for the lowest multipolarities with help of
the eikonal approximation . A complete analytical evaluation of the contribution of all multipo-
larities was accomplished by Winther and Alder (Wi-79) in terms of a semiclassical approach . The
relation between the electric-dipole excitation cross section obtained by Winther and Alder and the
equivalent photon method was demonstrated by Hoffman and Baur (Ho-84). Later on, it was
shown by Goldberg (Go-84) how one can extend the equivalent photon method in order to cal-
culate the equivalent photon numbers not only for the E1 but also for all other multipolanities of
the virtual radiation. Bertulani and Baur {Ber-85, Ber-86a) have done calculations based on the
plane wave Born approximation for the same process and made a comparison of all these different
approaches.

In this chapter we show in sections 2.1 and 2.2 a resume of the nice semiclassical calculations
performed by Winther and Alder which contain the main ingredients of the process, and in sections
2.3 and 2.4 we show the calculations of Bertulani and Baur in the plane wave Born approximation
(PWBA) which are useful wherever quantum diffraction effects appear. In section 2.5 we extract the
equivalent photon numbers from the previous results which help us to obtain more mnsight into the
theory by comparing it with the results from other formulations, which we do in section 2.6. In
section 2.7 we follow the approach of Baur, Bertulani, and Rebel (Ba-86c) to account for recoi/
corrections, which are important for intermediate energy problems.

2.1 Excitation amplitude in the semiclassical approach

In the following we shall calculate the electromagnetic excitation amplitude of a target nucleus
with mass and charge number 4, and Z,, respectively, by means of a relativistic projectie with ve-
focity v, impact parameter b, and mass and charge number 4, and Z,. In fact, both nucleus will be
excited and we can use all following results to calculate not only the target excitation amplitudes
and cross sections, but also the projectile excitation ones, by exchanging the vanables corresponrding
to ihe target and the projectile.

We shall consider the target nucleus as fixed, neglecting its recoil, and we place the origin of our
coordinate system in its center of mass. The target will be described by an eigenstate HM >, where
I denotes its angular momentum and M the magnetic quantum number. In the semiclassical ap-
proach the projectile is assumed to move in a straight-line and will generate a time-dependent
electromagnetic field which will excite the target. If the excitation is weak, we can calculate the
excitation amplitude in the first order time-dependent perturbation theory as given by

aff:Tif?L de'® < LM,V {x (D] 1M > (2.1.1)
where
w=(E— Ejjh, (2.12)

and F,(E)) is the initial (final) excitation energy of the target. The interaction potential ¥ [r(f)] 1s
given byl

V[.-(_z)]:%f &r 4, [ (017,0), 2

" 1';. Here we use the notation A,u = {4, A) and the sum convention A#B‘u = AyB,-AB.
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where j, = (¢p, j) 15 the internal target four-current and 4, = (1, v/¢) % where ®{r 1) is the Lienard-
Wiechert potentiaf (see e.g Ja-75, p. 654)

Ziey

[( PAY IS S e bV (2.14)
X b+ b)Y + iz~ vy |

B(r,0) =

for a charged particle moving in a straight line with an impact parameter b= /62 + 5?7 . The z-axis

is taken along the beam direction (see fig. 1.1). The Fourier components of the field (2.1.4) are

&, w):fcb(r, 0 el dr

(2.1.5)
PVAT-IT
. Vle et(w,lV)ZKo(wq/V) ,

where K is the modified Bessel function of zero order and the quantity g is given by

qzz%[(x—bx)2+(y—by)2]. (2.1.6)
y
Now we expand ®{r, w) in multipole components 1.e.
B(r,0)= ) Weyr, @) Vz,®) (2.1.7)
with
W, lr w)= f dQ Ofr, ) }}m(f-)

(2.1.8)

_ 27,e

v

i i{wjvyrcosd " imd
e Ye (8, 0)dcos e Ky(wafv) d .
0 0

Since we are only treating the case in which the impact parameter & is larger than the nuclear radius,
we can use the Graf addition theorem (see e.g. Ab-64, p.363, eq. 5.1.79)

Kyfwqlv)= Z ™ K (blyv) 1, (———\/rz 22). 219

N=—0o0

Then the integral over ¢ in {2.1.8) leads to

Zie
W, (r, @)= dr 215 (a)b/yv)f sin 0 db 0y, 0.0y, (25 sing). (21.10)

Writing Y, (6,0) in terms of the Gegenbauer polynomials C7(x) ( see e.g. Ab-64, p. 771}, and using
the Gegenbauer integral (see e.g. G1-63, p. 832, eq. 7.333) one finds for m= 0

W, w)_—z——\,’m (2¢+1) [-Ef_:%]‘fz(zm et

(2.1.11)
" N m+1/2 .
w {efyv)" K (wblsv) Ce L (cfvy jAxr),
with

K =wlc, (2.1.12)

and j(xcr) 1s the spherical Bessel function.

For m < 0 one finds

We _pmlr,@)=(— 0" W, (r, ). (2.1.13)

Now we substitute eq. (2.1.3) in (2.1.1) and utilize the multipole expansion (2.1.7) together
with the result (2.1.11). Using the continuity equation for the charge and current density in nucleus
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2, and the recursion relations for the Gegenbauer polynomials, one may write (2.1.1) in terms of
the multipole matrix elements (see e.g. Al-75)

M(Ez"m):—wfj(r).v x L[ jdxr) Yp(t)1d°r, (2.1.14a)

et +1)

M (M m) = ﬁi—%{iﬁg— f (). L [jdxr) Yo, (8) 1 7. (2.1.145)
e +1)

for electric and magnetic excitations respectively.
The result may be written in the form

Z (=D)™NZEH1 1 Cplc]¥) Koblyv) < [ M7l M, — m) | [M;>

nfm

;= —
i lyhv

(2.1.15)

where 7 = £ for electric excitations, and 7 = M for magnetic excitations. The functions G, can
be expressed in terms of the associated Legendre polynomials and are given in explicit form in the

appendix A.
The amplitude (2.1.15) can be seen as a product of (i) a factor that only depends on the prop-

erties of the nuclear states involved through the matrix elements describing the electromagnetic de-
cay of the state |f> to the state |i>, (ii) a factor X (x) that describes the degree of adiabacity of
the excitation and which vanishes exponentially as x becomes larger than unity, and (iii) a factor
giving the strength of the field as a function of the velocity. Due to the conservation laws, s 1s the
angular momentum transfer from the relative motion to the internal degrees of freedom of the ex-

cited nuclei. That is,
= IME_JMf. (21-16)

2.2 Cross sections

The square modulus of (2.1.15) gives the probability amplitude of exciting the nucleus 2 from
the initial state | > to the final state |f>. If the orientation of the initial state is not specified, the
cross section for exciting the nuclear state of spin /, in collisions with impact parameters larger than

R is

[oe]
Goy= znf pab 2L+ 17 Y lapl?
_ R MM

(2.2.1)
= (2P Y K Gl 8al&) B2, i~ 1] €,
a‘m
where « is the fine-structure constant, £ is given by eq. (1.10),
1 3 ; 2
Bt i~ =5 Z | < 1Myl M(uem) | [, > | (2.2.2)
MM
is the reduced transition probability, and g, is given by
@)= 50 =20 ofyo) | b bR, 0bly)T
R (2.2.3)

= 12 [ Ky () Kine i) = TKn( T -

In the limit & <= 1, the functions g,(&) reduce to
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m (m— 1) [(m— 2177 (21" for m> 1
gn&=< nInf(5] P +1] for m=1 (2.2.4)
T for m=10,

where & = 0.681085....
We can obtain an estimate of the maximum angular deflection of the projectile due to Coulomb

repulsion. It 1s given by (see Ja-73, p. 643, eq. 13.89)

27,76
RE ~

where F is the bombarding energy. For relativistic energies this quantity will be be very small, jus-

tifying the use of straight lines for the projectile motion. For intermediate energy problems the recoil
correction may be of importance and it amounts in small modifications in the above formulas, as

we shall show in section 2.7.

B ~ (2.2.5)

2.3  Transition amplitude in the eikonal approximation

The scattering of highly energetic particles is, for most purposes, conveniently described by the
so-called eikonal approximation (see e.g. GI-59, Jo-74). The transition amplitude in this approxi-
mation 1s given by

Tfi:%fdzb’ PALELS WY (23.1)

where fik is the momentum of the projectile’s motion, q7 s the momentum transfer in the transverse
direction, and I" (b} is the profile function for the Coulomb scattering, We can use first order per-
turbation to calculate the profile function (in which case 2.3.1 is formally equal to the first order
Born approximation), and introduce a ctit-off to account for the strong absorption. In this case we
can write

&#b— R -
Oytb, 4= 20— [ dare ™ Typnlar, ), (232
 where 8(b — R) is the step function, and
Teorn= %J.d3rA#(r) < I Ml j (0} IM; > {2.3.3a)
with
1 r 3., elK.'i]‘—I"; "
Afy=- 1 dr" S <kl Nk > (2.3.35)
e )T

where j, = (cp, ) is the target four-current and J, is the projectile one; r(r') denotes the target
(prOJectﬂe) coordinate, and x is given by (2.1.12). "The function 4 ,(r) represents the four-potential
created by the transition current of the projectile.

Inserting (2.3.3) in (2.3.2) and (2.3.1), and performing the integration over b, we find that 77,
is also given by (2.3.3a), only that (2.3.3b) is changed by the introduction of a cut-off function in
the 1’ integration, i.c.,

1 2 ’ r eik frrl ]
A0~ de o 78p —R)fdz e kL) K> (2.3.4)

Describing the projectile by a plane wave |k >, where k denotes its wave vector, and assuming
that its velocity is not appreciably changed during the collision, we can put

<KAT ) K> =Zjev, 0T, (2.3.5)
y#here
is the momentum transfer, and
v, ={c, ¥},
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with v equal to the projectile’s velocity. Choosing cylindrical coordinates for the projectile space
integration and the z-axis in the incident beam direction, we obtain
efCl-l" - ei?LZ'engﬂ' cos (L’J—Qy)’ (2.3.7)

where ¥ is the azimuthal scattering angle and g, {4;} is the longitudinal (transverse} momentum
transfer to the projectile. For relativistic energies the polar scattering angle 8 due to the
electromagnetic interaction is very small and we can put

qp = k;— kpoos O ~ k;— k>~ ofv (2.3.8a)
gr=kesin8 =~ (Efhc){v/c)sin b, (2.3.85)

where we also assumed that the excitation energy £, — E,= fw is much smaller than the relative
motion energy £=E; >~ E;.
Using these approximations we can write

ix be—r' |

A= Zle(v#/c)fd p’fdz’ @IV 27y o' cos (§=47) il—l (2.3.9)
r—r
The z’ integration can be performed by defining
d*=p*+ " — 2pp" cos (¢ — ¢').
This feads to
+ea . , ixlr—ri ;
f dzt @Iz el_ﬁ = 2@ g diyvy (2.3.10)
—0 | r’

Using the Graf addition theorem in order to separate the target and projectile coordinates, the ¢’
integration is easily obtained and 4,{r) becomes

o

A, = dnZye(v,c) e M2 Z e T (wplyv) 1,(R), (2.3.11)

R=—0C0

where

1R = [ oars) K0
! (2.3.12)
:_—R_—_—_{ J(‘?TR) ﬂ+1(1v) qT ( TR}K()}V )}
|7+ 5]

After these considerations, many steps of this calculation are exactly the same as in the semi-
classical approach. Doing a multipole expansion of 4,(r) we find

(£ — m)!

o ]”2 @m— 1)1 (cfwy)"

4, =nYPZ e (v l0) Y iN22 4 1 [
fm

x & 0l R) G elv) k) Vonf®) (23.13)

Now, inserting this relation into eq. (2.3.1), using the continuity equation for the nuclear current,
and the recursion relations of the Gegenbauer polynomials, one can write 7, m terms of the matnx
elements of nuclear excitation:

T}i-_—-(Zﬂ:ZIe/y)Z N2+ 1 €™ y(R) Grpplelv) < I Myl Mt —m) ;M >
(2.3.14)

This expression is analogous to the one found in the semiclassical treatment, eq. (2.1.15). Again,
we find a factorization into a kinematical part and a nuclear matrix element, which describes the
electromagnetic transition of the state | /> to the state |/ >. Quite in contrast to the case of electron
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scattering (see e.g. F'W-66), one does not obtain nuclear form factors which depend on g. The rea-
son 1s the introduction of the cut-off due to the strong absorption (see eq. 2.3.2).

2.4 Differential cross section in the eikonal approximation

The differential cross section, for the case in which the orientation of the farget is ignored, is

given by
e E 2
— T, 24.1
Q) (znhzcz) 21+1 Z;f'ffl (24D
M, My

From eq. {2.3.14), the Wigner-Eckart theorem and the orthogonality properties of the Clebsch-
Gordan coeflicients, one can show that

d: VALIAAV ¥ 2 2 B( T't”)
“gg%'_( '}If/lc ) Z k nm, [X’m(R)] (242)
MM,

The dependence of the differential cross section on the scattering angle is given implicitly by the
function y,(R). For forward scattering, ¢r = 0, and we obtain

(R, 6= 0)[R* =5, % KD, (2.43)

where £ is given by the eq. (1.10). This implies that
e 2of E v\ £\72 201 2
S5 (8=0) =(Z,0) (E%) ELK(2)] Zk D Gl

The quantity # is equal to the angalar momentum transfer to the target in the direction of the in-
cident beam, and 2q. (2.4.3) shows that, for exact forward scattering, it is equal to zero. In this case
there 13 no magnetic excitation of the target. This can be cxplained 1n terms of the symmetry
properties of the scattering of spin-zero particles. The conservation of parity of the total system
forbids the change of internal parity of the target by ( —1)¢"lin the case =0 ( see e. g. Ja-59, eq.
43 ). Sice magnetic excitations are accompanied by this change of parity, the forward scattering
amplitude must vanish in this case.

For & # (} one can use the integral (2.3.12) to obtain the dependence of the cross section on the
scattering angle. It will be extremely forward-peaked with a diffraction angle of about

o~ . . Ev
p e with A= —hcz R. (24.5

(2.4.4)

B(E#)
e

e

The parameter A is equal to the ratio between the nuclear dimension R and the quantum wave-
length of the relative motion energy. For relativistic heavy ion collisions this quantity is much
greater than unity and 8, will be very small. We can also compare the diffraction angle 8, with the
classically expected Coulomb deflection given by eq. (2.2.5). The ratio of these two quantitics is

8 .
_gz— ~ %5122, (2.4.6)

showing that only for small projectile and {or) target charge the diffraction effects will be compa-

rable to the Coulomb deflection.
The total cross section is obtained by integrating (2.4.2) over the scattering angle #. But, by
means of (2.3.8b) we can transform the angular integration to one involving the momentum transfer

Gr:.

do— (2N, 4 2.4.7
=\ ) i qray . (2.4.7)

Accordingly, the integration in g must go from 0 to £v / ic?. Nevertheless, expressions (2.3.8b) and
{2.4.5) imply that already for ¢, ~ 1] R << Ev/ c® the differential cross section 1s neghgble. It
then makes no difference if we take the integral in ¢, until infinity. In this case we can use the clo-
sure relation of the Bessel functions

et r 2’ 1 Id r?
f QTJM(QTP " = ,0' Yy ) (249)

0
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in order to obtain the total cross section

ory= (21" Y KD g ) | Gt Bint, = 1] €,
nfm

which is equal to the Coulomb excitation cross section given by the semiclassical cafculation. Also
in the case where no absorption (cutoff radius) is assumed (for example, in atomic excitation
processes), the cross sections in the PWBA and in the semiclassical formulations can be proven to
be the same. For this general proof, see appendix B of Ber-85.

2.5 Eguivalent photon numbess

According to the equivalent photon method, the excitation of the target nucleus can be described
as the absorption of equivalent photons whose spectrum is determined by the Fourier transform
of the time-dependent clectromagnetic field gencrated by the projectile (see Ja-75). The multipole
expansion of the electromagnetic interaction as done in the last sections, permits us to deduce the

equivalent photon spectrum for all multipolarnities (see Ber-85).
Integrating (2.2.1) for all energy transfers ¢ = #w and summing over all possible final states of

the target, we obtain
o= Z.[ai_,f(s)pf(s) ds, 2.5.1)
I

where p,(z) represents now the density of final states of the target, with energy El = E, + ¢. Inserting
{2.2.1) in (2.5.1), we can rewrite it in the form

Oc= 2 f {”E;f’ (cu)af{(w)-i- nMg(w)aff(w)}%, (2.5.2)
14

where ¢7¢ are the photonuclear absorption cross sections for a given multipolarity 77

2t @) (£ + 1) 21
=z k Bizf). {(2.53
7 () £0(2¢+ T ;pf(g) =) ?

The total photonuclear cross section is a sum of all these multipolasities:

o= ) o7 ). (2.5.3)
el

This allows us to obtain the equivalent photon mumbers n ., (w) given by

1 2
g (00) = 22 %%% S Gatmlel* 28, (2.5.4)
7T m

Since all nuclear excitation dynamics is contained in the photoabsorption cross section, the equiv-
alent photon numbers (2.5.4) do not depend on this process. They only depend on the way that
the projectile moves. The equivalent photon method consists of using its kinematics to calculate
the intensity of the equivalent photon spectrum, which for a straight-line-moving projectile must
be the same as those of eq. (2.5.4).

It was shown by Hoffmann and Baur (Ho-84) that, for El excitations, the equivalent photon
numbers obtained from the total cross section (2.2.1) are really equal to that calculated by Fermi,
Weizsicker, and Williams in the equivalent photon method (Fe-24, We-34, Wi-34 and Wi-35),
which was presented in the chapter 1. Nevertheless, while that method gives an expression for the
equivalent photon numbers independent of the multipolarities, eq. (2.5.4) shows that this is not
correct in general. Indeed, a merit of eq. (2.5.4) is that it gives an analytical expression to calculate
the equivalent photon numbers for all multipolarities and radiation types.

Using the expressions of G, as given in the appendix A, we can write explicitly

ng (@)= ngy =1 + PEL, m=t1F BB, m=0

2 52
2c2

. (2.5.50)

2 2 ' 2 2
=2 Z{u(EP Ko K - (KE—KO)},
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v \2
My () = (?) (781, m=—1F g1, =11 ]

, (2.5.5b)
2 2 &2 2
:?Zlu EKOK]uT{KliKO) s
2 2 4 2, N 0 2, 212 52"4 2
) == Zia (S 2 (1= V) K+ & (2= VY Ky Ky — S (KT - KO)}, (2.5.5¢)
C

where all K's are functions of ¢ as given by (1.10).

-1

10

WR/¢

Figure 2.1. Equivalent photon number per unit projectile charge, for E1, M1 and E2 radiation,
and as a function of the ratio between R and the photon wavelength. y is the ratio of the projectile
energy to its.rest energy. . :

" In the hmit y > 1 simpler expressions can be obtained for the equivalent photon numbers.
Using (2.2.4) and the approximaiions given in the appendix A, we find that in the sum over m of
eq. (2.5.4) the leading term for y >> 1 is the one with m= 1, which gives a loganithmic rise with
¥, since for m>-1 there is no dependence ony. In this case the equivalent photon numbers are equal

ree=--Zlx In [(%)% 1] ~ nlzfam (Lg-) (2.5.6)

valid for all multipoles, which is exactly equal to (1.11a). Since & = wRfyv — 0, we have a loga-

-rithmic rise of the cross section for all multipolarities with y. The impinging projectile acts like a

spectrum of plane wave photons w1th hehmty m=+1 1. Such a photon spectrum contains equally

all multiporarities nZ.
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For # > 1 and a not too large value of y, the m=¢ term can still be substantial. For a com-
parison we rctain only the terms m = ¢ in the sum (2.5.4), obtaining
1 (22}

— ¢ contribution) = Z2x - — = (kR)*¥ 57
nge (m= ¢ contribution) = Zju 5 (i+1)i(f—l)( ) (2.5.7)

For kR 1, asis the case for low lying excited levels, this term domunates over the m= 1 term
(2.5.6), unless y is extremely large. However, it must be kept in mind that in relativistic Coulomb
collisions it is possible to excite states with kR ~ 1, or as we shall see, even kR > 1 is possible.
In this case the term m = | dominates, and the cross sections will always increase logarithmically
with the beamn energy.

In fig. 2.1 we show 2 _, (with Z, = unity) as given by {(2.5.5), as a function of @R/ ¢. We se¢ that
NS>y My, for small values of y, in contrast to the limit y > 1 . The physical reason for
these two different behaviours of the equivalent photon spectrum is the following. The electric ficld
of a charged particle moving at low cnergies is approximately radial and the lines of force of the field
are isotropically distributed, with their relative spacing increasing with the radial distance. When
interacting with a target of finite dimension, the non-uniformity of the field inside the target 1s re-
sponsible for the large electric quadrupole interaction between them. The same lines of force of
an ultrarelativistic (y 3> 1 ) charged particle appears more parallel and compressed in the direction
transverse to the particle’s motion, due to the Lorentz contraction (see fig. 1.1a). As seen from the
target, this field looks like a pulse of a plane wave. But plane waves contain all electric and magnetic
multipolarities with the same weight. This is the cause for the equality between the equivalent
photon numbers as y — oco.

In the limit of large frequencies, w>>yv/[R, an adiabatic cutoff sets in  and
2.(&) — (7?]2) e%. From (2.5.4) one obtams that in this limit

Ry oo e . (2.5.8)
This means that a useful approximation in many cases is to usc the relation (2.5.6) for £ < 1, and
n (lwy=0foré>1.

For general purposes, the utility of eq. (2.5.2) is twofold: (a) if one multipolarity is favored 1
a certain reaction, then by measuring the total Coulomb reaction cross section one can get infor-
mation about the respective photo-induced process; (b) if the experimental data on the photo-
induced process are available, one can use eq. (2.5.2) to calculate the contribution of the
electromagnetic interaction to the same process in a RHI collision.

2.6 Comparison with other methods

Also by means of the eikonal approximation, Jickle and Pilkuhn (J4-75) derived other ex-
pressions for 71;, and ny,. In their calculations it was assumed that the projectile had an Yukawa
charge distribution with length parameter a= /< 77> [6, where J<ri> is the charge mean
square radius of the projectile. We can compare their expressions with the eq. (2.5.5) if we take in
their results the projectile as a point particle (@ — 0). This lcads to

' 2
= Zin -{iz[KoKz K 2K B Ky — Ko |+ 5 (K2 KE) + 49 Ko(¢)K1(¢)} ,
. . Y

(2.6.1)

where the K’s arc the modified Bessel functions as a function of ¢ given by (1.10), except for the
ones that are explicitly written as functions of ¢ = wR/v. In the same limit, one can show that
nif = n,,;. But one cannot reduce eq. (2.6.1) to eq. (2.5.5a). But, for y 2> 1 they will be equal (sec
fig. 2.2). But the consideration of a charge distribution for the projectile should not modify the final
results, apart from influencing the value of the minimum impact parameter R. The Coulomb po-
tential for a projectile, with a spherical distribution of charge in its rest frame 1s the same as that for
a point particle with equal total charge. A Lorentz transformation to another inertial frame of ref-
erence obviously cannot modify this equality. All following results, such as cross sections or
equivalent photon numbers, are therefore not changed by the introduction of a spherical charge
distribution for the projectile. Therefore, the minor differences (E1 case) in the final resuits of Jackle
and Pilkuhn (Ji-75) and Bertulani and Baur (Ber-835) must be due to the sm
“rections used by the former authors.
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Figure 2.2, Comparison of the equivalent photon number per unit charge with the Jackle and
Pilkuhn result {JPEL), for the electric-dipole radiation (see text).

Goldberg (Go-84) has also performed a calculation of the equivalent photon numbers by a di-
rect multipole expansion of the electromagnetic field generated by the projectile. The final results
are then obtained by performing, numerically, complicated integrals along the projectile trajectory.
Actually, a menit of eq. (2.5.4) is that it gives an analytical expression to calculate the equivalent
photon numbers for all different multiporarities and radiation types.

For small-mass projectiles one can improve eq. (2.5.4), based on semiclassical ideas. In order
to see how it works, we compare the final improved expressions with those obtained in the ultra-
relativistic electron-nucleus scattering. But, besides the spin interactions, electron scattering is dif-
ferent from Coulomb excitation because the electrons can penetrate the nucleus and continue
interacting only clectromagnetically with it. Neverthelless, in the long-wave limit ¢, R << I, where
g, 1s the momentum transfer of the efectron, the nuclear volume plays a minor role and the matrix
elements contributing to the excitation in the near-forward scattering are just those appearing in the
photo-excitation process, with ¢, ~ k . To disregard the nuclear volume means to put =0 in
the expression-(2.5.4). But in that case it goes to infinity. If we now evoke semiclassical ideas, we
note that a normat procedure (see Ja-75) within the equivalent photon method is to use the quan-
tum wavelength #/yMv of the projectile, instead of the nuclear radius, as the minimum impact pa-
rameter when ‘the projectile’s mass A is small. This assumption is based on - the ‘uncertainty
principle, which introduces a “smearing out” of the projectile’s coordinate in a space: mterval of
about 1ts waveiength By means of thls rec1pe we then replace (1 10) by ' ' : '

Shoptmd, 6

.'where m, 1s the electron rest mass. This quantity is generally much less than one, so that the ex-
presstons {2.5.5) become
ng!fcrron _ %a n (gi) - nf[elmon ’ _ (2.6.9q)
£
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These are just the results that one derives from the equivalent photon numbers for electron
scattering, first obtained by Thie, Mullin and Guth (Th-52), in the ultra-relativistic limut with small
encrgy loss, where one can put £, ~ E.=ymc’>» mel

When the above conditions (forward scattering, long-wavelength approximation) are not
matched, then this analogy is not valid at all. For example, electron scattering can generate longi-
tudinal (E0) interactions with the nucleus, which are not accessible in Coulomb scattering.

Recently, Galletti, Kodama and Nemes (Ga-86a, Ga-86b) have studied the quantum and
relativistic recoil effects in the theory of relativistic Coulomb excitation and found that relatively
large transverse momentum transfers are allowed, which are not obtainable in the simple semiclas-
sical or eikonal approaches described here. For sake of simplicity, we shall not enter into the dis-
cussion of these effects, since they play minor roles in most of the cases we shall treat here. Instead
of that, in the next section we show how one can make a comparison of the previous results with
Coulomb excitation at nonrelativistic energies in order to denve simple recoil corrections for the

equivalent photon spectrum.

2.7 Effects of the Rutherford bending

In nonrelativistic Coulomb excitation the double differential cross section can alse be expressed
in the terms of equivalent photon numbers as

d%s ] Z dnge
—_— = — O’}' y (2.7.1)
ddE, kL dQ
where
dige 5 P26+ D areasevar A (0,0
=zl Tt T (<) — e (2.7.2)

& T onfe+ 1

are the equivalent photon numbers per unit solid angle. They are functions of the adiabacity pa-
rameter

{ = E,afhy = wa)v, (2.7.3)
where
2
ae ___Zizzj , (2.7.4)
mov

is half the distance of closest approach in a head-on collision and m, is the reduced mass of the ions.
The functions £,,(8, {) are given in terms of orbital integrals and can be found in a tabulated form
in the texbook of Alder and Winther (Al-75) on Coulomb excitation. The first calculations of the
functions £ (8, {) were performed by Ter-Martirosyan (Te-52), who found an analytical expression
for the E1 multipolarity. Since this 1s the more important case, let us study it first.

Inserting the expression for df {8, {) (see Al-75, p. 93) in eq. (2.7.2) we obtain

dn Zin —n 2 ‘
_ d51_= 4;2 (%)2 e e C{E_;z_ [K O + & ,-g(ag)]z}, (2.7.5)

where ¢ = 1/ sin (6/2) is the eccentricity parameter, and K',(y) means the derivative of K, (y) with
respect to the argument y. '

" For relativistic projectile energies the Rutherford trajectory. can be substituted by a straight-line
and, instead of the scattering angle 8, the concept of impact parameter 2 is used. The equivalent
photon numbers in those cases is given by eq. (1.6), that 1s . .

drg Zi’zawzczz 1,2 ' '
Swbap (@ 0= 3 (2 () Kl(x)+?—f<o(x) . (2.7.6)

with x == wbfyv. Since, for a Rutherford trajectory, the impact parameter is related to the scattered
angle by the expression b= q ¢lg (§{2) , we can rewrite the above equation as
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(dnEl )re[at.: Zl: {:28 ( CV) [Kl( }+ 12 Kg(x)j] - (2.7.7
dQ 4 4 v
Of course, for relativistic energies # << 1 and x = (e{jy)cos (#/2) ~ =/y.
For the nonrelativistic limit a smalll scattering angle 1s related to a large impact parameter tra-
jectory e ~ bfax>1. If we assume { << [, then by use of K’y = — K, we obtain from (2.7.5)

dn Zla
( dg‘)nmwd 5 (F) < [+ K], (278
4

i

which is just eq. (2.7. 7 fory ~ 1.

¥ I T 1 T T T
1.0 ¢=0
0.05
—~ X 0.1 i
pe i
d_n 0.2
- 0.5 J— <
L.
050 1 | ), ] L 1 .
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Figure 2.3. Effect of Rutherford-bending of the projectile motion for different values of the
adiabacity parameter { = E affiv. It is plotted the ratio of eq. (2.7.9) and eq. (2.7.8) as a function
of x=¢{ (fory =~ 1).

For not too large impact parameters, which still lead to small scattering angles the Rutherford
bending of the trajectory is mainly reflected through the parameter {. In that case eq. (2 7.5) is ap-
proximately _

dn Z o4 —7 ’ .
o 4,1;2 (5) e e < { [Ke] 1 [K =0T (279

Figure 2.3 displays the ratio #({, x) = eq. {2.7.9) / eq. (2.7.8) which shows the effect of the
Rutherford-bending to the straight-line calculation. This effect increases steadily with Z.

In eq. (2.7.5) the Rutherford trajectory is accounted for properly in the calculations, but retar-
dation effects in the interaction are ignored. The reverse is true in the calculations which lead to eq.
(2.7.6). While one can safely use eq. (2.7.5) in nonrelativistic problems and eq. {2.7.6) in relativistic
ones, the previous discussion has shown that none of them is suitable for intermediate energy
problems, where both effects are present. But, by a direct look at eqgs (2.7.5) and (2.7.7), we see that
the main effect of the Rutherford trajectory would be present in the imaginary indices (i) of the
modified Bessel functions as well as in the factor ¢, On the other hand, retardation effects imply
in the appearence of the y-factors in the eq. (2.7.7), thus suggesting that one can account simul-
taneously for both effects by defining the new variable

{ wa
Ty T
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and setting

475y __Zi)-“ ey a2 —m) 1 g1 2 ) 2
Qg (F) e [ER [Kipem) ]+ [K e} p - (2710)
This equation reduces to (2.7.5) for y =~ 1and to eq. (2.7.7) for y =1, £>> | and shouid be a

good improvement for the intermediate energy region.
According to eq. (2.7.1) the differential Coulomb excitation cross section for the El muitipo-

larity integrated over angles is

dog 1 El
dEy —LE:?TEI O-')‘ . (2711)

The equivalent photon number 7, is obtained by an integration of eq. (2.7.10) over all angles
corresponding to pure Coulomb trajectories. In terms of the eccentricity parameter, this integral can
be expressed as

2 22 2 it { 2
£l i 1 ] € ( v )
(2_ ; - 12)

oo 2
x| e {—g-—ﬁ—;—l [Kinlem) [+ [K 'm(g’”f)]z} .
£ ¥ £

8

The minimum value of the eccentricity parameter depends on whether the relative motion en-
ergy is smaller or greater than the Coulomb barrier energy £y

1 for E< Eg
£ ={ (2.7.13)

N1+ 4(EIERY (1 — EglE) for E>Eg.
We see that when Ex»> E,= Z,7Z,¢YR, then g, ~ 2E[E;= Rfa, where R is the the sum of the
two nuclear radii. The integration (2.7.12) can also be expressed in terms of the Bessel functions

of imaginary or complex indices by means of the Lommel integral formulas (see e.g Wa-38, p. 133).
This gives

gy = ?%‘ Ztae ™ (£) { —x Ky K in — % () [KinHKe‘nrl - &,

1 @K’u , 5K#
+~s? Kiy o p=in =K'ty du J=in
4

where all K’s are functions of & = £, %. In the nonrelativistic limit § = v/c— 0, g, — | , and we ob-
tain

(2.7.14)

ney = =4 Ziale ™ (G) K@K 1) (27.153)
In the relativistic imit 8 — 1, 5y =~ Rla— co and =y — 0, so that
2 52 (c\? VE 2
ng () = = Zia () £ Ko & —?(1{1 - KD, (2.7.15)
C

where the K's are functions of £ =g, ~ w@Rfyv.
"Of course, both expressions (2.7.15) agree with the known results of previous calculations (sce

eq. 2.5.5a and ref. Al-75, p. 96). But, besides reproducing the nonrelativistic and the relativistic
limits, egs. {2.7.10) and (2.7.14) might be useful for intermediate energy p-oblems. | . I
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Figure 2.4. Ratio of the exact nonrelativistic equivalent photon numbers given by eq. (2.7.2)
and the approximate expressions (2.7.16), fory -~ 1, and for the E2 (solid curves} and M1 (dashed
curves) multipolarities. '

Unfortunately, for the other multipolarities it is not possible to calculate the nonrefativistic
functions df (8, {) in an analytical form. But we can correct the equivalent photon numbers in the
relativistic case to obtain approximate expressions for the angular distribution in intermediate en-
ergy problems, by making the same substitutions which lead to eq. (2.7.10) (disregarding the effects
of the imaginary indices). We obtain

d gy 212“ 4 2 — 4 2 2,2 2 2, 22,2
= (&)ete™ ?[Kl-i-xk’ol{l-i—x K31+ 2=ty KT ), (27.160)
with all K's as functions of x = ye, and

dmp  Zl% 24 oo
0 > ye e T KI(x). (2.7.168)

In figure 2.4 we plot the ratio between the exact nonrelativistic equivalent photon numbers,
defined by eq. {2.7.2) in terms of the functions d7,,(8, {), and eqs. (2.7.16) for y =1, that is

(0, )= eq.(2.7.2)] eq.(2.7.16), (2.7.17)

where 1= 1 for the E2 case (solid line) and i=2 for the M1 case (dashed linc). We observe that for
very forward angles, and vy =~1, the expressions (2.7.16) give the same values as the exact
nonrelativistic calculations. ~Indeed, it can be shown that for very forward scattering angles all the
functions df. (6, {) can be expressed in terms of the modified Bessel functions (see Al-66, p. 483,
and also the appendix of Wi-79), which when inserted in (2.7.2) will reproduce the eqs. (2.7.16) for
y =~ 1. As the scaticring angle increases, there will be deviations of (2.7.16) from the exact values
of (2.7.2), specially for the M1 case wich depends more strongly on the bending of the Rutherford
trajectories. But, for { << 1, the agreement between the two calculations is very good, which make
‘expressions (2.7.16) useful approximations for intermediate energy Coulomb excitation problems.
For cxample, these ideas have been considered by Baur, Bertulani and Rebel (Ba-86c¢) for the study
-of Coulomb dissociation cross sections as a source of information on radiative capture processes

20 Electromagnetic Processes ...




of astrophysical interest. The integration of (2.7.16) over the scattering angle can be performed in
the same way as in eq. (2.7.12).

We observe that, for E>» F,, we obtain g, =~ R/a(1— a/R), which means that a simpler
recoil correction of the equivalent photon numbers as given by egs. (2.5.5) is a rescaling of the
minimum impact parameter of the form

R-»R—%wa, (2.7.18a)

where the factor /2 can be obtained in a more detailed analysis of the effects of the rescaling of the
minimum impact parameter. Such a rescaling correction has indeed been observed by Winther and
Alder (Wi-79) and later confirmed by the numerical calculations of Goldberg (Go-84). For each
impact parameter separately there will be a rescaling of the form (2.7.18a) but with the second term
with changed sign, ie for =<1

ef w Fis
x=22 cos (02) - 2 (42 a) . (2.7.185)
These corrections can be understood as following: the effects of the electromagnetic field are larger
when the ions are closer together, but the closest distance will also be bigger than the initial impact
parameter due to the Rutherford bending of the trajectory, and that s the reason for the rescaling
(2.7.18b). On the other hand, more impact parameters, smaller than X, will contribute to the total
cross section without nuclear contact, which will lead to a total correction to it i the form

(2.7.18a).
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3.0 Electromagnetic fragmentation in RHIC

In the last chapter a complete description of the theory of relativistic Coulomb excitation was
presented. In this chapter we shall apply this theory in the analysis of the Cowlomb fragmentation
of heavy ions in relativistic collisions. The first experimental hint for the possibility of existence
of such processes was obtained in cosmic rays experiments by Balasubrahmanyan et al. (Ba-72).
They studied the absorption of carbon and oxygen nuclei in tungsten from 1 GeV/nucleon up to
about 10 GeV/nucleon and obtained decreasing absorption lengths with increasing energies. Artru
and Yodh (Art-72) were the first who suggested that Coulomb (electromagnetic) fragmentation
could explain these phenomenona, and made predictions about the Coulomb cross secttons i the
equivalent photon method. The first laboratory experiment which clearly confirmed the existence
of an appreciable electromagnetic fragmentation in RHI collisions was rcported by Heckman and
Lindstrom (He-76). Subsequently, electromagnetic fragmentation was observed by several other
cxperiments (see .g. We-79, O1-81, Me-84, and Me-86). A theoretical analysis of this process has
been performed by Baur and Bertulani (Ber-86b, Ba-86a and Ba-86b).

In section 3.1 we make an analysis of the experimental data of Mercier et al. (Me-84, Me-86),
and introduce a harmonic vibrator model for the nuclei in order to obtain an illustrative way of
describing the fragmentation problem. It is remarkable that classical, semiclassical and quantum
descriptions of the process give approximately the same results. In special, we show that, by using
simple sum rules, the experimental data can be well explained. Of course, a more detailed consid-
eration of the nuclear structure will be necessary in a more specific analysis of each reaction.

In section 3.2 we study the consequences of a possible mudtiple excitation of giant resonances
in the nuclei, and make some predictions based on the harmonic vibrator model.

In section 3.3 we make a short analysis of the cross sections for production of pions.

The coincidence experiments for the dissociation of weakly-bound nuclei are of great interest for
the study of nuclear structure of, e.g., neutron-rich nuclei, and in section 3.4 we make a study of
the angular distributions of the fragments, and of the dependence of the cross sections on the re-
action parameters.

3.1 Excitation of giant vesonances

3.1.1 Coulomb and nuclear fragmentation in peripheral collisions

The passage of a particle with charge Ze, velocity v and impact parameter b (larger than the
nuclear interaction radius) by a nucleus initially at rest will predominantly cause a momentum
change of the charged constituents of the nucleus, i.c. the protons. This momentum is larger in the
x-direction (perpendicular to the projectile’s motion), and is given classicallly by (see ¢.g. Ja-75, p.
619)

27, 2,¢* 2
Ap=_1,£€__ 311D
From this we calculate - the energy transferred to the-nucleus as a whole as
g &Aoo pay

“where my is the nucleon mass. For very fast collisions we can assume the protons to move almost -
freely; the total amount of energy transferred to-all protons being . '

"'AEZ=2—(—11“2'?-- CU o (3L3)
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The difference gives the internal excitation energy of the nucleus
IN,Z, (Zie*Y

) (3.1.4)
A, ﬁrz‘,\rrbzv2

AEm[ = AEZ - AEA =

(This amounts to giving effective charges of Ne/A4 for protons and { —Zef4) for neutrons, respec-
tively). If the incident particle is also a nucleus the same eq. (3.1.4) can be used for the determi-
nation of the internal excitation energy of it by exchanging the indices | and 2. As an example, we
consider the case of relativistic (v =~ ¢) 28U + 30 collistons with b= 15 fin. We obtain

AE  ~ SMeV, AE, ~ 15MeV  and A, ~ 10 MeV.

This internal excitation energy corresponds to about the excitation energy of the giant dipole and
quadrupole resonances in 2#{/. From this simple classical estirnate we can already deduce that there
is a large probability for the excitation of giant resonances m peripheral RHI collisions. Since the
giant resonances mainly decay by particle emission, this process will have an appreciable contrib-
ution to the fragmentation of the nuclei.
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Figure 3.1. One-neutron removal cross section of "A4u by means of relativistic heavy 1ons as a
function of the atomic number of the projectile. The squarcs are the total experimental cross
sections. The circles represent the nuclear contribution to the cross section. The lower dashed curve
is a fit of the form a(1+ bA4¥3) , and the upper dashed curve is a sum of the experimental nuclear
cross sections ¢, and the estimates 6 based on the equivalent photon method.

Indeed, among others, a group of experimentalists of the Lawrence Berkeley Laboratory and
Towa State University {Me-84, Me-86) have presented clear evidences of Coulomb fragmentation
in RHI collisions. In that experiment one obtained the cross sections for one-neutron removal of
$2Co, ¥Y, and ¥"4u targets due to the irradiation by relativistic beams of H, 2C, ®*Ne (2.1
GeV/nucleon), ¥4r (1.8 GeV/nucleon) and *Fe (1.7 GeV/nucleon). From the data on fragmenta-
tion cross sections of the same targets by means of relativistic proton beams (for which Coulomb
effects are negligible) they were able to deduce the nuclear contribution to the one-neutron removal
cross sections by RHI bearns. An example of their results is shown in figure 3.1 which gives the
cross section of one-neutron removal from 4w as a function of the atomic number of the incident
projectile. One observes that the cross section increases with Z2, which is a characteristic of

-Coulomb processes. A precise theoretical explanation of the experimental results is complicated by
the presence of the nuclear contribution (shown in fig. 3.1 by the lower dashed curve) which can
. arise from a direct knock-out of the neutrons or by means of a two-step process involving first the
" excitation of a giant resonance in the nuclei followed by the emission of one neutron. The nuclear
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contribution to this process is peaked at a certain impact parameter and falls down with increasing
distances. It also falls down when the nuclei come closer together since other channels than the
one-neutron removal process become more important (see e.g. Hi-81 or Hu-85). In this way one
can reasonably assume that the probability to remove one-neutron by means of the nuclear inter-
action in a RHI collision is given by a gaussian function of the impact parameter b, such as

P(b)=B exp [ —(i—;—&)z], (3.1.5)

where 25 is the thickness of the surface area contributing to that process and § 1s the maximum
probability at an optimal impact parameter which, for simplicity, we sct to the touching distance

of the two nucle
R=R, + Ry=12(43 + 4l fin. (3.1.6)

Such a parametrization has also been found m theoretical calculations of fragmentation processes
at nonrelativistic energies (see e.g. Ba-84a). A justification of this surface peaked form can also be
given in terms of a Glauber modsl (see, e.g., Hii-81 and Hu-85). The cross section will be

On= erf:o bP(bYdb ~ 2(x) P RBS. (3.1.7)

in order to have an estimate of 86 we set the cross section given by {3.1.7) to the experimental
values determined by Mercier et al. (Me-86). We find the values of 56 as given in table 3.1, which
are collected in fig. 3.2 as a function of 4; + 4,. From that one nfers an average value of

BS ~ 1.14 0.1 fin. (3.1.8)

The question now arises about what the value of the maximum probability § should be. Clearly,
there are other channels for fragmentation, like e.g. fission, two-nucleon removal, etc., in the pe-
ripheral collisions with small nuclear contact. Rasmussen, Canto and Qiu (Ra-86) have shown that
there is an appreciable contribution to the fission channel in 2/ projectiles (1 GeV/nucleon) inci-
dent on nuclear emulsion. But, since the energy deposit in such collisions is small, the one-neutron
removal process must be of greatest probability in most cases. f weuse f >~ 1, we get 6 ~ 1fm
from (3.1.8). This means that the nuclear contribution 1s restricted within a small range of impact
parameters in comparison to a much wider interval for the Coulomb contribution to the same
process. In spite of the smaller energy deposit by means of the Coulomb interaction m a RHI col-
lision, its long range leads to total cross sections which can be even larger than the geometrical cross
section.

RHI 9Co(RHIX)#Co | BY (RH{.X)®Y 9740 (RHIX) 6 Au
12 (2.1 GeV/nucleon) 1.00 + 0.08 1.17 + 0.1} 0.95 + 0.11
BN (2.1 GeV/nucleon) 1.13 + 0.09 1225 0.1 - 1.00 £ 0.12
w4y (1.8 GeV/nucleon) | - ---- 1.43 + 0.12 0.93 + 0.12
ssFe (1.7 GeV/nucleon) 1.02 + 0.1 1.22 % 0.12 0.82 + 0.11

Table 3.1. The thickness parameters 88, in fm, extracted from the experimental resulis of
Mercier et al (Me-86) for various projectiles and targets combinations used in these experiments.

The Coulomb contribution to the nuclear fragmentation in RHIC collisions is a two-step
process involving the excitation of the giant resonances followed by particle decay. The cross section
for it can be calculated according to (2.5.2). While, normally, the n# = E1 contribution to the sum
(2.5.3b) is much larger than the others, the fact that n5>-n, for beam energies around 1
GeV/nucleon leads to an appreciable contribution (5-20 %) of the quadrupole multipolarity to the
total Coulomb cross section (2.5.2) at these energies. It is interesting to compare the experimental
values of Mercier ef al. (Me-86) with theoretical predictions based on (2.5.2) and on sum rules for
the photonuclear cross sections.

Tt is well known that heavy nuclei exhibit an electric dipole resonance at approximately

M= 80 ey (3.1.9)

and a guadrupole resonance at
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E) = ﬁ-’s MeV . (3.1.95)

To a good approximation we can take the factors n;(w) and nz{w) outside the integrals in
(2.5.2)

E2
ne LESRY 1k 2 2 [ 97 (&) dE,
g = W_EE(I) a, }(Ey) dEy + Ngy [Ec(?k)] E((?R) L{E"")E_ (3.1.10)
GR v

and make use of the Thomas-Reiche-Kuhn (TRK) sum rule for the electric dipole resonance (see
e.g. Bo-75)

faf](ﬁf)dEy > 602 pev.mb, (3.1.11a)

R b9 -
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Figure 3.2. Thickness 86 of the ring area contributing to the one-peutron réemoval cross section
in peripheral RHI collisions as a function of the sum of the target and projectile mass number

A+ 4, .

and the energy weighted sum rule for the electric quadrupole resonance

E2
f_a” (E;) dE, ~ 022724 ub| MeV . © (3L
(E,) o

In addition to the E2 isoscalar resonance, there exists also an isovector E2 resonance at an even
higher energy of about EE =~ 120 MeVj4Y3 . Since it decays manily by two neutron emission, it
will not contribute much to the one-neutron removal experiment discussed here. ' '
Within these approximations the dependence of the Coulomb excitation cross sections o on
the energy of the projectile E,, is due to the dependence of n;, and ng, on that parameter. As an
example, in fig. 3.3 we plotted the Coulomb fragmentation cross section of “/Ca projectiles incident
on 8/ targets as a function of the laboratory energy per nucleon. We use eqs. (2.5.5) with the
recoil correction R— R+ma/2 (see section 2.7), which will only be important for

E,,JA< 100 MeV. We also used the fact that “Ca has a giant M1 resonance at EXf ~ 10.3 MeV/
and a B-value of order B(A/1) =~ 1%, to calculate the contnibution of the Ml-mode to the
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Coulomb fragmentation cross section. The lower curve corresponds to the M1 fragmentation mode,
the dashed line to the E1 mode, and the dotted line to the E2 one. The solid line is the sum of the
three contributions. We note that the Coulomb excitation cross section overcomes the geometrical
cross section o, = 1 (R, + R,)? for very high energies. One also observes that the E2 fragmentation
mode is very important at intermediate energies (around some hundreds of MeV/nucleon) and even
for very high energies it can account for approximately 10% of o .
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Figure 3.3. Coulomb excitation cross section of giant resonances in *Ca projectiles hitting a
28] target as a function of the laboratory energy per nucleon. The dashed line corresponds to the
excitation of the giant electric dipole resonance, the dotted to the clectric quadrupole, and the lower
line to the magnetic dipole. The solid curve is the sum of these contnibutions.

Indeed, since for high energies nn, ~ n, the cross section for the B2 excitation mode will be
smaller than that for the El case by the relative strength of the two gant resonances
o[B! ~ Zww, R?| 6Nt =~ 0.12, where wjfw,) arc the frequencies of the giant dipole
(quadrupole) resonance. The excitation of giant magnetic dipole resonances in RHI collisions 1s of
less importance, since for low encrgies n,, << gy (Mg =~ (V/€)nz) , and for high encrgies, where
My = ng , it will be smaller than the excitation of electric dipole resonances by the relative strength
aMjgEl ~ (uyfeR)?=(h/2my cR)?<< 1.

RHI " #Co(RHI X)*®Co BY(RHIX)®Y WAu(RHIX) YAu
El E2 El E2 El E2
2 (2.1 GeVinucleon) 3.7 1.88 155 3.39 46.5 10.3
2Ne (2.1 GeV/nucleon) 229 465 41.1 8.45 124 26.2
A4r (1.8 GeV/nucleon) 63.0 127 114 234 354 74.6
6Fe (1.7 GeV/nucleon) 121 24.2 221 45 694 145

Table 3.2. Theoretical electromagnetic excitation cross sections of E1 and E2 giant resonances
for various projectile and target combinations. The incident projectile energy is given in parcntheses
- and the cross sections are given in mb.

" Table 3.2 shows the theoretical values based on egs. (3.1.9-11) for the reactions studied by
Mercier ‘et al. One clearly sees the relevance of the E2 mode as compared to EI. From the ratio
" “between the experimental data and the theoretical predictions,
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eXp ox

o P

re=— ¢ —=Z_, (3.1.12)
JC +CFC Sk

we obtain the values gathered m fig. 3.4 as a function of 4, + 4,. On the average, ¥ < 1, which 1s 2
reasonable result since o, includes the total strength of the glant renonances which can decay not
only by means of one-neutron emission. In principle, one could also use the cxperimental
photonuclear cross sections o(y, 11} to do a more exact calculation of the one-neutron removal cross
section by means of eq. (2.5.2) (see e.g. He-76). However, the decomposition of o(y, ) into E1 and
E2 {or other) multipolarities is not exactly known.
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Figure 3.4. The ratio of the experimentally determined Coulomb excitation cross section ..,
and the theoretical o, value, as derived from the sum rule model, as a function of the sum of the
target and projectile mass numbers 4, + 4, .

The only empirical parameter entering in eq. {2.5.2) 1s the minimum impact paramenter which
we set to R as given by (3.1.6). For impact parameters in the interval R— 8 < b< R+ 6 there is
interference between the nuclear and the Coulomb interaction. By using b,,, = R —d ineq. (3.1.10)
the theoreticailly estimated Coulomb cross sections increase by less than 10%. Because of our lack
of knowledge of the nuclear and Coulomb mterference effects, there exists even a greater uncertainty
in the theoretical determination of the induced cross section i peripheral RHI collisions. The sit-
uation becomes simpler at higher energies and when both projectile and target arc heavy nuclet,
for which the Coulomb cross sections depend much less on the uncertainty in the minimum impact
parameter. In that case the Coulomb interaction leads to much greater cross sections than the nu-
clear interaction and for practical purposes one can disregard the nuclear contributions m peripheral
RHI collisions.

A semi-empirical dlack sphere expression for the reaction cross sections in RHI collisions, in-
troduced by Bradt and Peters (Br-50), and extensively used in the hterature, is

cp=mrg(4]” + 4,7 + 2 ), (3.1.13)

transparency of the nuclear surfaces. Nevertheless, it has been already shown (see e.g. Gr-85) that
the fit of expressions like eq. (3.1.13) with very high energy experiments are quite poor. This has
also been object of a theoretical analysis in ref. Ber-86¢. The overprediction at low projectile and/or
target masses is thought to be due to nuclear transparency effects and the underprediction at larger
masscs. might be explained by the addition of Coulomb processes. In fact, since the Coulomb

where #, ~ 1.2 fm. The overlap parameter A is meant to represent the diffuseness and partial
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fragmentation cross sections increase approximatelly logarithmically with energy, there can be no
parametrization of the reaction cross sections as imphed by (3.1.13) for sufficiently high energies.

As we have seen, there is a satisfactory agreement at the present stage between theory and ex-
periment. The experiments are and will be going on at Brookhaven, CERN and SIS (Darmstadt).
Many more accurate data will become available and perhaps need a further refined theoretical
treatment. An interesting possibility of further experimental improvements is the Projectile Frag-
ment Separator at SIS (Ge-87). The production of relativistic radioative beams (e.g. "Ne, a g+
emitter) from a #Ne projectile, to be studied in Darmstadt can be useful for radiation biophysics
(Ge-87),

Recently, Canto e al. {Ca-87) have analysed theoretically the so-called clean fission experiment
of 0.2 TeV uranium beams on nuclear emulsion. The experiments have been performed by
Friedlander et a/. (Fr-83) and Jain ef al. (Ja-84), which classified the reactions into dirty or clean
fission, according to whether fission is or not, respectively, accompanied by other tracks. It is, in
prnciple, expected that the relativistic Coulorb excitation of the projectile would be of great rele-
vance for the total reaction cross section for clean fission, which must be originated in the peripheral
collisions. Nevertheless, they found that even with the inclusion of the nuclear contribution, the
available theories are not able to explain the high values of the cross sections. A possible expla-
nation 1s proposed by Galletti, Kodama and Nemes (Ga-87), which claim that a covariant study
of the theory of Coulomb excitation, together with recoil effects can be a hint to explain not only
the cross sections, but also the angular distribution of the fragments. We indicate the above refer-
ences for a discussion of these experiments and theoretical problems.

3.1.2 Harmeonic vibrator model

The internal excitation energy of a nucleus by means of a relativistic charged particle as given
by eq. (3.1.4) does not take into account the binding energy of the nucleons. But we can account
for it very easily if we use the Aarrnonic vibrator model for the nucleus. The encrgy transferred to a
: harmomcaliy bound particle, with charge e, and mass M, , by a relativistic particle with charge Z,e

is given by (see Ja-73, p. 623)

2
ACES Y Ao () J B [K3+L2K§}, (3.1.14)
M; | v v

where the modified Bessel functions are functions of x = whfyv.

We now apply this result to the excitation of giant dipole resonances {GDR) in nuclei. In this
case we assumne that all nucleons vibrate with the same frequency w = E;,, = Ef} and, to disregard
the center of mass motion, we use the effective charge of a nucleon as (), = Nef4 for protons and

(€)= — (ZefA) for neutrons. Summing for all nucleons
2 o2 [ 2
& N \2 / g 2 NZ e
| Z(M,.)— ey > (%) |5 e
i =241
we f_)_btain

2
My €

AE(b}:ZAEi(b)— 2EEGDR:| o2 Z r\’272 (7)4 1 l:Kl lngJ_ (3.1.16)
; }' b

One can easily verify that (3.1.16) reduces to {3.1.4) m the Iimit x = wbfyv << 1, corresponding to
the low frequency limit. In this limit the interaction is so sudden that the binding energy of the
nucleons 1s unimportant and they can be constdered as free.

One can alse interpret AK(B) ] Ezpq as the probability ®(5) of exciting a GDR in a collision
with, impact parameter b, i.c.,

2F 7N,
P(py= OBR 2 17270 (3 [Kf+—1—f<§}. (3.1.17)
A v 2 y)
My € 2 ¥ b
By taking Epx = 80 Mel/ | A¥3, we obtain
®(b)=af + at + %, (3.1.182)

where
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241@_2_2( < V2 k) (3.1.188)

PIERASE
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72, N Z
a,=0.290 ‘;2;; 2 (%)Z%Ki(x). (3.1.18¢)
2

Figure 3.5. Proton and neutron vibrations induced by the passage of a relativistic heavy ion.

We can also calculate these excitation amplitudes by using the eq. (2.1.15) and the TRK sum
rule to evaluate the matrix elements for the excitation of GDR states (see Ber-86b, Ba-86a, Ba-86b).
The result will be exactly the same as that obtained above by means of a purely classical derivation.
This indicates that a, = | af; | is the probability of exciting a nucleus by transferring to it an amount
mit of angular momentum in the beam direction. Classically the amplitude @, corresponds to the
action of the electric field E, (see fig. 3.5) which generates vibrations along the beam direction.
These vibrations correspond to an angular momentum perpendicular to the beam direction, 1.
m= (0. The field E, will generate m =+ 1 vibrations and the excitation probability, by symmetry,
must be equally distributed between m == —1 and m= +1. Since E, dominates for y >> 1, the target
(or the projectile) will gain essentially internal vibrations perpendicular to the beam direction in that

limit.

3.1.3 Angular distribution of the fragments

From the dynamics of the electromagnetic excitation process, the angular distribution of the
fragments can be directly calculated. For the sake of simplicity of presentation, we illusirate the
essential points for spinless projectiles and fragments. We consider the projectile fragmentation
process A — B+ C in the system of reference of the projectile. The transition from the projectile’s

ground state
Yy= 2 1(7) Yool®), (3.1.19)

described by a B+ C cluster wave function, to the final state, characterized by the relative mo-
mentum k, , given by the wave function
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A
U= Yo®) Yeulid gir, 9, (3.1.20)
£m
is determined by the excitation ampiitude
27,6
ap =
7 hbv
where the K’s are functions of x = wb [ yv. The x- and z- components of the nuclear dipole matrix
elements are denoted by Dy, and D, respectively. As usual, these matrix elements can be separated
into a geometrical part determined entirely by the angular momentum gquantum numbers and an

overall strength factor, which gives the B(E1)-value (in the simplified model given here 1t is deter-
mined by the radial dipole matrix clement R(k)= f dr g,_\(r, k)rf(r)). One finds for a,

x[ K(x) D + yiKo(x) Df,—] . (3.1.21)

_ 222 62 . i R(kf)
&= x[(—smﬂcosqﬁ)K;(x)—?—T cosE?KD(x)] = (3.1.22)

where 8 and ¢ denote the polar angles of k.. As we saw before, the m==% I excitations are pro-
portional to first term, the m = 0 one to the second term. For wb | yv< 1 this leads to a very
strong alignment of the final fragment state, as has already been scen above (cf. fig. 3.5). Because
of the phase difference there is no mnterference of the m= 1 1 and s = 0 excitations for the angular
distributions. Averaging over the azimuthal angle ¢, one obtains

22 aZ
la = o (LY (L) LRtk 1P [Kf(x) sin’d + ylz Ki(x) cos’0 } (3.1.23)
ie., for wbyv<< 1, as will usually be the case, there is a strong tendency of emission perpendicular
to the beam axis.

Let us compare the momenturn of the fragment obtained from the decay of the excited reso-
nance state to the momentum,. obtained from the Coulomb repulsion of the whole projectile during
the collision. The momentum due to the Coulomb repulsion is perpendicular to the beam and is
given by eq. {3.1.1). The momentum due to the decay of the resonant state 15 given by

Apy=\2mg AE; ,

where AE, is the decay cnergy and m, is the reduced mass of B+ C. As scen above, the main
component of Ap, is also perpendicular to the beam axis. As an example, for
Z,=92,7Z,=8,b=15fm, andv ~ ¢, we obtain from eq. (3.1.1) Ap ~ 150 MeVic for the
momentum due to the Coulomb repulsion of the projectile. If we assume a decay encrgy of
AE, ~ 10 MeV (ie. excitation energy above the threshold for 4 - 8+ €'} and a reduced mass
my, ~ 1 GeV ( which is about the reduced mass in the case of onc-nucleon emission}, then
Ap, ~ 140 MeV/c. Compared to the incident momentum

Pup = Egplc=y— 14 GeVjc
the above quantities are only a small percent of it. This means that a study of the angular distrib-
ution of the fragments can only be achieved in very high precision measurements (see Br-85 and

Em-87). It is also proposed (Fi-87) to study y-and particle decay of GDR of target nuclel in pe-
ripheral collisions at SIS.

3.2 Multiphonon excitation of giant dipole resonances

3.2.1 Failure of first order perturbation theory

Quantum-mechanically, the relation (3.1.17) is the result of a first order perturbation theory.
In principle this is a good approximation since, roughly speaking, the Coulomb interaction time in
a RHI collision is so short that one expects at most one virtual photon can be cxchanged. In the

. _time-dependent perturbation theory this means that the excitation amplitudes must be much

smaller than one 1o justify the use of a first order perturbation method. In fig. 3.6 we plot the values
“of a, and a;, as given by egs. (3.1.18b) and (3.1.18c), for the excitation of ¥Q in the reaction
160 + 28Ph and of #*U in the reaction ®#U + 28/, as a function of the laboratory energy per
- nucleon and in the case at which they could be as large as possible, namely, when the rmpact pa-
‘rameter b is equal to the sum of the two nuclear radii R = R, + R,. We observe that in both cases
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a, decreases with increasing laboratory energy while ¢, reaches a constant value. This occurs because
4, is equivalent to the excitation generated by a pulse of light in the direction perpendicular to the
ion beam while g, is equivalent to the excitation to due another pulse in the beam direction (see
chapter 1 and fig. 1.1). For high energies the first pulse becomes negligible and only the second
one is important (see Ja-75, p. 719). One also notes that the Coulomb excitation (mainly @) of
light systems like O by heavy ions has a small amnplitude, while the same 1s not true for a heavy
system like 2¥1/. We took the smallest possible impact parameter; for larger impact parameters the
excitation amplitudes will diminish. Nevertheless, a study of the role of multiple excitation in RHI
collisions is worthwhile, since the first order effects are so large. The possibility of multiple
excitation in RHI collisions would also be of great experimental interest.

The problem of multiple excitation can be put in a tractable form if we use the simple harmonic
vibrator model for the collective dipole oscillations in the nuclei. In the exact theory of multiple
excitations of a quantum harmonic oscillator {see e.g. Me-70) one obtains a Poisson distribution
for the excitation probability of a N-phonon state

I N D

In our case, ®(h) is given by {3.1.17). This result can also be interpreted classically. The probability
P,, to excite an oscillator by an energy amount N % w is equivalent to the probability to excite N
uncoupled oscillators from a given ensemble, each by an energy amount # . In the limit that this
ensemble possesses an infinite number of osciflators, P, will be given by a Poisson distribution of
the probability to excite only one oscillator (see e.g. Al-66, p. 269). In the equivalent photon
method one can use eq. (1.6), and assume that the probability for a nucleus to absorb N photons
from the equivalent photon spectrum is given statistically by a Poisson distribution. This procedure
will also give exactly the expression {3.2.1} with ®(8) given by (3.1.17), as mentioned by Braun-
Munzinger ef af (Br-85).
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Figure 3.6. Amplitudes for excitation of the gant electric dipole resonance in 60 and U
relativistic projectiles hitting 28Pb and 28U targets, respectively, as a function of the laboratory en-
ergy per nucleon. The amplitude ayq, = | @] -0, corresponds to an angular momentum transfer

“of zero (one) unit in the direction parallel to the beam from the relative motion of the target.

- O_ne_-in_tercstmg feature is that, for the mean excitation energy, we obtain
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AE(B) = ZthPN(b)=hw®(b). (3.22)
N

This means that the energy transfer, calculated in first order perturbation theory, gives the correct
average value, even in the case where first order excitation calculations are not justified (e.g., if

®(b) > 1). This is a special property of the harmonic oscillator model.

3.2.2 Ultrarelativistic limit

As quoted above, in the high energy limit y > 1, ¢,<< @, ,and a good approximation, as

e .
long as bs%,m

ZiNMN 2y

ail :0290{7-_& ) aO= 0’ (3.23)
2
and (3.2.1) becomes
~ 1 SN — S,ff)z
PN(b) jad HKIT (?) € y (324(1)

where
2
o5 AN,

2
Y fm*. (3.2.4b)
2

S§=3545x

The total cross section is obtained by integrating over the impact parameter, starting from a mini-
mum impact parameter b, = R, where the nuclear absorption sets in:

o= 2n '[w b Py (b)db. (3.2.5)
R

If we use the approximation (3.2.4), then for N = 1 it is necessary to introduce the adiabatic cutoff
radius b,,, ~ yc/w (see eq. 1.7) in order to have a convergent integral. For N = 2 the excitation
probability decreases fast enough to ensure convergence. We obtain

=1~ 2p RAN ) 3.2.6
Ge ~ 2z8 In (wR ) (3.2.6a}
angd
N-2
k N—1
(N=2) f) J— e W |, mSu 3.2.6b
¢ T RN ¢ ;) BT M- (3.2:65)

where u = S/R?, and the last approximation is valid for u<& 1, which is generally the case for light
ions.

With these values, the maximum possible cross section ¢#? can be immediately calculated. The
cross sections for the excitation of relativistic 0, 325 and 33U projectiles in the collision with #8U
targets are given in table 3.3. We also show in fig. 3.7 the N-phonon Coulomb fragmentation cross
sections of 0 projectiles incident on 2/ as a function of the laboratory energy per nucleon. The
solid lines correspond to the use of eqs. (3.1.17), (3.1.18) and (3.2.1), and the dashed lines corre-
spond to the approximations (3.2.6). As is expected from the increase of § with the mass, N-
phonon states are excited with larger cross sections with increasing mass. On the other hand, the
amplitude of the collective motion of all protons against all neutrons are larger for light nuclei than
for heavier ones. This can be readily seen from the simple model adopted for the GDR. The dipole -

operator is given by. S e

) o
D= ; (1= Rew) =225, (32.7)

N
where R, is the center of mass and
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z
b= LN L 5
b= 2 b= 2 o (3.2.8)
i=1 =741
is the difference between the center of mass of all protons with respect to all neutrons. Assuming
that the TRK sum rule is exhausted by the GDR, one obtains

2
D= | <¥opp | DIw,> 2=NE( R L 26 V2 52 (3.2.9)
Ecpr 443
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Figure 3.7. Total cross sections for the excitation of N-phonon GDR states in 1*Q projectiles
hitting 2L/ targets as a function of the incident energy £,,. The exact results are given by a con-
tinuous Hne; the dashed lines correspond to the approximations {3.2.6).

In terms of the collective coordinate p, one has

4 p_gsy A" 32,10
p_WZ_ =u NG Sfm. (3.2.10)

It decreases like A% with 4. Thus neutrons and protons are more effectively separated in low
mass nuclei. However, the excitation cross sections are smaller. The average p-n separating distance
over a period of vibration in a N-phonon state is p™=+2N+1 p. For “O one finds an average
p-n separating distance in a GDR of about p® ~ 0.7 fin. It would be interesting to know about
the response of the nuclear system to a N > 2 phonon state. For N = 4 we would obtain an average
p-n separating distance of p® ~ 1.2 fim in 10, which is a quite high value, since this is an averaged
quantity. Indeed, the excitation energy of such a state would be &%= 4E;,, ~ 127 MeV which -
is exactly the energy necessary to separate all protons from all neutrons in-1%0. In the simple har-
monic model, the maximum separating distance of the p-n vibrations, i.e. the amplitude of the vi-
bration, is given by d= V2, p, which implies that in a N = 4 state the protons and neutrons would
separate beyond the range of the nuclear forces. Since the cross sections for the excitation of this
state by means of the electromagnetic interaction in a RHI collision with a heavy target are of or-
ders of milibarns this process could be of great importance for producing neutron-rich fragments.
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160 325 23877

N=2 3.1 mb 17 mb 1.28b
N=3 22 ub 0.25 mb 0.14b
N=4 0.16 ub 4 ub 15 mb

Table 3.3. Ultrarelativistic limit of the total cross sections for N-phonon GDR excitation of
1600, 32§ and 220/ projectiles with #*{/ as the target nucleus.

The usual GDR is a one-phonon state of angular momentum I (assuming a spin zero nuclear
ground state |0 >)

N, lp>=¢ 10>, (3.2.11)

where ¢ denotes the creation operator for a GDR phonon with angular momemtum projection
. The operators ¢ and ¢, satisfy the usual boson commutation relations. The two phonon states
|2, IM >, coupled to good angular momentum /, M with / = 0 and 2, are given explicitly by (see
e.g. Al-75, p. 197)
2, IM>=(1/V2) ) < M > ¢ ¢f 10> . (3.2.12)
'

These states are explicitly given by

12, 00>=(1/v6) (2] <1~ ¢ ) 10>

(3.2.13a)

=23 11,0,1>— (1/¥3) 020>,

[2, 20> = (lf\/3_) (c0+ o +¢ c_ﬂ) 0>

_ (3.2.136)

=273 1020>+ (1/~3) 11,01> ,
12, 21> =¢, ¢ 10>=10,LI>, (3.2.13¢)
12, 22> = (1/V2) ¢ ¢ 10>=10,02>, (3.2.13d)
and similarly for M = — 1 and —2. Here we have introduced the uncoupled normalized states

in_,, ay, 1 >, where n, denotes the number of phonons with angular momentum projection p .

Since for y 3> 1 the m= + 1 excitation amplitude completely dominates over the m= 0 gxcitation,

we can put ¢ ~ 0, and a,, =y, to obtain the excitation probability P, ;s of the uncoupled

states |, 1y, 7 > as

J—— 3_212
e o (3.2.140)

Popp=Pop="52"€ ™" -

The other combinations give only a negligible contribution. From eq. (3.2.13) we obtain for the
excitation probability P, of the angular momentum coupled states |2, /M > '

1 4 —2 (3.2.145)
Py o= ¢ t,

R
Proo=31 ¢ t,
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The total N = 2 excitation probability adds of course up to the value P,_, which has already been
obtained above {eq. 3.2.1 with 2¢?= ®). From (3.2.14a) and (3.2.14b) we conclude that the ratio
of excitation of 0% and 27 states is 1:2.

The possible signatures of the N > 2 phonon states remain a speculation, specially what the
specific decay widths and decay channels will be, like the probability of formation of polyneutrons
and other exotic phenomena. For more details about the possible experimental identification of
these states, see the proposals of Braun-Munzinger ef al. (Br-85) and of Emling et al. (Em-87).
The study of polyneutrons at SIS is proposed by Hilscher er af. (11-87). Yet it 1s intercsting and
necessary to discuss the influence of damping of the GDR motion on the excitation process in more
general terms.

3.2.3 The influence of damping: a dissipative quantum vibrator

The giant dipole state is a very short-lived state. Being high in the continuum, it couples
strongly to other more complicated states and eventvally decays, mainly statistically by particle
{(neutron) emission. A typical width of I' = 5 Mel’ corresponds to a lifetime of 1,,,, = 107 scc.
The width of the N-phonon (¥ = 2) GDR states can be expected to be even larger. In a situation
where the lifetime of a state is comparable or even smaller than the collision time, an essential
modification of the usual description of Coulomb excitation has to be introduced. This was ac-
complished by Weidenmiiller and Winther (We-71). The nuclear states are divided into bound and
continuum states, direct excitation of continuum states as well as continuum-continuum coupling
is neglected. In this case, the usual coupled equations for the time dependent amplitudes Cy (£) read

dCx
5 Zn ()

x :Z<N; M | M By B iR cM(z)Jrf dt’ Kyl(t—1)Cx(t"), (3.2.15)

M
where the function K takes the coupling to the more complicated channels into account (in our
example, the N-phonon states are identified with the bound states of the nucleus; all the compli-

cated decay channels of these states correspond to the continuum, which is assumed to be excited
only via the GDR-doorway states). This function is given in terms of the width I (£) by

s %) b Ex
Ki.\,(z—:’}:—z;- dey ¢V ”rN(oH- ;). (3.2.16)

. r .
For I',, = const., one obtains K, (t— )= —i—2 (1 — t ') and the coupled equations (3.2.15)
become 2

dCy(t ; ; I
DSy Vi BB e iy it Y cu(n). (3.2.17)
M 2 N
M

)
T

Since ¥(1) is very well known for the Coulomb interaction and the nuclear states | N > are assumed
to be solutions of the harmonic oscillator with energies £, = N#w, the excitation amplitudes
Cy () can be calculated from (3.2.17) and the initial condition Cy( —oo}= dy,. For that aim, more
about the values of the widths 'y should be known. Up to now we only kmow that
[,=0and ', =Tz The solution for [, = 0 {N=0,1,2,...) was given in the [ast section.

As a consequence of having I',, # 0, the total probability P, =2 | Cy(1) |? is no longer con-
served because flux is now put into the decay channels. Multiplying eq. (3.2.17) by Cj and its
complex conjugate by Cy(¢) and substracting the results, we obtain for the change of the occupa-

tion probability };N(t): | C, (017

~~

dPy (1 (B Ea) t Ty
N( ) _ }%Im { Z < Ni V(I} “Vf> ¢ (Ex— Eany tih CN C_M} _ _\‘"PN([)' (3.2.18)
M

dt h

The first part of the RHS of eq. (3.2.18) describes the redistribution of flux in the various channcis
N during the collision. If only this term were present, we would have conservation of the total

probability P, ()= 3 P, (1), since ¥{t)is hermitian. This term leads to a change of the occupation
probability given by ¥

Gylt)= ?12" Im { Z <NV M > BBt o g c,;.i(z)} . (3.2.19)
M

The non-hermitian part of the interaction leads to a loss out of channel ¥, given by
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LN(r)=TFN(z), (3.2.20)
i.e., we have the balance equation
dPy (i
aﬁft() = Gy Ly(D). (3.2.21)
This equation can also be written as the integral equation
~ 1 ,
PN(t)zf TR G YA G s (3.2.22)

—oQ

where we used the initial condition ISN( —o0) = by, A further insight into eq. (3.2.21) can be ob-
tained by summing it over all states:

dEN(f)
Z — > Ly, (3.2.23)
N N
Defining the flux function
! R U ,
FN(l):f LN(I’) df =“}‘,’__J‘ PAI(I’) df y (3224)
the integration of (3.2.23) can be wiitten as
(3.2.25)

1= Py(0+ . Ey(.
N N

Due to the exponential decay of the states with N=1, we have for ¢—oco the limit
Py(o0)=dyg Pyloo) and

1= Poloo)+ ) Fy(oo). (3.2.26)
-

This means that for ¢ — oo there is a probability to find the system in the ground state given by

1;0 (oo) and a probability that 1t has been excited and decayed through the channel NV which 1s given
by Fy(co). If the widths [y are known, eq. (3.2.17) can be solved and from eq. (3.2.24) the con-
tribution to the fragmentation through the channel N can be deduced.

E, (GeV]nucleony | 6 ol a2 o @ a'd
0.5 36 mb 34 mb 0.13mb | 0.12mb 0.5 ub 0.43 ub
2 0.14b 0.13b .81 mb | 0.67mb 4.9 ub 3.9 ub
10 043 b 041 b 2.4 mb 2.2 mb 18 ub 16 ub
100 1.0b 1.0b 3.1 mb 3.1mb 23 ub 22 ub

Table 3.4. Cross séctions for N-phonon Coulomb excitation of 0 in the reaction 0 + U,
The values corresponding to (o) take (do not take) into account the widths of the states (see

text).

An approximate solution can be found in the casc of linearly increasing widths with increasing
energy, i.e. [y= NI . An explanation for this possibility in terms of N-particle-N-hole excitations
was given by Baur and Bertulani (Ba-86e). Following the classical interpretation leading to the
Poisson distribution as discussed in section 3.2.1, the excitation probability of the state |N > is
equal to the excitation probability of N uncoupled oscillators, each having a decay width of I, In-
stead of eq. (3.1.16), the energy transferred to a damped oscillator will be given by (see Ia-75, eq.
13.24) e
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with x=wb/yvand y =T [hw=T | E;pp In terms of g,{x, n) the excitation probability in first
order is, as in (3.1.18), given by

(3.2.28)

Ob)=ak +al+al. (3.2.29a)
with
~y  2F ZiN, Z
2 GDE 2 1 2 £2 c 4 2
ag = o — gO(x,r;}KO(x), {3.2.295)
mNc2 Ay ("V)
and
~ E ZIN, Z
G} = HODR o2 1A2 2Ly 12 gl ) KXx) . (3.2.29¢)
2 y

iy €

gm(x,'r))

.Figure 3.8. The adimensional functions g,(x, #) as defined by eq. (3.2.28). In the limit of zero
widths, # =T/ Ezpp— 0, we have g (x, n)— L e
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The functions g,(x, #) are plotted in fig. 3.8 fory=01and #y=0.3 When#n— 0,then g, — 1 and
we obtain the same results as given by egs. (3.1.18). For » # 0, then we observc that g, will have
the greater influence, specially for x << 1. Since, as we saw m 'section 3.1. 2, g,<< q; in the himat
of high enecrgies of colhsmn we expect that in this limit the influence of the widths of the states in
the cross sections calculated in section 3.2.2 will be very small. Inserting eqs. (3.2.29) in the egs.
(3.2.1) and (3.2.5) we find the results given in table 3.4 for the reaction 0 + #*U as a function of
the laboratory energy. One observes that the inclusion of the widths of the states modifies
appeciably the previous calculations only for Iow energies and for large N. In the hmit y = 1, the
interaction is very sudden and the widths of the states have practically no influence on the excitation
process. In that limit the theoretical results of section 3.1 are of enough accuracy for application in
RHI collisions. However, if the widths of the states are too large, then this approach 1s unrcalistic
and, moreover, the experimental detection of those states will be very difficult.

As a final remark, we observe that not studied here are the interesting possibilities which arise
in the channeling of relativistic heavy ions in crystals. Due to the periodicity of the crystal lattice
this may lead to resonance effects which influence the cross sections and which may be of use for
the production of monochromatic beams of highly energetic neutrons. An analysis of these effects
is given by Pivovarov et afl. (P1-80, Pi-83, Pi-87 and references therein).

3.3 Production of pions

Another very interesting subject is that concerning pion-production in RHI collisions. The pions
produced are supposed to be a source of information of the violent hadronic processes occuring in
the central collisions. As implied by the relation (1.7) more and more equivalent photons become
available for energies £, > 140 Mel corresponding to the photonuclear pion threshold, as one goes
to higher beam energies. Above this energy the total photonuclear cross section is dommatcd by
pion production and can be approximated by

. VA N
0= Agr(©) [ 26y oot * 0 i) ] . (3.3.1)
Experimentally it is found that 4, is approximately independent of «, and shows a pronounced
shadowing effect 4, ~ 4%, with ¢ = 0.6 — 0.9. We assume, for szrnphcrty

Ty, proton = 9y, neutron = Oyps (3‘3‘2)
and we take o = 0.7. Then, pton production in RHI collisions through the electromagnetic inter-
action can be approximately written as

e 07 Ey e 0.7 dE,
(XY > nXY) =~ rE) A4 ) — mE) AV o (BN, (333)
0.14 GeV E, 0.14 GeV “y

where n, corresponds to the equivalent photon spectrum generated by the nucleus X and that will
cause the production of pions by the interaction with nucleus 7, and », corresponds to the mverse
case. We use n# = M| since the pions are mostly produced through the nucleonic excitation to a
A-state, which we assume to be of magnetic dipole origin. But the exact treatment of the multipo-
larity 1n this process is unimportant, since for the relevant cquivalent photon energies which lead
to pion production, the equivalent photon numbers are all approximately given by eq. (2.5.6). We
used -the experimental data of Armstrong et al. {Ar-72) for o,,. The results of the integrations in
(3.3.3) is shown in fig. 3.9 for the reactions “Ca + *Ca and sy + 3807 as a function of y (roughly
B | Ay =y GeV, for y > 1 ). There is a steep increase of the cross sections until a stage where
they increase approximately proportional to (4, Zz + 4, Z2) Iny. The cross sections at this stage
are quite large and for very heavy systems like 23S‘U + 2:’SU it even can compete with those arising
from hadronic interactions. The main difference is that, while in a given Coulomb collision
{b> R, + R,) the pion multiplicity can be at most one, ina central collision a large amount of pions

can be produced.
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Figure 3.9. Coulomb production «cross sections of pions in the reactions
WCa + ¥Cq and BBY + 28/ as a function of the relativistic Lorentz factor y.

3.4 Dissociation of light ions in coincidence experiments

3.4.1 Break-up of weakiy-bound nuclei in high-energy collisions

The coincidence experiments for break -up of loosely bound nuclei in high energy collisions can
also give precious informnation about the stracture of these nuclei and about the related
photonuclear reactions. For instance, the cross sections for radiative capture of «-particles,
deuterons and protons by light nuclei at very low relative energies are of particular importance for
the understanding of the nucleosynthesis of chemical elements and for the determining the relative
elemental abundances in siellar burning processes at various astrophysical sites {see e.g. Fo-84,
Ro-78). However, the direct experimental determination of the cross sections at astrophysically
relevant energies under laboratory conditions is rather difficult or even precluded, mainly as the
Coulomb barrier strongly supresses the cross sections for the reactions of interest. For example, the
3fle (He, v)'Be reaction, which at solar temperatures affects the solar neutrino flux and bears
strongly on the solar neutrino problem {see e.2. Ka-84, 0s-82, Os-84), is expenimentally studied
(0s-82, Os-84, Na-69) down to c.m. energies F., = 165 keV, while the cross section is actually
needed at Eq, = 1— 20 keV. A similar situation is found for the 2C(x, y) %0 reaction (Ke-82,
La-85) which is important for the stellar helium-burning process and where the values of the low-
energy cross section (at E.,, ~ 0.3 MeV comresponding to temperatures of 2 x 108K) are actually
a matter of controversial discussion presently. In cases of nonresonant direct capture reactions the
energy dependence is dominated by the Coulomb barrier penetration, which 1s usually factored cut
by defining the astrophysical S-factor

4
S{Ecpn) = Ecar Ocape e (3.4.1)
where
7. 750"
C —] 4}.._.._%8_ (3-4-2)
R Vear
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is the usual Sommerfeld parameter. This S-factor shows a smooth energy dependence and scems
1o be adequate for an extrapolation of the measured values to astrophysically relevant energy ranges.
But in most cases of interest the extrapolation covers several orders of magnitude and is particularly
suspect if resonances and subthreshold resonances are expected to be present in the considered re-
action (see Ro-78). In addition, the extrapolation needs often considerable theoretical support and
bias, and despite of strong efforts to understand nuclear reactions on theoretical grounds, it appears
to be generally impossible to predict the astrophysically interesting cross sections with sufficient
accuracy.

In view of this sitvation, all dedicated cfforts which are able to explore additional experimental
information on the quantities determining low-energy nuclear reaction cross sections are of con-
siderable interest. Recently the investigation of continuum stripping processes has been discussed
(Ba-84, Ba-85, Ba-86f) as a possible method to overcome the problem anising from the Coulomb
barrier. However, the method involves a theoretical reaction model which might cast some doubts
on the results.

Baur, Bertulani and Rebel (Re-85, Ba-86¢ and Ba-86d) have proposed a different approach for
the investigation of the electromagnetic transitions between a bound state of two nuclear particles
and continuum states at small relative energies. The proposal suggests to use the nuclear Coulomb
field as a source of the photodisintegration processes. In fact, instead of studying directly the
radiative capture process

btc—a+y, (3.4.3)

one may consider the time reversed process {a being in the ground state)
yta—-b+ec. (3.4.9)

The corresponding cross sections are related by the detailed balance theorem

. 2
22/,+ 1) ky

olb+ c—a+y)=—— . afla+y— b+ ¢). {3.4.5)
Qi+ D@+ W2y,
The wave number in the (b + ¢) channel is
2pp E
Ky SHR M {3.4.6)
R

with 1, the reduced mass, while the photon wave number is given by

E
k= % _ m%r_@ (3.4.7)

(neglecting a small recoil correction) in terms of the Q-value of the capture reaction (3.4.3). Except
for the extreme case very close to threshold (k,, — 0}, we have &k, << k¢, 50 that the phase space
favors the disintegration cross section as compared to the radiative capture. However, direct meas-
urements of the photodisintegration near the break-up threshold do hardly provide experimental
advantages and seem presently impracticable (Re-85). On the other hand, the copious source of
equivalent photons acting on a fast charged nuclear projectile when passing the Coulomb field of
a (large Z) nucleus offers a more promissing way to study the photodisintegration process as
Coulomb dissociation. As an example we cite the reactions

7.88*{' 208Pb_>’x+ 3He+ ZOSPb_‘ 1.58 MEV,

160 4 W8pp oy 5 120+ 28pp 7,58 MeV .

Figure 3.10 indicates schematically the dissociation reactions due to the Coulomb and to the nu-
clear inter_a_ct_ic_)n.
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Figure 3.10. (Upper figure) Coulomb dissociation a— b+ ¢ in the field of a target nucleus
(7). {Lower figure) Dissociation due to the nuclear interaction on the target surface.

At sufficiently high projectile energy the two fragments b and ¢ emerge with rather high energies
(around the beam-velocity energies) which facilitates the detection of these particles. At the same
time, the choice of adequate kinematical conditions for coincidence measurements allows to study
rather low relative energies E..,, of b and ¢ and to ensure that the target nucleus stays in the ground
state (elastic break-up). By repeating the experiment for different projectile energies and different
angular measurements, and by using eq. {2.7.1) one can extract the values of the photonuclear cross
sections for each multipolarity which contributes to the break-up. A more detailed analysis of the
experimental conditions for such experiments is shown in refs. Ba-86¢, Ba-86d, and Re-86. The
most favorable theoretical and experimental conditions seems to be practicable for energies around
50 MeV/nucleon.

Another interesting possibility is the study of the nuclear matter distribution of extremely
neutron-rich nuclel like, e.g., 1'Li. Some high-energy experiments { Ta-83a, Ta-85b, HK-87) for the
break-up of such nuclei are beginning to be available, and seem to be a very promissing field of
study of such nuclei. Nevertheless, these experimeents up to now have been inclusive ones, 1.e., only
one fragment is observed. Therefore, a summation has to be done over all unobserved channels,
leading to a partial loss of information about the process. More useful would be the exclusive ex-
periments, where the dissociation process of the projectile is separated from the background of other
reactions by means of the coincidence detection of the two outgoing fragments together with a si-
multaneous measurement of their energies. Perhaps, one could also determine the momentum
transfer in these reactions by a measurement of the recoil energy of the target nucleus. Although
these experiments are much harder to perform in high energy collisions, they certainly seem to be
realizable and there are some experimental proposals in this direction (see, e.g., Re-87, Ge-87, and
Br-85).

Next, we shall use some simple assumptions about the structure of the weakly bound nuclei
composed of fwo clusters , disregarding some more specific details, for sake of simplicity. We use
the difraction dissociation theory 10 account for the nuclear interaction. This theoretical approach
has been introduced by Akhiezer and Sitenko (Ak-57), Glauber (Gi-55), an Feinberg {Fe-55), to
describe the dissociation of high-energetic deuterons. Also important in this context is the so-called
stripping rections in which one of the clusters of the projectile suffers a strong inelastic collision with
the target while the other is diffracted inelastically (G1-55). The cross sections for the stripping re-
actions depend much more on the exact knowledge of the nuclear structure and can be only ap-
proximately calculated (Fi-70a, Fi-70b). The following study is complementary to several works
on the fragmentation of relativistic particles. We refer, for example, to the works of Hiifner and

- Nemes {H1i-81), Faldt (Fi-70a), and of Evlanov and Sokolov {Ev-86a, Ev-86b).
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3.4.2 Amplitudes for diffraction and Coulomb dissociation

The amplitude for the dissociation of the incident projectile on a target nucleus, assumed to stay
in its ground state, in the eikonal approximation is

fao, Q= [ 5O Tm), (343

where k is the center of mass momentum of the projectile, @ is the momentum change in the
scattering () = 2k sin{d/2) =~ k8, where 8 is the scattering angle of the center of mass), q 1s the
relative motion momentum of the outgoing fragments, and k, and k, are the momenta of the cor-
responding clusters with masses s and my,, respectively. In  non-relativistic  collisions
q = (mk, — mk)(m, + i) , while for high-energetic collisions g can be determined by the invariant
mass of the two fragments. I",(b) is the profile function for the dissociation. In the approximations
we shall use, it contains contributions from difraction dissociation on the target surface, and from
Coulomb dissociation for impact parameters b larger than the sum of the nuclear interaction radii.
Assuming a sharp boundary target, it can be written as I';(b)= 'y (b} + I" o {b), where I, (b) van-
ishes for 6 > R and I'.(b) vanishes for &< R. Therefore, we obtain

fala, Q)=fyla, Qr+ /el Q). (3.4.9)

The total dissociation cross section is given by
2 d’q
do = 1| fz{q, Q)17 d2——1, (3.4.10a)

(27)
where
2 ~ 27 0dg (3.4.10b)
k

for high-energy collisions.
The relative motion of the clusters within the projectile is described by the wave function

Cr
u’ff(r)=\f;—n . (3.4.11)

where # = »/2ue/k? is determined by the separation energy ¢ of the clusters (1 +2) and p 1s the re-
duced mass of the system (1+ 2). The relative motion of the clusters releascd after the disintegration
of the projectile is described by the wavefunction

i e-—fqr
ig—y ¥

far (3.4.12)

Yilr)=e

These wavefunctions correspond to the assumption of zero-range nuclear forces between the clus-
ters in the projectile. They are very useful because most of the following calculations can be per-
formed analytically. An extension to the use of more realistic wavefunctions is straight-forward.
They form a complete set of orthonormal functions satisfying the relation

® , 1 * , ,
T [yws;eda=se—r.

The use of the above wavefunctions presupposes a simple model, where the Coulomb repuision
beiween the clusters are not taken imto account {as would be important in systems lke
a+3He, d+ p, ..). The Coulomb repulsion between the clustérs must loose its importance for
high relative motion after their dissociation.

By using the energy and momentum conservation laws, we can also express (3.4.102) in terms
of coincidence cross sections which are of interest in inclusive experiments. One finds

& H ky by 2
= , ; 3.4.13
B ok | fale, Q) (34.13)

where Q, and (2, are the solid angles of emission of the two fragments, and £, is the energy of one
of them. But, since the theoretical analysis is more transparent by using the variables q and Q, we
shall keep them, and use eqs. (3.4.10) in what follows.

The amplitudes for diffraction dissociation of deuterons by a black nucleus where calculated by
Akhiezer and Sitenko (Ak-57). The extension to the dissociation of other weakly-bound nuclet gives
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J(OR
OR) rp (8,0, a0+ F(8,0, 9]

(3.4.14)

sz f 20 J(Q’R) J1(:g_§ ;R)

where 8, = mpfl{m, + my), 8, = [, + my) , R= 1.2 A5 finis the radius of the target nucleus, and

F(5,Q-Q7 q)

1
7’ +(Q - q)

1 q+Q+in]
TS " [quHn }

The first term in eq. (3.4.14) corresponds to the impulse approximation, 1.e., the mdependent scat-
tering of separate clusters by the target. The second term corresponds to the simultancous scattering
of the clusters, also called by eclipse tersm. In order to describe the differential cross sections, we
shall keep the impulse approximation, which gives resonable results for small scattening angles. But,
in order to obtain the total cross diffraction sections we have to include this term, since it decreases
more slowly with increasing (), and becomes the dominant contrbution to the scattering amplitude
(3.4.14) for larger values of Q.

The amplitude for Coulomb dissociation is given by (2.3.14), which we shall multiply by a
factor in order to have the same normalization for f. and f,. We shall restrict ourselves to the
electric dipole and 1o the electric quadrupole modes, which are the most important ones. We obtain

FQ =] dr 430 ¢ brin)= Bon {
- (3.4.15)

m(“cg“){*’” + 1 ol R) Gpplefv) M(EL, m),  (3.4.16)

fC(qs

where
2
o=z + E;= 2 (47 + 49 (3.4.17)
2

is the sum of the absolute value of the binding energy and the kinetic encrgy of the relative motion
of the separated clusters. The function G, are tabualted in the appendix A, and y,(R) is given
by (2.3.12) with ¢ = Q.

The functions M(E£Fm) are given by egs. (2.1.14). Since the energy transferred to the
dissociation of clusters (1+2) is rather small, we can use the so-called long-wavelentgth

approximation, and obtain
M (EZm) = Z Zye f Wr) 7y Yo (0 W, () d'r, (3.4.18)
k=1,2

where r, = B,r, r,= — B,r and i, = — n, are the position and direction of orientation of the clusters
1 and 2 in the center of mass of the projectile, and Z, arc their respective charges. Inserting the
wavefunctions (3.4.11) and (3.4.12) in (3.4.18), expanding it in muitipoles, and using the integral

4
O nr 41, 21 (2g)
J e’ffr %1]{(qr)dr=2—m“-1-—-’
0 n"+4°)
we obtain
4
M(Efm) = e 2my (=) #1271 [Ziﬁfpjr(—i)fzzﬁf](—zj?;{—:i— Yim (@), (3.4.19)
N+ q

We observe that for §, Z, = 8, Z, there will exist no electric dipole contribution to the Coulomb
dissociation.. This is a well known result and can be readily understood: in this case the electric

‘dipole field pushes the two clusters with the same acceleration in the same direction, and does not

lead to their separation. In such situations the E2 multipolarity will be the most effective one for
dissociating the projectile. This result is a direct consequence of the assumption of a cluster-like

' '_structure for the projectile. For more complicated nuclear wavefunctions a deviation from this result
.is to be expected. For example, in the reaction y + %0 — « + *C one indeed finds expenimentally
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an appreciable suppression of the E1 multipolarity, but not completely. In fact, it is found that both
multipolanties play important roles in such reaction (see, e.g., Re-85).
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Figure 3.11. The differential cross section d%s/d*q dQ for the dissociation of the deuteron, inci-
dent on *Ph with cnergy £, = 200 MeV. We used g=», Q= 1/R and 8 = 90°. ¢ is the angle be-
tween @ and the component of ¢ perpendicular to the incident beam.

As an application of the formulas above, we plot in figure 3.1} the differential cross section
d'e[dPq dO for the dissociation of the simplest cluster-like nucleus, i.e., the deuteron, incident on
2EPhH with energy E, = 200 MeV. We take g =1, @ = 1/R and 8 == 907, corresponding to the emis-
sion of the fragments perpendicular to the beam, in the reference frame of the projectile. ¢, is the
angle between € and the component of q perpendicular to the incident beam. We observe that the
Coulomb contribution, C, is approximately proportional to cos ¢,. The nuclear contribution, N,
and the interference, CN, between them, are also shown. The interference tend to be destructive,
oscillating around zero with approximately the same amplitude. This is a common trend, valid for
all values of q and Q, as can be easily checked by using the formulas developed above.

Next, we shall integrate (3.4.10} over the angular distribution 2, of the relative motion between
the fragments. We obtam the differential cross section d?rfdgdQ, which can be related to
de[dE, dQ, where E_is the energy of the relative motion of the final fragments and € is the solid
angle of scattering of their center of mass. By using the impulse approximation, and eq. (3.4.15),
we find for the nuclear contribution, after performing some simple integrals,

da 2 27} 2 { 1
N _ 8 R2 L 2 oR)
dg dQ 0" [+ g+ 8,07 | [n* + (g B, 0]

e 1 i M
[ +(a+ 8,07 [0 +(a~8,07] 200 (n" + 4"+ B18,07)

2
+ zM; 2 (WN_%M)“L 2 12 2 (?‘i +N2)}’
4907 (q"+n") 40°(q" +n7)

(3.4.200)

where
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Figure 3.12. The double differential cross section d’¢/dq dQ for the dissociation of the deuteron,
incident on *Ph , with energy E,= 200 MeV, for ¢=y, and as a function of QR. The curves la-
beled by C, N'and CN correspond to the Coulomb, nuclear, and Coulomb-nuclear interfercnce
coniributions, respectively. S

The Coulomb contribution is easily obtained from the orthomomality of the spherical har-
monics and one finds after inserting (3.4.16-19) in (3.4.10a), integrating over {2, and summing over

I'D, o
N 2 2 2 :
doc _dop  49m (3.4.21a)
dgdQ dqdQ dgdQ
where
dch ZZ Oc2 Xl 2(9 c 2
L S (812, - B2ZaY n O R 0+ —(‘32'—/3%, (3.4.218)
dq dQ) y P NGRS
and

316 | dXqwie) _
2 (}?2+ q2)6
(3.4.21¢)

The E1-E2 interference is lost after the integration over €. However, in coincidence experiments,
where dic|d?q d() is measured, the E1-E2 interference is important.

dgdQ 15 2 )

dopy 512 Z3 e, 2, 32 il B 2, 22 2
t= (£ Bz + B2 QRY 2+ 2=V i+
1Y 7
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Figure 3.13. The double differential cross section d%s[dg dQ for the dissociation of the deuteron,
incident on 2%Ph | with energy E, =200 MeV, for 0= 1R, and as a function of g/n. The curves
fabeled by C, N and CN correspond to the Coulomb, nuclear, and Coulomb-nuclear interference
contributions, respectively.

The interference term between Coulomb and nuclear amplitudes can be found by computing
numerically the integral in the expression

dZUCN _ qu * *
R f{;@vaLﬂ?fC) o, (3.4.22)

In figure 3.12 we plot d’c/dg dQ for the reaction d + 2PPh -+ n+ p+ P Ph, at deuteron energy
E,= 200 MeV, for ¢ =1#, and as a function of QR. The Coulomb, C, the nuclear, N, and the in-
terference, CN, coniributions are shown separaiely. One observes that the Coulomb contsibution
is peaked for low values of Q. Actually, it peaks around Q2 ~ w@/yv, so that for increasing beam
energies the peak moves to lower values of @, i.e., to more forward angles, and will also increase
in height. This is in contrast with the nuclear contribution, which within our approach will always
extend fo large values of Q, being peaked around 03 ~ 1/R. This behaviour may help to separate
the nuclear and Coulomb dissociation from the measurement of the scattering angle of the center
of mass of the two-cluster system in intermediate energy collisions. Unfortunately, with ncreasing
energy both nuclear and Coulomb dissociation will lead to very forward angular distributions, with
fmex ~ 1/kR <1 |, what makes the experimental measurements very difficult i0 proceed. For

2.7y 7= 1, the effects of Coulomb repulsion between the projectile and the target will considerably
change the Q-dependence of the Coulomb dissociation amplitude. A study of these effects based
on semiclassical calculations has been performed on chapter 2. In the present context, it implics in
the use of Coulomb distorted waves, instead of plane waves, in the caiculation leading to the am-
plitude (3.4.16). Nevertheless, the relative behaviour between the Coulomb and nuclear angular
distributions remains qualitatively the same.
~ In figure 3.13 we plot d?0]dg dO for the same reaction as above, as a function of g/y and for
Q= 1/R. As a general trend, for fixed Q, the Coulomb dissociation is more pronounced for
~ y , decreasing very fast for large values of g, while the nuclear dissociation peaks for ¢ ~
and decreases slowly with increasing values of q. In both figures 3.12 and 3.13 we see that the
Coulomb plus nuclear interference is very small, being some orders of magnitude smaller than the
nuclear or the. Coulomb contribution.
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3.4.3 Cross sections for the dissociation of weakly-bound nuclei

Inserting (3.4.14) in (3.4.10) and using the orthonommality conditions of the wavefunctions, the
mtegration over q can be easily performed in the impulse approximation. One gets

do i 2R 2 3 2 i8,0x —if,Qr2
o= JHOR Ir; L 2%
a0 0 H{OR) fdrivz(r)l fe +e !

— j Lr g, 0] LAy e“'ﬁzo"]iz} ,

which gives

2
a;QN = 42‘;2 le(QR) {I + EQi arctan (%)

2
— QQLZ [é arctan (ﬁzing ) + é arctan (522}? )}} .

Using (3.4.23) we find that for # — co, corresponding to infinite binding energy of the clusters,
dey 1dQ — 0 . For y — {0, corresponding to very loosely bound nuclet,

(3.4.23)

do y 4nR?
— - JIOR),

which means that in this case the total nuclear dissociation cross section will be just the sum of the
elastic diffraction cross section for each cluster separately. Both limits is what one expects from the
simple arguments of the diffraction dissociation theory. But, for large values of Q the impulse ap-
proximation is not more reasonable: the second term of eq. (3.4.14) will increase in importance for

O = n. Therefore, to obtain the contribution of the diffraction dissociation to the total dissociation
cross section, one has to integrate (3.4.10) numerically by using (3.4.14) and (3.4.15).
By using the integral

fxfn Qdo= R’ F xff;( @R x) dx = RTZ (KO Kl - K] (3:429)
1

a4

where &= wR}yv, we find for the Coulomb dissociation

d:
doc _dop | dom (3.4.25q)
dq dq dq
with
do g 2 2,0 s ng viER o :
LB 128 2257 (VB 7, — BoZyf —d e Ky Ky — 2 (K= kD), (3.4.25b)
dq v 7 24 52 7
m +4q7) ¢ :
and
dopy _ 512 2202 (S5 (B2, + B2,) ng’(w|cf
dg 15 r* Uy 11T Palz) T T _
0+ ) (3.4.25¢)
2 2 2, 22 S AP '
X TK‘[*}“{Z_V/C) éKOK]——ZT(Kl‘—KG) .
y ¢ o _
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Figure 3.14. Dissoclation cross sections for the reaction "Be + Ph— o + *He + ™PbH as a
function of the laboratory energy per nucleon of the *Be-projectile. o, represents the nuclear
diffraction dissociation, o . (£1) the contribution of the clectric dipole multipolanty to the Coulomb
dissociation, and ¢ (E1 + E2) is the sum of the electric dipole and of the electric quadrupole con-
tributions.

The total Coulomb dissoctation cross section ¢ .= ¢z + 05 can be obtained by a numerical inte-
gration of (3.4.25),

In figure 3.14 we show the Coulomb and nuclear dissociation cross sections for the reaction
"Be + M™Ph S g+ e+ 23Ph as a function of the laboratory energy per nucleon of the "Be
projectile. In the calculation of the Coulomb dissociation cross sections we use
R+ nZ,7Z,e* m, vy, instead of R, as the minimum impact parameter, to account for the Rutherford

bending corrections {see section 2.7) at energies £,/nucleon < 100 MeV. We observe that the EI
contribution is larger than the 12, and alse than the nuciear dissociation. In such a case the study
of the experimental data is simplified, since one can disregard the nuclear dissociation and assume.
all being due to the Coulomb dissociation, which is more accurately described. '

In figure 3.15 we plot the values for the dissociation cross section i the reaction
8Li+ 2Ph— g + d+ 28Ph. In this case, and within the simple cluster model, the EY component
of the Coulomb dissociation vanishes and only the next component, E2, will be effective in order
to dissociate the nucleus. This makes the Coulomb cross section smaller than the nuclear one and
the separation between these two contributions have to be measured on the basis of the angular
distributions, as discussed in the last sections.

One observes in figures 3.14 and 3.15 that the Coulomb cross sections increase with energy up
to a maximum around approximately 100 MeV per nucleon, afterwards it decreases a little and then
begins to increase with energy again, approximately proportional to In (£,,{4), for very high eper-
gies. This behaviour was also found in the cross sections for the excitation of giant resonances, as
for example in figure 3.3. The reason for that lies on the fact that the effects of Rutherford bending
and of Lorentz contraction compete the in the region of some hundreds of MeV per nucleon. 'With
increasing energy, the nuclel come closer together, where the fields are stronger, what increases the
probability that they will get Coulomb excited. That is the reason why the cross sections increase

with energy for E 1 < 100 MeV/nucleon. Above these energies the trajectories are approximately
straight-lines, and since the collision time decreases with energy, the momentum transtered from the - -
electromagnetic field to the internal degrees of freedom of the nuclei dimmishes. That 1s the reason

. for the decreasing of the cross sections for £, = 100 MeV/nucleon. But this effect will not continue

~for too Tugh energies because the electromagnetic field becomes contracted and stronger by a factor
equal to'the Lorentz parameter y, 1. e., £ == yZe¥fb. Since the momentum transfer is proportional
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to the product of the strength of the electromagnetic field and the collision tume, which is approxi-
mately At =~ bfyc, it will be constant, independent of the beam energy. These simple arguments
work for impact parameters up to a maximum value given by the adiabatic cutoff b ~ ycfw, where
fw is the excitation energy. That is the reason for the logarithmic increase of the cross sections for

relativistic energes.

] 1 IIEII!l T 1 l[llll' T 1 llllilt T ET v PrTT
2 6
10%L i % s 049+ ™ %y ;
o - i -
E I R e i i T e B Bl e
1
101 =
o 3
10 [ WEET) L.t Lov el B4 b4 L1rs
10 10 10° 104 10°

E /nucleocn [MeV]
lab

Figure 3.15. Same as figure 3.14, but for the dissociation reaction 5Li + *%Pb — « + d -+ %Pb.

One interesting application of the fragmentation of cluster-like nuclei 1s the possibility of de-
ducing information on the neutron skin of neutron-rich nuclei. For example, the reaction
U7+ X — °Li could give information about the possible stability of the di- reutron system in the
presence of a nuclear-core. It has been suggested (Ha-87, Mi-73) that the force between two neu-
trons, itself too weak to form a bound system, under the influence of another nucleus can lead to
a bound state of two particles: a di-neutron system and a nuclear core. The binding energy of the
two neutrons in °Li is about 190+ 110 keV. Assuming that ''Li possesses the above mentioned
cluster-like structure we find the value o ~ 2.4 - to - 12 bams for the Coulomb dissociation cross
section in the energy range £,=80keV-to-300 keV, respectively, in the reaction
Wiy 08Pk I+ 9L+ 238Ph at 11§ -energies of 0.8 GeV/nucleon. For the diffraction dissociation
one finds ¢, ~ 210 — 662 mb. Recently, the reaction ''Li — °Li at this energy, on lead targets, has
been performed at the LBL BEVALAC by Tanihata ez al. (Ta-85a, Ta-85b, Ko-87). They found
the total cross section of about 9.5 barns. One important contribution to this cross section is the
stripping of the neutrons from the i -nucleus. It is about the same same order of magnitude as
the Coulomb dissociation and depends much more on the assumptions about the neutron excess
on the surface of that nucleus. Therefore, the knowledge of the Coulomb dissociation cross sections
and. of the experimental values for the inclusive reactions are of great importance for the study of
the tail of the nuclear matter distribution. By using several targets and beam energies, one can
separate the Coulomb and stripping contributions {diffraction dissociation is of little importance in-
this case) in these reactions due to their different dependence on the nuclear parameters.

* Precise coincidence experiments for the dissociation reaction of weakly-bound nuclei at high
bombarding energies are only at a beginning. As we discussed above, such exclusive experiments
would give valuable information on photodisintegration reactions, or indirectly, of radiative capture
reactions of astrophysical interest, and also about the distribution of the nuclear density in the nu-
clear surface. At high energies both electromagnetic and the nuclear interaction between projectile
and target will be important. Far from being a drawback, this can be of utility to extract comple-
mentary information about these different reaction mechanisms in the peripheral collisions. A de-
composition of these mechanisms from the analysis of the angular distribution of the fragments,
or from the dependence of the cross sections on the energy, charge, and mass parameters, 1 possible
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in accurate measurements. In the case of electromagnetic dissociation this decomposition can tell
us about the relevance of each multipolarity in the dissociation reaction.

We have done very simple assumptions regarding the structure of the nuclei, and pointed out
the main theoretical considerations for more complicated calculations. More specific structure ef-
fects, like, e.g., resonances, are expected to appear on a background parametrized by the above
equations. The availability of experimental data in the next future will certainly anse mterest on the
detailed investigation of such effects. More details of the above calculations can be found in ref,
Ber-87c.
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4.0 Coulomb Production {Primakoff effect)

In section 4.1 we show a beautiful example of application of the theory of relativistic Coulomb
excitation. It consists in the excitation of composite particles (e.g. baryons, mesons) in the
Coulomb field of a target nucleus. The original idea was set in by Primakoff (Pr-51) who calculated
the cross section for photo-production of 7% in nuclear eletric ficlds and suggested the measurement
of it as a way to determine the mean lifetime of the #° particle. As an example of this technique
we shall specially study the case of the measurement of the lifetime of the ¥? particle. A direct
measurement of it in a bubble chamber is hopeless with the experimental technique available
nowadays since the 20 decay is electromagnetic, and the lifetime is of order of 107! seconds which
produces a too short track to measure directly. Besides, the width of the decay is of order of 10 keV,
much smaller than the resolution presently attainable. An indirect method is nonetheless possible
by measuring the cross sections for the inverse process: electromagnetic production of 2%s in the
field of a heavy nucleus. This process is commonly referred to as Coulomb production or as
Primakoff effect (see Dr-62 and Po-61).

In section 4.2 we study the production of a neutral particle by means of the two-photon mech-
anism in RHI. There we also make a comparison with the similar process in clectron-electron or

electron-positron colliders.

4.1 Study of particle properties with relativistic Coulomb
excitation

4.1.1 Coulomb excitation of a hadron: example of application

In an experiment at CERN by Didak e al. (Dy-77), 2 highly relativistic (£, ~ 20 GeV) A
beamn was scattered on a nuclear target, where =% hyperons were produced at forward angles in the
nuclear Coulomb field:

A+Z-3+27. (4.1.1)

The £ were detected through their decay £® — Ay, which is by far the dominant decay mode of the
30 particle. The cross section for the X Coulomb production can be expressed in terms of the mag-
netic transition moment u ¢ or the ¢ lifetime. This is specially interesting since it allows for a test
of the SU(3),,,. properties of the strong and electromagnetic interactions. Ignoring the strong vio-
lations of SU(3), the unitary symmetry scheme introduced by Gell-Mann proposes that the ele-
mentary particles may be represented as tensors in a generalized isospin space (eightfold way), and
that the strong interactions are invariant under unitarity transformations in this space. The
electromagnetic current will also have definite and nontrivial transformation properties under
SU(3) and this makes possible to derive a number of useful consequences of the symmetry for
eleciromagnetic interactions of hadrons. In fact, Coleman and Glashow (Co-61) deduced in this
way values of all the A,Z, and Z magnetic moments, including the A — £ transition magnetic
moment which determines the rate of £° decay into A + y, from the neutron and proton magnetic
moments. They obtained the value

NS
,uAEr;=Ts,un='—l.65uN, | @)
where 1 _ is the neutron magnetic moment and py = ek 2m,c is the nuclear magneton. One can
‘also make use of quark models for the baryons to obtain p,50. In the simple model of Lipkin
(Li-81), one assumes that the baryons are s-wave states of quarks, antisymmetric in color and
symmetric in spin, space.and flavor. The wave functions for 2% and A are - SR
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120> = /213 {utdis) > — J16 |(utd] +uld)st >
|A > =12 |(dd] —uldl)st >,

where u}, for example, is the wavefunction for a spin-up  quark. The AX? transition moment in
termms of the quark wavefunctions is given by

,uAEFZ <SONA > = I3 (uy— 1) (4.1.4a)

(4.1.3)

where I is the magnetic dipole operator. By using the same quark models for the neutron and
proton we can express the result above in terms of the magnetic dipole moments of the proton and
the neutron;

#AZ‘.G:;\/S;T”(#H_#P) =- 1-63!‘1N’ (414b)

which differs very hittle from the value {4.1.2).

The AZ?-conversion cross section in the field of a nucleus was calculated by Dreitlein and
Primakoff (Di-62) and by Pomeranchuk and Shmushkevich {Po-61). In these calculations, nuclear
form factor and absorption are taken into account in a rather complicated method. We shall show
that their final results can be obtained with help of the much simpler Coulomb excitation approach
of section (2.4), where the nuclear absorption is included from the outset, and no nuclear form

factors enter any longer.

6 1 I [} I
£=0.1 £ |Factor
& 4F -
?\j g.1 57.3
— 0.2 i3.4
<l |
o 0.5 1.38
S 0.104
- ol
O
O

ﬂquRsin(ﬂ)

Figure 4.1. Angular distribution of the inelastically scattered particles after a magnetic dipole
excitation. The values are normalized so that df dy = 1 fory = 1. To obtain the absolute values
one must multiply df/ dy by the corresponding factors shown in the table for each ¢.

" According to eq. (2.4.2), the angular distribution for the process (4.1.1) can be expressed
terms of the B{M1) value of the A — Z° transition as

“de _ lom 2 f Zow \2 2 2 T
| do _on g (ZoRly@TFeamid, . @Ly)
where p, = hq, 1s the momentum of the incident A beam, and fw is the energy of the virtual
photon absorbed by the A in its rest frame:
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{m 2~ mi)c?
e RV RE (4.1.6)

Zmzo

The B (M1) value is related to the transition magnetic moment ;0 and to the lifetime 7,0 by
9“?\2” %
B{M)= = 3 . (4.1.7)
4n 167 (@ ] ) 750

From this relation and {4.1.4b), we find 7,4=7x 107% sec.
The angular distribution is given by quantal diffraction effects through the function {see eq.

239

(R = f 7 X Jy(qrx) Kigex) dx
B

3 (4.1.8)
R
=——0 [ &0 KfE) - Lim Ky(D)
o+
where
n=gpR=gy R sin%, and E=gR=wR/|yv. (4.1.9)

The momenta ¢, and g, are, respectively, the transversal and the longitudinal momentum transfer
in the laboratory frame of reference.

By means of egs. (4.1.6) and (4.1.8), we can rewrite (4.1.5) as
2 M1 JE '
dy 9 o2 dy

The function

%(5) n=n[ LR T (4.1.11)

is plotted in fig. 4.1 for £=0.1, 0.2, 0.5, and 1. The values are nonmalized so that
dff dy=1forn=1. To obtain the real values one must multiply df/ dy by the corresponding
factors for each &. Since for relativistic collisions g,R>> 1, the peaks of the angular distribution
will ocour for y ~ ¢, which means a maximum scattering angle 8,,,, = /g, R<< 1, s0 that the
cross section will be strongly forward peaked. Nonetheless, for exact forward scattering (3 = 0) the
angular distribution vanishes. This is a characteristic of all magnetic multipole excitations in
relativistic Coulomb collisions, as was shown in section 2.4. Inserting (4.1.7) in (4.1.10), and ap-
proximating {4.1.8) for small scattering angles, we obtain

87%a bimie 2

B (- miyct [P+ wppeg ] Y
which agrees with the result obtained by Dreitlein and Primakoff {(Dr-62, eq. 35a), apart from ir-
relevant additive factors. While those authors obtained this result in a more complicated approach,

we observe that it can be reached in a very simple and transparent way as shown above.
The total cross section is obtained by integrating (4.1.10) over » ;

2 2’

2 2,
G, y0 = 8m (Zoc)z[iKoKl— ¢ <K3_K§)} #:’3 (4.1.13)

where the K's are functions of {. For {1 we have

2 22 .3 3
L0 16n” Z ak™mo
0 pg0= 81 (Zof A5 In (i) - n (i) (4.1.14)
e £ (my,— mp) ¢ 150 ¢

- where & = 0.681...
The only parameter which enters into this calculation 1s the nuclear absorption radius, which

we assume to be R=1.24Y fin .
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4.1.2 Comparison with experiment

The first measurements of the lifetime of the X9 particle were done by Dydak et all (Dy-77),
which measured the cross sections for the process (4.1.1) with a A-beam with laboratory energy of
~ 20 GeV. They used 38U and 8N/ as targets, and their result are shown in figure 4.2. The solid
line represents the use of eq. (4.1.13), together with the value of i, o given by (4.1.2). From these
figures one can see that above theory is in agreement with the anﬁysis of Dydak er al. They ob-
tained the value 7,,0=(5.8+ 1.3)x 10-® sec, which agrees with the theoretical predictions.

8 i T T T T T T
L ¥ ° Coutomb production .

gt on uranium .

¢ (mb)

pAy(GeV/c)

1.8 v T 7 T 7 T
Y ° Coulomb production

on nickel

og(mb)

pAykGBV/C)

Figure 4.2. Total cross section of the Coulomb production ¢{A — X%} as a function of the mo-
menturmn of the Ay-pair from the decay of Z°, for (a) a uranium target and (b) a nickel target, The
full line corresponds to q. (4.1.13) with 7,9 = 0.7 x 1071 sec .

The essential reason for overcoming the large excitation energy o — 1, = 76.86 Mel [ ¢* is
‘the high value of y. For v ~ 20, as was the case in this expenment, the distance d where the
adiabacity paramenter £ = wd | yv becomes equal to 1 is given by d ~ 50 fin; ie. the area which
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contributes to the electromagnetic excitation cross section is much larger than the nuclear geometric
Cross section.

This experiment has been recently (Pr-85, Pr-86) redone at Fermilab with a A beam of
pa = 200 GeV'| A incident on nuclear targets with Z = 4, 50 and 82. These experiments show the
expected logarithmic increase of the electromagnetic cross section with energy. In table 4.1 we make
a comparison of their experimental data with the result obtained by using (4.1.14). The agreement
is quite good, within the experimental errors. This is more clearly seen in fig. 4.3 where we show
the ratio between the experimental and the theoreticat values.

FExperiment no.| Target Z a%% (mb) o p (mb)
i 4 0.068 + 0.048 0.0274
2 4 0.023 + 0.025 ”
3 50 2,65 + 0.64 3.51
4 50 348 + 036 o
5 82 817 + 645 8.99
6 82 922 + 0.82 i

Table 4.1. Cross sections for Coulomb production of £ on several targets by means of A
particles with incident energy £, ~ 200 GeV. The cxperimental data are from ref. (Pe-86).

One could also think in obtaining information on the different contributions of the M1 and of
the E2 excitation of a nucleon to a A-resonance by measuring the total Coulomb cross section for
this process in the collisions of nucleons and high-Z nuclei at relativistic energies, in the same way
as was done in the experiment of Dydak et al. The differential cross section for the E2 excitation
can be calculated by (2.4.2), also analytically, and has a very different behaviour as compared to the
M1 case. But the experimental detection of this process would be very difficult due to the back-
ground of contributions from strong interactions.

5 1 i [ I | [
4.“_ ol
3L -
o
5 2L .
N I
- T U IS S g .
o ’
oL "

experiment no.

Figure 4.3. Ratio of the experimental data on X9 production in the reaction A +Z -2+ Z
‘and the theoretical calculation based on eq. (4.1.14) (see table 4.1).

There are also other examples, where the Primakoff effect is used to study the interaction of
_photons with unstable particles. Quite recently (Ant-87), the vertex y — 3= has been investigated
m the reaction of pion pair production by pions i the nuclear Coulomb field
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A Zon 44 Z
in the region of low-invariant-mass of the 7 n" system. A highly relativistic 40 GeV pion beam has
been used. This is interesting in the context of the so-called Chiral anomalies.

In a similar experiment the polarizability of the 7~ has been measured {Ant-83, Ant-85). The
Compton effect on a pion was studied in the reaction

7 +Z-n +y+Z

From this the cross section for the elastic 7~ photon scattering was deduced; this in turn, could be
related to the pion polarizability, and it was found that o, = (6.8 & 1.4). 10~ ¢em> This quantity
is of great interest in the study of hadron properties.

Figure 4.4. Production of neutral C = + 1 states X in the coflision of two charges particles (¢.g.,
ete”) via the two-photon mechanism

As another possibility we mention the study of the production of resonances in the interaction
of real photons with the equivalent photons of the Coulomb field. At KEK (N. Sasao et af.,
Tsukuba, as mentioned in Ya-87) the production of axion-like particle is investigated in this maner.
On the orginal suggestion of Primakoff (Pr-51) the =-lfetime was measured in the process
v+ £ -+ Z (Br-74).

4.2 Two-photon collisions

An extensive program of y-y physics is going on at high energy e*e colliders. The dominant
oraph is shown in figure 4.4. The charged particles e and e~ emit virtual (or equivalent) photons
which collide to form a neutral system X with charge parity C = + 1. There exists a vast literature
on this subject, the propertics of the virtual y’s are calculated in great detail and the cross sections
in e*e~ collisions are directly related to the corresponding y-y cross sections (see Bu-74, Fi-80, and
Br-71, where many further references are contained). An carly result is due to F. E. Low (Lo-60)
where the measurement of the n0-lifetime by n° production in e*e~ or e~e” collisions is proposed.
Using a variant of the equivalent photon method, the cross section for the process e e” — e”e”X
is found to be related to the cross section for y +7 — X by (we use the notation of ref. AB-86)

da -+, oty (8)= 1’ J dw flw) doy,_, y{ws), (4.2.1)
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with
s=(+p) n=%ln (Tsz)=% Iny, (4.2.2q)
#11

and
f(w):%[@m)2 In () - 2(1 —co)(3+co)]. (4.2.25)

For a collider s is given by s = 4£? where E s the ¢* {¢”)-energy in the lab-system, m 1s the electron
mass and ¥y = Efm. In addition to the situation pertaining to eq. (4.2.1), where the final momenta
of e* and e~ are not measured (untagged luminosities) ane can study cases where these momenta
are measured (tagged or double-tagged luminosities, see , e.g., ref. Fi-80).

We shall point out the possible usefulness of RHI collisions for the study of y-y collisions (sce
Ba-87b). It is the additional factor (Z,Z,8, where Z, and Z, are the charge of the colliding heavy
tons, which increases strongly the RHI cross section as compared to the ete™ case.

We study the collisions of two equivalent photons in the system where the two heavy ions move
with opposite velocities v and -v towards each other (see fig. 4.5). This is equivalent to the collision
of two photons with frequency distributions m, (w,) and 7, («,) moving in opposite directions. For
y=>1 we can use the expression (sec eq. 1.11a)

_ 2 ve
(o) =—Z;« In (win) (4.2.3)

where the radius R, of the ion i determines the minimum impact parameter. The adiabatic cutoff
sets in at

W = 7C (4.2.4)

and we put, for simplicity,
n{w)=40  for w;>wp (4.2.45)

The Lorentz-factor y is related to the corresponding Lorentz-factor y, of the projectile (for a fixed
target machine) by

o=y~ 1. (4.2.5)
The total cross section o for the two-photon process Z, + 7, — Z, + Z, + X is given by
dew a’w
Te= f L = (0)) my () 0y x (0109) (4.2.6)

Introducing the variable x = w, w, { 4x corresponds to the square of the invariant mass of the
2y-systern) one obtains .

oo n ( L2y ) f dx o, x{x)I(x), (4.2.7a)
where
16 ye 3
7 { (J;m )} (427%)

There are important differences of this equation as compared to the one used for the e*e™ col-
lisions (Lo-60, AB-86). In the derivation of egs. (4.2.1) and (4.2.2), it was assumed that y >> 1 (as
is appropriate for the e*e” colliders). This means that the adiabatic cutoff, eq. (4.2.4) , which is
relevant for the RHI collisions, is not important for the e*e case. The maximumn energies of the
equlvalent photons are determined there by the kinematics of the process {total cnergy loss for
e or e, see, e.g., eq. 15 of Lo-60). This means that the higher energies will not be easﬂy obtained
in RHI collisions.

" “An important process in y-y collisions 15 the e*e” pair production

yty—e +e

The corresponding e*e” pair production in RHI collisions, being of large importance, will be

‘studied in more detail in chapter 7. Another purely quantum electrodynamical process 1s
v +73 — 7 + v, the elastic scattering of light on light (see, e.g. La-86). Its cross section involves an
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additional factor «? as compared to the pair production, it is, therefore, rather small and 1t has never
been possible to study it directly. On the other hand, the elastic scattering of y’s in the Coulomb
field of nuclei has been experimentally investigated (Delbriick scattering). in RHI collisions the
same processes can also be studied.

It is also possible to form strongly interacting neutral C = + 1, particles in 2y-collisions, like
7 u,%,, ... The n° production was originally suggested by Low {Lo-60), the ¥ -particle was re-
cently produced at PETRA (Berg-86). The resonances are usually sufficiently narrow, so that their
Breit-Wigner form can well be approximated by a é-function in the integral, eq. (4.2.7a,b). For
example, the n® production cross section 18 gven by (Lo-60)

)

8’ 2
W= T Ay — 4x}, {4.2.10)

where 1 = 0.83x 1074 sec and = 134.9 MeV are the lifetime and mass of the n% respoctively

{AB-86). One obtains
128 0, 2 |1 2 3
Ge=2B(z 70 L | m <¢> : (4.2.11)
3 #31' MR Ry

A similar formula can alse be used for the production of other particles, where one has to replace
1/7 by the y-y width I',, of the particular resonance to be studied, and include an appropriate factor
for the spin of the particle. One obtains values of the order of some ub for the n° production by the
two-photon mechanism for the conditions of the present RHI experiments at CERN (60 and 200
GeV/nucieon oxygen beams on P'b targets).

Figure 4.5. Two relativistic heavy ions collide in a systemn where they move with opposite ve-
locities v and -v towards each other. This corresponds 1o the collision of two photons with opposite
momenta with photon energy distribution given by 7, {w)) and », (w,), according to the equivalent
photon method.

Let us compare the charactenstics of the RHI collisions with the e*e” collisions. Even in the
highest energy RHI experiments, the y-values achieved are rather low: for y, = 60 or 260, appro-
priate for the CERN experiments, the corresponding y-values are rather modest. For a 1 GeV
electron, e.g, one has already y ~ 2000, The y-factor enters, however, only logarithmically in the
cross section, whereas the (2,7, factor enters directly in the cross section formula, giving a distinct

_advantage for the the RHI collisions. The comparatively low value of y for RHI collisions leads to
_a limitation of the invarant mass of the 2y-system.
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Finally, let us meation some speculations. Due to the large flux of equivalent photons in the
MecV range, RHI collisions would be of interest to Iook for resonances in the y-y system. This could
be of special interest at present in the search for an unknown particle which decays into e* and e~
(for a recent review on the GSI experiments on positron emission in low energy heavy ion colli-
sions, see Ki-86). Various proposals using y-y collisions (see, e.g., Za-87, Br-86, and Ts-86) or the
Primakoff effect ( as mentioned in ref. Ya-87) exist in order to look for such an unknown particle.
If it is heavier than 2m.c? then it could decay into e*e” pairs and onc could look for peaks in the
invariant e"e- mass spectrum as produced in RHI collisions. This would also complement the
search for resonances in the e*e~ collisions in the MeV region (see, e.g., Wi-87 and Ma-87).
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5.0 Bremsstrahiung

The emission of y-rays in RHI collisions is an important diagnostic tool for the time develop-
ment of the nuclear collision (see e.g. Ka-77 and Bj-85). We will first mvestigate the
bremsstrahlung process for Coulomb collisions (b > R, + R;). This could be a potential source of
background to be considered in experiments. A unique feature of this bremsstrahlung effect is the
interference of the radiation from the target and projectile. This will be specially important at low
values of y; it leads particularly to the well known vanishing of the £1 bremsstrahlung for systems
with equal charge to mass ratio Z, | M, = Z, | M,. In contrast to the low energy case, the emission
of Coulomb bremsstrahlung at relativistic energies will be predominantly of E1 origin, even for
systems with equal charge-to-mass ratio.

In section 5.1 we calculate the spectrum of bremsstrahlung in RHI electromagnetic collisions,
and in section 5.2 we compare it o the bremsstrahlung occuring in the violent central collistons.

5.1 Bremsstrahiung in Coulomb collisions

According to eq. (14.67) of the texbook of Jackson (Ja-75), the energy radiated per unit solid
angle per unit frequency interval is given classically by

d’I e w? | 1 et 2 2 ’
dwdQ  47%¢ 47tc [ ]
where F, = fiw is now the energy of a real photon and
A A N de(—n.r o
A=1; nx (nx—éw)e 1 dr (53.1.2

where i= 1(2) refers to the projectile (target) labels, r,(v,) are their respective positions (velocities),
and 1 is the direction of emission of the photon. By expanding eq. (5.1.1), the first (second) term
corresponds to the radiation emitted by the projectile (target) and the third term to the interference
between the two previous ones. Let us first discuss the radiation emitted by the target, assumed to
be the laboratory system of reference.

The electric fields at the position of the target and at time ¢, when the projectile passes by with
an impact parameter b, are given by egs. (1.1a-b) of the introduction. In the laboratory system the
target has a non-relativistic motion and we can use the dipole approximation (see Ja-75)

2 Zz 2 ] .
d°1 ~ 2 € iJ' ﬁx('ﬁx{iz)emlz
der dQ J (2 e N

222 64 A A 2
= —27—3 in X X [EZ(GJ)'l‘ ET(CO):H
4 JMQ C

(5.1.3)

where M, denotes the target rest mass, v is its acceleration, and E, (), Ey(w) are the Fourier
transforms of the electric ficlds of eqs. (1.1). Expanding the triple vector product in (5.1.3) we obtain

( & ) ZiZ5e 5" [(1 cos0) L K2(x)+ (1 — sin0 sin’¢) KX )] (514
- b = ———— {1l = cos"F}— Ky(x} + (1 — sin QIR TR
d_a) dQ (2 nzxMSCBb_ZV;I-. y?- T

where x = b/ yv , and (6, ¢) are the angular coordinates of fi.
The relation between (5.1.4) and the differential cross section for emission of bremsstrahlung

radiation is
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Wil b=oo 2
Ty - L d’l 4 dq . (5.1.5)
de, joy  E, Jop \ dE, dQ |

Both integrations can be done analytically and the final result can be written as

(dab,) s 4\ E), (5.1.6a)
dEy @ 3 M’zcz E}'

where nf? (E,) is equal to the equivalent photon number 7y, as given by eq. (1.9) with Z=2,. The
result (5.1, 6a) has a very nice interpretation: the emission of bremsstrahlung by the target (or b) the
projectile) can be viewed as the rescattering of the equivalent photons generated by the projectile
(target). The bremsstrahlung cross section s then given by the product of the equivalent photon
number per unit energy, given by n.(E,) [ E,, and the classical Thomson cross section

22\
GT:_&“_ A (5.1.65)
3\ M

To calculate the radiation emitted by the projectile we can use (5.1.4) for the radiation emitted
in the frame of reference of the projectile by exchanging the indices 1 and 2. Then we make a
Lorentz transformation of d¥ | dw dQ, @ and & to the corresponding variables in the laboratory
system (see egs. 11.30 and 15.5 of Ja-75). We obtain

( d*r ) 2?7226’6’52 { [ 2 9 2 ] 2
= (1—BcosB)y —(cos®— ) | Kz
deo dS2 (1) B 1‘4{] C3b2 2 0 (517)

+[c032¢>(1 —ﬁc038)2+(c059~—ﬁ)2 ]K%@)},

where f = v/ ¢ and y=7yx(1— B cos0). Integrating (5.1.7) in the same way as in (5.1.5) one finds

do-b.” =_83,-[_ ZI 2i (} _18
(dEy )(1) 3 (Mlc ) E, 7y (Ey) s (5.1.8)

! _
- zn(ere [ of (k] -
RPN (Ky Ky — K2)
2[ 1—Bu 0F2 e

with the K, as functions of y = y&(1 — fu), and u= cos . This last integration has to be solved

numerically.
The radiation emitted by the projectile interferes with that from the target. To calculate it we

have to expand the expression

(5.1.9)

41 e? = *
= Al A+ A LAY 5.1.10
(dw a0 )(3) dnlc ( 1- Azt Ay 2) ( )
To that aim, we rewrite A, in the form
al A .
A= iZ, Jm nx[(n— v/c)xv/C} jor(i=pesd) g - (5.1.11)
(I—v.?llc)2

We then use v = v 2 in the laboratory system. We also calculate the acceleration v in the projectile
frame of reference by the action of the fields (1.1). Transforming v to the laboratory system, the
integration n (5.1.11) can be solved analytically. The amplitude A, 15 simpler to calculate as we

already shown i eq. (5 1.3) and (5.1.4). Inserting A; and A, obtained in this way i in eq (5 1 10). -

we ﬁnd
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3,36 2
ey ) 2737350 1 { 29, 1
= (1 — cos"8) —- Ko(x) Kp(»)
(dco d2 /& pRa Myt (1= Beosd) y (5.1.12)

+ %(1 + 0820 — 28 cos 8) Ky{x) Kl(y)} _

Integrating (5.1.12) in the same way as in (5.1.5) one finds

do Z,Z,¢8 \2
(dh> :_é?._;J;T ?%éﬂgx (5.1.13)
£, J® JMM ¢ y

where

mE:gizzglizgl du
or (5) w1y (V) .L [(1- g — 1] (1= pw)

(5.1.14)

{ 2
xi‘;“[u—ﬁm&@nqn—%«m@%uﬂ

Lt =20 g0 KO Kol - K0 K]

For Z,=Z, and y — 1, we obtain n{® = n{+ 2 , which expresses the well-known result of ab-
sence of bremsstrahlung dipole radiation for non-relativistic Coulomb collisions of particles with
equal charge-to-mass ratio.

101 T 4 F r T v T ¥ T ' 1 ¥ 3
1 y=10 ]
10° E ;\'\5 3
3 -1 Tr \\__ \‘
M\..,/ 10 T T T N RPN Y
;: S—. 1 F 1 I T E 3 T ¥ T T L | T T
S 1
4 \ _
=100

wR/c

Figure 5.1. The adimensional bremsstrahfung strength functions n (see text) plotted as a
function of the ratio between the nuclear dimension R and the photon wavelength for several values

ofy.
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In figure 5.1 we show »nf (for i= 1 solid line, for i= 2 dashed line, and for 1= 3 dash-dotted line}
as a function of the ratio between the nuclear dimension R and the photon wavelength, and for
several values of y. We used Z, = Z,= 10. One observes that 2% becomes smaller in comparison
to n and #/® as y increases. In the limit 7 — oo, #/® — 0. This means that the radiations emitted
by the projectile and by the target do not interfere with each other as y — oo. It occurs because the
recoil of the projectile is not instantaneously proceeded by the recoil of the target as in the non-
relativistic case. For relativistic energies the recoil of the nuclei is displaced in time by the retarda-
tion, which leads to the incoherent emission of radiation. Also, in that limit, the radiation emitted
by the projectile is more intense than the one emitted by the target. This is because photons of
energy £, ’ in the projectile system of reference, emitted approximately isotropically, appear in the
laboratory within a forward cone 8,,,, ~ 1jy and with energies of the order of I, =~ yE~, ie.
energetic photons in the laboratory system come from soft photons in the frame of reference of the

projectile (sce ¢.g. Ja-75, p. 708).

5.2 Comparison with nuclear bremsstrahlung

A more violent source of bremsstrahlung radiation has its origin in the collisions with
b < R, + R, where part of the charges carried by the projectile almost comes into stop. To compare
the relevance of these two different mechanisms of producing bremsstrahtung, i.e. the Coulomb and
the nuclear one, we use the results of the work of Kapusta (Ka-77) where the nuclear
bremssstrahlung in RHI collisions was calculated on the basis of a nuclear fireball modell which
accounts for the possible formation of two fireballs. Integrating eq. (5) of that reference with respect
to the solid angle we obtain (for the special case of symmetrical systems, ie. Z,= Z,= 7))

ds 72 R*
a9 ) =012 F(B)+ F(Bpp)+ F
(dEy)!\b E, [F(B) (Bpr) (Brr) (5210

—24G(B, Bpr)+ G(B. Brr)— G (Bpr, 5:0?)}],

where
1 1+ 8
F(B)=—1In -2, 5218
®)= (1_5) (52.10)
BBr | 1-BF 1-4°
G (B, B = F(Bp)— F 2(8 - , 5.2.1
B, Bp) 2(15—5;?)[ i (BF) i (By+2(8 ﬁp)d ( c)
and

g1+ ="+ m
o= [ Jarm Brr=Bprin——n), (5.2.2)

[T+ Q=g n p?

are, respectively, equal to the projectile and target-fireball velocity. For one-fireball production,
y = 0, so that 8,z = 5 and for two-fireball production, 0 < n < 1. We use the transparency factor
n equal to 75%, and define the adimensionless quantity
o, E)= (do | dE Jnpr
, (do | dEy)Cbr 7

(5.2.3)

where the Coulomb bremsstrahlung cross section (do | dF, ), is given by the sum of eqgs. (5.1.6),
{5.1.8) and (5.1.13). In table 5.1 we show r(y, E,) for the reaction “Ca+ ®Ca and £, =10 MeV.
One observes that only for low values of y (in which case Coulomb repulsion corrections to the
trajectory must be taken into consideration) the Coulomb bremsstrahlung is relevant. Also, for

greater values of E, the ratio r increases.
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r(y, E = 10 MeV)

E(do ] dE, )y, (mh)

1
5

o

i
100

2.6x 102
53 x 10°
10x 10¢
15x10¢

5.1 x 1672
0.69

18.5

27.7

Table 5.1. Ratio of nuclear and Coulomb bremsstrahlung cross sections for the reaction
“Ca+ ®Ca and E,= 10 MeV; the value of £, (do/dE,)y,, 15 also given.

Coulomb bremsstrahlung seems o be of little relevance in RHI collisions. Its role increases for
collisions of less massive particles like electron or muon-nucleus scattering, as can be seen directly
from (5.1.62) and, e.g., could be useful for obtaining information on the elastic scattering of photons
on unstable particles, like pions. For example, in the process Z+ 7 — Z 4 7 +y the scattering of
photons on pions has been studied by Antipov ef a/. (Ant-83, Ant-85), as was already mentioned
in chapter 4. With this method a value of the pion polarizability via the Rayleigh scattering ampli-
tude could be obtained. This Rayleigh contribution increases in importance as compared to the
Thomsom scattering term (see eq. 5.1.6b) with ncreasing y-encrgy.
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6.0 K-shell ionization

Ionization of K-shell atomic electrons by means of relativistic particles 1s a subject of increasing
theoretical and experimental interest (see e.g. An-87, Me-83). Opposite to heavy ion scattering at
nonrelativistic energies, in the relativistic case K-shell ionization is favored as compared to L, M, etc.
ionization of the atoms of a dense target as the ions penetrate it. Among the huge amount of the-
oretical calculations in this field, we cite Jammik and Zupancic (Ja-57), Merzbacher and Lewis
{Me-58), Davidovic et al. (IDa-78), based on PWBA, Bang and Hansteen (Ba-59), Amundsen and
Aashamar (Am-81), Becker efal (Be-85, Va-84), based on semiclassical approaches, and
Kolbenstvedt (Ko-67), Komarov (Ko-80}, based on the equivalent photon method. Due to its
simplicity and the possibility of having an easier insight into the subject we shall here use the same
method as the last authors. We compare the final results with the ones obtained in the other ap-
proaches.

The method consists in separating the ionization processes inte those amsing from close,
b < ay, and from distant, b > ay, collisions, where the K-shel radius 1s given by ag = #%/(m Ze?).

6.1 Close coilisions

The peried, 7, for an electron in the K-shell is given by

4} h
T 2mh | °F ‘;’K - ‘ZWI - (6.1.1)
{ Ze me(Za)
where [ =~ (Zx)?mnc?2 is the ionization energy of the K-shell electron. The ratio of the colliston
time ¢, =~ bfyvin a RHI collision and the period of an electron in the K-shell is
Leoll 1 Zo b
~ A - 6.1.2
T 4y % ( )

When the impact parameter b is smaller than the K-shell radius a,, we see that the collision time
is always smaller than the period of the atomic electron for § ~ 1, and that their ratio goes to zero
in RHI collisions for which y > 1. For such collisions the ionizing process can be considered as
a collision between the projectile and a free electron, with an energy exchange larger than the
ionization energy. In a semiclassical sense, we can say that the probability for the 1omzation of the
atom in a colliston with 1mpact parameter 6 < a, is given by

Ph<ay=| A‘Z) , (6.13)
whe_re
Ay ={2p(b, 2)ogc(v, b, 2] (6.1.4)

is the mean free path for the collision between the projectile and the electron in a K-shell. In (6.1.4)
the quantity p(b, z) is the electronic density in the K-shell at the point with coordinate r = (b, 2)
with respect to the atomic nucleus, and o5 (v, b, z) is the cross section for the (free) binary colli-
sion of the projectile and the electron. The factor two accounts for the presence of two electrons
in the K-shell: if the atom contains only one electron in the K-shell, all follouing results must be
divided by a factor two. In the case y >> 1, we can take ¢ 5. outside the integral in (6.1.3}, and for
the electronic - density “in the - K- she}l we “use the sunphﬁed non-relatmsnc hydrooemc 1s

Wavefuncnon Le., ST .
-‘fp(_b, 2)= v =L em#ax e (615

4

'.aK
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By means of these assumptions, we obtain

4 oo 2 2
P(b< ap) = —-5C J exp {— .2.__”’“} dr=2x Ky (x) 25E (6.1.6)
[

a 27
Tay K

Tag

where x = 2b/ay.
Since

1, for x< 1

xK(x) ~ { (6.1.7)

R for x>1,
2

the ionization probability, as a function of b, will be approximately constant up to & ~ af2, after
which it diminishes exponentially. This behaviour was indeed been found in the more elaborate
calculations of Amundsen and Aashamar (Am-81), and later on confirmed by Becker et al. (Be-83),
which used first order time-dependent perturbation theory and exact Dirac-Coulomb wave func-

tions for the clectrons.
The total cross section due to close collisions is obtained from the integration of (6.1.6) over
b. One finds
O-bSaK >~ dpe, (618)

i.c., the total cross section for atom ionization in close RHI collisions is about the same as the bi-
nary collision cross section o 5. To calculate o 5, we observe that, due to Coulomb repulsion, the
momentum and energy transferred to the electron, are given by

Ap=2ymvsin %, and AE=2m ‘}J2V2 sinz% . (6.1.9)

Now we use the Mott differential cross section for the {ree binary collision between projectile and
clectron, ie.,

2 .28
22 1— =

do__ ZiTe prons (6.1.10)
dQ 4 y2ﬁ45i114%

where r, = ¢?/me? is the classical electron radius. Using (6.1.9) we can transform do/d€) into an
expression for do/d(AE), which after integration from AE, =1 to AE,, = 2my*? results in

72,2 a1y _ g2

cliie f ! f‘: a | (6.1.11)
By x  (

where x = J/(2my>?), and C is a factor which account for the uncertainties in the integration hmits:

for example, the energy transferred to the atom can be of order / and be shared by the two electrons,
what will not lead te tonization. For y>> 1 this integral gives '

2 4n 732
agczzxczfrjﬂ;— ~ C?—lée—
2%

Gpc=

(6.1.12)

Inserting this in eq. {6.1.6} we find that the probability for ionizing an atom in a RHI collision with
b < ay is approximately given by

Pb<ay) =~ BC(Zw) xK(x). (6.1.13)

Due to (6.1.7), this result means that probability to ionize the atom in a RHI collision with impact
parameter smaller than the K-shell radius is approximately constant, independent of the charge of
the atom, and proportional to the square of the charge of the projectile. The calculations of
Komarov.suggest the value. C = 1, whereas the most exact calculations of Amundsen and Aashamar
(Am-81) and of Becker et al. (Be-85) give C. ~ 045, that is, T R

P(b< agf?) -._.N_ "'3-6(2.1“)2'- o - . .-.-(6.1,1.4)

We observe that the simple description above shows remarkable good agreement with the main
features of more precise calculations. Nonetheless, the ionization probability as given by (6.1.14)
becomes greater than unity for Z, > 72 {!). This means that first order perturbation calculations,

- as those performed by Amundsen and Aashamar and by Becker et al., are not adequate to describe
the impact parameter dependence of the ionization probabilities, even for projectiles with interrne-
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diate charge values. This can be easily explained by observing that for projectiles with large charges
the Coulomb repulsion suffered by electrons in the K-shell will always be large encugh to kick them
off the orbit, i.e., the lonization probability will be one. Therefore, any perturbation theory will run
into trouble in this Lmit.

For very high energies the contribution of impact parameters larger than the K-shell radius will
become larger and larger, as we shall see. Also, for these impact parameters the ionization proba-
bility will always be much smaller than one, even for projectiles with very large charges. This means
that the violation of the unitanty condition will not have a big influence i the calculation of the
total ionization cross section.

6.2 Distant collisions

The probability to ionize the atom in a RHI collision with impact parameter larger than the
K -sheli radius can be caiculated in the equivalent photon method by

o
Pb>a)=| No, byoXw)4o (6.2.1)
i

where N (w0, b)is the number of equivalent photons incident on the atom per unit area (see chapter
1), and

~dq arccota
af.{(w}: 122873 (?1!_)4;*%_0"0, (6.2.2a)
Zyo w l—e *"

is the photo-electric cross section (see e.g. ref. He-54, p. 208). In the above equality

2
“Oz%rgz%%’ AN ha)l—f ' (6:2.20)

mc

The integration in the eq. (6.2.1) can be solved analytically by using the approximation (6.1.7) and
by expanding the exponentials in (6.2.2a) arcund hw =~ [, i.e. by putting

K ~ 128 ( I )4 —4 623
o, (@) = m———zga3 o) ¢ 9o (6.2.3)
in the integrand. We find
P(b> ag)=039(2,2,2°f - Kf(%) , (6.2.4)
y vne

ie. P(b> a) will decay proportionally to 1/6* until a cutoff impact parameter b ~ yhefl , after
which it decays exponentially. For & = a, we find

Pb=ay) ~ 156(Z.af,

which will always be appreciably smaller than ope. This means that for these impact parameters

one can perform calculations in the first order perturbation theory without problems. The

behaviour of the ionization probabifities should not be much different than that given by eq. (6.2.4),
what is indeed shown in refs. Am-81 and Be-85.

Integrating (6.2.4) from b = a, to b= oo, we find
s Zb ol .
O’b)ﬂ}(:4'9r8 25 KO—KI+
{Zy2)

z; ~.
~ 98 f’g' ! In ( 5 ),
(anf Z2f.{
where & = [a,fyhc.

In fig. 6.1 we show the cross sections for K-shell ionization of lead atoms by means of
relativistic argon projectiles as a function of y. One notes that for great values of y the contribution

2
g

-
(6.2.5)

“of distant collisions . o 15 much larger than that from close collisions ¢ which tends to a

constant value for y = 1. )
There exist detailed experimental investigation of inner-shell ionization in electron impact at

very high energies (see, for example, ref. Ge-82).
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Figure 6.1. Cross sections for atomic K-shell ionization of lead atoms by means of relativistic
argon projectiles, as a function of the Lorentz factor y. The dashed curve {dash-dotted) corresponds
to the contribution of impact parameters smaller (larger) than the K-shell radius. The solid curve
1s the sum of the two contributions.

Since the ionization cross sections are large, the relativistic heavy 1on 1omzation could perhaps
be used as a variant of the well-known PIXE (see e.g. Ca-80) technique for the analysis of materials.
PIXE means Particle Induced X-ray Emission: one irradiates a target with light particles {mostly
protons) and analyses the spectrum of the emitted Réntgen-radiation, which originates when the
glectronic orbital holes of the ionized atoms are filled by electrons of the exterior orbits. This
method has already many applications in physics, as well as in chemistry (See, e.g., Jo-76 and
Kh-81).

In ref. An-84 it is mentioned that the K-shell ionization contributes significantly to the stopping
power of heavy ions. Therefore, the knowledge of these ionization processes is of interest for pos-
sible application of heavy ion bombardment to trigger the deuteron-tritium fusion reaction.

72 Electromagnetic Processes




7.0 Lepton pair production in RHI collisions

Soon after the discovery of the positron in 1932, many theoretical works were performed
which aimed to evaluate the cross sections for the production of electron-positron pairs in collisions
of light (or a fast charged particle) with a nucleus. This was expected to be present in collisions
originated by cosmic tays reaching the earth surface and this process would be an experimental
check of the validity of the positron theory of Dirac which had just been bormn. Most of the earlier
theoretical works on that subject have been done at about the same time, and in the special case
of pair production in the collisions of relativistic charged particles, there were works by Furry and
Carlson (Fu-33) , Landau and Lifshitz {(La-34), Bhabha (Bh-35), Racah (Ra-37), and Nishina,
Tomonaga, and Kobayasi (INi-35). Except in the work by Furry and Carlson where the final result
was shown to be wrong by a missing logarithmic factor, all other works reproduced the same results
as that of Landau and Lifshitz (La-34) which studied e*e~ production in a collision of two fast
nuclei in the Born approximation and treating the projectile motion semiclassically.

It was only recently, with the construction of relativistic heavy ion accelerators, that a new in-
terest in this field appeared (An-87). The cross sections for pair-production 1n a collision between
two charged particles is roughly proportional to Z% 7} and for heavy systems like 80U + 28U they
will be very large, up to many kilobarns. This can be a cause of marly difficulties in the study of
experimnents with relativistic heavy ions (RII). For example, in RHI colliders they can lead to a
beam loss due to the capiure of stow electrons in an mner orbit of one of the ions (see e.g. Be-87);
or it could even be useful in order to keep control of the beam luminosity, as was pointed out by
Anholt and Gould (An-87).

Among the newest works on this subject (So-80, Ni-82, Be-86a, Ber-86b, Ber-87a, Ba-87,
Be-87), the most exact approach is the one followed by Becker, Griin and Scheid (Be-86a, Be-87)
in the semiclassical approximation. They expanded the interaction potential in multipoles and used
‘Coulomb-Dirac wavefunctions for the electron and the positron. In this way, they obtamed the
impact parameter dependence, as well as the cross sections, for e"e~ production for any energy of
the pair and for RHI beams up to 100 GeV/nucleon. One of the difficulties of the calculation is the
evaluation of the multipole sums for beam energies around 100 GeV/nucleons and greater, because
it relies strongly on long numerical computing. Another very useful approach is the equivalent
photon method, which was used in refs. So-80, Ber-86b and Ba-87. Besides of being very simple
to calculate, this method provides good quantitative derivation of the total cross sections, although
it lacks of a more complete description of the process.

Bertulani and Baur (Ber-87a) have also used the semiclassical approach (which is appropnate
for RHI collisions) to deduce the lepton pair {also muon and tau pairs) production probabilities
and cross sections in RHI collisions, but nstead of using the Coulomb-Dirac wave functions, they
used the Sommerfeld-Maue wavefunctions for the pair (see e.g. ref. Be-54 and references therein).
These wave functions are equal to the Coulomb-Dirac ones for the spatial region around the nuclei
which most contribute to the cross sections. In this way one can avoid the multipole expansion
used by Becker, Griin, and Scheid (actually, this had already been suggested by those authors in that
paper). Since this process is very similar to the production of pairs by a real photon, we can use
many of the integrals that were evaluated by Bethe, Maximon, Davics and Nordsiek (Be-54, Da-54,
No-54). We will show that analytical expressions can be obtained only in special cases of the pair
energy. If we call these energies by ¢, and z_, we show that we can deduce analytically the pair
production probabilities and cross sections when (we use here natural units, with

i=1, andc=1)

.(slow pairs) e, g = m, (7.1a)

(fast pairs) = m<<s_ , e Ky m, (7.1b)
__.and .

| (ulzm-faxt pairs) E_, &, > ym, (7.1c)

‘where ¥ 1s the relativistic Lorentz factor associated with the heavy ion beam (see eq. 1.2).
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The results of Landau and Lifshitz are valid when the condition (7.1b} is valid. Indeed, that is
the energy region, which give the greatest contribution to the total cross section, integrated over the
energy of the pair. We show that for heavy ions there will be a correction to their results in a similar
way as that found for pair production by a real photon in the field of a large Z nucleus (Be-34,
Da-54, No-54). Analogous study has also been done by Nikishov and Pichkurov (Ni-82) in the
energy region (7.Ib), but slightly different final results were obtained. The energy region inferred
by the condition (7.I¢) is easily studied by means of a Lorentz transformation of the results ob-
tained in the energy region (7.]a), and it is also important since it can originate a cloud of pairs
surrounding the projectile in RHI colliders.

- In section 7.1 we evaluate the differential probabilitics and cross sections for lepton pair pro-
duction, and we apply it in section 7.2 to the case of slow and uitra-fast lepton pairs, and in section
7.3 to fast lepton pairs, which is the most important case for e¥e~ pairs. In section 7.4 we extend
the calculations to include the case for which the target (or the projectile) is not completely naked
but still have a part (or all) of its atomic electrons.

Since their masses are much higher, the production of x*u~ and 77~ pairs depends much more
on the energy of the heavy ion beams, as we show in section 7.5. There we show that, if the heavy
ion beam energy is not very high (y 3> 16 for u*u~ production, and y 5> 270 for t¥7~ production}),
there is a big difference from the resuits for ete~ production. '

In section 7.6 we obtain the cross sections for the pair-production with capture of the electron
in an atomic orbit of the projectile, or of the target.

7.1 Probability amplitudes

In the following we shall calculate the electromagnetic production amplitude of lepton pairs in
the field of a target nucleus with mass and charge number 4, and Z,, respectively, by means of a
relativistic projectile with velocity v, impact parameter b, and mass and charge number A; and Z,.
The calculation is valid for impact parameters such that &> R = R, + R,, where R, and R, are the
respective nuclear radil. We shall consider the target nucleus as fixed, neglecting its recoil, and we
place the origin of our coordinate system 1in its center of mass.

In the semiclassical approach the projectile is assumed to move in a straight-line and will gen-
erate a time-dependent electromagnetic field which will lead to the production of pairs in the field
of the target. Since the probability amplitude for pair production is, generally, smaller than unity,
we can calculate it in the first order time-dependent perturbation theory {(as soon as we take into
account the distortion of the wavefunctions of the pair due to the field of the target nucleus). It is

given by
a+—:i.f dteiw<\}’za—i Vir, I}IIYL,,-.L>, (7.1.1)
where

w=c,+e_ (7.1.2)

and ¥, (¥,-) is the wavefunction of the positive (negative) lepton. The interaction potential
V(r, t)is given by eqgs. {2.1.3) and (2.1.4).
~According to eq. (B.11) from appendix B, we can rewnte (7.1.1) as

B Ze fdg _m_[_f_(g’u)____ efilr-b (7.1.3)

Aot p- = — T y
L pr+ (o |y
where
p = (pr, @/V), (7.1.4)
and. ‘
H(p'):faﬁr <Wp v, e T, (7.1.5)

whith v, = (1, v). The index 7 means an arbitrary direction, perpendicular to the beam. Using the
continuity equation for the transition current and eq. (7.1.4), we can express the above matrix el-
ement in terms of the longitudinal and transversal components of the transition current as

H(P')=jd3f < ¥, | [ 2y pT"T} PLALEL R (7.1.6)

2 w
vy

74 © Electromagnetic Processes




Forv>>1 we can neglect the first term inside brackets in the above equation, as it is done quite
generally in the equivalent photon approximation. Then (7.1.3) reduces to

2 o ip.r

Zie <YW lare Yo >

a4y = rfJ.dsz & T ‘; T L (7.1.7)
TRy pr+i{eo )

where we used jr= ‘—’;r; and o is a Dirac matrix of component perpendicular to the beam direc-
fion.

For ¥, & we use the Sommerfeld-Maue wave functions which were also used by Davies, Bethe,
and Maximon (Be-54, Da-54) (see also Ak-65, p. 143) to calculate pair production by means of a
real photon (see Be-534 for a complete discussion about these wavefunctions), namely

Y- = N_ e"‘L-"[lz—"_E.v] u F(—ia_, 1, —ik_r—ik_.r), (7.1.8a)
£
and
Y= N, e*"“*""[w 2" EE.V] w F(—~ia,, 1, ikyr+ ik, 1), (7.1.85)
&

where v and w are the Dirac spinors comesponding to the negative and positive Ieptons with
momenta k_ and k., respectively, F is the confluent hypergeometric function and

Z,e Ty .
ay = ‘i_ , Ny= exp[;——z'—} (1 + iay), (7.1.8¢)

with v, equal to the respective velocities of the created pair.
Inserting (7.1.8) in {7.1.7) we find

Zle2
Aot p— = —
4 TV

NN Y wt o Gy GG+ @G ] (7.1.9)
A=1.2

where 4= 1,2 represents the two orthogonal eomponents transverse to the beam. The fensors
G Gy, and Gy are given by

L B
(G Gy Gy )= fdsz M elPr-b (7.1.10}
L A I J bl | 2
prt{w [ yvy
where
11=fe”'-’,r?i F, d°F, (7.1.11a)
L= 2; fe"“"1§VF2d3r, (7.1.114)
+
13:%&“4-’@%1 dr, (7.1.11¢)
with
q=p —k—-k_, (7.1.11d)
and
Fi=F(ia_, 1, ik_r+ik_.r), Fy=F(—iay, 1, ik,r+ik, .r). (7.1.11e)
The integrals (7.1.11) were calculated analytically by Nordsick, Bethe, and Maximon (Be-54,
No-54).
The differential probability for the production of lepton pairs is obtained from (7.1.9) as
APy =Y lawy oy, (7.1.12a)
spins
““where
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ke k_
pr=-——r e e deyde dQ dQ_ (7.12.5)
(2r)

is the density of final states of the pair.
Using the properties of the Dirac matrces we find

7,e P
APy = (o PN, N 2L { [ere — ko kb m’] 16,1
A

v £+8_

+epe v ho k= m ] [1Go 7 + 163,17 = 2(G55), (G, | - 2(k_ . G (KL - G3)
+20k] kD) [(61)7. G|+ 2. G [y - Gy — K4 (G3y),]
+26) [eo ke -Gy — ke (Gap)} oy { K. Gy — A, (G} ]

+ 2k ,(Gy), [k (Gy; — Gyy)] +  complex conjugate } . (7.1.13)

In the approximations we are going to make, the integrals [G,;, Gy, Gy ] will be zero for one of
the components, say 4 = 2 if we choose b along the x-axis, and the sum in 4 reduces to only one

terrn.

7.2 Slow and ultva-fast electron-posiiron pairs

7.2.1  Slew pairs

We now consider the production of low energetic lepton pairs obeying the condition (7.1a).
We use the analytic expressions for the integrals (7.1.11) as given by the equations (6.13) of the
work of Maximon and Bethe (Be-54) and keep only the terms in lowest order in
k, | mand k_ | m. Since only values of prup to @ [ yv << m will contribute to the integrals (7.1.11),
we also put p,=0 in the numerators of that expressions. Inserting the obtained results for
{,, L, and L, in (7.1.10), we find

G12' G22, 632: 0,7 {72}&)
and
koK, + k_k_
Gn=% [2(k_z—k+z)iw Zye’ (ky *;c P Z)J M, ©, ), (7.2.1h)
o« R
k ok, 2—P]|2
G2]=_£2 2+iZ, e (kykyon = P[2) M(b, w, y), (7.2.1¢)
o K k_
k_k_,z+P]2
Gy =-S |5-12,¢ k2t P12 M(b, @, 7), (7214
w2 ke k_ )
with
P—l k. kk_, {7.2.2)

..and where 7 is a unit vector in the RHI beam direction. The function M(b, , y)is given by
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iprb cosf

cosd e
M(b, ©, )= fdsz or AR
[PT‘*’(@f)’V) } [PTJFW :| (1.2.3)
_ 2w 1 wby
IRV [?V MG K‘(”b)]’

where X, is the modified Bessel function of first order. Inserting eq. (7.2.1) in (7.1.13) and keeping
only the lowest order terms in %, [ # and k[ m, we find

Kk

APy (0) = —2— 2322 & L NN T | M(b, 0, 7))
6_2

(2r) WV (7.2.4)

x [k} sin’0, + 42 sin’0_][1=(Zye™) ] 26,5 (7,6 } 2, dQ_do s

The impact parameter dependence of (7.2.4) is imbedded in the function M(b, w, y), which we
plot in figure 7.1 as a function of @ b and for y = 100. We observe that A/ tends rapidly to its

asymptotic value for @ b= 1. This asymptotic value is obtained by ncglecting the second term in-
side brackets in the numerator, and the second term in the denominator of {7.2.3), 1.e. we can set

M ~ 2}1{," Kl(_‘%@), for b 2 -b, (7.2.5)
where we used the approximation @ ~ 2Zn
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Figure 7.1. Impact parameter dependence of the production-probability of slow electron-
positron pairs in RHI collisions expressed in terms of the adimensional function M{%) as given by
eq. (7.2.3). The dashed line corresponds to its asymptotic limit, as given by eq. (7.2.5).

Since the Compton wavelength of the muon (or tau) is much smaller than the nuclear dimen-
sions, this approximation is very good for describing the impact parameter dependence of pu*u~ and

1*7~ pair production. Nonetheless, in the case of e*e it will only be appropriate for impact pa-

rameters larger than the Compton wavelength of the electron, which is much larger than the nuclear
dimensions. As we will soon see, this will have as a consequence that the total cross section, nte-
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grated over all impact parameters will depend on the nuclear dimensions in the case of muon and
tau pair production, but not in the case of electron pair production. This will lead to very different
behaviour of the cross sections in the two cases. Let us therefore study first the case of e*e™ pro-
duction and let the study of u*p~ and 77z~ production to the section 7.5.

In the case of e*e” production one can have impact parameters much smaller than the Compton
wavelength, for which we see in figure 7.1 that M — 0, what seems to be an unrealistic behaviour.
In fact, the probability to produce an electron-positron pair should go to a constant value as
b — 0, what was indeed shown in the calculations of Becker, Griin and Scheid (Be-86a). We would
obtain the same in our calculations if we had not neglected the first term inside bracket in eq. {(7.1.6)
which although do not contribute appeciably to the cross section, have a finite, non-zero contrib-

ution for the differential probability as & — 0. But for @ b2 1 the impact parameter dependence is
very well reproduced by using the approximation (7.2.5). Moreover, the differential probability de-
creases very slowly until impact parameters much larger than the Compton wavelength of the

electron and the uncertainty about the impact parameter dependence for 55 1 m is not very im-

portant for the total cross section, specially for RHI collisions.
The modified Bessel function of first order has the following property (sce eq. 6.1.7):

1 for wb < |
b wbh ’ ¥V
(B2 Ky () (7.2.6)
i jv , for uf;?g >1.

This implies that the pair production probability decays like 1/ 52 for impact parameter b larger
than the Compton wavelength, ie., for 5> 1/ m, until to a cutoff limit given by & = yv/w .
Above this cutoff limit it will decay exponentially, which will guarantee the convergence of the cross
section. Indeed, with these simplifications the differential cross section can be easily obtained by

using

=3

=27 2P KLy db=n [Ké—KeriKoKlJ

vV a
lm ¢ (7.2.74)
327'51{1(—(;—) for {<<1,
where the Bessel functions K, are functions of the parameter
{ = w (7.2.75)

T ymv’

and & = 0.681... is a number related to the Euler's constant. We can write the result as (putting
v=1)

4 5 Kk k_ a,a yém
do o+ - = (7, Fy Fpit) ln( )
e e n 1 e (:)6 (e2am+ —1)(1 — e—Zna_) w

< {2 sin®0, + k2 sin?0_][1 - (2l |+ 26,0 (200} d2,dQ_ds,ds_,

(7.2.8)

where 7,= e2[ mct= 2.817... fm is the classical electron radius, = e?] hc ~ 1/ 137 is the fine
structure constant, and we used
4-(21':)4 o« a,a_

, {7.2.9)
(eZ:MJr _ 1)(1 . e—2na_)

2
N N_C|*=

which can be inferred from the definitions (7.1.8¢). From equation (7.2.8) one can calculate the
invariant mass of the ete™ pairs for a given expenimental setup. We observe that the angular dis-
tribution of the slow pairs is symmetric around 90° degrees due to the presence of the sine functions
mside brackets of the equation (7.2.8); i.c., slow pairs are created preferentially with respective ve-
locities perpendicular to the beam direction.

. The angular integrations can be carried out easily and we get
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a.a_ \/(s+ —m)(s_ — m)

(¥ —D)(1- e ) o’ (7.2.10)

« [(m 2 my+ (Zya) (%m— a))] In (?i’”) _

For heavy ions, and for pair energies such that (¢, — m) << m, we have in most cases

- f =

Then equation (7.2.10) simplifies 1o

d’o + - 2 v
—tf 2228 n (” m) e 2T (7.2.12)
de de_ o Z

2
d 0‘€+37 — 1287! (Z Z P a)l
de, de_ 3 12T

In figure 7.2 we plot the adimensional function (m/ r,)2 d? o | de, ds_ obtained from eq. {7.2.10) as
a function of (e.—m)/m for (e, —m)jm=001, and as a function of (¢, —m)/ m for
(e —m)[ m=1001. The dashed lines correspond to the approximation (7.2.12). We observe that,
while it increases rapidly as a function of ¢, it 15 approximately constant as a function of ¢ . This
1s a consequence of the different behaviour of the electron and the positron wavefunctions in the
Coulomb field of the target. The positrons are very unlikely to be produced with small kinetic en-
ergies due to the Coulomb repulsion in the field of the target nucleus. For targets with small charge
this effect diminishes because a, gets smaller and the energy distribution for positrons and electrons
tends to be a symmetnc function of e and £. (sez eq. 7.2.13).

10t
AI
= 0
o' 10
== =
\ -
Nb :
R T Y A
'l 3 /
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s 10 T (e -m)/m=0.01
10_3- 1 4 1 ] i
0 0.1 0.2 0.3

(e fm)/m
..I..

Figure 7.2. The double differential cross section d2o [de.de. m units of r2/m?2 for
Z,=2,=92, and as a function of (e, —m) [ m for (s — m)/ m= 0.01 ncreasing curve). Also
shown is the dependence of this function with respect to (. —m) } m for (e, — m) [ m= 0.01 (flat
curve). This curve is multiplied by 10% in order to be shown in the same figure. The dashed lines

correspond to the approximation (7.2.12).

In the collisions of nuciei with small charge (like e.g. -2 collisions} and for pair energies such
that @, << 1, equation (7.2.10) becomes
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d0'+77_312"(

g _ - 2 {w—2m) ydm
T3 @n e o —m w (Z50). 0213

which is symmetric in ¢, and ¢_. In figure 7.3 we plot the same function as in figure 7.2, but for
Z,= Z,= 2. The solid curves correspond to the approximation (7.2.13) for (¢, — m}/ m= 0.1 (up-
per curve), and 0.01 (lower curve}. The other curves are obtained from (7.1.10) for &, = constant
(dotted curves), and for s_ = constant (dashed curves), and show the deviations from the approxi-
mation (7.2.13). _

As a last remark, we observe that when the relative velocity v, of the created pair is very small,
1.e., when

v, < a=1/137, {7.2.14)

then one must take into account the Coulomb interaction between these particles. This was con-
sidered by Sacharov (Sa-48) in connection with the formation of a bound state of the electron-
positron system (positronium). Since the main effect of considering the distortion of the Coulomb
field is the presence of the terms containing a. in equation (7.2.8), we can also make a correction
to inciude the case (7.2.14) by multiplying (7.2.8) by the factor

27
)Y (7.2.15)

1__{3——27:{1,'\/,

This correction will have as a consequence that the momentum of the electron and of the positron
will be strongly correfated and that the cross scction (7.2.8) wilt have a sharp maximum when they
are approximately equal in magnitude and in direction, i.e., for k. =~ k_ (see also La-86, p. 387).

LB BLELERELE]

(a+~m}/m=0.1(0.01)
(E:m)/m*—‘f}.i(ﬂ.ﬁi) -

1 i !

0.8 0.3

(e —mJ)/m
+

Figare 7.3. The double differential cross section d?¢ [ de,de_ in units of #? [ m* and as a fune-
tion of (s, —m) | m for (s_ — m) | m= 0.1 (upper dashed curve), and 0.01 (lower dashed curve) for
Z,=7Z,=2 . Also shown is the dependence of this function with respect to (s —m)/m for
(e, — m) | m= 001 (upper dotted curve), and 0.01 (lower dotted curve). The solid curves corre-
spond to the approximation (7.2.15).
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7.2.2 Ultra-fast pairs

The calculations of the last section can also be used to determine the probabilities and cross
sections to produce slow pairs in the frame of reference of the projectile, as soon as we make the
exchange Z,<Z, and evaluate the pair momenta and energies in that frame. However, in the lab-
oratory frame of reference (target frame) these pairs will be very fast, with energies in the region
given by eq. {7.Ic). Since the pairs are seen in the projectile frame moving approximately perpen-
dicular to the beam direction, they will be observed in the laboratory frame moving very forwardly
up to a maximum spreading angle of about mfe, ~ 1/y<<1 (here use the notation ¢'., etc. in
the projectile frame, and «,, etc. in the laboratory frame).

We can deduce the cross section for the production of ultra-fast. pairs by making a Lorentz
transformation of the expression (7.2.8) to the laboratory system. We use that £,k dQ,dQ de . de
1s a Lorentz invanant quantity, and that for y=1 , and 8«1l , we have
g, =~ (. ] 29){1 + ¥263). We also use k. =~ g,, and since the average value of y? 62 is of order of
unity, we set &', =~ g, [y where possible. Then the angular integration can be performed easily and
we obtain

T T

d*o 1+ - a.a £.8
4 " .
d (;e _ 6575 (lezrea)z . + - +6
e de_ (&% (1 - ey @ (7.2.16)
; 5 2 3 yzém
X {(s+ + g_)[l —{Zu) ]—%— 28,8 (Zia) } In (T) :
where
z
af = IT“ , (7.2.17)
Vi

with vI equal to the transverse velocity of the pair. When af << [ eq. (7.2.16) simplifies to

d2(7 + - . e i 25
e _ 16 2 54— 2, 2 P om
H— S (Z1Z; 1 af e (ex+sl)In (T) : (7.2.18)

Although this formula is only valid for pair energies &, ~ ysm, it shows a close resemblance to
the results for fast-pairs which we calculate in the next section. Nonetheless, since the energy region
where the above equation can be applied is very restricted, most of the pairs will be created with
energies obeying the condition (7.Ib), as we shall see in next section.

7.3 Fast electron-positron pairs

We now consider the production of energetic lepton pairs obeying the condition (7.1b). We use
again the expressions (6.13) given in the work of Maximon and Bethe (Be-54) and disregard terms
of order (2] £,)?and higher. We also put pr= 0 in the numerators of that expressions. We find

L=203"= 1
[+ (o~ KD ] [ + (o — KLY
{7.31a)
PPz
% 4 Vy(x) [pj-l{j)(krik)r)]z i nj: walo) [t 4+ Y + (D] 3
+ —
L=C L
L0 [ o K1Y
(7.3.18)
SRR A
AW (ky + k) _H_Zz;x Wi (x) [k*_(kZ)zwmzkf] ,

[pr—al+D] m
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& 1
L=C—*X

«w 2

[m* + (pr— k)]

(7.3.1¢)
&7+ &%) Za
x4 — Vylx) e i W) R - ki ]y
[pr—ki+ED] m
where
Viay=F(—iag, ia; I; x), (7.3.2a)
Wilx)=F(l—ia,, 1+ia; 2; x), {7.3.28)
and
&7+ k7Y [w? = (k, — k)
x=1—— [ * J . (7.3.2¢)

4w2(s+ —~ kel —k_,)

Substituting these equations in the integrals (7.1.10) we will find that they arc much more
complicated than the ones in the section 7.2 due to the fact the the denominators contain the
quantities k7 and k7 which are not negligible in comparison with /. Indeed, for fast pairs the an-
gular distribution is very forward peaked and their transverse momenta will be of order

&, kI~ m. (7.3.3)

But this implies that, again for 52 1/ m we can take that denominators outside of the integrals
over p, by putting p;= 0 in them. This simplifies the calculation enormously, since now we can
calculate the mtegral in p, analytically as in the case of slow pairs, and we obtain

£, ¢
Gy, = dn C—rm g (@b 1
H S i v [m2+ (kf)z] [mz +(kf)2]
(7.3.44)
&F— &Y  Za 2 T2 72
X{V_,__(x) (;I_,_kf)?' + i m2 I’Vi(x} [m +(k+) +(k+):| :
E_. b 1
G -0 Kb ot e
(7.3.4b)
x4 V(%) (i + k) 418" 3) [, (7Y~ k]
TS A
- 5+ pwb 1
A Py
(7.3.4¢)

T T
x { - V(%) LTI Z{‘f W) [ k(6 - mzki"]} .

S S e

Inserting this result in (7.1.13) we will find a complicated angular structure for the differential
probability. But, this angular distribution is of the same form as that found by Bethe and Maximon
(Be-54) for ete -production by a real photon. Therefore, using the same steps as they used for the
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evaluation of the angular integration, it is straightfoward to show that the differential probability
for the production of fast pairs is given by

dzPe e 21 2
ﬁ: (ZZ2<1 ) KI(M__Q[S%‘-FE +—3‘—S+8 ]
Bpde 7 y’ ® {7.3.5)
25,8
x[ln ( o )_%_f(zz)},
where
f(2)= 7% Z RN S (7.1.6)

et n(n* + 2%

Here we find already a crucial physical difficulty within this approach. Since the pairs with en-
ergies in the range given by eq. (7.1b) obey the same conditions in the projectile frame of reference,
this expression should have the same structure if it was calculated in that frame of reference. But
it 1s ot so, because if we had calculated 1t in the frame of reference of the projectile, it would mean
a simple exchange Z,~Z, in (7.3.5), what would lead to a different resuit due to the presence of the
function f{Z,) in (7.3.5). This difficulty arises because our approach is not symmetric in the nuclear
charges from the very beginning. For example, the wave functions for the electron and positron are
determined in the frame of reference of the nucleus at rest, neglecting the influence of the other
nucleus on them. A solution to this problemn by using a Lorentz covariant theory with Lorentz
transformed wave functions for the electron-positron pair is, by no way, simple, and to restore the
required symmetry in the nuclear charges we postulate an average of the expressions obtained in the
projectile and in the target systermn of reference as a reasonable result. This amounts in the substi-
tution of the function f(Z,) by the averaged one

F(Zy, Zy)= e [ Z) F(Z) + 2, FU25)] - {(7.3.7)
(Z, Zz)

When Z, << Z, {or Z,<<Z, ), this modification is not relevant, since in eq. {7.3.5) 1t will appear
2 WhBI’C ZG is the greater from (Z,, 7,). But, when 2, ~ Z, the approximation {7.3.7} is rather
speculative, because we do not know how the influence of both nuclear charges on the electron-
positron wave functions will be. This point may be a source for future investigations.

Integrating {7.3.5) over & we find

Py 2 b\ £ _
e 112 1 2 L ] /_+) 0 \}
d8+ 91! (Z Zzai” },2 K} ( 7 } 8+I:xﬂ \ 7 5 f(Zl, ZZJ . {7.3.8)

The same result can be obtained for dP,+ [ de_ by exchanging the indices — and + in (7.3.8).
The respectwe expressions for the differential cross sections can be deduced from (7.3.5) and (7.3.8)
by using the integral (7.2.7). For example, the differential cross section do [ d. is equal to

do + - _ 5
oo 3 e [ (3) 3T ] (82). o
de, 91 (Z,Z40F,) o [1n - > f{Z, Z)) T . (7.3.9)

In figure 7.4 we plot the differential cross section do,+ ./ de. for production of e*e™ pairs in
yranium-uranium collisions and calcium-calcium collisions as a function of the positron encrgy ¢,
and for y = 100 and 1000 . Already here we see that the creation of positrons (and electrons) with
small energies is strongly supressed in companson with the ones with higher energics and, when y
increases, more and more positrons (and electrons) with higher energies are produced. Indeed, in
this ﬁgure we see that the dashed curve (y = 100) decreases faster with increasing energy of the
positrons than the full curve (y = 1000). . o : T
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Figure 7.4. The differential cross section do,+ ./ de, for production of e*e” pairs in uranium-
uranium collisions (upper curves) and caleium-calcrum collisions (lower curves) as a function of the
positron energy ¢, and for y = 104 and 1000 .
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Figure 7.5. The probability P,- - for production of e¥e~ pairs in uranium-uranium collisions
and calcium-calcium collisions as a function of the relativistic Lorentz factor y, and for impact pa-
rameter 5= 1/ m. - Observe that for uranium-uranium collisions it becomes greater than one for

-y = 500.
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Now we integrate (7.3.8) over ¢, and use the approximation (7.2.6), in order to obtain the
probability to create a ¢*e¢~ pair in a RHI collision as a function of the impact parameter:

o 14 2 ] af ¥O N v ¥
Poeg(b) =~ 52 (Z.Z, o r,) ey [ln (W) [1+2f(21, 22)] In (mb)]’ (7.3.10)

vaid foryd/m =z b 2 1| m

In figure 7.5 we plot the probability to create a e*e” pair in uranium-uranium and calcium-
calcuim collisions as a function of the Lorentz factor y , and for impact parameter equal to the
Compton wavelength b= 1/ m. We note that for calcium-calcium collisions, P+ . < 1, even for
very large values of y, which justifies the use of first order perturbation theory. Nonetheless, for

uranium-uranium collision, P+ _.> 1, for y 2 500, which violates the unitarity condition. This
means that for extremely high energies, greater than several hundreds of GeV/nucleon, and for very
heavy ions, it will be necessary to account for higher order terms in the perturbation theory. In
other words, one must consider the probability of creating two or more pairs in a single collision
above those energies.
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Figure 7.6. The cross section o - . for production of e*e” pairs in uranium-uranium collisions
and calcium-calcium collisions as a function of the relativistic Lorentz factor y. The ordinate 1s
given in kilobarns.

As we mentioned before, P+ (b) goes to a constant, finite value for 4 < 1/ m, and diminishes
very slowly (like 1/ 52) as a function of b, up to a lirnit y [ m after which 1t decays exponentially,
and this 1s the reason why the cross sections for pair production will be very large. In fact, mnte-
grating (7.3.10) from b= 1]/ mto b=y | m we find

5 - )
o= %(zlzﬂ v l: In® (12—) —%(1 +2F) In? (’T)} . (7.3.11)

" Since the integration of (7.3.5) over b can be done analytically by using {7.2.7), a better result

can be also found by integrating numerically d %0 | de,de_ over g, and ¢ . But, fory 2 100 the eq.
(7.3.11) agrees very well with the numerical calculations. Except for the second term inside brackets
-and an irrelevant factor in the logarithm which is not important for y > 1, the above expression
‘agrees with the result found by Landau and Lifshitz (La-34) in the Born approximation. The second
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term inside brackets is a correction due to the distortion of the electron-positron wavefunctions in
the field of the nuclei.

In figure 7.6 we plot the cross section for production of e*e pairs in relativistic uranium-
uramum collisions and calcium-calcium collisions as a function of the Lorentz factor y, based on
eq. (7.3.11). These cross sections are about one to two orders of magnitude smaller than the ones
calculated by Bertulani and Baur (Ber-86b), where the equivalent photon method was used. This
occurs because there the equivalent photon numbers were integrated from a minimum tmpact pa-
rameter equal to R (sum of the nuclear radii). As we saw, the minimum impact parameter that
should be used is equal to the Compton wavelength, below which the contribution to the total cross
section for pair production is negligible. That error makes the cross section in ref. (Ber-86b) much
bigger than it should be. But the results agree quite well with the ones obtained here if we make
the substitution R — 1/ m in that calculations. In view of our previous discussion about the pair
production probability, there must exist some corrections to (7.3.11} for uranium-uranium colli-

stons with y 2 500. There one must take also into account the probability of creating two or more
pairs in 2 smgle RHI collision. This may change the dependence of the cross section on y.

From the previous results one observes that the probability for the production of fast ete™ pairs
in the collision of two fast nuclei in comparison with slow (or ultra-fast) ones scales like

Pj;asj )
ee . fn? (L) , (7.3.120)
p show mb
£ e
and the ratio between the cross sections scale like
fasr
Tee ~ 2,
o In“y , (7.3.124)
g'e

which means that for y > I, most of the e*e~ pairs will be fast ones, i.e., will have energies in the
range given by (7.Ib). Therefore, we can say that the total probability or cross section for producing
e*e pairs in RHI collisions are given accurately enough by eqs. (7.3.10} and {7.3.11), or by the
respective numerical integration of (7.3.5).

7.4 Effects of screening

The above cross sections were evaluated under the assumption that the RHI were naked,
without their electron cloud. Let us, for simplicity, assume that only one of the ions is screened by
the atomic electrons, say the target. Then, the correction to the previous results can be performed
in a completely analocous way as in the case of pair production by a real photon (Be-54). There-
fore, we only present the final results, which for partial screening are

doe + - - B /s
e e 2 2 3 78 o5

- N . - _2 | -
de, o, D12yt e [6‘31(1)4-@3(,() =u InZ, ng In k2a+)’ (74.1)

where @, and ®, are the Bethe functions for atomic screening (Be-34) as functions of the parameter
{see also Ak-65, p. 395)
2=0mo [e,02, .

In case of complete screening, ie., when s/m>»> Zi%a, then we can use
@,(0)=41In 183 and ©,{0)=41n 183 — 2/ 3, and (7.4.1) reduces to

d(f + - — vo
ee 56 2 1 183 1 yom
=—(Z,Z,ar,) | In (_—)———f] In ( ) {7.4.2)
ds, 9 #oey VA 42 | 2s,
The total cross sections for ete -pair production in RHI when one of the ions is completely

screened is obtained by integrating (7.4.2) from &, = Zjfam to ym, 1e.,

_ 28 2 183y 1 = 2 1/3 2
O 97T(ZIIZ:,_oure) m(z}”) g f [ln (y6 2, )= In" (— )] (7.4.3)

In the case of partial screening a numerical integration of eq. (7.4.1) will be necessary.
.- In figure 7.7 we show the cross section for pair production in oxygen-calcium and oxygen-
‘uranium collisions as a function of the Lorentz factor y. The solid lines correspond to the case of
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no-screening of the target and of the projectile, as 1t could be the situation in a RHI collider. The
dashed lines correspond to the case of complete screenig of the target. The effect of screening is
very important for low energies of the bearn and diminishes in importance for very high energies.
However, when screening is present the cross sections will always be smaller by at least a factor 2-4,
also for very high beam energies.
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Figure 7.7. The cross section o+ . for production of e*e” pairs in oxygen-uranium collisions
and oxygen-calcium collisions as a function of the relativistic Lorentz factor y. The solid lines refers
to compietely naked projectile and target and the dashed lines refers to completely naked projectile,
but completely screened target.

7.5 Production of heavy leptons

The same previous calculations can be applied for g7y~ and 7717 -pair production in RHI, but
care must be taken on the following facts. First, since the Compton wavelength of these leptons

satisfy the condition

n
A < R=R/+Ry, (7.5.1a)

where
Riy =~ 1245 (7.5.16)
are the nuclear radi of the ions, the impact parameter dependence of the pair production proba-

bilities are accurately enough described by expressions given in section 2, but in the cross sections
one must substitute the varable { as given in (7.2.7b) by another one given by

_ {= ‘;’—5 . (7.5.2)
This me.a_ns-that, for
R v = 16, for ptu™ pair production , {7.5.3q)
and
| y =270, for 11" pair production | (7.5.3b)

- we can replace the mass of the electron by the mass of the respective lepton and
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yém) ) yd
m( - by In { = (7.5.4)

in the equations for the cross sections given in the previous scetions to obtain the respective cross
sections for ¥y~ and v*1~ production.

The conditions (7.5.3) are quite severe and only for RHI accelerators working at extremely
large energies it will be useful, specially for 737~ production. Therefore, we consider the opposite

case, i.e., when v < 16 for giuy~andy < 270 for r*t~ production. Then the function in eq.
{7.2.7a) becomes

g(&) ~ nte (7.5.5)
The expressions (7.2.8) and (7.2.10) will be correct if we replace
ﬁvém r _ 2wR
In ( - ) by % e T . (7.5.6)

This means that the double differential cross section for g~ and 177~ production with beam cn-
ergies satisfying the above condition is

Aoy _ 64n’
de, de_ 3

(2,75 rp a)’

{ezrxa+ _ 1) (1 'e-—27mA) wd
X {(m— 2m)+(220c)2 (%m~w>] e 7,

where the subscript 74~ is used in this section for muon or tau pairs.
When the charges of the ions are small, such that the approximation a, << 1 can be used, we
can integrate (7.5.7) from &, = m to 2 and obtain

dff+— £ i
£ 1 2 1 ¥ 32 B 3/2 |+, 3 3. 2m —Ae, +mR]y
= (7,Z =y - (7—)' ) — (m, ) :
G, T3 thnnn m(ZmR) m ! [(2) N5 ) 755
m 2 1 ¥ N3z E 32—, R/ -
~ (220 r) #m(sz)- (—;j; 71)’ o~ HE TRy

where 1°(1 ; ») is the incomplete gamma function (sce Gr-65, p. 940), and the last equality corre-

sponds to the asymptotic limit mR[y > 1.
We integrate (7.5.8) over &, in order to find the total cross section for muon (or tau) production

under the condition that mR/y = 1, namely

R ] By

b amR

~ %—(214’2 o rp) (Tﬂ/—R—>4 e 7

This result is in good agreement with that of ref. (Ba-87), where the cross section was calculated

by using the equivalent photon method. There the cross section was given in terms of the expo-

nential integral function Fi(x) (see Gr-65, p. 312} and the asymptotic limit for mR/y > 1 is exactly

the same as the one obtained above (see eq. 10 of that reference). In RHI collisions, for which the

above aproximations are not valid, a numerical integration of (7.5.7) has to be performed.
Numerical values are plotted in figure 7.8 for o,+,._ in the collision %0 + *0 as a function of

the Lorentz factor y. The cross sections are much smaller than that for e'e production i the same

energy regime. This is due to the severe limitation imposed by the adiabatic cutoff in the cross

section for projectile energies such that mRjy 2 1, which strongly inhibits the creation of very
massive particles when this condition is attained. When the projectile energy is very high, such that
the conditions (7.5.3) are valid, than we can use (7.3.11) also for p*p~ and t*7~ production. But
even in that case the cross sections will be smaller by a factor (m, [ 72.)? (i.e., approximately 107¢
“for. wty~ production, and approximately 10~7 for t*z~ production) in comparison with that for
" e*e~ production.

oty = 4—; (£,2; ?’f)Z (
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Figure 7.8. The cross section ¢, +,. for production of u*u~ (a) and t¥7~ (b) pairs in oxygen-
oxygen collisions as a function of the Lorentz factor y. The solid lines corresponds to the eq. (7.5.9)
and the dashed ones to its asymptotic Lmit.

Lepton-pair production is suggested (see e.g. Do-83) as beeing a potentially efficient probe of
quark matter formed in RHI collisions. As we saw in this chapter, the electromagnetic production
of leptons is by no means negligible, and although the multiplicity (i.e. the number of pairs} in a
single collision is smaller or about one, the cross sections for it are very high and can be a source
of experimental difficulties in the signature of that aspect of the quark-gluon plasma formation.

As a final remark, let us compare the electromagnetic production of leptons in RHI collisions
with the corresponding process in relativistic electron colliders. For a detailed theoretical study of
that see Bu-75. In such machines, the y -values achieved are much higher than in the heavy ion case,
therefore the cross sections are accurately enough given by eq. (7.3.11). We have astonishingly large
e*e~ production cross sections in RHI collisions, due to the large charge factor Z{Z3, however,
heavy leptons pairs (u*u~, T+~ pairs) are practically not produced unless the beam energy is very
high ( y>» 16 for p*p-, and y > 270 for 17~ pairs). Also, the electromagnetic production, in the
two-photon mechanism, of quark-antiquark states (like the 5., which was recently studied with the
~ PLUTO detector at PETRA in high energy e*e collisions (Berg-86)), will be negligible unless the

"beam energy is extremely large (3> 600 in case of 5. production).
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7.6 Pair production with atomic-shell capture

With the obtained large values of the cross sections for production of free electron-positron
pairs, it is also of interest to study those pair production processes where the electron is captured
in a bound atomic orbit in the projectile, or in the target. The first theoretical work on this subject
was carried out by Becker, Griin and Scheid (Be-87). There they used a partial wave expansion of
the electron and the positron in terms exact Dirac-Coulomb wave functions, and calculated nu-
merically the probabilities and cross sections for the process in the first order semiclassical theory.
Bertulani and Baur (Ber-87b) have performed a different calculation to the same process by trying
to avoid the partial wave expansion and to obtain analytical formulas for the important cases. This
can be accomplished by using approximate wave functions for the final bound state of the electron
and for the free positron. We use the same approach as in chapter 7 on the production of free pairs
1n the collisions of fast nuclei.

In figure 7.9 {taken from Be-86c¢) a scheme of the Dirac spectrum, descnibes the two distinet
pair-production situations: {a) pair-production with K-shell capture and (b) production of free

pairs.

LE

mc?

a=(D)

a) b)

—mCZ =

Figure 7.2. A perturbation of the vacuum leading to {(a) pair-creation with the capture of the
electron in the K-sheli and (b) production of free electron-positron pairs.

We show that explicit analytical results can be found for the capture of the created electron in
a K-shell of the projectile, or in the target. The cross sections for the capture in higher atomic or-
bits, being of much less importance, are easly guessed. We also show how the limiting cases can

be obtained by using the equivalent photon method.

7.6.1 Pair production with K-shell capture

‘In the previous sections we have shown that the probability amphtude to create an electron-
positron pair, with respective energies equal to ¢,, ¢ ,-in a RHI collision with vy =1 is given by
eq. (7.1.7). If the electron is created in a K-shell orbit (see fig. 7.9) then, instead of (7.1.2), we must

use.
. w=¢, +m— Iy, (7.6.1)
with I, equal to the ionization encrgy of the K-shell electron (in the following we shall use I, = 0,

which 1s appropnate only for small Z nuclei).
For the positron wave function, ¥+ , we use the Sommerfeld-Maue function (7.1.8b), and for

'_the captured electron we use the bound K-shell wavefunction, valid for 7, e?<< [,

Y,-=N_ [1 -{-%Zzez S H ey, (7.6.2a)
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where
1 0
d2=100 Gl w=mze, ad M= @meVin  (1620)
0 0

The components %2 and w7 %2 of the spinor #, correspond to the electron with spin vp and
down, respectively (see Ak-65, eq. 31.11).

Although, due to the use of these approximate wavefunctions, the following results may be
appropriate for RHI collisions for which one {or both) nuclei satisfy the condition Z e?<s< 1, we
expect that even for very heavy nuclei they will be useful, since the main ingredients are contained

in the calculations.
Inserting {(7.1.8b) and (7.6.2) in (7.1.7) we find

2

K Z,e ; 3 — LA

o=l N N > w [ Gt G+ @Gy w, (7.6.3)
A=1,2

where 1 = 1,2 represents the two orthogonal components transverse to the beam. Asin (7.1.10), the

tensors (,,, Gy, and G, are given by

A
S I SO PO | ;
[Glﬁ.s G2A» G3k] = f dsz 7r 2[ ! L 23] elp;r. b , (764)
prt(@fyv)
where
J, = fe""'f"""F2 &r, (7.6.5a)
i2232 iq.r—nr T 3 c
Jy= =t j TR, &y (7.6.5¢)
2e,
with
q=p —k;, (7.6.5d)
and
F=F(—ia, 1, ikr+ik,.¥). (7.6.5¢)

The integrals (7.6.5) are very similar to the ones involved in the photoelectric effect and can be
carried out analytically (see e.g. Ak-65, p. 435 and 436).

Since only values of p, up to w/yv << m will contribute to the integrals (7.6.4), we put p,=0
in (7.6.5), which amounts to use q = {w/v)Z — k, in them, where % is equal to a unit vector in the
beam direction. In this way, the integral in p; of (7.6.4) can be done exactly in terms of the mod-
ified Bessel function of first order. As we have shown 1n last chapter, this approximation is good
for RHI collisions with impact parameters larger than the Compton wavelength of the electron, 1.¢.,

for 5> 1/m, which are the impact parameters which most contribute to the total cross sections.
Indeed, for 5< 1f/m the probability amplitude for pair production tends to a constant value (see

the exact numerical calculations of Becker, Griin and Scheid Be-87), while for 4 2 1/m it decays
proportionally to 1/5% up to a cutoff limit given by & ~ y/w. This has as a consequence that the

contribution of impact parameters b = 1/m to the total cross sections increases logarithmically with
the RHI-beam energy, while the contribution from smaller impact parameters gives a constant and
small quantity.

With these approximations the integrals (7.6.4) can be solved analytically and we obtain (we
choose b along the x-axis)

Gia Gopy G3=0, (7.6.6a)

and
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2., 2
CAnt e k,o{k, —¢, cos8.) ’
Gy =i 7‘»’2 A\ — & + . Ki(“%?){;“)’ (7.6.6b)
ey (e +m) (e, — ky cosO)
2127, 6 w7i—vk .
O L Kl(ij_f), (7.6.6¢)
FAY ey +my(s, — Ky cosB)
272%7 wi—vk,
Gyy =it e’ K(ﬁ‘)‘?) (7.6.6)

‘/V2 me, +m)(e, — Kk, cosf,)
where K, represents the modified Bessel function of first order, and ¢, and 8, are, respectively,
the azimuthal and the polar angles of emission of the created positron with respect to the beam

direction.
The differential probability for pair production with K-shell capture is obtained from (7.6.3) as

k. e
K 2 TS
def — E } at,- i 7 dg+d£2+, (7.6.7)

spins (27: )

where the summation is taken over different spin orientations of the electron and the positron.
Using the properties of the Dirac matrices we find

Z.et \2 k
X 1 roar |2 + 2
aPr - = (m) | NN on)’ { 16y

+267 [ Ky Gy = Gy) - 2k G, | (7.6.8)

+ (e —m)[ 16y 17+ 165,17+ 2265, . Gf, — Gy, - Gyy) | L sy a2

where kI{G],) denotes the transverse component of k, (G,;).
Now we insert the expressions (7.6.6) in (7.6.8), putting v ~ ¢= 1 overall, and we find

. 2
1 m sin“0

na, 3 k
{e ) e (g, +m) (1_%C059+)4
+

e g

K 2 5256 8
dp%*=?21223

<[ 2+ —x—D+E—62+ 21 ) cos’h, (769)

(U g 20050 (0 D2 cost, | L k(D) ds
' b4

where y =¢,/m, and @ = e?[ hc ~ 1/ 137 is the fine structure constant.
The angular distribution for the direction of ernission of the created positron may be expressed
1n terms of the adlmenmonal function

. 2 sin’ .
WK to md— 2t Q0GR 0 cosh, ],

< ky 4
: (1 T cOo$s 9+)

.which is obtained by integration of the angular part of eq. (7.6.9) over the azimuthal angle ¢..
~'When (g, — m)<s<m, then

(7.6.104)
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k2
K - 2
We, = dn— sin0,, (7.6.108)
Fes?
which means that low energetic positrons will be emitted preferentially in the direction perpendic-
ular to the RHI-beam. For g, > m, the angular distribution is approximately
2

.2
9 g
wE s oan (S ke ~ oA (CRf TR (76.100)
m ky 4 m my g2 |*
l—z 0058+) (—5:) + Uy

which implies that highly energetic positrons will be created with their momenta directed very
forwardly, up to a maximum angle 7% =~ mjz,.
Integrating {7.6.9) over the angular distnbution of the positrons we find

drk - kym
R Y - * - L e
e CRAU ) R ) 7
(7.6.11)
4 2ey £, 4 &t 2m (s++k+)
e Ak S e L In .
x[3+ T T G A z

The modified Bessel function of first order has the property given by (7.2.6), which implies that
the pair production probability decays like 1/52 for impact parameter b larger than the Compton
wavelength, i.e. for 5> 1/m, until to a cutoff limit given by b ~ y/eo . Above this cutoff limit it
will decay exponentially, which will guarantee the convergence of the cross section. Indeed, with
these simplifications the differential cross section can be easily obtained by using (7.2.7). We can
write the result as

do’ _ k, m®
e =8 20750 — 2 ()
St (e = 1) (ep +m)
(7.6.12)
NN 28, fi,f._ 8++2mln(s_,_+k+)
3 3m m ky m '
where r,= ¢2 ] mc? = 2.817... finis the classical electron radius.
Fore, =~ m,
da® _ K
e s it T (ﬁ) (7.6.13)
de 3 m 2
For g, = m,
da’ _ 5
ee 26 6 2 1 yom
__Eg;__ ~ 167[5}.42& re";-{'" 82}122&_1 III( 8+ ). (7614)

In figure 7.10 we plot eq. (7.6.12), m units of #3m, as a function of ¢./m, and for
Z,=2Z,=8 and y=100. Also shown are the low {dashed line) and high (dotted line) positron
energy approximation. We observe that the spectrum is strongly supressed for s, /m ~ 1, what is
due to the Coulomb repulsion m the field of the nucleus, which prevents creation of low energy
positrons. It has a maximum around &, ~ 2m, and decays like {7.6.14) after that. Since, as a
function of z,, the differential cross for production of free pairs decays proportionally to 1je, | the
total cross section {integrated over g,) for pair production with capture, besides of an extra factor
(Z,x)3, will increase more slowly as a function of y than that for production of free pairs.
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Figure 7.10. The differential cross section d o+, [ de, in units of #2 | m, for Z, = Z, = 8 (naked
oxygen ions), y = 100, and as a function of ¢, { m. The dotted curve corresponds to the approxi-
mation (7.6.13) for low energy positrons. The dashed curve corresponds to the high energy ap-
proximation (7.6.14).
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Figure 7.11. The cross section o%, ., for pair production with simultancous capture of the
electron in the K-shell of one of the nucleus, in 2 RHI collision with Z, = 7, = 8 (naked oxygen
ions), and as a function.of y.
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If we integrate numerically eq. (7.6.12) over the positron energy we obtain the solid curve as
shown in figure 7.11, for Z, = Z, = 8 and as a function of y. Also shown (dashed line) in that figure
15 the approximate expression

K . 3nm a6 6 2 1 yé 5
UB*BA o m leza Y. W [In ( > )_?}; (7615)

which can be obtained by setting &, = ¢, overall in (7.6.12) and integrating it from &, = 2m t0 co

It will be a good approximation to the numerical integration of (7.6.12) for y = 50.
The ratio of the total cross section for the production of free pairs (sce eq. 7.3.11) and that for
which the electron 1s captured in a K-shell atomic orbii {(which give the biggest contribution, as
we shall see in the next section) is approximately given by

9Pt ¥\ 12
(;—8 a 350“ (Zzoc)3[}n (’7)} : (7.6.16)
ete”

This means that, compared to the production of free pairs, pair production with capture will be
more important for lons with larger charges and for lower energies. For Z, =8 and y= 100, we
find gewifafee ~ 1074,

7.6.2 Contribution from higher orbits

In prnciple, it 15 possible to calculate the cross sections for capture of the electron to higher
atomic orbits in a way similar to the K-shell capture. However, since the calculations become more
cumbersomne and the contributions are much smaller than that for capture in the K-shell, we prefer
to use another method which is based on the previous works for the one-photon annihilation of
positrons with atomically bound electrons (Fe-33, Ni-34, Ak-65).

First we mention how some of the results of the previous section can be obtained with the
equivalent photon method. In this approach one nceds the cross section for the photoproduction
process

A A VAR I P (7.6.17)
By time reversal, this process is related to the one-photon annihilation process
e+ (Zyte gy v+ 2y, (7.6.18)

the theoretical cross sections for which are known since the thirties, like e.g. in the calculations of
Fermi and Uhlenbeck (Fe-33), Nishina, Tomonaga and Tamaki (N1-34), and others (see e.g. Ak-65,
p. 463, and references therein). In the extreme relativistic (E.R.), &, > m, and non-relativistic
{N.R.), &8, =~ m, cases we have (N1-34)

K1 N.R.
N 3 2ra,
™ _ 8727805, Mmoottt — 1 (7.6.19)
m 1. ERr

£
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By means of the detailed balance theorem, these cross sections are related to the photoproduction
cross sections by

3
s 1 N.R
3 2rna o

6,;;04: 8722855, 12m” ™™ — 1 (7.6.20)
m ___ 1 gR

£ Iz
+ AR ]

in the equivalent photon method it is assumed that the processes originated by the time-varying
electromagnectic field generated by a relativistic charge are the same as those caused by a plane wave
pulse of light contaiming n{w)few photons per unit energy. In this way, the cross sections for any
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electromagnetic process in RHI collisions can be related 1o that for the same process originated by
a real photon o, by means of the expression (see chapter 1)

do 28! n(w)  pred
o =0 9 - (76.21)
In the case of pair production dw = de, and (see eq. 1.11a)
: 5 yém
() ~ 2 Z In ( e ) . (7.6.22)

Now it is a simple matter to show that inserting (7.6.20) in (7.6.21) and using (7.6.22) we reproduce
the egs. {7.6.13) and {(7.6.14).

In ref. Ni-34 the one-photon annihilation of L-shell electrons and positrons was also considered.
It was found that the dominant contribution comes from the 7, -subshell and that the cross section
is given by 1/8 of the K-shell cross section. This is related to a general scaling law, which also ap-
pears in the photo-electric effect (see e.g. Be-77, p. 303), given by

g
Gy =5 (7.6.23)
R

where the index ns denotes the spherically symmetric atomic subshells of order ». This relation
reflects the behaviour of the bound state wave functions i1 momentum space at large momenta.
Assuming that this behaviour is valid for contribution of all atomic shells, one would obtain an
increase of the total capture cross section (into s-orbits, which are the most important), as com-
pared to that for capture in the K-shell, by a factor

Z LB: F(3)=1.202, (7.6.27)
n=1 "t

where & is the Riemann-¢-function. This means that (7.6.12) and (7.6.15) should be multiplied by
(7.6.27) if we want to have the contribution of all atomic orbits, what implics in a correction of
about 20% for the total cross section.

The capture process in RHI collisions could well be crucial for future relativistic colliders: the
electron capture process changes the charge state of the circulating ions and leads to a beam-loss
in further turns (An-87). In a 100 GeV/nucleon uranium collider with a luminosity of
10% ¢mr2 57! one can easily estimate the number of electron captures per second: this energy corre-
sponds to an equivalent laboratory energy of 20400 GeV/nucleon, ie., a value of y ~ 2x 10%
From eq. (7.3.11) we find that the total cross section for the production of free pairs is approxi-
mately ¢ =~ 60 kb. This means that approximately 10® pairs are produced per second. I'rom eq.
(7.6.13) we find that approximately 10 electrons per sccond will be captured in atomic orbits of the
ions in the interaction region of the same beam. As pointed out by Anholt and Gould (An-87) this
may limit to an upper value the beam energy to be obtained in a RHI collider, or may even be used
to contro} the beam luminosity by measuring the total amount of positrons created per unit time.
The capture cross seciton should also be put inio relation with other characteristic cross sectiomns.
For example, the nuclear geometric cross section is of order of one bam, 1.e. they are a small frac-
tion of the atomic capture cross section.

In principle, it is also possible to produce heavy lepton pairs (see Mo-87), like p*u~ and 1717
with a capture of the negative lepton. But, due to the much higher masses of these leptons, the
corresponding cross sections are much smaller and expected to be of minor importance.

Also interesting in this context is the possibility of formation of n~-atoms by means of the
strong interactions in RHI. For a experimental proposal in this direction see ref. HK-87.
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8.0 Conclusions

Electromagnetic effects in relativistic nuclear collisions are very important and interesting. Since
the electromagnetic interaction is well known, reliable theoretical predictions are possible. This
makes, e.g., the clectron an ideal probe to investigate nuclear structure. Since there is only the
electromagnetic intcraction between the electron and the target nucleus, a detailed study of
electromagnetic form-factors is possible, which allows an extensive determination of nuclear tran-
sition denstties. With nuclear scattering below the Coulomb barrier, it is possible to avoid the strong
nuclear interaction between them and obtain very interesting and useful information about nuclear
electromagnetic matrix-elements (fransition matrix-elements, as well as static moments, like
quadrupole moments of excited states). Specially with heavy ions, it becomes possible to multiply
excite nuclear levels {e.g., rotational bands).

We have presented a study of the electromagnetic effects (Coulomb excitation, particle pro-
duction, etc.) in relativistic heavy ion collisions. The method of equivalent photons has proven
to be a very powerful and transparent 100l to study these effects. It allows a clear separation into
a purely kinematical aspect (equivalent photon numbers) and the cross sections for a process in-
duced by real photons. Since with an increasing value of the relativistic parameter y the hardness
of the equivalent photons is increased, many new possiblities open up: We have studied these new
possibilities in a way as simple as possible.

In the case of relativistic Coulomb excitation, a comparison between detailed calculations in the
semdclassical and in the plane wave Bom approximation was useful in obtaining a new insight mto
this subject. In both approaches it is possible to develop the interaction potential in terms of dif-
ferent multipolaritics, which enables the study of the contribution of each multipolanty to a par-
ticular nuclear reaction. The PWBA cross section integrated over angles is shown to be equal to the
semiclassical one integrated over impact parameters. By factorizing the cross section integrated over
the excitation energy, we reach an expression for the number of equivalent photons for different
multipolarities and frequencies of the electromagnetic interaction. A comparison with the results
derived by other methods was useful to clarity some points in this matter.

Rather simple classical and quantal considerations show the importance of glant resonance
excitations in peripheral RHI collisions. The present experimental status can be compared to the-
oretical calculations using a sum rule approach to the nuclear states, and a completely satisfactory
agreement is found. Fragmentation can also be of practical importance, like, e.g., the production
of new and interesting isotopes (like ?Ne). In view of recently proposed detailed experimental
studies of exireme peripheral collisions, the possibility of multiphonon giant dipole oscillations is
discussed. Such a possibility docs not scem to exist in electron scattering due to the much smaller
charge as compared to a heavy ion. Using a harmonic oscillator model, absolute values for total
cross sections can be obtained with simple formulas. The cross sections are found to be quite ap-
preciable. Whereas the cross scctions for heavy projectile excitation are farger than those for light
projectile excitation, such as 0 or 325, the separation amplitude of neutrons and protons will be
larger for lighter projectiles. This could prove to be a means of producing new and exotic nuclei,
perhaps, e.g., polyneutrons. We can also include - in a phenomenological way - the effects of
damping of the giant dipole collective motion in the theory. A theoretical study indicates quite
safely the possibility of excitation of such states with appreciable values for the cross sections. A
beautiful application of the theory of relativistic Coulomb excitation was illustrated by the exper-
iment for the AZ? conversion in the field of a nucleus with large charge. Besides of allowing a test
to the theory, it showed that the theory can be a basis for powerful studies of electromagnetic
properties of hadrons. In the special case of that experiment it was used to extract the lifetime of
the X° particle, which agreed with the theoretical values predicted by the SU(3) theory for the
hadrons.

With increasing collision energy, pion production due to electromagnetic processes will become
important: it can be quantitatively calculated based on our knowledge of pion production in
photonuclear interactions. Bremsstrahlung, the elastic scattering of the equivalent photons on
charged particles, is relatively unimportant for the heavy ions, although interesting effects are also
to be observed in this field. Atomic ionization by means of relativistic projectiles 1s of large 1m-
portance, due to the enormous values for the ionization cross sections. Lepton pair production,
specially e"e pairs, is also of great interest due to its large cross sections. We found tractable ana-
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lytical resuits for the relevant kinematical situations n this process: there are slow pairs produced
around the target and the projectile (what we called ultra-fast pairs) charges, respectively, and
dominantly, an intermediate energy region. In addition, we saw that an analysis of the impact pa-
rameter dependence of this process points directly to the limitation of first order perturbation theory
for extremely relativistic heavy ion collisions. The capture of the created electrons in an orbit of the
projectile will tend to reduce the beam luminosity due to the charge change.

The central and peripheral collisions of relativistic heavy ions may be compared to the case of
two potential lovers walking on the same side of the street, but in opposite directions. If they do
not care, they can collide frontaily, what could be not bad at all. It may be a good opportunity for
the beginning of strong interactions between them. A third observer will easily notice this situation,
or the consequences of it. On the other hand, if they pass far from each other, they can still ex-
change glances {just electromagnetic interaction!), which can even lead to their excitation. But for
the observer this will not be so easily noticed. He must be very interested in this situation to be able
to detect something. He can surprisingly discover that the effects of these peripheral collisions are
sometimes more interesting than the violent frontal ones.
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9.0 Appendix

9.1 A - The relativistic Winther-Alder functions

In this appendix we make a resume of the relativistic kinematic functions G_,,,, introduced in
chapter 2, eq. (2.1.15), and first calculated by Winther and Alder (Wi-79).
The functions G_,_(x), where x = ¢fv, are given in terms of the Legendre polynomials Pr{x),

calculated for x > 1. For m> 0 they are

Vier [{ff?— mjt }1;2 RS

Gppmix) = 1517

FR7r 1 |7 <m)
(A.la}
(7 + D{Z+ m) £ —m+ 1)
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G = -1 P A1k
Mem(X) =1 707+ 10 {(z,,_l_m)! (x Yy mPi(x), (A.15)
while for m < 0 one can use
Gee, —ufx) = (=1)" Gppp(), (A.1c)
Gite, —nl0)= (=" Grgolx) (4.1d)
In the non-relativistic limit, x = ¢/v>> 1, we find from the above definitions
b4
Grenley= i 316 an (423
281 o4 mg - mn"
and
. Irvan clv £—1
Gagenlciv) = 177! % 2\,{1611} (c/v) . (4.26)
T 4 (- ey
In the extreme relativistic imit, v > I, we obtain
GEfm(C/v) = fG‘Mgm(C/V)
o f+mm _ ~Nan (Z+m)! hp 2) " (4.3a)
e M2 I | F—m) | ’
while
e+ DV g _
~* From the general expressions (A.1) we find the values of G, for # < 3
Gpyy(x) = .é_«._ /87 x, . Gpplx)=— r‘% NETC (4.4q)
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Gpppilx)=— f%“‘fg . Ganolx)=10; (4.4b)

Gppy= — 2x T (2= 16, Gpmd)=i2J2j6 2P — 1), Gpolx)=2x~/n(x* = 1) ;
5 5 5

(A.4c)

G'Mu(x)zi%«fn(xz- /6 | Ga,zi(x):%x\/ﬂ—s L Gam)=0;  (A4d)
Grssl3) = 5 AlS x(2 = 1), Gl = = i 2n (7 = 115 (357~ D),

(4.4¢)

Gpyy(x) = ——l—ég—x\,/rr/—3(15x2— 1), GE30(x)=iT25 rGE 1) (5xt - 1) "

To obtain the other components one can use eqs. (A.lc) and (A.1d).

9.2 B - The total cross sections in the PWBA and in the
semiclassical approximation

We shall prove that the PWBA and semiclassical total cross sections are the same for the ine-
lastic electromagnetic collision of relativistic spin-zero particles with an atomic or a nuclear systern.
The proof was given by Bertulani and Baur (Ber-85) and is similar to the one for the nonrelativistic
case found in the textbook of Bethe and Jackiw (Be-68).

Using the integral representation

felr—t'| ip . {r-—r')
r—r! 2 p?—k*
we can write eq. {2.3.1) as
Zie i(g—p}.r
=2 [ [ dpdir £ Fp), (2)
2n p—k
where
G= (qx’ qy: qZ) = (qT= C(),‘,V), (33)
3 Vu o ip.ry.
F(p)=J.dr<f|TJ#(r)e li> . {5.4)
c
Integrating over r” we obtain
; F
Tyi=dn Zye @_ (8.5)
252
q

According to the relations (2.4.1) and (2.4.7) the total cross section 1s

Ze a7 I F(q)l?
Cpwp4a = S’T_(h—l>2 z 5 (@ 57 qrdqr, (B.6)
o v spins 0 [‘?T‘*’. {wfyv) :l

where we used
._qz_kzzq%.m(a)/yv)z, = .- (37)

In the semiclassical calculations the excitation amplitude is given by

. v . o '
aﬁz%fdzgw*‘<f|r—§j#<r) o, 1) li> (B.8)
C
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where @(r, ) is the Lienard-Wiechart potential given by eq. {2.1.4). We can also wnte it in the in-
tegral representation

7z ip.[R—R(n}]
ofr, =" | dPp b, (B.9)
2n D
where
R={(x, », v2), R =(b,, by, i), (B.10)
Inserting this in {B.&), the integral in ¢ yields
2
—g— 5(}:}2 - C’)I}’V) ]
and therefore,
Z (p ;
4= 11; J'dzpr . F(p') - e”’:r'b, (B.11)
FrRy pr+ (cofyv)
where
p = (pp ofv). (B.12)

The total cross section is obtained by integrating the above squared expression over all possible
impact parameters:

Ts0. = Z J tafz"zdgb

spins

7 o IF ;!2
( ]e) ZI 2 (p)_ g Pr

spins [IDT+ (wfyv) ]

Comparing (B.6) and (B.13), we observe that the equality between the semiclassical and the PWBA
cross section is guaranteed if we are allowed to replace ¢g¥= by infinity in eq. (B.6), which 1s gen-
erally the case, as soon as the form factor F(q) is a rapidly decreasing function of g;-

(B.13)

9.3 C - Useful handy formulas

In the following we give some approximate formulas, useful for the fast calculation of a given
electromagnetic process in ultra-relativistic heavy ion collisions (i.e., for y =1 ). For more details
see the corresponding chapters of this review.

Equivalent photon method
For one-photon processes:

a:jn(w) o () 22, (.1
where
n(w)z—g—Z;%a In (;j;) (C.2)

a5 is the photo-nuclear cross section for photon energy 2w, R= 1.2(4}° + 4} is the sum of the
nuclear radii, and « is the fine-structure constant. The mdlces P and T denote the projectile and

the target parameters, respectively.

For two-photon processes:
o= f[(x) o (x) 2, (C3)
where
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16 (ZplraNa, 3 yhe
I(x)=——(—) i 2R (C.4)
3 i xRp Ry

o,, is the photon-photon cross section, and 4x is the square of the invariant mass of the 2y-system.

Excitation of giant dipole resonances in RHI collisions:
Direct electromagnetic excitation of GDR’s on a nuclear target by means of RHI's:

27433
g=2rS ln —,’—TT (C.5)
AY 4 4l
where
Z2Z-N,
S=545% M0 ZEOTIT oy (C.6)
A2j3
T

Multiple electromagnetic excitation of GDR’s on a nuclear target by means of RHI's:

e i S S ywN-1 (7
NN 1) 2

Ionization of K-shell atomic electrons

2
V4 2
o=9872 “F_ m(," ) (C8)
(Zy2) Ly
where ¥, = e*/mc? is the classical electron radius.
Production of lepton-pairs
Production of ete -pairs:
s _——(4, Zpar) In® (%) . (C9)

Production of g*u- and of t¥1-pairs:.

Here we have to distinguish between two cases: (a) if y=>> 16 for muon-pair production, or
7> 200 for tau-pair production then we can use the the previous formula with ., (f=u or 1)
m place of 7, (b} if the Lorentz factor does not satisfy the above conditions, then we have the fol-
lowing formula

h 4 —-4m,cR

Electron-pair production with capture of the electron in an atomic K-shell orbit:

_ 33 552
. C.11
T 20 5o 2 Zre 1“(2) (1D

Production of a neutral resonance particle with mass m and positive charge conjugation parity
3

w1 :
128 B (zp Zpaf 2+ 1) (——2&—-——> - (C.12)

mcJRp Ry

where I',, is the branching ratio for yy-decay, and J the spin of the resonance.
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