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Asad
A study of the processes generated by the electromagnetic interaction in relativistic nuclear, and

atomic collisions is presented . There is nowadays a vivid interest in this Field due to the construction
of relativistic heavy ion accelerators . Certainly, the most important purpose of these relativistic
heavy ion machines is the study of nuclear matter under extreme conditions . In central nucleus-
nucleus collisions one hopes to observe new forms of nuclear matter, like the quark-gluon plasma.
On the other hand, very strong electromagnetic fields for a very short time are present in distant
collisions with no nuclear contact . Such fields can also lead to interesting effects, which are dis-
cussed here.

There has been mang interesting theoretical and experimental developments an this subject, and
new areas of research were opened . Of special interest is, e .g ., the case of nuclear fragrnentation.
This is accomplished through the excitation of giant resonances or by direct break-up of the nuclei
by means of their electromagnetic interaction. lt is shown that this process can be used to study
nuclear structure properties which are not accessible by means of the traditional electromagnetic
excitation at nonrclativistic energies . The creation of particles is also of interest due the large cross
sections, specially in the case of electron-positron pair creation.

Although to explain the mang processes originated in this way one can develop very elaborate
and complicated calculations, the results can be understood in very simple terrns because of our
almost complete comprehension of the electromagnetic interaction . For those processes where the
electromagnetic interaction plays the dominant role this is clearly a very useful tool for the investi-
gation of the structures created by the strong interaction in the nuclei or hadrons .
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1 .0 Introduction

For a very long time electromagnetic processes in nonrelativistic nuclear collisions, like e .g.
Coulomb excitation, has been a subject of considerable theoretical and also experimental interest.
The basic assumption of these kind of reactions is that the nuclei do not penetrate each other . When
they penetrate the reactions are overwhelmingly due to the strong interaction, what complicates the
analysis of these reactions in the relativistic regime where the two possibilities occur . But, since the
photon exchange amplitude is singular at four-mornentum transfer q, qq = 0, the virtual photon
exchange rnakes a larger contribution to the amplitude for forward scattering angles than the ex-
change of strongly interacting particles . This allows to separate the electromagnetic contribution for
certain processes, and with certain experimental setups . Also, the passage of a relativistic charge by
a nuclear target provides an electromagnetic pulse of short duration and enhanced due to the
Lorentz contraction . Such pulse can be sufficiently energetic to excite giant resonances in the nu-
cleus, or to create particles (e e + -pairs, pions, heavy leptons, etc .) . The long range of the
electromagnetic interaction leads to very large cross sections in some cases, which can be easily
verified experimentally.

The simplest way to describe the reaction mechanisrn in relativistic electromagnetic collisions
is provided by the equivalent photon method, which is originally due to Fermi (Fe-24) and later
an developed by Weizsäcker (We-34) and Williams (Wi-34, Wi-35) . In the literature it is also
commonly referred to as the Weizsäcker-Williams method . Let us present a resume of the ideas
involved in this method . A more complete description can be found in the excellent textbook of
Jackson (Ja-75, p . 719) on classical electrodynamics.

We shall consider the target nucleus as fixed, negiecting its recoil, and we place the origin of our
coordinate system in its Center of mass . In this way we analyse the effects of the electromagnetic
field generated by the projectile on the target . This is a simple matter of convention, to simplify the
notations, since the role of the target and of the projectile can be exchanged, i .e . we can consider
the case of intemal excitation of the projectile by the electromagnetic field of the target, and vice-
versa . The charges and mass numbers of the projectile and target are given by
(Z„ A,) and (Z2 , A 2 ), respectively . The projectile is assumed to move in a straight line with ve-
locity v and impact parameter b . When v c, where c is the velocity of light, the electromagnetic
field generated by the projectile looks contracted in the direction perpendicular to its motion (see
figure l .la) and is given by

Z 1 e yvi

[ b2 + y2v2t2]

Zle yb
C b2

+ I 2V2t2 j3J2

(1 .1a)

(1 .1b)

EZ = -

ET -

	

BT- c x ET , and

	

Bz - 0,

	

(1 .lc)

indices denote the direction parallel (transverse) to the velocity of the projectile,

y = (1 - v2/c2)-tj2

is the relativistic Lorentz factor.
When y » 1, these fields will act during a very short time, of order

At

	

b

	

(1 .3)
and they are equivalent to two pulses of plane polarized radiation incident on the target (see figure
1 .1b) : one in the beam direction (P1 ), and another perpendicular to it (P2 ) . In the case of the pulse
P, the equivalency is exact . Since the electric field in the z-direction is not accompanied by a cor-
responding magnetic field, the equivalency is not complete for the pulse P 2, but this will not

where the z
and

Introduction

	

1



appreciably affect the dynamics of the problem since the effects of the field E Z are of minor relevance
when v _e c . Therefore, we add a field B2 = vE2 jc to eqs . (1 .1) in order to treat also P2 as a plane
wave pulse of radiation . This analogy perrnits to caiculate the amount of energy incident on the
target per unit area and per frequency interval as

1(w, b) = rt E(w)x B(w) ,

	

(1 .4)

where E (w) and B (co) are the Fourier transforms of the fields given by (1 .1).

VI6 .

( a )

P 2

P
1

	

(b)

Figure 1 .1 . (a) A relativistic charged projectile incident on ä target with impact parameter larger
than the strong interaction radius . A sketch of the electric field generated by it is also shown . One
of the effects of this field is to induce collective vibrations of the nuclear charges . (b) Two pulses
of plane wave of light which produce the saure effect an the target as the electromagnetic field cre-
ated by the projectile's motion.

Now, we associate the speetram of the virtual radiation as obtained by means of (1 .4) to the
one of a real pulse of light incident on the target . Then we can obtain the probability for a certain
electromagnetic process in a relativistic nuclear collision to occur, in terms of the cross sections for
the Same process generated by an equivalent pulse of light, as

P (b) = J 1(co, b) o'y(hcw) d (hw) = J N (w, b) o-y(co) 	 dew ,

	

(1 .5)

where r (w) is the photo cross section for the photon energy EY = hw, and the integral runs over
all the frequency speetrum of the virtual radiation . The quantities N (w, b) can be interpreted as the
number of equivalent photon incident on the target per unit area . Performing a calculation of (1 .4)
from (1 .1), and using the definition (1 .5), we find

2

N (w, b) =
r,2 (yv

w
)2 (v)2 KI(x)+ z K-0(x) ,

where x = wbjyv, KQ (K1 ) is the modifed Bessel function of order zero (one), and a = e 2 /hc is the
flitz structure constant . In the equation (1 .6) the fast term inside brackets comes from the con-
tribution of the pulse P, , whereas the second term comes from the contribution of the pulse P 2 .
One immediately sees that the contribution of pulse Pz becomes negligible for y » 1 . The shape
of the equivalent photon spectrum for a given impact parameter can be expressed in terms of the
adimensional function q(x) = x 2 K; (x), if we neglect the pulse P2 . In a crude approximation,
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9 = 0 for x > 1, and 9 = 1 for x � 1, as can be seen from figure 1 .2 . This impffies that, in a collision
with impact parameter b, the spectrum will contain equivalent photons with energies up to a
maximum value of order

Eymax = y txc

	

(1 .7)
b

which we call by adiabatic cutoff energy. This means that in an electromagnetic collision of two
nuclei the excitation of states with energies up to the above value can be reaehed . Although this
result was obtained classically, we can make a quantum analogy to it by observing that in a collision
with interaction time given by (1 .3) only states satisfying the condition T/At » 1, where T is the
period of the quantum states, will have an appreciable chance to be excited . Otherwise, the quan-
tum System will respond adiabatically to the interaction . Later we shall sec that quantum mechan-
ical calculations confarcn these expectations . In a collision with a typical impact parameter of
b = 10 fm one can reach states with energy around Em u 20 y MeV. Among the many possi-

bilities, we cite the following : for EY ti 10 - 20 MeV (already small values of y) the excitation of
giant resonances, with subsequent nucleon emission; for E,.

	

20 - 100 MeV the quasideuteron
effect which corresponds to a photon absorption of a correlated N-N pair in the nucleus ; and for

EY > 100 MeV pinn production through d-isobar excitation which has a maximum at EY 200

MeV. Also the production of lepton pairs (e + e-, u+p- , r l2-) are accessible with increasing value

of y .

1 .2

1 .0

0 .8

0 .6

0 .4

0 .2

X
.1

X

Figure 1 .2 . The shape of the equivalent photon spectrum as a function of x = wb/yv.

The cross sections for electromagnetic processes in relativistic nuclear collisions are obtained

by integrating (1 .5) from a minimum impact parameter, b = R, to b = co . The value of R depends

an the process considered . In the case of internal nuclear excitation, i .e . Coulornb excitation, R

will be equal to the surr of the two nuclear radii . We obtain

a =
j~

2irb P (b) db = f n (w) Qy(w)	
dGw ,

R

where
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0.0

n(to)

	

2rtbA'(w, b)db
R

2;. 2

_ Zfci (v) 'K0K1 v 2 (Ki -Kä)
2c

where the modified Bessel functions are functions of the adiabaticity parameter

coR
yv

~
2 2

	

5
Zfaln ()

(1 .10)

the relationship

(1 .11a)

For y» 1

	

(except for extreme low-energy frequencies,
wRfc« 1 ) one can use the approximation

n (w)

	

1

	

2 ,2

	

2 +

s

satisfying

where cS = 0 .68L . . is a number related to the Euler's constant . This implies that the cross sections
as given by (1 .8) will tend to increase logarithmically with the value of y . Except for minor differ-
enees, this general behaviour will be found in the applications we shall study.

In the limit of very large frequencies, w » yv/R , an adiabatic cutoff sets in and we have
2

n (w) -	 Z l	 e-2 (wRiyv)

	

(1 .1 lb)
2

Although the above fotmulation of the electromagnetic collision of two fast nuclei was already
developed in the thirties with applications to many processes (see Ja-75), it was specially in the case
of relativistic heavy ion (RHI) collisions, where these concepts were more useful . In some cases, the
agreement of caleulcations based on the equivalent photon method and more exact quantum cal-
culations are very good . This makes it a powerfuI tool for obtaining the values of probabilities and
cross sections of a given electromagnetic process in RI1I collisions with reasonable results, as
compared to more complicated calculations.

We feel that a review of electromagnetic processes in RHI collisions is appropriate at this time.
There is a fairly complete and coherent theoretical framework which describe such processes . A1-
ready well stablished experimental work (mainly at BEVALAC) on Coulomb fragnentation has
been analysed . There are new RHI accelerators boing built (like SIS, Darmstadt, whith energies in
the GeV/A range), or already in Operation (Brookhaven, with 15 GeV/A oxygen beams ; CERN,
with 60 and 200 GeV/A oxygen beams), or in the planning stage (relativistic heavy ion collider in
the USA) . New experiments related to electromagnetic processes are planned at these accelerators
and many more could be envisaged . In view of these new possibilities, a review seems interesting
for a large group of theoretical and experimental physieists at the present stage.

In chapter 2 we present more elaborate semiclassical and quantum calculations of the proba-
bility amplitudes and cross sections for relativistic Coulomb excitation . There we shall sec that, for
not too high values of y , there will be small deviations from the above results . We show that the
equivalent photon speetrum can be decomposed in terms of a sum of different elcctric and magnetie
multipolarities, which reproduces the limits (1 .11) for y» 1 . The study of the contributions of the
different multipolarities is specially important for Coulomb excitation.

In low-energy nuclear physics Coulomb excitation plays a key role ixt the study of collective
low-lying states and multiple excitation has become a powerful tool to extract information about
these states . In relativistic Coulomb collisions it is possible to excite high-lying states, like the giant
El and E2 resonances, which mostly decay by particle emission_ We consider these processes in
chapter 3 together with the possibilitites for multiple Coulomb excitation of giant resonances which
could . lead to a disruption of the nuclei in fragments far from the stability live . In that chapter we
also study the direct dissociation of weakly-bound nuclei is relevant for coincidence experiments.
The different behaviour of the contributions of the electromagnetic and of the nuclear interaction
to the differential and to the total cross sections is examinated.

In chapter 4 the relativistic Coulomb excitation of hadrons in the field of a nucleus with large
Charge (Primakoff effect) is studied on the same grounds_ lt is shown how useful this process ean
be in order to obtain informations about the internal structure of these particles . The sucessful ex-
perimental study of the measurement of the lifetime of the E° particle is shown as a nice application
of the theory of relativistic Coulomb excitation . Due to the enhancement of the cross sections with
the eharges of the ions, the production of particles in the two- photon process is also of great in-
terest.

Although contributing little to the total emission of real photons (Bremsstrahlung) in Rill
collisions, the Coulomb bremsstrahlung possesses interesting features which are studied in chapter
5 .
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The ionization of atomic electrons in RHI collisons has very large cross sections and is an ex-
tensively studied process, and we show in chapter 6 the main theoretical aspects of it.

Chapter 7 is dedicated to the production of lepton pairs in RHI collisions . The consequences
of the large cross sections for the production of electron-positron pairs are analysed . Of special in-
terest for the development of relativistic heavy ion colliders is the case of electron-positron pair
production with capture of the electron in an atomic orbit in the ions.

Conclusions and an outlook are given in chapter B .
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Theory of Relativistic Coulomb Excitation

Recently, a new interest on the theory of relativistic Coulomb excitation was appeared . Among
others, we cite the Works of Fäldt, Pilkuhn, and collaborators (Fä-74, Jä-75) . In particular, Jäckle
and Pilkuhn have deduced equivalent photon numbers for the lowest multipolarities with help of
the eikonal approximation . A complete analytical evaluation of the contribution of all multipo-
larities was accomplished by Winther and Alder (Wi-79) in terms of a semiclassical approach . The
relation between the electric-dipole excitation Cross section obtained by Winther and Alder and the
equivalent photon method was demonstrated by Hoffman and Baur (I-lo-84) . Later on, it was
shown by Goldberg (Go-84) how one can extend the equivalent photon method in order to cal-
culate the equivalent photon numbers not only for the El but also for all other multipolarities of
the virtual radiation . Bertulani and Baur (Ber-85, Ber-86a) have done calculations based on the
plane wave Born approximation for the Same process and made a comparison of all these different
approaches.

In this chapter we show in sections 2 .1 and 2.2 a resume of the nice semiclassical calculations
performed by Winther and Alder which contain the main ingredients of the process, and in sections
2.3 and 2.4 we show the calculations of Bertulani and Baur in the plane wave Born approximation
(PWBA) which are useful wherever quantum diffraction effects appear . In section 2 .5 we extract the
equivalent photon numbers from the previous results which help us to obtain more insight into the
theory by comparing it with the results from other formulations, which we do in section 2 .6. In

section 2 .7 we follow the approach of Baur, Bertulani, and Rebel (Ba-86c) to account for recoil

corrections, which are irnportant for intermediate energy problems.

2.1 Excitation amplitude in the semiclassical approach
In the following we shall calculate the electromagnetic excitation amplitude of a target nucleus

with mass and charge number A2 and Z2 , respectively, by means of a relativistic projectile with ve-

locity v, impact parameter b, and mass and charge number A, and Z, . In fact, both nucleus will be
excited and we can use all following results to calculate not only the target excitation amplitudes
and cross sections, but also the projectile excitation ones, by exchanging the variables corresponding
to the target and the projectile.

We shall consider the target nucleus as fixed, neglecting its recoil, and we place the origin of our
coordinate system in its Center of mass . The target will be described by an eigenstate i IM >, where
1 denotes its angular momentum and M the magnetic quantum number . In the semiclassical ap-

proach the projectile is assumed to move in a straight-line and will generate a time-dependent
electromagnetic field which will excite the target . If the excitation is weak, we can calculate the
excitation amplitude in the ferst order time-dependent perturbation theory as given by

aft=
ihfdte i` t < Ip% I V[r(t)] It1Ir> ,

	

(2 .1 .1)

where

w=(Ef-E;)Ih,

	

(2 .1 .2)

and Er (Et) is the initial (final) excitation energy of the target . The interaction potential V [r (t)] is

given by'

V [r (t)] _ : c J
d3rAu [r ( t)]]u(r),

	

2 .1 .3)

Here we use the notation A u = (A o , A), and the surrt convention ApBB = AoBo -A.B .



where j„ (cp, j) is the internal target four-current and A " = (1, v/c)

	

where c1(r,t) is the Lienard-
Wiechert potential (see e .g Ja-75, p . 654)

--- kJ 2 + (y -- by ) 2 + y2(z vt)2 ]i12

for a charged particle moving in a straight line with an impact parameter b = Ji b; + b 2
. The z-axis

is takelt along the beam direction (see fig . 1 .1) . The Fourier components of the field9(2 .1 .4) are

(r, w) =

	

1(r, t) et röt dt

2Z1
e

e «o v) Z

Ko( a)q/v) ,v

where K0 is the modified Bessel function of zero order and the quantity g is given by

q 2 = Z (x - bX ) 2 + (y - by)2 ] .
7

Now we expand (1)(r, co) in multipole components i .e.

cl-)(r, w) =

	

WW m (r, w) Yim( )

	

(2 .1 .7)

with

WWm(r, w) = 5 dQ cl)(r, w) Y~m()

- 2Z 1 e

	

e i (wj v) r cos 8 Y(m(6 0} d cos 8 f2z e im¢ Ko(wq/v) dtv
v

	

J0

	

0

Since we are only treating the case in which the impact parameter b is larger than the nuclear radius,
we can use the Graf addition theorem (see e .g. Ab-64, p.363, eq. 9 .1 .79)

Ko(wq/v ) =

	

ein¢ Kn(wb/yv) In ( yv r2 - z 2 1 .
n=-oo

	

\\

	

j

Then the integral over 0 in (2 .1 .8) leads to

Wern (r, w) = et

	

	 Zü eKm (Wb!yv)
5rz

sin 8 d8 e i (wiv) r cos 0 YYm(6,0) Im

	

v
sin

	

. (2 .1 .10)
0

Writing Yein (8,0) in terms of the Gegenbauer polynomials C,(x) ( see e .g. Ab-64, p . 771), and using
the Gegenbauer integral (see e .g . Gr-65, p . 832, eq. 7 .333) one finds for m> 0

W,,,m(r,w)= ZVe .v 167t(2e+ 1)

	

(t°+m)!
] 1f2 (2m- 1)1r/ m

	

(2 .L11)

	x (c/yv)m Km(wbIyv)

	

j((xr) ,

7 1 ey
(2 .1 .4)

(2 .1 .5)

(2 .1 .6)

(2 .1 .8)

(2.1 .9)

with

K=wic,

	

(2 .1 .12)

and jj(xr) is the spherical Bessel function.

For m < 0 one fmds

WW, -m(r, w) (-1)m Wt'm(r, w)

	

(2 .1 .13)

Now we substitute eq . (2 .1 .3) in (2 .1 .1) and utilize the multipole expansion (2 .1 .7) together
with the result (2 .1 .11) . Using the continuity equation for the charge and current density in nucleus
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2, and the recursion relations for the Gegenbauer polynomials, one may write (2 .1 .1) in terms of
the multipole matrix elements (sec e .g. Al-75)

	 ~!	;VI(E~m)-	
(21 +1 . .	 f !(r)0 x I-[Ie(Kr)Yem(i)~d3r,

	

(2.1 .14a)
K ii-t c(e+1)

M (Mim) = --i	
(2 +I )!!	 JI(r) .L[Jkr)Ym(r)]dr .

	

(2 .1 .14b)

(i +1)

for electric and magnetic excitations respectively.

The result may be written in the form

af1 = - i	
l
~

	

(-1) m/2 e +1 Kg' GItem( cI v ) Km(wblyv) < IfMf l M (Ire, - m) I IiMM

(2 .1 .15)

where rr = E for electric excitations, and x = M for magnetic excitations . The functions Gxfm can
be expressed in terms of the associated Legendre polynomials and are given in explicit form in the
appendix A.

The amplitude (2 .1 .15) can be seen as a product of (i) a factor that only depends an the prop-
erties of the nuclear states involved through the matrix elements describing the electromagnetic de-
cay of the state i f> to the state 1 i >, (ü) a factor K ,,,(x) that describes the degree of adiabacity of
the excitation and which vanishes exponentially as x becomes larger than unity, and (iii) a factor
giving the strength of the field as a function of the velocity . Due to the conservation laws, m is the
angular momentum transfer from the relative motion to the internal degrees of freedom of the ex-
cited nuclei . That is,

m=Ä4 -Mf .

	

(2 .1 .16)

2®2 Cross sections

The square modulus of (2 .1 .15) gives the probability amplitude of exciting the nucleus 2 from
the initial state 1 i > to the final state If> . If the orientation of the initial state is not specified, the
cross section for exciting the nuclear state of spin lf in collisions with impact parameters larger than
R is

u1, f- 2z 1 b db (2i+ 1)-1 L 1 af 1 2
R

	

M,ff

(Z1u)2

	

K2(e-t)
I Grem(efv)1 2 gm() B (7r?, Ii

	

If) e2
Item

where is the flne-structure constant, is given by eq . (1 .10),

(lr , Il -~ If) =
2I1 + 1 > 1 < 1fMf 1 M (Item)

	

> 1 2	(2 .2.2)
MrMf

is the reduced transition probability, and gm is given by

gm(e) - g m(Z) = 21r (wlyv) 2	b db [K,,,(wb/yv)]2

!
R

-
Ir

[Km+l(Z) Km-1(Z) - [4( 22]

In the lirnit « 1, the functions g,,,() reduce to

Item

(2 .2 .1)

(2 .2 .3)
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(m - 1) Um - 2) ! ] 2 (2IZ)
2m-2

ö-()`

	

ln[(bf 5) 2 + 1]

r

for m> 1

for m = 1

	

(2 .2.4)

for m=0,

where b = 0 .681085 . . ..
We can obtain an estimate of the maximum angular deflection of the projectile due to Coulomb

repulsion. lt is given by (see Ja-75, p . 643, eq . 13 .89)

2Z 1 Z2e 2

	

c

	

RE

	

(2 .2 .5)

where E is the bombarding energy . For relativistic energies this quantity will be be very small, jus-
tifying the use of straight lines for the projectile motion . For intermediate energy problems the recoil
correction may be of importance and it amounts in small modifications in the above formulas, as
we shall show in section 2 .7.

2e3 Transition a litude in the eikonal approximation

The scattering of highly energetic particles is, for most purposes, conveniently deseribed by the
so-called eikonal approximation (see e .g . GI-59, Jo-74) . The transition amplitude in this approxi-
mation is given by

fi

_	 ik
f d2 b' eigr-b' F(b),

	

(2 .3 .1)
2re

where hk is the momentum of the projectile's motion, qr is the momentum transfer in the transverse
direction, and F y(b) is the profile function for the Coulomb scattering . We can use fast order per-
turbation to ealculate the profile function (in which case 2 .3 .1 is foiuially equal to the ferst order
Born approximation), and introduce a cut-off to account for the strong absorption . In this case we
can wate

I
y(

b, qe) =
O(b2n-ik R)5 d2qre_1 T h

TBarn{ q T, e) ,

	

(2.3 .2)

where 6(b- R) is the step function, and

TBorn = c J darAg(r) < If .llf{Iu(i') It' i >

	

(2 .3 .3a)

with

irc I r-r' ~

,4 l.,(r) =

	

f da r-'	 C kj

	

(r' ) k. > :

	

(2 .3 .3b)

where ju - (cp, j) is the target four-current and Ju is the projectile one ; r (r» denotes the target
(projectile) coordinate, and ir is given by (2 .1 .12) . The function Au(r) represents the four-potential
created by the transition current of the projectile.

Inserting (2 .3 .3) in (2 .3 .2) and (2.3 .1), and perforrning the integration over b, we find that 7'»
is also given by (2 .3 .3a), only that (2.3 .3b) is changed by the introduction of a cut-off function in
the r' integration, i .e .,

ik

	

A ( r) = 1
j

d2p 'O (p' -R)

j
dz' e	 < kjI .Ig(r' ) i ki > .

	

(2.3 .4)u

	

{r-r ' 1

Describing the projectile by a plane wave k >, where k denotes its wave vector, and assuming
that its velocity is not appreciably changed during the collision, we can put

where

is the momentum transfer, and

<kf ki >=Z1 evu e ` ' r ,

q ki - kf

vf, =(c, v),

(2 .3 .5)

(2 .3 .6)
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with v equal to the projectile's velocity . Choosing cylindrical coordinates for the projectile space
integration and the z-axis in the incident beam direction, we obtain

ei .r'
= ei

gLz'ei gTp' cos (0-¢ ' )

	

(2 .3 .7)

where ti is the azimuthal scattering angle and q,(qT) is the longitudinal (transverse) momentum
transfer to the projectile . For relativistic energies the polar scattering angle 6 due to the
electromagnetic interaction is very small and we can put

	

qL = ki kfcos B

	

ki - kf

	

wfv

	

(2 .3 .8a)

qT=kfsin0 ti (Elke)(v/c)sin6,

	

(2 .3 .8b)

where we also assumed that the excitation energy E - Ef = hcv is much smaller than the relative
motion energy E =

	

Ef .
Using these approximations we can write

i {mJv} z' e i q T p' cos

	

e ix r r' 1

	

Au(r) = Z l e (vuJc) d2p'
J

I dz' e

	

(2 .3 .9)
1 r - r1

The z' integration can be performed by defining

d2 =p2 +P' 2 -2pp'cos (00').

This leads to
r+ °° dz'

ei(c')iv)z,eixlr-r'I =2ei(c'fv)2 Ko(wdjyv).
JI-00

	

1r-ei
(2 .3 .10)

Using the Graf addition theorem in order to separate the target and projectile coordinates, the ¢'
integration is easily obtained and A h (r) becomes

	

= 4721 e (vajc) e i {m(v)z

	

tne rnecn¢
Jn(wp iyv)zn(R)

	

(2 .3 .11)

where

Xn(R ) = flJn(RTP')Kn(
YF
	 ) p , dp'

R

	 R	
2	 {Jfl(qTR)Kfl+l ( R )_ g TJn+1( g TR ) Kn(w R

)

qT+ c Y~)

After these considerations, many steps of this calculation are exactly the saure as in the semi-
classical approach. Doing a multipole expansion of A s (r) we find

Au =(47r)312Z 1 e(vuJc)i eV2P+ 1 [ (''

	

	 m0411/2 (2m- 1)!!(c/vy)m
+ m)!

x eZmvXm(R) C;'-Er).iIl2(c/v)
je(Kr) Yim() .

	

(2 .3 .13)

Now, inserting this relation into eq . (2 .3 .1), using the continuity equation for the nuclear current,
and the recursion relations of the Gegenbauer polynomials, one can write Tf, in terms of the matrix
elements of nuclear excitation:

Tf i = (27rZ1 e/y) 1 im Kr ~%2 P + 1 e im0 Xm(R) GGr,m(c/v) < I1 M1 [ M (>2, -m) I li Mi 7 .

m

(2 .3 .14)

This expression is analogous to the one found in the semiclassical treatment, eq . (2 .1 .15) . Again,
we fand a factorization into a khtematical part and a nuclear matrix element, which describes the
electromagnetic transition of the state I f > to the state I i > . Quite in contrast to the case of electron

(2 .3 .12)
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scattering (see e .g . FW-66), one does not obtain nuclear form factors which depend on q . The rea-
son is the introduction of the cut-off due to the strong absorption (see eq . 2.3 .2).

2.4 Differential cross seetion in the eikonal approximation
The differential eross section, for the case in which the orientation of the target is ignored, is

given by

	
E dQ

	

2z* 2 c 2 ) 2 2Ii + l - Le I
Tfi 1 2 .

	

(2 .4 .1)

11 M1

From eq . (2 .3 .14), the Wigner-Eckart theorem and the orthogonality properties of the Clebsch-
Gordan coefficients, one can Show that

	

der (ZcE

	

r~

dS2

	

L yhc

	

k

	

Grpm 2 rn(R)]2
	 BW) }

	

(2 .4.2)

The dependence of the differential cross section on the scattering angle is given irnplicitly by the
function Xm(R) . For forward scattering, q,= 0, and we obtain

z ,,(R, B = 0) IR2 = b mo

	

Kt(5) ,

	

(2 .4 .3)

where is given by the eq . (1 .10) . This implies that

	

dQ (B
0 ) (Z 1 cz)2 f

	 E
v 2 f 2 2 [K1(5)]2

	

k22(e-l) GFe©(c/v) 2
	B (Ee)

	hü)

	

2

The quantity m is equal to the angular momentum transfer to the target in the direction of the in-
cident beam, and eq . (2 .4 .3) shows that, for exact forward scattering, it is equal to zero . In this case
there is no magnetic excitation of the target . This can be expiained in terms of the symmetry
properties of the scattering of spin-zero particles . The conservation of parity of the total system
forbids the change of rotemal parity of the target by ( 1Y- 1 in the case m= 0 ( see e . g . Ja-59, eq.
43 ) . Since magnetic excitations are accompanied by this change of parity, the forward scattering
amplitude raust vanish in this case.

For 0 ~ 0 one can use the integral (2 .3 .I2) to obtain the dependence of the cross section on the
scattering angle . It will be extremely forward-peaked with a diffraction angle of about

	

B D ti

	

with

	

A= FV R.

	

A

	

hc 2

The parameter A is equal to the ratio between the nuclear dimension R and the quantum wave-
length of the relative motion energy . For relativistic heavy ion collisions this quantity is much
greater than unity and B D will be very small . We can also compare the diffraction angle B, with the
classically expected Coulomb deflection given by eq . (2 .2 .5) . The ratio of there two quantitics is

0c	 2
137 Z, Z

2 ,

	

(2 .4 .6)
B D

showing that only for small projectile and (or) target eharge the diffraction effects will be compa-
rable to the Coulomb deflection.

The total cross section is obtained by integrating (2 .4 .2) over the scattering angle 0 . But, by
means of (2 .3 .8b) we can transform the angular integration to one involving the momentum transfer
qr

2
dQ

	

Ev 2 qr dqr

Accordingly, the integration in q T must go from 0 to Ev / hc2 . Nevertheless, expressions (2 .3 .8b) and
(2 .4 .5) imply that already for q,- ee 1/ R « Ev/ hc2 the differential cross section is negligible . lt
then makes no difference if we take the integral in qT until infinity . In this case we can use the clo-
sure relation of the Bessel functions

fo qTJ.(ep') Jm(grp„

)

de= p
ö(p' _ p„)

	

(2 .4 .9)

(2 .4 .4)

(2 .4 .5)

(2 .4 .7)
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in order to obtain the total cross section

o lf= (2 1 ) 2

	

k2(P--1)gm(5) I Gnem(c/v)I2 B(72, Ii If)/ e2
nPm

which is equal to the Coulomb excitation cross section given by the semiclassical calculation . Also
in the case where no absorption (cutoff radius) is assumed (for example, in atomic excitation
processes), the cross sections in the PWI3A and in the semiclassical fou uulations can be proven to
be the same. For this general proof, see appendix B of Ber-85.

2.5 . q ivale t photon n bers

According to the equivalent photon method, the excitation of the target nucleus can be described
as the absorption of equivalent photons whose speetrum is determined by the Fourier transforrn
of the time-dependent eiectromagnetic field generated by the projectile (sec Ja-75) . The multipole
expansion of the electromagnetic interaction as done in the last sections, permits us to deduee the
equivalent photon spectrum for all multipolarities (see Ber-85).

Integrating (2 .2 .1) for all energy transfers E = hw and summing over all possible final states of
the target, we obtain

6C

= L J
cTf( E ) Pf( E ) de ,

	

(2 .5 .1)

f

where p f (E) represents now the density of final states of the target, with energy E = EZ + e . Inserting
(2 .2 .1) in (2 .5 .1), we can rewrite it in the form

6~=L j { na, ( co ) Qy(w)+ nMP(w ) o-yme'«o) d

where c are the photonuclear absorption cross sections for a given multipolarity rtP :

u"e(w)-	
(27r)3 (1+ 1)

pf(E)k2i-1 B(xI).
[(21+ 1)!!]

The total photonuclear cross section is a surre of all these multipolarities:

a y =

	

a~ (co) .

This allows us to obtain the equivalent photon numbers n e (w) given by

(co)Tzite

	

_ Zla	
[(2t° I 1)C!]2

	

(Gw~m(c/ v ) 1 2 gm(e)

	

(2 .5 .4)
(2fr)3 (1 +1)

Since all nuclear excitation dynamics is contained in the photoabsorption cross section, the equiv-
alent photon numbers (2 .5 .4) do not depend on this process . They only depend on the way that
the projectile moves . The equivalent photon method consists of using its kinematics to calealate
the intensity of the equivalent photon spectrum, which for a straight-eine-moving projectile must
be the same as those of eq. (2 .5 .4).

It was shown by Hoffmann and Baur (Ho-84) that, for El excitations, the equivalent photon
numbers obtained from the total cross section (2 .2 .1) are really equal to that calculated by Fermi,
Weizsäcker, and Williams in the equivalent photon method (Fe-24, We-34, Wi-34 and Wi-35),
which was presented in the chapter 1 . Nevertheless, while that method gives an expression for the
equivalent photon numbers independent of the multipolarities, eq . (2.5.4) shows that this is not
correct in general . Indeed, a merit of eq . (2 .5 .4) is that it gives an analytical expression to calculate
the equivalent photon numbers for all multipolarities and radiation types.

Using the expressions of Gxfm as given in the appendix A, we can write explicitly

fE1( W ) = 17E1, m=-1 + 71E1, m=+1 + 1E1, m--0

ll

	

2 2

n Zia (vf 2 K°K1- 2 (KI - Kö)
2c

Theory of Relativistic Coulomb Excitation

	

13

f

(2 .5 .2)

(2 .5 .3a)

(2 .5 .3b)

(2 .5,5a)



nM1( e-) )
=

(+)2
2

[nEl, m=_1+ nE1, m=+1]

Kö )~
(2 .5 .5b)

2 44 (K1 - KQ)f , (2 .5 .5c)
2c

2

- 2 Zi a K0

	

2K

	

(K12

nE2(w) - Zia (v)4
2(1-v2 Jc 2)K + (2-v2jc 2 ) 2 K0 K1 -

where all K's are functions of as given by (1 .10).

10 -3

0 -4

10 -1

10
-5

0 2

	

3

wR/c

y=10

1

Figure 2 .1 . Equivalent photon number per unit projeetile charge, for El, M1 and E2 radiation,
and as a function of the ratio between R and the photon wavelength . y is the ratio of the projectile
energy to itsrest energy.

In the limit y » 1 simpler expressions can be obtained for the equivalent photon numbers.
Using (2 .2.4) and the approximations given in the appendix A, we find that in the sum over m of
eq. (2.5 .4) the leading term for y » 1 is the one with in= 1, which gives a logarithmic rise with
y, since for rn >• 1 there is no dependence ony In this case the equivalent photon numbers are equal
to

nrr~ - Zia ln n Zia In

	

l , (2 .5 .6)

valid for all multipoles, which is exactly equal to (1 .1 la) . Sinee = coR/yv -* 0, we have a loga-
rithmic rise of the cross section for all multipolarities with y . The impinging projectile acts like a
spectrum of plane wave . photons with helicity in= + 1 . Such a photon spectrum contains equally
all multiporarities n2.
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For e > 1 and a not too large value of y, the m = t term can still be substantial . For a com-
parison we retain only the terms m = P in the sum (2 .5 .4), obtaining

4

(m = zG contribution) = Zia 	 	 (kR)2- 2?
(?+ 1)1(e

	

1)

For kR « 1, as is the case for low lying excited levels, this term dominates over the m = 1 term
(2.5 .6), unless y is extremely large . However, it must be kept in mied that in relativistic Coulomb
collisions it is possible to excite states with kR

	

1, or as we shall see, even kR > 1 is possible.
In this case the term m = 1 dominates, and the cross sections will always increase logarithmically
with the beam energy.

In fig . 2 .1 we show n r, (with Z, unity) as given by (2 .5 .5), as a function of rwR/ c . We see that
n,,» nE, » nm, for Small values of y, in contrast to the Limit y» 1 . The physical reason for
these two different behaviours of the equivalent photon spectrum is the following . The electric field
of a charged particle moving at low energies is approximately radial and the lines of force of the field
are isotropically distributed, with their relative spacing increasing with the radial distance . When
interacting with a target of finite dimension, the non-uniformity of the field inside the target is re-
sponsible for the large electric quadrupole interaction between them . The same lines of force of
an ultrarelativistic (y » 1 ) charged particle appears more parallel and compressed in the direction
transverse to the particle's motion, due to the Lorentz contraction (sec fig . l .la) . As seen from the
target, this field looks like a pulse of a plane wave . But plane waves contain all electric and magnetic
multipolarities with the same weight . This is the cause for the equality between the equivalent
photon numbers as y -~ co.

In the Limit of large frequencies, w » y v / R , an adiabatic cutoff sets in and
gm{) (n 2/2)

	

From (2 .5 .4) one obtains that in this limit

(2 .5 .7)

n,~ oc e-2y (2 .5 .8)

This means that a useful approximation in many cases is to use the relation (2 .5 .6) for < 1, and
A,, (w) = 0 for > 1 .

For general purposes, the utility of eq . (2 .5 .2) is twofold : (a) if one multipolarity is favored in
a certain reaction, then by measuring the total Coulomb reaction cross section one can get infor-
mation about the respective photo-induced process ; (b) if the experimental data an the photo-
induced process are available, one can use eq . (2.5 .2) to calculate the contribution of the
electromagnetic interaction to the same process in a RHI collision.

2.6 Comparison with other methods
Also by means of the eikonal approximation, Jäckle and Pilkuhn (Jä-75) derived other ex-

pressions for nE , and nm, . In their calculations it was assumed that the projectile had an Yukawa
charge distribution with length parameter a = /< r; > /6 , where -,%< r; > is the eharge mean
square radius of the projectile . We can compare thcir expressions with the eq. (2 .5 .5) if we take in
their results the projectile as a point particle (a-> 0) . This leads to

2
7 2

12E1 - 7 a 2 [Ko K2 - Kä 2Ko(0)[K2 - Ko] ] + 2 (KI

2

	

2

- Ko) + 4 0 Ko(0)K I(O)
Y

(2.6 .1)

where the K 's are the modified Bessel functions as a function of e given by (1 .10), except for the
ones that are explicitly written as functions of = a2R/v . In the saure limit, one can show that
n'h, = nM , . But one cannot reduce eq . (2.6 .1) to eq . (2 .5 .5a) . But, for y» 1 they will be equal (see
fig . 2 .2) . But the consideration of a charge distribution for the projectile should not modify the final
results, apart from inlluencing the value of the minimum impact parameter R . The Coulomb po-
tential for a projectile, with a spherical distribution of Charge in its rest frame is the same as that for
a point particle with equal total charge . A Lorentz transformation to another inertial frame of ref-
erence obviously cannot modify this equality. All following results, euch as cross sections or
equivalent photon numbers, are therefore not changed by the introduction of a spherical charge
distribution for the projectile . Therefore, the rninor differentes (El case) in the final results of Jäckle
and Pilkuhn (Jä-75) and Bertulani and Baur (Ber-85) raust be due to the sman kinematic cor-
rections used by the former authors .
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Figure 2 .2 . Comparison of the equivalent photon number per unit charge with the Jäckle and

Pilkuhn result (JPEI), for the electric-dipole radiation (see text).

Goldberg (Go-84) has also performed a calculation of the equivalent photon numbers by a di-
rect multipole expansion of the electromagnetic field generated by the projectile . The final results
are then obtained by performing, numerically, complicated integrals along the projectile trajectory.
Actually, a merit of eq . (2 .5 .4) is that it gives an analytical expression to caiculate the equivalent
photon numbers for all different multiporarities and radiation types.

For small-mass projectiles one can improve eq . (2 .5 .4), based on semiciassical ideas . In order
to see how it works, we compare the final improved expressions with those obtained in the ultra-
relativistic electron-nucleus scattering . But, besides the spie interactions, electron scattering is dif-
ferent from Coulomb excitation because the electrons can penetrate the nucleus and continue
interacting only electromagnetically with it . Neverthelless, in the long-wave limit q R « 1, where
qe is the momentum transfer of the electron, the nuclear volume plays a minor role and the matrix
elements contributing to the excitation in the near-forward scattering are just those appearing in the
photo-excitation process, with qe k . To disregard the nuclear volume means to put R = 0 in
the expression (2 .5 .4) . But in that case it goes to infmity . If we now evoke semiclassieal ideas, we
note that a normal procedure (see Ja-75) within the equivalent photon method is to use the quan-
tum wavelength k!yMv of the projectile, instead of the nuclear radius, as the minimum impact pa-
rameter when the projectile's mass M is small . This assumption is based on the uncertainty
principle, which introduces a "smearing out" of the projectile's coordinate in a space interval of
about its wavelength . By means of this recipe, we then replace (1 .10) by

,e =cujy 2 mev2

where me is the electron
pressions (2 .5.5) become

est mass . This quantity is generaily much less than one, so that the ex-
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electron

	

2
nE2

	

= n a

y2e.
+ In [

fe

	

. (2 .6 .96)

These are just the results that one derives from the equivalent photon numbers for electron
scattering, ferst obtained by Thie, Mullin and Guth (Th-52), in the ultra-relativistic limit with small
energy loss, where one can put Ei

	

Ef= yme c2 » mec Z .
When the above conditions (forward scattering, long-wavelength approximation) are not

matched, then this analogy is not valid at all_ For example, electron scattering can generate longi-
tudinal (EO) interactions with the nucleus, which are not accessible in Coulomb scattering.

Recently, Galletti, Kodama and Nernes (Ga-86a, Ga-86b) have studied the quantum and
relativistic recoil effects in the theory of relativistic Coulomb excitation and found that relatively
large transverse momentum transfers are allowed, which are not obtainable in the simple semiclas-
sical or eikonal approaches described here . For Bake of simplicity, we shall not enter into the dis-
cussion of these effects, since they play minor roles in most of the cases we shall treat here. Instead
of that, in the hext section we show how one can make a comparison of the previous results with
Coulomb excitation at nonrelativistic energies in order to derive simple recoil corrections for the
equivalent photon spectrum.

2.7 Effeets of the Rutheiford bandeng

In nonrelativistic Coulornb excitation the double differential cross section can also be expressed
in the terms of equivalent photon numbers as

d2 cr

	

__

	

1 vvi d n
ie 7e (2.7 .1)

where

d n,,e _ L ea_

dQ dEy	E y

[(2 t + 1),17 2

n

	

dQ

	

y
7re

(2 .7 .2)-22+2

	

c
(v)

2e dfe (0,

	

)
dQ (27r)3(i + 1) dS2

are the equivalent photon numbers per unit solid angle. They are functions of the adiabacity pa-
rameter

= Eya/,v = wa/v ,

	

(2 .7 .3)

where

a
Z 1 Z2e2

2

	

'
mov

(2 .7 .4)

is half the distance of closest approach in a head-on collision and mp is the reduced mass of the ions.
The functions f,,(0, () are given in terms of orbital Integrals and can be found in a tabulated form
in the texbook of Alder and Winther (Al-75) an Coulomb excitation . The first calculations of the
functions fe(0, () were performed by Ter-Martirosyan (Te-52), who found an analytical expression
for the El multipolarity . Since this is the more important case, let us study it first.

Inserting the expression for dfE ,(0, () (see Al-75, p . 93) in eq. (2 .7 .2) we obtain
2

d

	 nE1

= 4712
(v

c
)2

E 4z.2 e-g {	 s 2	

2 1
	 [Ki

	

+ [K' t ;( a ) 2 } ,

	

(2 .7 .5)
dQ

	

(

	

)

where e = 1/ sin (0/2) is the eccentricity parameter, and K' re (y) means the derivative of K,(y) with
respeet to the argument y.

For relativistic projectile energies the Rutherford trajectory . can be substituted by a straight-line
and, instead of the scattering angle 6, the concept of impact parameter b is used . The equivalent
photon numbers in those cases is given by eq . (1 .6), that is

	

.

2	
(I/

	

11

2b db N(w,
b)

-Zea
((0

)2 ( )2
K,2(x)+

	

Kö(x) I

	

(2 .7 .6)

7r

with x = wb/yv . Since, for a Rutherford trajectory, the impact parameter is related to the scattcred
angle by the expression b= a ctg (0/2) , we can rewrite the above equation as
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(2 .7 .7)
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11

2

Of course, for relativistic energies b « 1 and x = (7y) cos (0/2)

	

s(/y.
For the nonrelativistic limit a smalll scattering angle is related to a large impact parameter tra-

jectory e

	

bja» 1 . If we assume « 1, then by use of K'8 = - K, we obtain from (2.7 .5)

	

2

	

rr

	

r

	

( dS2 nonrel. -

Zl	

£ 2 l v )2 x2 LKW ( x ) + K
a
(x)]

	

(23.8)
4 ;t

which is just eq. (23.7) for y

	

1 .

0 .05

0 .

0 .2

1 .0

05

0 .0
0

	

O 4

	

0 . 8

	

1 .2

	

1 .6

X

Figure 2 .3 . Effect of Rutherford-bending of the projectile motion for different values of the
adiabacity parameter = Er ajhiv . lt is plotted the ratio of eq . (2 .7 .9) and eq. (2 .7 .8) as a function
of x= e (for y .a 1).

For not too large impact parameters, which still lead to small scattering angles the Rutherford
bending of the trajectory is mainly reflected through the parameter ( . In that case eq. (2 .7 .5) is ap-
proximately

d	
2

dS2 ]

	

4n2
l v)2 2

e x2 { [Ki e(x)j 2 + [K ‘ (x)] 2 1 .

	

(2 .7 .9)

Figure 2 .3 displays the ratio rK, x) = eq. (2 .7 .9) J eq . (2 .7 .8) which shows the effect of the
Rutherford-bending to the straight-line calculation . This effect increases steadily with

In eq. (2.7 .5) the Rutherford trajectory is accounted for properly in the calculations, but retar-
dation effects in the interaction are ignored . The reverse is true in the calculations which lead to eq.
(2 .7 .6) . While one can safely use eq . (2 .7 .5) in nonrelativistic problems and eq. (2 .7 .6) in relativistic
ones, the previous discussion has shown that none of them is suitable for intermediate energy
problems, where both effects are present . But, by a direct look at eqs (2 .7 .5) and (2 .7 .7), we see that
the main effect of the Rutherford trajectory would be present in the imaginary indices (i () of the
modified Bessel functions as well as in the factor e-'g . On the other hand, retardation effects imply
in the appearence of the y-factors in the eq . (2 .7.7), thus suggesting that one can account simul-
taneously for both effects by defming the new variable

wa
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and setting
2

d nEl
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2 .7 .10
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47r 2 (v E4222
e

	

2	 2	 [Ki,i (en)] + [K i r1 ( En)

	

(

	

)
Y

This equation reduces to (2 .7 .5) for y

	

1 and to eq . (2 .7 .7) for y» 1, E» 1 and should be a
good improvement for the intermediate energy region.

According to eq . (2.7 .1) the differential Coulomb excitation cross section for the EI multipo-
larity integrated over angles is

d6 EI

	

1

	

El

dEy	Ey nEl 0-Y

The equivalent photon number nE1 is obtained by an integration of eq . (2 .7 .10) over all angles
corresponding to pure Coulomb trajectories . In terrns of the eccentricity parameter, this integral can
be expressed as

2

	

2
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We see that when E» EB =Z 1 Z2 e2 /R, then Eo 2EJEB = R/a, where R is the the sum of the
two nuclear radü. The integration (2 .7 .12) can also be expressed in terms of the Bessel functions
of imaginary or complex indices by means of the Lommel integral formulas (see e .g Wa-58, p . 133).
This gives
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where all K's are functions of

	

n . In the nonrelativistic limit ß = v/c -+ 0,
tain

nE1
=

n
Zl a

	

(+)2 Ki (() K'i {(~)

In the relativistic limit ß --'; 1, Eo	Ria -> oo and n = 7y --> 0 , so that

where the K's are functions of = eo n .̂ wR/yv.
Of course, both .expressions (2 .7 .15) agree with the known results of previous calculations (sec

eq. 2.5 .5a and ref. A1-75, p . 96) . But, besides reproducing the nonrelativistic and the relativistic
limits, eqs . (2.7 .10) and (2.7.14). m.ight be useful for intermediate energy p.oblems.

x j ' de v2 s2E2	 1[K1,7 (E17)]2 `F [K' i,i( EY1)1 2

The rninimum value of the eccentricity parameter depends an whether the relative
ergy is smaller or greater than the Coulomb barrier energy Ee :
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Figure 2 .4 . Ratio of the exact nonrelativistic equivalent photon numbers given by eq . (2 .7 .2)
and the approximate expressions (2 .7 .16), for y 1, and for the E2 (solid curves) and M1 (dashed
curves) multipolarities.

Unfortunately, for the other multipolarities it is not possible to calculate the nonrelativistic
functions df e (&, Z) in an analytical form . But we can correct the equivalent photon numbers in the
relativistic case to obtain approximate expressions for the angular distribution in intermediate en-
ergy problems, by making the same substitutions which lead to eq . (2 .7 .10) (disregarding the effects
of the imaginary indices) . We obtain
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with all K's as functions of x = E, and
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(2 .7 .168)
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In figure 2.4 we plot the ratio between the exact nonrelativistic equivalent photon numbers,
defined by eq. (2 .7 .2) in terms of the functions df e(6, (), and eqs . (2 .7 .16) for y

	

1, that is

ri (0, f) = eq . (2 .7 .2) / eq. (2 .7 .16) ,

	

(2 .7 .17)

where i= 1 for the E2 case (solid line) and i= 2 for the Ml case (dashed line) . We observe that for
very forward angles, and y 1, the expressions (2 .7.16) give the same values as the exact
nonrelativistic calculations . Indeed, it can be shown that for very forward scattering angles all the
functions d,,(8, ) can be expressed in terms of the modified Bessel functions (sec A1-66, p . 483,
and also the appendix of Wi-79), which when inserted in (2 .7 .2) will reproduce the eqs . (2 .7 .16) for
y - 1 . As the scattering angle increases, there will be deviations of (2 .7 .16) from the exact values
of (2 .7 .2), specially for the M1 case wich depends more strongly on the bending of the Rutherford
trajectories . But, for « 1, the ageement between the two calculations is very good, which make
expressions (2 .7 .16) useful approximations for intermediate energy Coulomb excitation problems.
For example, these ideas have been considered by Baur, Bertulani and Rebc1 (Ba-86c) for the study
of Coulomb dissociation cross sections as a source of information on radiative capture processes
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of astrophysical interest . The Integration of (2 .7 .1 b) over the scattering angle can be performed in

the Same way as in eq . (2.7 .12).
We observe that, for E» EB , we obtain sa R/a (l - a/R), which means that a simpler

recoil correction of the equivalent photon numbers as given by eqs . (2.5 .5) is a rescaling of the
minimum impact parameter of the form

R--+R-j---L a,

	

(2.7 .18a)

where the factor n_/2 can be obtained in a more detailed analysis of the effects of the rescaling of the
minimurn impact parameter . Such a rescaling correction has indeed been observed by Winther and
Alder (Wi-79) and later confirmed by the numerical calculations of Goldberg (Go-84) . For each

impact parameter separately there will be a rescaling of the form (2 .7 .18a) but with the second term
with changed sign, i .e . für 6 « 1

x =

	

cos (0/2) -3 -L (b + 2 a) .

	

(2.7 .18b)

These corrections can be understood as following : the effects of the electromagnetic field are larger
when the Ions are closer together, but the dosest distance will also be bigger than the initial impact
parameter due to the Rutherford bending of the trajectory, and that is the reason for the rescaling
(2 .7 .18b) . On the other hand, more impact parameters, smaller than R, will contribute to the total
cross section without nuclear contact, which will lead to a total correction to it in the form
(2.7 .18a) .
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ec ro a e ic fragmentation in

	

C
In the last chapter a complete description of the theory of relativistic Coulomb excitation was

presented. In this chapter we shall apply this theory in the analysis of the Coulomb fragmentation
of heavy ions in relativistic collisions . The First experimental hint for the possibility of existence
of such processes was obtained in cosmic rays experiments by Balasubrahmanyan et al. (Ba-72).
They studied the absorption of carbon and oxygen nuclei in tungsten from 1 GeV/nucleon up to
about 10 GeV/nucleon and obtained decreasing absorption lengths with increasing energies . Artru
and Yodh (Art-72) were the ferst who suggested that Coulomb (electromagnetic) fragmentation
could explain these phenomenona, and made predictions about the Coulomb cross sections in the
equivalent photon method . The first laboratory experiment which clearly confirrned the existence
of an appreciable electromagnetic fragmentation in R1lI collisions was reported by Heckman and
Lindstrom (He-76) . Subsequently, electromagnetic fragmentation was observed by several other
experiments (see e .g . qVe-79, 01-81, Me-84, and Me-86) . A theoretical analysis of this process has
been performed by Baur and Bertulani (Ber-86b, Ba-86a and Ba-86b)_

In section 3 .1 we make an analysis of the experimental data of Mercier et al. (Me-84, Me-86),
and introduce a harntonic vibrator mode[ for the nuclei in order to obtain an illustrative way of
describing the fragmentation problem_ lt is remarkable that classical, semiclassical and quantum
descriptions of the process give approximately the Same results . In special, we show that, by using
simple sum mies, the experimental data can be weil explained . Of course, a more detailed consid-
eration of the nuclear structure will be neeessary in a more specific analysis of Bach reaction.

In section 3 .2 we study the consequences of a possible multiple excitation of giant resonances
in the nuclei, and make some predictions based on the harmonic vibrator mode!.

In section 3 .3 we make a short analysis of the cross sections for production of pions.
The coincidence experiments for the dissociation of weakly-bound nuclei are of great interest for

the study of nuclear structure of, e .g ., neutron-rich nuclei, and in section 3 .4 we make a study of
the angular distributions of the fragments, and of the dependence of the cross sections on the re-
action parameters.

3.1 Excitation of giant resonances

3 .1 .1 Coulomb and nuclear fragmentation in peripheral collisions

The passage of a particle with charge velocity v and impact parameter b (larger than the
nuclear interaction radius) by a nucleus initially at rest will predominantly cause a momentum
change of the charged constituents of the nucleus, i .e . the protons . This momentum is !arger in the
x-direction (perpendicular to the projectile 's motion), and is givcn classicallly by (see e .g . Ja-75, p.

619)

2Z 1 Z2 e2
Ap	 bv

From this we calculate : the energy transferred to the nucleus as a whole as

	

(Ap)2

	

2(Z 1 Z2 e2)2

	

EA
2m4

	

A2
~ b 2v2

where mx is the nucleon mass . For very fast collisions we can assume the :protons to move ahpost

freel}: ; the total amount of energy transferred to all protonsbeing

2 (Z 1 e 2 )2Z2
4 Ez = 2 2m, b v

(3 .12)



The differente gives the intemal excitation energy of the nucleus

2N2Z2 (Z1e2
)2

AEinr = AEz AEA 	
A2 mN b 2v2

(This amounts to giving effective charges of Ne/ A for protons and (-AM) for neutrons, respee-
tively) . If the incident particle is also a nucleus the saure eq . (3 .1 .4) can be used for the determi-
nation of the intemal excitation energy of it by exchanging the indices 1 and 2 . As an example, we
consider the case of relativistic (v e_- c) 2238

[, + 23sU willsions with b = 15fm. \Ve obtain

AEA	5 MeV , AEZ 15 MeV and AEint

	

10MeV .

This intemal excitation energy corresponds to about the excitation energy of the giant dipole and
quadrupole resonances in 2"U . From this simple classical estimate we can already deduce that there
is a large probability for the excitation of giant resonances in peripheral RHI collisions . Since the
giant resonances mainly decay by particle emission, this process will have an appreciable contrib-
ution to the fragmcntation of the nuclei .

(3 .1 .4)
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Figure 3 .1 . One-neutron removal cross section of ' 9'A u by means of relativistic heavy ions as a
function of the atomic number of the projectiie . The squarcs are the total experimental cross
sections . The circies represent the nuclear contribution to the cross section . The lower dashed curve
is a fit of the form a (1 + bA, 3) , and the upper dashed curve is a sum of the experimental nuclear
cross sections Q N and the estimates o based on the equivalent photon method.

Indeed, among others, a group of experirnentalists of the Lawrence Berkeley Laboratory and
Iowa State University (Me-84, Nie-86) have presented clear evidentes of Coulomb fragrnentation
in RHI collisions . In that experiment one obtained the cross sections for one-neutron removal of
59 Co, "Y, and '"Au targets due to the irradiation by relativistic beams of 'H, 12C, 20 Ne (2A
GeV/nucleon), 40Ar (1 .8 GeV/nucleon) and 56Fe (1 .7 GeV/nucleon) . From the data on fragmenta-
tion cross sections of the saure targets by means of relativistic proton beams (for which Coulomb
effects are negligible) they were able to deduce the nuelear contribution to the one-neutron removal
cross sections by RHI beams . An example of their results is shown in figure 3 .1 which gives the
cross section of one-neutron removal from ' 97Au as a function of the atomic number of the incident
prolectile . One observes that the cross section increases with Z2, which is a characteristic of

Coulomb processes . A precise theoretical expianation of the experimental results is complicated by
the presence of the nuclear contribution (shown in fig . 3 .1 by the lower dashed curve) which can
arise from a direct knock-out of the neutrons or by means of a two-step process involving first the
excitation of a giant resonance in the nuclei followed by the emission of one neutron . The nuclear
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contribution to this process is peaked at a certain impact parameter and falls down with increasing
distances_ It also falls down when the nuclei come closer together since other channels than the
one-neutron removal process become more important (see e .g . Hü-81 or Hu-85) . In this way one
can reasonably assume that the probability to remove one-neutron by means of the nuclear inter-
action in a RI-11 collision is given by a gaussian function of the impact parameter b, such as

P(b)=ß exp [_(b_R)2

	

(3 .1 .5)

where 2ä is the thickness of the surface area contributing to that process and ß is the maximum
probability at an optimal impact parameter which, for simplicity, we set to the touching distance
of the two nuclei

R = R t + R2 = 1 .2 (A-U 3 + A2` 3 ) fm .

	

(3 .1 .6)

Such a parametrization has also been found in theoretical calculations of fragmentation processes
at nonrelativistic energies (see e .g . 13a-84a) . A justification of this surface peaked form can also be
given in terms of a Glauber model (see, e .g ., Hü-81 and Hu-85) . The cross section will be

cr N 2trf bP(b)db a-i 2(xt)3/2 Rß5 .

	

(3 .I .7)
0

In order to have an estimate of ßb we set the cross section given by (3 .1 .7) to the experimental
values determined by Mercier et al. (Me-86) . We find the values of ßS as given in table 3 .1, which
are collected in fig . 3 .2 as a function of A, + A 2 . From that one infers an average value of

ßb

	

1 .1±0 .1 fm .

	

(3 .1 .8)

The question now arises about what the value of the maximum probability ß should be . Clearly,
there are other channels for fragmentation, like e .g . fission, two-nucleon removal, etc ., in the pe-
ripheral collisions with small nuclear contact . Rasmussen, Canto and Qiu (Ra-86) have shown that
there is an appreciable contribution to the fission ehannel in 238 U projectiles (1 GeV/nucleon) inci-
dent on nuclear emulsion . But, since the energy deposit in such collisions is small, the one-neutron
removal process raust be of greatest probability in most cases . If we use ß 1, we get b 1 fm
from (3 .1 .8) . This means that the nuclear contribution is restricted within a small range of impact
parameters in comparison to a much wider interval for the Coulomb contribution to the saure
process . In spite of the smaller energy deposit by means of the Coulomb intcraction in a RHI col-
lision, its Jong range leads - to total cross sections which can be even larger than the geometrical cross
section.

RHI 59 Co(RHI,X) 58 Co 89 Y(RH!,X) 88 Y t97Au(RHI,X) 196 Au

12C (2 .1 GeV/nucleon)
(2.1 GeV/nucleon)

a°tIr(1 .8 GeV/nucleon)
"Fe (1 .7 GeV/nucleon)

1 .00 ± 0 .08
1 .13 ± 0 .09
-------
1.02 ± 0.1

1 .17 ± 0 .11
1 .22 ± 0 .1
1 .43±0 .12
1 .22 + 0 .12

0 .95 ± 0 .11
1 .00 ± 0 .12
0.93±0.12
0.82 ± 0 .11

Table 3 .1 . The thickness parameters ßS, in fm, extracted from the experimental results of
Mercier et al (Me-86) for various projectiles and targets combinations used in these experiments.

The Coulomb contribution to the nuclear fragmentation in RHIC collisions is a two-stop
process involving the excitation of the giant resonances followed by particle decay . The cross section
for it can be calculated according to (2 .5.2) . While, normally, the ite = El contribution to the sum
(2.5.3b) is much larger than the others, the fact that nn» n~1 for beam energies around 1
GeV/nucleon leads to an appreciable contribution (5-20 %) of the quadrupole multipolarity to the
total Coulomb cross section (2 .5 .2) at these energies . lt is interesting to compare the experimental
values of Mercier et al. (Me-86) with theoretical predictions based on (2 .5 .2) and on sum rules for
the.photonuclear cross sections.

It is well :known that heavy nuclei exhibit an electric dipole resonance at approximately

E(G1) _x'03MeV

	

(3 .1 .9a)

and a quadrupole resonance at
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EGR-x,2 3 -MeV .

	

(3 .1 .9b)

To a good approximation we can take the factors n E ,((o) and nE2(w) outside the integrals in
(2 .5 .2)

nEtE 'Ra o-y (Ey) dEy +
nE2 [E2 EGR J

Q Ey2(E ) d
2

Ey

	

(3 .1 .10)

GR

	

( y)

and make use of the Thomas-Reiche-Kuhn (TRK) sum rule for the electric dipole resonance (see
e .g . Bo-75)

f dy 1 ( .y ) dEy	60 	NZ MeV . mb ,

	

(3.l .lla)
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Figure 3 .2 . Thickness ßb of the ring area contributing to the one-neutron removal cross section
in peripheral RHI collisions as a function of the sum of the target and projectile mass number
A,+ A 2 .

and the energy weighted sum rule for the electric quadrupole resonance

J
ßy 2(Ey) dE

y	0 .22 ZA 213 p.b j MeV .

	

(3 .1 .11b)
(Ey)2

In addition to the E2 isoscalar resonance, there exists also an isovector E2 resonance at an even
higher energy of about EM,

	

120 McVjA 1j 3 . Since it decays manily by two neutron emission, it
will not contribute much to the one-neutron removal experiment discussed here.

Within these approximations the dependence of the Coulomb excitation cross sections on
the energy of the projectile Efab is due to the dependence of nE, and nE2 on that parameter. As an
example, in fig . 3 .3 we plotted the Coulomb fragmentation cross section of 4°Ca projectiles incident
on 238 U targets as a function of the laboratory energy per nucleon . We use eqs . (2 .5 .5) with the
recoil correction R -> R + raj2 (see section 2.7), which will only be important for

E1 , ~A c 100 MeV. We also used the fact that a°Ca has a giant M1 resonance at E e

	

10 .3 MeV
and a B-value of order B (M1) .̂ 1 p. N, to caleulate the contribution of the M1-mode to the
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Coulomb fragmentation cross section . The lower curve corresponds to the M I fragmentation mode,
the dashed line to the El mode, and the dotted line to the E2 one . The solid line is the sum of the

three contributions . We nute that the Coulomb excitation cross section overcomes the geometrical
cross section. ~ G = n (R,+ R2) 2 for very high energies . One also observes that the E2 fragmentation
mode is very important at intermediate energies (around some hundreds of McVjnucleon) and even
for very high energies it can account for approximately 10% of Qc .

E
,_J

0

E

	

EGeV/nuc l eon3
1 ab

Figure 3 .3 . Coulomb excitation cross section of giant resonances in 4°Ca projectiles hitting a
236U target as a function of the laboratory energy per nuclcon . The dashed line corresponds to the
excitation of the giant electric dipole resonance, the dotted to the electric quadrupole, and the lower
line to the magnetic dipole . The solid curve is the sum of these contributions.

Indeed, since for high energies nE2

	

nE,, the cross section for the E2 excitation mode will be
smaller than that for the El case by the relative strength of the two giant resonances
o- E2 / v E '

	

Zw,w2 R 2 / 6Nc 2

	

0 .12, where w,(w2 ) are the requencies of the giant dipole
(quadrupole) resonance . The excitation of giant magnetic dipole resonances in RHI collisions is of
less importance, since for low energies n M , cc rin (nm ,

	

(vjc) 2nE1 ) , and for high energies, where

nm,

	

nE1 , it will be smaller than the excitation of electric dipole resonances by the relative strength

(I txjeR ) 2 = (N2m,, cR) 2 « 1.

RHI 59 Co(RHI,X) 58 Co 89 Y(RHI,X) x8 Y 197Au(RHI,X) 196Au
EI E2 El E2 El E2

12 C (2.1 GeV/nucleon) 8 .7 1 .88 15 .5 3 .39 46 .5 10 .3

20 P Te (2 .1 GeV/nucleon) 22 .9 4 .65 41 .1 8 .45 124 26.2

40 Ar (1 .8 GeV/nucleon) 63 .0 12 .7 114 23 .4 354 74 .6

"Fe (1 .7 GeV/nucleon) 121 24.2 221 45 694 145

Table 3 .2 . Theoretical electromagnetic excitation cross sections of El and E2 giant resonances
for various projectile and target combinations . The incident projectile energy is given in parentheses
and the cross sections are given in mb.

Table 3 .2 shows the theoretical values based an eqs . (3 .1 .9-11) for the reactions studied by

Mereier et al. One clearly sees the relevante of the E2 mode as compared to El . From the ratio

between the experimental data and the theoretical predictions,
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~El + ffE2 65R
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C

we obtain the values gathered in fig . 3 .4 as a function of A l + A2 . On the average, r< 1, which is a
reasonable result since r includes the total strength of the giant renonances which can decay not
only by means of one-neutron emission . In principle, one could also use the experimental
photonuclear cross sections cr(y, n) to do a more exact calculation of the one-neutron removal cross
section by means of eq . (2 .5 .2) (see e.g . He-76) . However, the decomposition of cr(y, n) into El and
E2 (or other) multipolarities is not exactly known.
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Figure 3 .4 . The ratio of the experimentally determined Coulomb excitation cross section o
and the theoretical ßSR value, as derived from the sum rule model, as a function of the sum of the
target and projectile mass numbers A l + A2 .

The only empirical parameter entering in eq. (2 .5 .2) is the minimum impact paramenter which
we set to R as given by (3 .1 .6) . For impact parameters in the interval R - d _< b <- R + b there is
interference between the nuclear and the Coulomb interaction. By using bm ; ,, = R - b in eq. (3 .1 .10)
the theoreticailly estimated Coulomb cross sections increase by less than 10% . Because of our lack
of knowledge of the nuclear and Coulornb interference effects, there exists even a greater uncertainty
in the theoretical determination of the induced cross section in peripheral RHI collisions . The Sit-
uation becomes simpler at higher energies and when both projectile and target are heavy nuclei,
for which the Coulomb cross sections depend mich less an the uncertainty in the minimum impact
parameter. In that case the Coulomb interaction leads to much greater cross sections than the nu-
clear interaction and for practical purposes one can disregard the nuclear contributions in peripheral
RHI collisions.

A serni-empirical black sphere expression for the reaction cross sections in RHI collisions, in-
troduced by Bradt and Peters (Br-50), and extensively used in the literature, is

Q

	

2 A X13 +A 1 ` 3 +Q

	

3 .1 .13R = nrp~ l

	

2

	

(

	

)

where r0 -ee 1 .2 fm. The overlap parameter A is meant to represent the diffuseness and partial
transparency of the nuclear surfaces . Nevertheless, it has been already shown (sec e .g . Gr-85) that
the fit of expressions like eq. (3 .1 .13) with very high energy experiments are quite poor . This has
also been object of a theoretical analysis in ref . Ber-86c . The overprediction at low projectile and ; or
target masses is thought to be due to nuclear transparency effects and the underprediction at larger
massec . might be explained by the addition of Coulomb processes. In fact, since the Coulomb

2 .0

1 .5
IY

0 .0

(3 .1 .12)
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fragmentation cross sections increase approximatclly logarithmically with energy, there can be no
parametrization of the reaction cross sections as implied by (3 .1 .13) for sufficiently high energies.

As we have seen, there is a satisfactory agreement at the present stage between theory and ex-
perirnent . The experiments are and will be going an at Brookhaven, CERN and SIS (Darmstadt).
Many more accurate data will become available and perhaps need a further refined theoretical
treatment . An interesting possibility of further experimental improvements is the Projectile Frag-
ment Separator at SIS (Ge-87) . The production of relativistic radioative beams (e .g . }9Ne, a f3+
emitter) from a 2°_Ne projeetile, to be studied in Darmstadt can be usefuI for radiation biophysics
(Ge-87).

Recently, Canto et al. (Ca-87) have analysed theoretically the so-called clean fission experiment
of 0.2 TeV uranium beams an nuclear emulsion . The experiments have been performed by
Friedlander et al. (Fr-83) and Jain et al. (Ja-84), which classfed the reactions into dirty or clean
fission, according to whether fission is or not, respectively, accompanied by other tracks . It is, in
principle, expected that the relativistic Coulomb excitation of the projectile would be of great rele-
vance for the total reaction cross section for clean fission, which nrust be originated in the peripheral
collisions . Nevertheless, they found that even with the inclusion of the nuclear contribution, the
available theories are not able to explain the high values of the cross sections . A possible expla-
nation is proposed by Galletti, Kodama and Nemes (Ga-87), which Claim that a covariant study
of the theory of Coulomb excitation, together with recoil effects can he a hint to explain not only
the cross sections, but also the angular distribution of the fragments . We indicate the above refer-
ences for a discussion of these experiments and theoretical problems.

3.1 .2 Harmonie vibrator model

The internal excitation energy of a nucleus by means of a relativistic charged particle as given
by eq. (3 .1 .4) does not take into account the binding energy of the nucleons . But we can account
for it very easily if we use the harmonte vibrator mode/ for the nucleus . The energy transferred to a
harmonically bound particle, with charge e; and mass 11-% , by a relativistic particle with charge Z.,e
is given by (see Ja-75, p . 623)
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AEI (b) = 2 Z1e2
et	
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Mi v 2 b 2
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I
K2

2 0 (3 .1 .14)
Y

where the modified Bessel functions are functions of x = cab/yv.
\Ve now apply this result to the excitation of giant dipole resonances (GDR) in nuclei . In this

case we assume that all nucleons vibrate with the Same frequency co = EGVR - E and, to disregard
the Center of mass motion, we use the effective charge of a nucleon as (er) ff = NejA for protons and
(e,)ff = (Ze/A) for neutrons . Summing for all nucleons

2 E EGDR] 2 2	 Z 1 V2Z2 C 4	 1

	

2

	

2AE(b) = > AEt (b)	
mN c 2

	

A2 (v ) y2 Kl +
2 K0

One can easily verify that (3 .1 .16) reduces to (3.1 .4) in the limit x = wb,l yv « 1, corresponding to
the low frequency limit . In this limit the interaction is so sudden that the binding energy of the
nucleons is unimportant and they can be considered as free.

One can also interpret AE (b) / EGDR as the probability c(b) of exciting a GDR in a collision
with impact parameter b, i .e.,

2EcDR2	 Z1~2Z2 c 4 1 K
2 1

K0
2~(b}-	 	 	 (~
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(3 .1 .17)2
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By taking EGDR = 80 MeV

	

we obtain

~(b) = a4 + aj + a' 1 ,

	

(3 .1 .18a)

where

1 -
(3 .1 .16)

(N'\2. + z 2 1
A
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,
(3 .1 .15)

e 2

m,

we obtain
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Figure 3 .5. Proton and neutron vibrations induced by the passage of a relativistic heavy ion.

We can also calculate these excitation arnplitudes by using the eq . (2 .1 .15) and the TRK surrt
rule to evaluate the matrix elements for the excitation of GDR states (see Ber-86b, Ba-86a, Ba-86b).
The result will be exactly the saure as that obtained above by means of a purely classical derivation.
This indicates that a,n = 1 ainj is the probability of exciting a nucleus by transferring to it an amount
mh of angular momentum in the beam direction . Classically the amplitude a0 corresponds to the
action of the electric field E (see fig . 3 .5) which generates vibrations along the beam direction.
These vibrations correspond to an angular momentum perpendicular to the beam direction, i .e.
m = 0. The field E will generate m = + 1 vibrations and the excitation probability, by symmetry,
misst be equally distributed between m = --1 and m = +1 . Since E dominates for y » 1, the target
(or the projectile) will gain essentially internal vibrations perpendicular to the beam direction in that
limit.

3.1.3 Angular distribution of the fragments

From the dynamics of the electromagnetic excitation process, the angular distribution of the
fragments can be directly ealculated . For the sake of simplicity of presentation, we illustrate the
essential points for spinless projectiles and fragments . We consider the projectile fragmentation
process A - B+ C in the System of reference of the projectile . The transition from the projectile's
ground state

fit = -3-f(r) l'oa() ,

	

(3 .1 .19)

described by a B+ C cluster wave function, to the final state, characterized by the relative mo-
mentum kf , given by the wave function
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Vif-7 Z Yel;n0) Yen„(kf) g,,(r, kf),

	

(3 .1 .20)

is determined by the excitation amplitude

2

z
aft

	

fb v
	 x [ K1 (x) Df

+ + Ko(x) Dfi ] ,

where the K's are functions of x - wb / yv . The x- and z- components of the nuclear dipole matrix
elements are denoted by Df and D;,, respectively . As usual, these matrix elements can be separated
into a geometrical pari determined entirely by the angular momentum quantum numbers and an
overall strength factor, which gives the B(E1)-value (in the simplified model given here it is deter-
mined by the radial dipole matrix element R(kf) = f drg~-,(r, kf) rf(r) ) . One fmds for af;

2 Z2 e2 r

	

i

	

R ( kf)

	

afI

	

n b v
	 x J (- sin 8 cos 0) K(x) +

	

cos $ Ko(x) ]	
4n

	

(3 .1 .22)

where $ and denote the polar angles of kf . As we saw before, the m = + 1 excitations are pro-
portional to first term, the m= 0 one to the second term . For wb / yv « 1 this leads to a very
strong alignment of the final fragment state, as has already been seen above (cf . fig . 3 .5) . Because
of the phase difference there is no interference of the m = ± 1 and m= 0 excitations for the angular
distributions . Averaging over the azimuthal angle 15 , one obtains
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Z2 2(w 2(C 4
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afZ j =	 lc) l v) [ R(kf) ] [K(x) sm 8 +	 2	 KK (x) cos 8

	

(3 .1 .23)
Y

i .e ., for wbyv cc 1, as will usually be the case, there is a strong tendency of emission perpendicular
to the bearn axis.

Let us compare the momentum of the fragment obtained from the decay of the excited reso-
nance state to the momentum obtained from the Coulomb repulsion of the whole projectile during
the collision . The momentum due to the Coulomb repulsion is perpendicular to the beam and is
given by eq. (3 .1 .1) . The momentum due to the decay of the resonant state is given by

Apd - „j2mo 0 l'd ,

where DEd is the decay energy and m0 is the reduced mass of B + C . As secn above, the main
component of Apd is also perpendicular to the beam axis . As an example, for
Z2 = 92, Z,= 8, b= 15 fm, and v c, we obtain from eq. (3 .1 .1) Ap 2e 150 MeV/c for the
momentum due to the Coulomb repulsion of the projectile . If we assume a decay energy of
AEd ^' 10 MeV (i .e . excitation energy above the threshold for A -~ B + C) and a reduced mass
rn0	1 GeV ( which is about the reduced mass in the case of one-nucleon emission), then
Bpd ^ 140 MeV/c. Compared to the incident momentum

Plab

	

Elab / c

	

( y - 1) A GeV/c

the above quantities are only a small percent of it . This means that a study of the angular distrib-
ution of the fragments can only be achieved in very high precision measurements (see Br-85 and
Ein-87) . lt is also proposed (Fi-87) to study y-and particle decay of GDR of target nuclei in pe-
ripheral collisions at SIS.

302 1 iflti honon excitation of g ant dipole resonances

3.2.1 Failure of first order perturbation theory

Quantum-mechanically, the relation (3 .1 .17) is the result of a first order perturbation theory.
In principle this is a good approximation since, roughly speaking, the Coulomb interaction time in
a RHI collision is so short that one expects at most one virtual photon can be exchanged . In the
time-dependent perturbation theory this means that the excitation amplitudes raust be much
smaller than one to justify the use of a first order perturbation method . In fig. 3 .6 we plot the values
of a0 and a 1 , as given by eqs . (3 .1 .18b) and (3 .1 .18c), for the excitation of ' b 0 in the reaction
1 60+ 208Pb, and of 23'U in the reaction 23'U+ 236 U, as a function of the laboratory energy per
nucleon and in the case at which they could be as large as possible, namely, when the impact pa-
rameter b is equal to the sum of the two nuclear radü R = R, + R 2 . We observe that in both cases

(3 .1 .21)
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a~ decreases with increasing laboratory energy while a, reaches a constant value . This occurs because
afl is equivalent to the excitation generated by a pulse of light in the direction perpendicular to the
ion beam while a, is equivalent to the excitation to due another pulse in the beam direction (see
chapter 1 and fig . 1 .1) . For high energies the first pulse becomes negligible and only the second
one is important (see Ja-75, p . 719) . One also notes that the Coulomb excitation (mainly a,) of
light systems like 16 0 by heavy ions has a small amplitude, while the saure is not true for a heavy
system Ilke 238 U . We took the smallest possible impact parameter ; for larger impact parameters the
excitation amplitudes will diminish . Nevertheless, a study of the rote of multiple excitation in RHI
collisions is worthwhile, since the First order effects are so large . The possibility of multiple
excitation in RHI collisions would also be of great experimental interest.

The problem of multiple excitation can be put in a tractable form if we use the simple harmonie
vibrator model for the collective dipole oscillations in the nuclei . In the exact theory of multiple
excitations of a quantum harmonic oscillator (see e .g . Me-70) one obtains a Poisson distribution
for the excitation probability of a N-phonon state

(3 .2 .1)

In our rase, t(b) is given by (3 .1 .17) . This result can also be interpreted classically . The probability
PN to excite an oscillator by an energy amount N hui is equivalent to the probability to exeite N
uncoupled oscillators from a given ensemble, each by an energy amount h co . In the Limit that this
ensemble possesses an infinite number of oscillators, PN will be given by a Poisson distribution of
the probability to excite only one oscillator (see e .g . Al-66, p. 269) . In the equivalent photon
methodone can use eq . (1 .6), and assume that the probability for a nucleus to absorb N photons
from the equivalent photon spectrum is given statistically by a Poisson distribution . This procedure
will also give exactly the expression (3 .2 .1) with <D(b) given by (3 .1 .17), as mentioned by Braun-
Munzi.nger et al (Br-85) .
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Figure 3 .6. Amplitudes for excitation of the giant electric dipole resonance in 160 and 238 0

relativistic projectiles hitting 2o8 Pb and 238 (7 targets, respectively, as a function of the laboratory en-
ergy per nucleon. The amplitude a0(1) a; f I,,,_o t ,s corresponds to an angular momentum transfer

of zero (one) unit in the . direction parallel to the beam from the relative motion of the target.
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eature is that, for the mean excitation energy, we obtain



A E (b) = > N k a PN (b) = h w (t)(b) .

	

(3 .2 .2)

This means that the energy transfer, calculated in first order perturbation theory, gives the correct
average value, even in the case where first order excitation calculations are not justified (e .g ., if

~(b}? 1) . This is a special property of the harmonic oscillator model.

3.2 .2 Ultrarelativistic Limit

As quoted above, in the high energy limit y» 1,

	

a0 « ar1 ,and a good approximation, as

lang as b

	

-w~- , is

Z 1 \/N2 Z2

	

ca÷i = 0 .29 a aa = 0, (3 .2 .3)

and (3 .2 .1) becomes

A2'3

	

wb

(3 .2.4a)PN (b) (

	

)
Ne-s/b2,

zur'!

	

b2

where

(3 .2.4b)Z2 NZ
S

	

5 .45

	

10-5

	

1

	

2

	

2 fm2=

	

x

The total cross section is obtained by integrating over the impact parameter, starting from a mini-
mum impact parameter bm;,, = R, where the nuciear absorption sets in:

6 =2r F' bPN (b)db .

	

(3 .2.5)
R

If we use the approximation (3 .2 .4), then for N = 1 it is necessary to introduce the adiabatic cutoff
radius b,,,a yc / w (see eq . 1 .7) in order to have a convergent integral_ For N > 2 the excitation
probability decreases fast enough to ensure convergence . We obtain

6g') 2rS In (?)'

and

(3 .2 .6a)

ac 23
N-2 k

u 7r Su`'v
1

N!(N-1) '
(3 .2 .6b)

N( 1' - 1) 1 - e

	

kC

where u= S/R 2 , and the last approximation is valid for u« 1, which is generally the case for light
Ions .

With these values, the maximum possible cross section cr can be immediately calculated . The
cross sections for the excitation of relativistic ' 60, 32 S and 238U projectiles in the collision with 238U

targets are given in table 3 .3 . We also show in fig . 3 .7 the N-phonon Coulomb fragrnentation cross
sections of 160 projectiles incident an 238 U as a function of the laboratory energy per nucleon . The
solid lines correspond to the use of eqs. (3 .1 .17), (3 .1 .18) and (3 .2 .1), and the dashed lines corre-
spond to the approximations (3 .2.6) . As is expected from the increase of S with the mass, N-
phonon states are excited with larger cross sections with increasing mass . On the other hand, the
amplitude of the collective motion of all protons against all neutrons are larger for light nuclei than
for heavier ones . This can be readily seen from the simple model adopted for the GDR. The .dipole
operator is given by

	

.

^

	

„ ^

	

NZ ^
D =

	

p i - Rcrn =

	

A ,
(

	

(3 .2 .7)

where Rcm is the center of mass and
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i=1



is the differenee between the center of mass of all protons with respect to all neutrons . Assuming
that the TRK sum rule is exhausted by the GDR, one obtains

~

	

r

	

2

	

D2= c'' GDx D 'o >12= q

	

2m

	

E1
	 -G_26	 2ZN	

fm2 .

	

(3 .2.9)
V GDR

	

A

Figure 3 .7 . Total cross sections for the excitation of N-phonon GDR states in 16 0 projectiles
hitting 23sLT targets as a function of the incident energy E, . The exact results are given by a con-
tinuous line ; the dashed lines correspond to the approximations (3 .2 .6).

In terms of the collective coordinate p, one has

	 A
p
	 	 A 213
=	 D=0.51	 ft'n .

	

(3 .2 .10)
NZ

	

\IwZ

It decreases like A -1 '3 with A . Thus neutrons and protons are more effectively separated in Iow
mass nuclei . However, the excitation cross sections are smaller . The average p-n separating distance
over a period of vibration in a N-phonon state is p cm = ti 211 p . For 160 one fmds an average
p-n separating distance in a GDR of about p f ') ee 0 .7 fm. lt would be interesting to know about
the response of the nuclear System to a N> 2 phonon state . For N = 4 we would obtain an average
p-n separating distance of p ~4> ^ 1 .2 fm in 16 0, which is a quite high value, since this is an averaged
quantity . Indeed, the excitation energy of such a state would be E('4) = 4EGDR 127 Met/ which
is exactly the energy necessary to separate all protons from all neutrons in 160. In the simple har -
manie model, the maximum separating distance of the p-n vibrations, i .e . the amplitude of the vi-
bration, is given by d = 'p , which implies that in a N = 4 state the protons and neutrons would
separate beyond the range of the nuclear forces . Since the eross sections for the excitation of this
state by means of the electromagnetic interaction in a RHI collision with a heavy target are of or-
dersof miiibams this process could be of great importance for producing neutron-rich fragments.
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lfi0 32S 238U

	

-

N=2 3.1mb 17mb 1 .28b
N=3 22pb 0.25mb 0.14b
N =4 0.16pb 4pb 15mb

Table 3.3 . Ultrarelativistic limit of the total cross sections for N-phonon GDR excitation of
'60 32S and 238 0 projectiles with 238U as the target nucleus.

The usual GDR is a one-phonon state of angular momentum 1 (assuming a spin zero nuclear
ground state 10 >)

11, lp > = cü 10 > ,

	

(3 .2 .11)

where c~ denotes the creation operator for a GDR phonon with angular momemtum projection
~ . The operators c,,+ and c~ satisfy the usual boson commutation relations . The two phonon states
12, IM >, coupled to good angular momentum 1, M with 1= 0 and 2, are given explicitly by (see
e .g . Al-75, p . 197)

2, IM > = (1 J f2-) > < 1p 1p' I IM > c c~- 10 > .

	

(3 .2 .12)

uu'

These states are explicitly given by

12, 00>=(1i4-)(2cl c ~-cö c0 ) 10>
(3 .2 .13a)

= .,/2/3 11,0,1>- (1 jNj) 10,2,0> ,

12, 20 > = (1 f ~) (co cö + c i+ c_+1 ) 10 >

	

(3 .2 .13b)
=V2j3 10,2,0>+(1j,/-3-) 11,0,1> ,

12, 21>=cj co' 10>= 10,1,1> ,

	

(3 .2 .13c)

12, 22> (1 / .) c~T c lT 10 > = 10,0,2 > ,

	

(3 .2 .13d)

and similarly for M = - 1 and -2 . Here we have introduced the uncoupled normRlized states
1 n_ l , n0 , nl >, where n~ denotes the number of phonons with angular momentum projection u .
Since for y » 1 the m = + 1 excitation amplitude completely dominates over the m = 0 excitation,
we can put ao 0, and a +l y_, to obtain the excitation probability P. inanu of the uncoupled
states 1 n_,, na, n l > as

4 -27
2

P101 = X e

	

(3 .2 .14a)
1

P002 = P200 =
2

X4 2'
2

e

The other cornbinations give only a negligible contribution . From eq . (3 .2 .13) we obtain for the
excitation probability P2. IM of the angular momentum coupled states 1 2, IM >

1 a _272

P2, 22
_

P2, 2---2 = 2 X e

P2, 21 _ P2,
(3 .2 .14b)

2, 20 -

	

e-2X2P

2 a _272
Pz 00 - 3 t e

	

,
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The total N= 2 excitation probability adds of course up to the value PN_ 2 which has already been
obtained above (eq . 3 .2.1 with 2x2 (21:) ) . From (3 .2 .14a) and (3 .2 .14b) we conclude that the ratio
of excitation of 0 + and 2- states is 1 :2.

The possible signatures of the N 2 phonon states remain a speculation, specially what the
specific decay widths and decay channels will be, like the probability of formation of polyneutrons
and other exotic phenomena . For more details about the possible experimental identification of
these states, see the proposals of Braun-Munzinger et al. (I3r-85) and of Emling et al. (Em-87).
The study of polyncutrons at SIS is proposed by Hilscher et al. (lli-87) . Yet it is interesting and
necessary to discuss the influence of damping of the GDR motion an the excitation process in more
general terms.

3.2 .3 The inf ue ee of damping : a dissipative quartuni vibrator

The giant dipole state is a very short-lived state . I3eing high in the continuum, it couplcs
strongly to other more complicatcd states and eventually decays, mainly statistically by particle
(neutron) emission . A typical width of F = 5 MeV corresponds to a lifetime of i~eCQy 10- 22 sec.
The width of the N-phonon (N> 2) GDR states can be expected to be even larger . In a situation
where the lifetime of a state is comparable or even smaller than the collision time, an essential
modification of the usual deseription of Coulomb excitation has to be introduced . This was ac-
complished by Weidenmüller and Winther (We-71) . The nuclear states are divided into bound and
continuum states, direct excitation of continuum states as well as continuum-continuum coupling
is neglected. In this case, the usual coupled equations for the time dependent amplitudes C,,,(t) read

M

dC«(t)
dt

NI V( t) I M> e i{EN-EM)rhl CM (t)+ f

	

dt' KN (t-- t ')Cv(t '),

	

(3 .2 .15)

where the function takes the coupling to the more complicated channels into account (in our
example, the N-phonon states are identified with the bound states of the nucleus ; all the compli-
cated decay ehanneis of these states correspond to the continuum, which is assumed to be excited
only via the GDR-doorway states) . This function is g ven in terms of the width 1-,(E) by

KN (t t')_-
4 f~

dwe iw ( t-r) F,v{

/
co+ 	

)
.

	

(3 .2 .16)

For I N = const ., one obtains Kv (t- t')=-i	 ZN 5(t- t') and the coupled equations (12 .15)
become

ih	 dCd (t) -

	

< NI V(t) M> e`{EN-Evt)" C(1)- i	
2
	 CN.(r) .

	

(3 .2 .17)
M

Since V(t) is very well known for the Coulomb interaction and the nuclear states N > are assumed
to be solutions of the hannonic oscillator with energies EN - N h w, the excitation amplitudes
C, ( can be calculated from (3 .2 .17) and the initial condition C~ ( -oo) = S NO . For that aim, more
about the values of the widths 1l, should be known . Up to now we only know that
I -0 = 0 and F 1 = Vrnx The solution for FN= 0 (N = 0,1,2, . . .) was given in the last section.

As a consequence of having F, � 0, the total probability P,,, = E C, (t) 1 2 is no longer con-
served bccause flux is now put into the decay channels . Multiplying eq . (3 .2 .17) by CN and its
complex conjugate by C,,,(t) and substracting the results, we obtain for the change of the occupa-

tion probability 11),(0= 1 Cw (t) 1 2 ,

	

dP~ (t) Im<,4'(b'(t)IAI>e i{EN-F,r)r3z
C,vCM -

	

PN,(t)•

	

(3 .2 .18)
M

The linst part of the RHS of cq . (3 .2 .18) describes the redistribution of flrx in the various channels
N during the collision . If only this term were present, we would haue conservation of the total

probability P,,, (t) = E

	

(t), since V(t) is hermitian . This term leads to a change of the occupation
probability given by x

G,v(t)=

	

Im

	

< NI V(t) f, > e i(EN - E,) z,h Cm( t)Cv(t)} .

	

(3 .2 .19)
M

The non-hermitian part of the interaction leads to a loss out of channel N, given by
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r
PN

(t) =

	

e- t'N(r-r'11h G N (t') dt' + & ,vo ,

	

(3 .2.22)

-oo

where we used the initial condition PN ( -co) = (5,, . A further insight into eq . (3 .2 .21) can be ob-
tained by summ ing it over all states:

Defining the flux function

1= L PN( t) +
?,,,r

Due to the exponential decay of the states with N1, we have for t- co the limit

1) , ( c ) = b NO PO (co) and

1=PQ(oo)+L FN(oo ) .

This means that for t oo there is a probability to find the system in the ground state given by

Pa (co) and a probability that it has been excited and decayed through the channel N which is given
by FN (oo) . If the widths rN are known, eq . (3 .2 .17) can be solved and from eq . (3 .2 .24) the con-
tribution to the fragmentation through the channel N can be deduced.

Erab( GeV/nucleon) ir-(» cri') 6(2) crE2s a'-9) }

34mb 0.13mb 0.12mb 0.5ub 0.43ub
0.13b 0.81 mb 0.67 mb 4.9ub 3.9ub

1

	

. 0 .41 b 2 .4 mb 2.2 mb 18ub 16ub
! 1

	

. 1 .0 b 3 .1 mb 3.1 mb 23 ub 22 ub

`fable 3.4. Cross sections for N-phonon Coulomb excitation of t60 in the reaction 150 + 23 'U.

The values corresponding to 6(,'Y) (rrr) take (do not take) into account the widths of the states (see

text).

An approximate solution can be found in the case of linearly increasing widths with increasing

energy, i .e . FN = N F . An explanation for this possibility in terms of N-particle-N-hole excitations

was given by Baur and Bertulani (Ba-86e) . Following the classical interpretation leading to the

Poisson distribution as discussed in section 3 .2.1, the excitation probability of the state I N > is

equal to the excitation probability of N uncoupled oscillators, each having a decay width of F . In-

stead of eq. (3 .1 .16), the energy transferred to a damped oscillator will be given by (see Ja-75, eq.

13 .24)

dt

	

GN(t)-LN(t).

This equation can also be written as the integral equation
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with x = wb yv and rj = F / ha) = lT EGDR . In terms of gm (x, n) the excitation probability in first
order is, as in (3 .1 .18), given by

(3 .2 .28)

~, 2
~(b)=a+a~2-., +

(3 .2 .29a)

with

2 2EGDR 2	 N2 Z2 C l4
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(3 .2 .29b)

and

ä 2 =	 EGDR 2	 Z1N2 Z2 ` c 4 1
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Figure 3.8 . The adimensional functions g„,(x, n ) as defined by eq. (3.2 .28) . In the limit of zero
widths, = T /EGDR - ► 0, we have gm(x, ) a 1.
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The functions g ,,,(x, q) are plotted in fig . 3 .8 for n = 0.1 and = 0.3. When n --p 0 , then g,,, --,> 1 and
we obtain the saure results as given by eqs . (3 .1 .18) . For ri sL 0 , then we observe that g a will have
the greater influence, specially for x« 1 . Since, as we saw in section 3 .1 .2, a° « a l in the limit
of high energies of collision, we expect that in this limit the influence of the widths of the states in
the cross sections calculated in section 3 .2 .2 will be very Small . Inserting eqs . (3 .2 .29) in the eqs.
(3 .2 .1) and (3 .2 .5) we find the results given in table 3 .4 for the reaction ' bO + 238 U as a function of
the laboratory energy. One observes that the inclusion of the widths of the states modifies
appeciably the previous calculations only for Iow energies and for lange N. In the limit y » 1, the
interaction is very sudden and the widths of the states have practically no influence an the excitation
process . In that limit the theoretical results of section 3 .1 are of enough accuracy for application in
RHI collisions . However, if the widths of the states are too large, then this approach is unrealistic
and, moreover, the experimental detection of those states will be very difficult.

As a final remark, we observe that not studied here are the interesting possibilities which arise
in the channeling of relativistic heavy ions in crystals . Due to the periodicity of the crystal lattice
this may lead to resonance effects which influence the cross sections and which may be of use for
the production of monochromatic beams of highly energetic neutrons . An analysis of those effects
is given by Pivovarov et al. (Pi-S0, 1'i-83, Pi-87 and referenees therein).

303 Production of pions

Another very interesting subject is that concerning pion-production in RHI collisions . Thc pions
produced are supposed to be a source of information of the violent hadronic processes occuring in
the central collisions. As implied by the relation (1 .7) more and more equivalent photons become
available for energies E, > 140 MeV corresponding to the photonuclear pion threshold, as one goes
to higher beam energies . Above this energy the total photonuclear cross section is dominated by
pion production and can be approximated by

6yXAeff(w)[

	

6y,proton(W)+ fl 6y,neutron(W)]

	

(3 .3 .1)

Experimentally it is found that Aff is approximately independent of w, and shows a pronounced
shadowing effect A eff

	

A', with

	

0 .6 - 0 .9 . We assume, for simplicity,

6y, proton

	

6y, neutron = (T yp ,

	

(3 .3 .2)

and we take a = 0 .7 . Then, pion production in RHI collisions through the electromagnetic inter-
action can be approximately written as

dEy	dE
6(XY > rrXY)

	

sGeV
n l (Ei) A0 .7 6

yp(Ey )	
Ey + ~o

.~a GeV n2(Fy) a
.~

6 y p( ) Fyy

	

(3 .3 .3)
0 .14

where nl corresponds to the equivalent photon spectrum generated by the nucleus X and that will
cause the production of pions by the interaction with nucleus Y, and n2 corresponds to the inverse
case. We use x~ = M1 since the pions are mostly produced through the nucleonic excitation to a
A-state, which we assume to be of magnetic dipole origin . But the exact treatment of the multipo-
larity in this process is unimportant, since for the relevant equivalent photon energies which lead
to pion production, the equivalent photon numbers are all approximately given by eq . (2 .5 .6) . We
used the experimental data of Armstrang et al. (Ar-72) for o . The results of the interrctions in
(3 .3 .3) is shown in fig . 3 .9 for the reaetions 40Ca+ 4°Ca and 2i8U+ 238 U as a function of y (roughly
Etab / A, y GeV, for y » 1 ) . There is a steep increase of the cross scctions until a stage where
they increase approximately proportional to (A, ZZ + A 2 Z;) In y . The cross sections at this stage
are quite large and for very heavy systems like 238U+ 238 U it even can compete with those arising
from hadronic interactions . The main difference is that, while in a given Coulomb collision
(b > R, + R2) the pion multiplicity can be at most one, in a central collision a large amount of pions
can be produced.
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Figure 3 .9. Coulomb production cross sections of pions in the reactions
4°Ca + 40 Ca and 238LJ + 238 U as a function of the relativistic Lorentz factor y.

3.4 Dissociation of lig t ions in coincidence experiments

14.1 Break-up of weakly-bound nuclei in high-energy e®llisi®ns

The coincidence experiments for Break -up of Ioosely bound nuclei in high energy collisions can
also give precious information about the structure of these nuclei and about the related
photonuclear reactions . For instance, the cross sections for radiative capture of a-particles,
deuterons and protons by light nuclei at very low relative energies are of particular importance for
the understanding of the nucleosynthesis of chemical elennents and for the deterrnining the relative
eiemental abundances in stellar burning processes at various astrophysical sites (see e .g . Fo-84,
Ro-78) . However, the direct experimental determination of the cross sections at astrophysically
relevant energies under laboratory conditions is rather difficult or even precluded, mainly as the
Coulomb barrier strongly supresses the cross sections for the reactions of interest . For example, the
3 f~e ( 4Fle, y) 713e reaction, which at solar temperatures affects the solar neutrino flux and bears
strongly an the solar neutrino problem (see e .g . Ka-84, Os-82, Os-84), is experimentally studied
(Os-82, Os-84, Na-69) down to c .m. energies ECM = 165 keV, while the cross section is actually
needed at Eim = 1 - 20 keV. A similar situation is found for the 12 C(a, y) 160 reaction (Kc-82,
La-85) which is important for the stellar helium-burning process and where the values of the low-
energy cross section (at Ec,~ .- 0 .3 MeV corresponding to temperatures of 2 x 10'K) are actually
a matter of controversial discussion presently . In cases of nonresonant direct capture reactions the
energy dependence is dominated by the Coulomb barrier penetration, which is usually factored out
by defining the astrophysical S-factor

2gs (Ecm) EC.l1 ucapt e

where

Z Z2 e
2

h vcm

(3 .4 .1)

(3 .4 .2)
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is the usual Sommerfeld pararneter . This S-factor shows a smooth energy dependence and seems
to be adequate for an extrapolation of the measured values to astrophysically relevant energy ranges.
But in most cases of interest the extrapolation covers several orders of magnitude and is particularly
suspect if resonances and subthreshold resonances are expected to be present in the considered re-
action (sec Ro-78) . In addition, the extrapolation needs often considerable theoretical support and
bias, and despite of strong efforts to understand nuclear reactions on theoretical grounds, it appears
to be generally impossible to predict the astrophysically interesting cross sections with sufficient
accuracy.

In view of this situation, all dedicated efforts which are able to explore additional experimental
information on the quantities determining low-energy nuclear reaction cross sections are of con-
siderable interest . Recently the investigation of continuum stripping processes has been discussed
(Ba-84, Ba-85, 13a-86f) as a possible method to overcome the problem arising from the Coulomb
barrier . However, the method involves a theoretical reaction model which might cast some doubts
on the results.

Baur, Bertulani and Rebel (Re-85, Ba-86c and Ba-86d) have proposed a different approach for
the investigation of the electromagnetic transitions between a bound state of two nuclear particles
and continuum states at small relative energies . The proposal suggests to use the nuclear Coulomb
field as a source of the photodisintegration processes . In fact, instead of studying directly the
radiative capture process

b + c -* a + ,y , (3 .4 .3)

one may consider the time reversed process (a being in the ground state)

y + a

	

+c . (3 .4 .4)

The corresponding cross sections are related by the detailed balance theorem

2 (2 ja +

	

k2
v(a+yb+c) . (3 .4 .5)6(b+c->a+ y)-

(2Jb+ 1)(J 1)

	

1)
kcvr

The wave number in the (b + c) channel is

2

	

2 ub, ECr

	

3 .4 .6

	

kC m =

	

(

	

)
~i

2

with /b, the reduced mass, while the photon wave number is given by

__ Ev - EC~t+ Q

	

(3 .4 .7)

	

hic

	

hc

(neglecting a small recoil correction) in terms of the Q-value of the capture reaction (3 .4 .3) . Except
for the extreme case very close to threshold (kc,---). 0), we have k, « kcM , so that the phase space
favors the disintegration cross section as compared to the radiative capture . However, direct meas-
urements of the photodisinte gration near the break-up threshold do hardly provide experimental
advantages and seem presently impracticable (Re-85) . On the other hand, the copious source of
equivalent photons acting on a fast charged nuclear projectile when passing the Coulomb field of
a (large Z) nucleus offers a more promissing way to study the photodisintegration process as
Coulomb dissociation . As an example we cite the reactions

7Be + 208 Pb - a + 3He + 20$Pb - 1 .58 MeV ,

160+ 208Pb-~ a+ 12C+ 2OgPb- 7.58 MeV .

Figure 3 .10 indicates schematically the dissociation reactions due to the Coulomb and to the nu-
clear interaction .
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bo/

Figure 3 .10. (hipper figure) Coulomb dissociation a -} b + c in the field of a target nucleus
(Z/-) . (Lower figure) Dissociation due to the nuclear interaction on the target surface.

At sufficiently high projectile energy the two fragments b and c emerge with rather high energies
(around the beasn-velocity energies) which facilitates the detection of these particles_ At the same
time, the choice of adequate kinematical conditions für coincidence measurements allows to study
rather low relative energies EC ,M of b and c and to ensure that the target nucleus stays in the ground
state (elastic break-up) . By repeating the experiment for different projectile energies and different
angular measurements, and by using eq . (2 .7 .1) one can extract the values of the photonuclear cross
sections for each multipolarity which contributes to the break-up . A more detailed analysis of the
experimental conditions for such experiments is shown in refs. Ba-86c, Ba-86d, and Re-86. The
most favorable theoretical and experimental conditions seems to be practicable for energies around
50 MeV/nucleon.

Another interesting possibility is the study of the nuclear matter distribution of extremely
neutron-rich nuclei Iike, e .g ., "Li. Some high-energy experiments (Ta-85a, Ta-85b, HK-87) for the
break-up of such nuclei are begiinning to be available, and seem to be a very promissing field of
study of such nuclei . Nevertheless, these experiments up to now haue been inclusive ones, i .e ., only
one fragment is observed . Therefore, a summation has to be done over all unobserved channels,
leading to a partial lass of information about the process . More useful would be the exelusive ex-
periments, where the dissociation process of the projectile is separated from the background of other
reactions by means of the coincidence detection of the two outgoing fragments together with a si-
multaneous measurement of their energies . Perhaps, one could also determine the momentum
transfer in these reactions by a measurement of the recoil energy of the target nucleus . Although
these experiments are much harder to perform in high energy collisions, they certainly seem to be
realizable and there are some experimental proposals in this direction (see, e .g., Re-87, Ge-87, and
Br-85).

Next, we shall use some simple assumptions about the structure of the weakly bound nuclei
composed of two clusters , disregarding some more specific details, for sake of simplicity . We use
the difraction dissociation theory to account for the nuclear interaction. This theoretical approach
has been introduced by Akhiezer and Sitenko (Ak-57), Glauber (G1-55), an Feinberg (Fe-55), to
describe the dissociation of high-energetic deuterons . Also important in this context is the so-called
stripping rections in which one of the clusters of the projectile suffers a strong inelastic collision with
the target while the other is diffracted inelastically (G1-55) . The eross sections for the stripping re-
actions depend mach more an the exact .knowledge of the nuclear structure and can be only ap-
proximately calculated (Fä-70a, Fä-70b) . The following study is complementary to several works
on the fragmentation of relativistic particles . We refer, for example, to the works of Hüfner and
Nemes (Hü-81), Fäldt (Fä-70a), and of Evlanov and Sokolov (Ev-86a, Ev-86b).
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3 .4.2 Amplitudes for diffraction and Coulomb dissociation

The amplitude for the dissociation of the incident projectile an a target nucleus, assumed to stay
in its ground state, in the eikonal approximation is

fd ( q , Q)=-2L
J

dz b e ; Q b Fd ( b ) ,

	

(3 .4 .8)

where k is the center of mass momentum of the projectile, Q is the momentum change in the
scattering (Q = 2k sin(6/2) k6, where 9 is the scattering angle of the center of mass), q is the
relative motion momentum of the outgoing fragments, and k, and k 2 are the mornenta of the cor-
responding clusters with masses m, and m2 , respectively . In non-relativistic collisions
q = (m2k, - m,k2 )J(m, + m2 ) , while for high-energetic collisions q can be determined by the invariant
mass of the two fragments . f'd (b) is the profile function for the dissociation . In the approximations
we shall use, it contains contributions from difraction dissociation an the target surface, and from
Coulomb dissociation for impact parameters b larger than the sum of the nuclear interaction radii.
Assurning a sharp boundary target, it can be written as F . (b) = U N (b) - r', (b), where 1 - N (b) van-

ishes for b > R and kc (b) vanishes for b < R . Therefore, we obtain

fd( q , Q) = fv(q , Q)+fc(q, Q) .

	

(3 .4 .9)

The total dissociation cross section is given by

d3

d6 = 1 fd(q , Q) I 2 dQ	 (27)3

where

dQ_e - 2 QdQ
k 2

for high-energy collisions.
The relative motion of the clusters within the projectile is described by the wave function

(3 .4.10a)

(3 .4 .10b)

(r) - 1' 2ar
(3 .4 .11)e- '' t

r

where rl = „j2Re/h2 is determined by the Separation energy c of the clusters (1 + 2) and u is the re-
duced mass of the system (1 + 2) . The relative motion of the clusters releascd after the disintegration
of the projectile is described by the wavefunction

-
W2

(r) = e i q .r +	 1	
eiqr

	

(3 .4 .12)
1 q_

	

r

These wavefunctions correspond to the assumption of zero-range nuclear forces between the clus-
ters in the projectile . They are very useful because most of the following caiculations can be per-
formed analytically . An extension to the use of more realistic wavefunctions is straight-fonvard.
They form a complete set of orthonormal functions satisfying the relation

z{ r} i (r')+ (2~)3

	

t(ff (r)liff (r»d3 =«r-s')

The use of the above wavefunctions presupposes a simple model, where the Coulomb repulsion
between the clusters are not taken into account (as would be important in systems like
a + 'He , d + p , . . .) . The Coulomb repulsion between the clusters must loose its importance for
high relative motion after their dissociation.

By using the energy and momentum conservation laws, we can also express (3 .4 .10a) in terms
of coincidence cross sections which are of interest in inclusive experiments . Otte finds

k
1

k

	 zk
fd ( q , Q) 1 2 ,

	

(3 .4 .13)
dS2 t d2z dE2

	

(2ir)3 hz

where 0, and Q 2 are the solid angles of emission of the two fragments, and E 2 is the energy of one

of them. But, since the theoretical analysis is more transparent by using the variables q and Q, we

shall keep them, and use eqs . (3 .4 .10) in what follows.
The amplitudes for diffraction dissociation of deuterons by a black nucleus where calculated by

Akhiezer and Sitenko (Ak-57) . The extension to the dissociation of other wealcly-baund nuclei gives
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fy ( q , Q) = ikR
J1(QR)
Q[F(- ß2Q,

q) + F(ß
I
Q, R}

(3 .4 .14)

ikR2 f d2 ,	 J,(Q'R) J1(IQ-Q'IR)F (ß1Q--Q ' ,2x

	

Q

	

Q'

	

Q- Q'1

where ß, = m2/(ml + m2), ß2 = m,j(m1 + m2 ) , R = 1 .2 Ar' fm is the radius of the target nucleus, and

F(Q, q)= J d3r f ( r) ei Q .r t ( r ) - $

	

{ (3 .4 .15)
[q+ Q+iri

q Q+ir1

	 1
n 2

+(Q+(1)2

+ 2Q( irl- q )
In

The ferst term in eq . (3 .4 .14) corresponds to the impulse approximation, i .e ., the independent scat-
tering of separate clusters by the target . The second terrn corresponds to the simultaneous scattering
of the clusters, also called by eclipse term. In order to describe the differential cross sections, we
shall keep the impulse approximation, which gives resonable results for small scattering angles . But,
in order to obtain the total cross diffraction sections we have to include this term, since it decreases
more slowly with increasing Q, and becomes the dominant contribution to the scattering amplitude
(3 .4 .14) for larger values of Q.

The amplitude for Coulomb dissociation is given by (2 .3 .14), which we shall multiply by a
factor in order to have the same normali7ation for f~ and f,,,. We shall restrict ourselves to the
electric dipole and to the electric quadrupole modes, which are the most important ones . We obtain

fc(q , Q)=iZ1x(~~)k (
co

)
e
\i2? + 1 xm(R) GEEm(cJv) Ni (E~, m),

	

(3 .4 . 16)

where
2

	

hco=E+Eq= 2 (P 2 + q 2 )

	

(3 .4 .17)

is the sum of the absolute value of the binding energy and the kinetic encrgy of the relative motion
of the separated clusters . The function G~ are tabualted in the appendix A, and L, (R) is given
by (2 .3 .12) with qr = Q.

The functions M (Hm) are given by eqs . (2 .1 .14) . Since the energy transferred to the
dissociation of clusters (1+ 2) is rather small, we can use the so-called long-wavelentgth
approximation, and obtain

M (Eem) _

		

Zke
J

f (r) rk Yem ( n k)

	

( r ) d3r ,

	

(3 .4 .18)

k-1,2

where r, = ß,r , r2 = - ß 2 r and n2 = - n, are the position and direction of orientation of the clusters
1 and 2 in the center of mass of the projectile, and Z arc their respective eharges . Inserting the
wavefunctions (3 .4 .11) and (3 .4 .12) in (3 .4 .18), expanding it in multipoles, and using the integral

bO -q T (+1e

	

r

	

j' ( qr) dr=

	

e1 {2q)
o

	

( 2 + q2 ) '+1

we obtain

1 (Eem) =e ,12>< rl (e12~+1 [Z1ß~+{-1)''Z2ß2l 2
	 q	

2 +

Yen, (I) . (3 .4 .19)

(n + q )
We observe that for ß, Z, = ß2 Z2 there will exist no electric dipole contribution to the Coulomb
dissociation . . This is a weil known result and can be readily understood : in this case the electric
dipole field pushes the two clusters with the same acceleration in the same direction, and does not
lead to their Separation. In such situations the E2 multipolarity will be the most effective one for
dissociating the projectile . This result is a direct consequence of the assumption of a cluster-like
structure for the projectile . For more complicated nuclear wavefunctions a deviation from this result
is to be expected. For exarnple, in the reaction y + 160 a + 12 C one indeed finds experimentally
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Figure 3 .11 . The differential cross section d4o/ d3 q dQ for the dissociation of the deuteron, inci-
dent an 2"Pb with energy Ed 200 MeV. We used q = q, Q = 1/R and 8 = 90' . 0, is the angle be-
tween Q and the component of q perpendicular to the incident beam.

As an application of the formulas above, we plot in figure 3 .11 the differential cross section
d4c/d3 q dQ for the dissociation of the simplest cluster-like nucleus, i .e ., the deuteron, incident an
2°"Pb with energy Ed = 200 MeV . We take q= 11, Q= 1/R and 8 = 90°, corresponding to the emis-
sion of the fragments perpendicular to the beam, in the reference frame of the projectile . 0 ,7 is the
angle between Q and the component of q perpendicular to the incident beam. We observe that the
Coulomb contribution, C, is approximately proportional to cos The nuclear contribution, N,
and the interference, CN, between them, are also shown . The interference tend to be destructive,
oscillating around zero with approximately the saure amplitude . This is a cornmon trend, valid for
all values of q and Q, as can be easily checked by using the formulas developed above.

Next, we shall integrate (14 .10) over the angular distribution Q q of the relative motion between
the fragments . We obtain the differential Cross section d2a/dq dQ, which can be related to
d2CIdEq dg-2, where Eq is the energy of the relative motion of the final fragments and S2 is the solid
angle of scattering of their center of mass . By using the impulse approximation, and eq . (3 .4 .15),
we find for the nuclear contribution, after perfont ing some simple integrals,

2
8 9 28 2

j2 (QR)	
dq dQ

	

Q

	

1
[~7 2 +(q+

	

Q)2 ][~ 2 +(q ßt Q)2 ]

	 1	 ULI

[ ;1 2 + (q + ß2 Q)2] [ i2 + (q - ß2 Q)2] + 2qQ
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+ q2 + ßtß2Q2 )
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2 ( 4

z

4gQ 2 (q2 + 2)

	

4Q2 (
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where

an appreciable suppression of the El multipolarity, but not completely . In fact, it is found that both
multipolarities play important roles in such reaction (see, e .g ., Re-85).
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(3 .4 .20a)
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Figure 3 .12 . The double differential cross section dz r/dq dQ for the dissociation of the deuteron,
incident an 248Pb , with energy Ed = 200 MeV, for q n, and as a function of QR . The curves la-
beled by C, N and CN correspond to the Coulomb, nuclear, and CouIomb-nuclear interference
contributions, respectively.

The Coulomb contribution is easily obtained fron' the orthomomality of the spherical har-
monics and one finds after inserting (3 .4 .16-19) in (3 .4 .10a), integrating over Q q , and summing over

m,

d20-c	d2dE1	d26 E2
dq dQ dq dQ + dq dQ

where

(3 .4 .21a)
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(3 .4 .21c)

The EI-E2 interference is lost after the .integration over S2q . 1lowever, in coincidence experiments,
where d4c/dzq dQ is measured, the E1-E2 interference is important.
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Figure 3 .13 . The double differential cross section d26/dq dQ for the dissociation of the deutcron,
incident on 2 ° 8 Pb , with energy Ed = 200 MeV, for Q = 1/R, and as a function of q/n . The curves
labeled by C, N and CN correspond to the Coulomb, nuclear, and Coulomb-nuclear interference
contributions, respectively.

The interference term between Coulomb and nuclear amplitudes can be found by computing
numerically the integral in the expression

d2

	

2
6CN__	 q Q

dqdQ

	

(2i.)2 k 2
f (fc*fN + fnfc) ds2 q . (3 .4 .22)

In figure 3.12 we plot d r j dq dQ for the reaction d+ 2 °$Pb n+ p + 208 Pb, at deuteron energy
Ed .= 200 MeV, for q = 11, and as a function of QR. The Coulomb, C, the nuclear, N, and the in-
terference, CN, contributions are shown separately . One observes that the Coulomb contribution
is peaked for Iow values of Q . Actually, it peaks around w/yv, so that for increasing beam
energies the peak moves to lower values of Q, i .e ., to more fonvard angles, and will also increase
in height . This is in contrast with the nuclear contribution, which within our approach will always
extend to large values of Q, being peaked around Q 4~ .- 1/R. This behaviour may help to separate
the nuclear and Coulomb dissociation from the measurement of the scattering angle of the center
of mass of the two-cluster system in intermediate energy collisions . Unfortunately, with increasing
energy both nuclear and Coulomb dissociation will lead to very fonvard angular distributions, with
Oma'

	

1/kR «1 , what makes the experimental measurements very difficult to procced . Igor

Z1 ZZx ? 1, the effects of Coulomb repulsion between the projectile and the target will considerably
change the Q-dependence of the Coulomb dissociation amplitude . A study of these effects based
on semiclassical calculations has been performed on chapter 2 . In the present context, it implies in
the use of Coulomb distorted waves, instead of plane waves, in the ca :culation leading to the am-
plitude (3 .4 .16) . Nevertheless, the relative behaviour between the Coulomb and nuclear angular
distributions remains qualitatively the saure.

In figure 3 .13 we plot d26Jdq dQ for the Same reaction as above, as a function of q/i and for
Q= 1/R. As a general trend, for fixed Q, the Coulomb dissociation is more pronounced for
q , decreasing very fast for lange values of q, while the nuclear dissociation peaks for q Q
arid decreases slowly with increasing values of q . In both figures 3.12 and 3 .13 we see that the
Coulomb plus nuclear interference is very Small, being some Orders of magnitude smaller than the
nuclear or the Coulomb contribution .
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3.4.3 Cross sections for the dissociation of weakly-bound nuelei

Inserting (3 .4 .14) in (3 .4 .10) and using the orthonormality conditions of the wavefunctions, the
integration over q can be easily performed in the impulse approximation . One gets

dQ -	 2Q2
Jj (QR) I d a r i i (r) 12

d

ei ß 1 Q .r + e -i ß 2 Q .r 12

which gives
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Using (3 .4 .23) we fand that for -n oo, corresponding to infinite binding energy of the Clusters,
der jdQ 0 . For

	

0, corresponding to very loosely bound nuclei,

dQ

	

4rrR 2
J1(QR)

which means that in this case the total nuclear dissociation cross section will be just the surrt of the
elastic diffraction cross section for each Cluster separately . Both limits is what one expects from the
simple arguments of the diffraction dissociation theory. But, for large values of Q the impulse ap-
proximation is not more reasonable : the second term of eq . (3.4 .14) will increase in importance for

Q > q . Therefore, to obtain the contribution of the diffraction dissociation to the total dissociation
cross section, one has to integrate (14 .10) numerically by using (3 .4.14) and (3 .4 .15).

By using the integral

with

where

	

wR/yv, we fand for the Coulomb dissociation
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Figure 3 .14 . Dissociation cross sections for the reaction 'Be + 208Pb , u + 'He + "Tb as a
function of the laboratory energy per nucleon of the 'Be-projectile . o-Y represents the nuclear
diffraction dissociation, c- (E1) the contribution of the electric dipole multipolarity to the Coulomb
dissociation, and a,(El + E2) is the sum of the electric dipole and of the electric quadrupole con-
tributions.

The total Coulomb dissociation cross section

	

+ <1E2 can be obtained by a nurnerical inte-
gration of (3 .4 .25).

In figure 3 .14 we show the Coulomb and nuclear dissociation cross sections for the reaction
'Be + 20 "Pb - a + 31Ie + 2 "Pb as a function of the laboratory energy per nucleon of the 'Be
projectile. In the calculation of the Coulomb dissociation cross sections we use
R + rrZ,Z2 e 2/mBev2y, instead of R, as the minimum impact parameter, to account for the Rutherford

bending corrections (see section 2 .7) at energies E,,jnucleon < 100 MeV. We observe that the E 1
contribution is larger than the E2, and also than the nuclear dissociation . In such a case the study
of the experimental data is sirnplified, since one can disregard the nuclear dissociation and assume ..
all behag due to the Coulomb dissociation, which is more accurately described.

In figure 3 .15 we plot the values for the dissociation cross section in the reaction
6Li + 208 Pb -+ a + d + 23 Pb . In this case, and within the simple duster model, the EI component
of the Coulomb dissociation vanishes and only the next component, E2, will be effective in order
to dissociate the nucleus . This malces the Coulomb cross section smaller than the nuclear one and
the Separation between these two contributions haue to be measured on the basis of the angular
distributions, as discussed in the last sections_

One observes in figures 3 .14 and 3 .15 that the Coulomb cross sections increase with energy up
to a maximum around approximately 100 MeV per nucleon, afterwards it decreases a little and then
begins to increase with energy again, approximately proportional to ln (E, ,,,/A), for very high ener-

es . This behaviour was also found in the cross sections for the excitation of giant resonances, as
for example in figure 3 .3. The reason for that lies on the fact that the effects of Rutherford bending
and of Lorentz contraction compete the in the region of some hundreds of MeV per nucleon . With
incrcasing energy, the nuclei come closer together, where the Fields are stronger, what increases the
probability that they will get Coulomb excited . That is the reason why the cross sections increase

with energy for E b 100 MeV/nucleon. Above these energies the trajectories are approximately
straight-lins, and since the collision time decreases with energy, the momentum transfered from the
electromagnetic fieid to theinternal degrees of freedom of the nuclei diminishes . That is the reason

for the decreasing of the cross sections for E1 ? 100 MeV/nucleon . But this effect will not continue
for too high energies because the electroma letic Field becomes contracted and stronger by a factor
equal to theLorentz parameter y, i . e ., E

	

yZe2jb. Since the momentum transfer is proportional
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to the product of the strength of the electromagnetic field and the collision time, which is approxi-
mately t\t b/yc, it will be constant, independent of the beam energy . These simple arguments
work for impact parameters up to a maximum value given by the adiabatic cutoff b yc/w, where
hw is the excitation energy. That is the reason for the logarithmic increase of the cross sections for
relativistic energies .

------------------------

E iab /nucleon CMeV7

Figure 3 .15 . Same as figure 3 .14, but for the dissociation reaction 5Li + 208 Pb --• a + d+ 208Pb.

One interesting application of the fragmentation of Cluster-like nuclei is the possibility of de-
ducing information on the neutron skin of neutron-rieh nuclei . For example, the reaction
11Li + X 9 Li could give information about the possible stability of the di- neutron system in the
presence of a nuclear-core . lt has been suggested (Ha-87, Mi-73) that the Force between two neu-
trons, itself too weck to form a bound system, under the influence of another nucleus can lead to
a bound state of two particles : a di-neutron system and a nuclear core . The binding energy of the
two neutrons in 9Li is about 190 + 110 keV. Assuming that IILi possesses the above mentioned
cluster-like structure we find the value r . ^ 2.4 - to - 12 bams for the Coulomb dissociation cross
section in the energy range 4 = 80 keV - to - 300 keV, respectively, in the reaction
IILi + 208Pb -* 2n + 9Li + 208 Pb at "Li -energies of 0 .8 GeV/nucleon. For the diffraction dissociation
one fmds mir; 210 -- 662 mb. Recently, the reaction IILi 9Li at this energy, on lead targets, has
been perforrned at the LBL BEVALAC by Tanihata et al. (Ta-85a, Ta-85b, Ko-87) . They found
the total cross section of about 9 .5 bares . One important contribution to this cross section is the
stripping of the neutrons from the 1 1 Li -nucleus . lt is about the same same order of magnitude as
the Coulomb dissociation and depends much more on the assumptions about the neutron excess
on the surface of that nucleus. Therefore, the knowledge of the Coulomb dissociation cross sections
and . Of the experimental values for the inclusive reactions are of great importance for the study of
the tail of the nuclear matter distribution . By using several targets and beam energies, one can
separate the Coulomb and stripping contributions (diffraction dissociation is of little importance in
this case) in these reactions due to their different dependence on the nuclear parameters.

Precise coincidence experiments for the dissociation reaction of weakly-bound nuclei at high
bombarding energies are only at a beginning. As we discussed above, such exclusive experiments
would give valuable information on photodisintegration reactions, or indirectly, of radiative capture
reactions of astrophysical interest, and also about the distribution of the nuclear density in the nu-
clear surface. At high energies both electromagnetic and the nuclear interaction between projectile
and target will be important . Far from being a drawback, this can be of utility to extract comple-
mentary information about these different reaction mechanisrns in the peripheral collisions . A de-
composition of these mechanisms from the analysis of the angular distribution of the fragments,
or from the dependence of the cross sections on the energy, charge, and mass parameters, is possible
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in accurate measurements . In the case of electromagnetic dissociation this decomposition can teil
us about the relevance of each multipolarity in the dissociation reaction.

We have done very simple assumptions regarding the structure of the nuclei, and pointed out
the main theoretical considerations for more complicated calculations . More specific structure ef-

fects, like, e .g ., resonances, are expected to appear on a background parametrized by the above
equations . The availability of experirnental data in the next future will certainly arise interest on the
detailed investigation of such effects . More details of the above calculations can be found in ref.
Ber-87c .
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4.0 Coulomb r® c . (Primakoff effect)

In section 4 .1 we show a beautiful example of application of the theory of relativistic Coulomb
excitation. lt consists in the excitation of composite particles (e .g. baryons, mesons) in the
Coulomb field of a target nucleus . The original idea was set in by Primakoff (Pr-51) who calculated
the cross section for photo-production of 7r° in nuclear eletric fields and suggested the measurement
of it as a way to determine the mean lifetime of the n° partiele . As an example of this technique
we shafl specially study the Gase of the measurement of the lifetime of the E° particle . A direct
measurement of it in a bubble chamber is hopeless with the experimental technique available
nowadays since the E° decay is electromagnetic, and the Iifetime is of order of 10-' 9 seconds which
produces a too short traek to measure directly . Besides, the width of the decay is of Order of 10 keV,
much smaller than the resolution presently attainable . An indirect method is nonetheless possible
by measuring the cross sections for the inverse process : electromagnetic production of 1°'s in the
field of a heavy nucleus . This process is commonly referred to as Coulomb production or as
Primakoff effect (sec Dr-62 and Po-61).

In section 4 .2 we study the production of a neutral particle by means of the two-photon mech-

anism in RHI. There we also make a comparison with the similar process in electron-electron or
electron-positron colliders.

4.1 Stadt' of partiele properties with relativistic Coulomb

excitation

4.1 .1 Coulomb excitation of a hadron: exarnple of appiieation

In an experiment at CERN by Didak et al. (Dy-77), a highly relativistic (E ,i, 20 GeV) A
beam was scattered an a nuclear target, where l° hyperons were produced at forward angles in the
nuclear Coulomb field :

A+Z-+1°+Z .

	

(4.1 .1)

The 1° were detected through their decay E° Ay, which is by far the dominant decay mode of the
1° particle . The cross section for the E° Coulomb production can be expressed in terms of the mag-
netic transition moment or the E° lifetime. This is specially interesting since it allows for a test
of the SU(3)fi_,, properties of the strong and electromagnetic interactions . Ignoring the strong vio-
tations of SU(3), the unitary symmetry scheme introduced by Gell-Mann proposes that the ele-
mentary particles may be represented as tensors in a generalized isospin space (eightfold way), and
that the strong interactions are invariant under unitarity transformations in this space . The
electromagnetic current will also have definite and nontrivial transformation properties under
SU(3) and this makes possible to derive a number of useful consequences of the symmetry for
electromagnetic interactions of hadrons . In fact, Coleman and Glashow (Co-61) deduced in this
way values of all the A, 1, and magnetic moments, including the A I° transition magnetic
moment which determines the rate of 1° decay into A + y, from the neutron and proton magnetic
moments . They obtained the value

it
nE

o

	

2 /In=1 .65g N ,

where /4, is the neutron magnetie moment and uN = eh/ 2m„c is the nuclear magneton . One can
also make use of gnark models for the baryons to obtain p. A.E o . In the simple model of Lipkin
(Li-81), one assumes that the baryons are s-wave states of quarks, antisymmetric in color and
symmetric in sein, space arid flavor . The wave functions for X° and A are

(4.1 .2)



IE°>

	

12/3 1 utdtsj>--11/6 I(u-dl +u,L.df)s'>

	

(4.1 .3)
IA>=-%1/2 (4 (11, -u1dt)st> ,

where ut, for example, is the wavefunction for a spin-up u quark . The AE° transition moment in
terms of the quark wavefunctions is given by

CE°j i\t i

	

(tid-uu),

	

(4 .1 .4a)

where µ is the magnetic dipole operator . By using the saure quark models for the neutron and
proton we can express the result above in terms of the magnetic dipole moments of the proton and
the neutron ;

p.AE°=
	 5	 (u. n - pp) = - 1 .63 /I N,

	

(4 .1 .4b)

which differs very little from the value (4 .1 .2).
The AE°-conversion cross section in the field of a nucleus was calculated by Dreitlein and

Prirnakoff (Dr-62) and by Pomeranchuk and Shmushkevich (Po-61) . In these calculations, nuclear
form factor and absorption are taken into account in a rather complicated method . We shall show
that their final results can be obtained with help of the much simpler Coulomb excitation approach
of section (2.4), where the nuclear absorption is included from the outset, and no nuclear form
factors enter any longer.

'i7-=g ARSin( )

Figure 4 .1 . Angular distribution of the inelastically scattered particles after a magnetic dipole
excitation. The values are normalized so that df/ dvj = 1 for = 1 . To obtain the absolute values
one raust multiply df/ dri by the corresponding factors shown in the table for Bach .

According to eq. (2 .4.2), the angular distribution for the process (4 .1 .1) can be expressed in
terms of the B (M1) value of the A -► E° transition as

do-

	

16ir. 2 Zawl2

	

2

	

2
9 qA

	

1 [ xi(B) ] B(M1)/ e ,

	

(4 .1 .5)

where pA = hq,, is the momentum of the incident A bearn, and hw is the energy of the virtual
photon absorbed by the A in its rest frame:
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(4.1 .6)

The B(M1) value is related to the transition magnetic moment /.i'0 and to the lifetime z ro by

2

B(Ml)=
9m

° _	 9h
4n - 16Tr(w/c)3 rE o

From this relation and (4 .1 .4b), we find r 2 o = 7 x 10- 2 ' sec.
The angular distribution is given by quantal diffraction effects through the function (sec

2.3 .9)

xi(R)=
J~

xJ1(gTx)K1(q(x) dx
R

(4.1 .8)

R2 [

	

J1 (17) K2(Z)-n J2( rl) Ki(5)

where

,i1 Z
+z2

(4 .1 .9)fl =qTR=qA R sind,

	

and

	

;=qpR=wR/yv .

The momenta qT and q are, respectively, the transversal and the longitudinal momentum transfer
in the laboratory frame of reference.

By means of eqs . (4 .1 .6) and (4 .1 .8), we can rewrite (4 .1 .5) as

dq =	 3292(ZzR)2 B(eMM1)
z

df(	 )

The function

f (• Z, n [ X 1 (R ) j R2 ]2

is plotted in fig . 4.1 for

	

= 0 .1, 0 .2, 0 .5, and 1. The values
df/ dn = 1 for i 1 . To obtain the real values one must multiply df/ dn by the corresponding
factors for each . Since for relativistic collisions ,,A» 1, the peaks of the angular distribution
will occur for rl nn, Z, which means a maximum scattering angle 9 R j q,R « 1, so that the
cross section will be strongly forward peaked . Nonetheless, for exact forward scattering (9 = 0) the
angular distribution vanishes . This is a characteristic of all magnetic multipole excitations in
relativistic Coulomb collisions, as was shown in section 2 .4 . Inserting (4 .1 .7) in (4 .1 .10), and ap-
proximating (4 .1 .8) for small scattering angles, we obtain

(4.1 .7)

eq.

(4 .1 .10)

(4 .1 .11)

are normali7ed so that

du

	

sz2a h'm'

d9

	

(yn~2 o - mA)3c4

s2

32 +
(wlycgA)212

rE°
(4 .1 .12)

which agrees with the result obtained by Dreitlein and Primakoff (Dr-62, eq. 35a), apart from ir-
relevant additive factors. While those authors obtained this result in a more complicated approach,
we observe that it can be reached in a very sim ple and transparent way as shown above.

The total cross section is obtained by integrating (4 .1 .10) over ;

2

	

- 2

2 K2)
S AE°KaK1- 2 (K1o

	

2
- e

where the K's are functions of Z . For « 1 we have
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161 2 Zzxdt3mEo
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e

	

(m Eo - mA ) c T E °

where b = 0 .681 . ..
The only parameter which enters into this calculation is the nuclear absorption radius, which

we assume to be R = 1 .2 iP 3 fm .

aAE o = Brr (Za)2 (4 .1 .13)

(4 .1 .14)
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4.1 .2 Comparison with experiment

The ferst measurements of the lifetime of the I° particle were done by Dydak et al. (Dy-77),
which measured the cross sections for the process (4 .1 .1) with a A-beam with laboratory energy of

20 GeV. They used 238 U and 5811' i as targets, and their result are shown in figure 4 .2. The solid
line represents the use of eq . (4.1 .13), together with the value of o givcn by (4 .1 .2) . From these
figures one can see that above theory is in agreernent with the anälysis of Dydak et al. They ob-
tained the value z F o = (5 .8 ± 1 .3) x 10_.2

° sec, which agrees with the theoretical predictions.

Coulomb production
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Figure 4.2. Total cross section of the Coulomb production r(A E°) as a function of the mo-
menturn of the Ay-pair from the decay of 1°, for (a) a uranium target and (b) a nickel target . The
fall line corresponds to eq . (4.1 .13) with z £o = 0 .7 x 10 19 sec .

The essential reason for overcoming the large excitation energy mso - mA = 76 .86 MeV E c 2 is
the high value of y . For y

	

20, as was the rase in this experiment, the distance d where the
adiabacity paramenter = Bad j yv becomes equal to 1 is g ven by d

	

50frn ; i .e . the area which
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contributes to the electromagnetic excitation cross section is mach larger than the nuclear geometric
cross section.

This experiment has been recently (Pr-85, Pr-86) redone at Fermilab with a A beam of
pA 200 Gell / A incident on nuclear targets with Z = 4, 50 and 82 . These experiments show the
expected logarithmic increase of the electromagnetic cross section with energy . In table 4.1 we make
a comparison of their experimental data with the result obtained by using (4 .1 .14) . The agreement
is quite good, within the experimental errors . This is more clearly seen in fig. 4 .3 where we show
the ratio between the experimental and the theoretical values.

Experiment no . Target Z r

	

(mb) 62,0 (mb)

1 4 0 .068 ± 0 .048 0 .0274
2 4 0.023 ± 0 .025
3 50 2.65 ± 0 .64 3 .51
4 50 3.48 ± 0 .36
5 82 8.17 ± 6 .45 8 .99
6 82 9.22 ± 0 .82

Table 4 .1 . Cross sections for Coulomb production of E° on several targets by means of A
particles with incident energy E, ab

	

200 GeV. The experimental data are from ref . (Pe-86).

One could also think in obtaining information on the different contributions of the X11 and of
the E2 excitation of a nucleon to a A-resonance by measuring the total Coulomb cross section for
this process in the collisions of nucleons and high-Z nuclei at relativistic energies, in the same way
as was done in the experiment of Dydak et al. The differential cross section for the E2 excitation
can be calculated by (2 .4.2), also analytically, and has a very different behaviour as compared to the
Ml case . But the experimental detection of this process would be very difficult due to the Back-
ground of contributions from strong interactions.
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Figure 4 .3 . Ratio of the experimental data on

	

production in the reaction A + Z 1 0 + Z
and the theoretical calcuiation based on eq. (4 .1 .14) (see table 4 .1).

There are also other examples, where the Primakoff effect is used to study the interaction of
photons with unstable particles . Quite recently (Ant-87), the vertex y has been investigated
in the reaction of pion pair production by pions in the nuclear Coulomb Field
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rz +Z -+ rr +rr°+Z

in the regon of low-invariant-mass of the 7t-n° system. A highly relativistic 40 GeV pion beam has
been used . This is interesting in the context of the so-called Chiral anomalies.

In a similar experiment the polarizability of the rr- has been measured (Ant-83, Ant-85) . The
Compton effect on a pion was studied in the reaction

+Z >rr + y + Z

Irrom this the cross section for the elastic rr- photon scattering was deduced ; this in turn, could be
related to the pion polarizability, and it was found that a ;. = (6 .8 ± 1 .4) . 10- 43 cm3 This quantity
is of great interest in the study of hadron properties.

Figure 4.4 . Production of neutral C = + 1 states X in the col .lision of two charges particles (e .g .,
e+ e -) via the two-photon mechanism

As another possibility we mention the study of the production of resonances in the interaction
of real photons with the equivalent photons of the Coulomb Field . At KEK (N . Sasao et (1l.,
Tsukuba, as mentioned in Ya-87) the production of axion-like particle is investigated in this maner.
On the original suggestion of Primakoff (Pr-51) the ;r°-lifetime was measured in the process
y + Z --> n° + Z (Br-74).

4.2 Two-photon collisions
An extensive program of y-y physics is going on at high encrgy e+e colliders . The dominant

graph is shown in figure 4 .4 . The charged particles e + and e emit virtual (or equivalent) photons
which collide to form a neutral System X with charge parity C= + 1 . There exists a vast literature
on this subject, the properties of the virtual y's are calculated in great detail and the cross sections
in e+e_ collisions are directly related to the corresponding y-y cross sections (see 13u-74, Fi-80, and
Br-71, where many further references are contained) . An early result is due to F . E. Low (Lo-60)
where the measurement of the n°-lifetime by rr° production in e+ e or e-e- collisions is proposed.
Using a variant of the equivalent photon method, the cross section for the process e e+ -a e-e + X
is found to be related to the cross section for y + y - X by (we use the notation of ref. AB-86)

dae-e+y e e +x (s)- rl2 J dwf(w) do- Ti,x(tos) ,

	

(4.2 .1)
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with

s= (Pt+P2)2 ,

	

i= 2n
ln

(4m2)-7r
In)),

	

(4 .2 .2a)

and

f (cf.)) = w [(2 + co)2 In ) --- 2 (1 - w) (3 + to)] . (4.2.2b)

For a collider s is given by s = 4E 2 whcre E is the e + (e-)-energy in the lab-system, m is the electron
mass and y = Ejm . In addition to the situation pertaining to eq . (4 .2.1), where the final momenta
of e+ and e - are not measured (untagged luminosities) ane can study cases where these momenta
are measured (tagged or double-tagged luminosities, see , e .g ., ref. Fi-80).

We shall point out the possible usefulness of RHI collisions for the study of y-y collisions (sec
13a-87b) . lt is the additional factor (Z,Z 2 )2 , where Z, and Z2 are the Charge of the colliding heavy
ions, which increases strongly the RHI cross section as compared to the e+e case.

We study the collisions of two equivalent photons in the system where the two heavy ions move
with opposite velocities v and -v towards each other (see fig . 4 .5) . This is equivalent to the collision
of two photons with frequency distributions n, (w2 ) and n2 (w2 ) moving in opposite directions . For
y » 1 we can use the expression (sec eq . 1 .1 la)

ni (wi) = 77 Zi In

	

	 	 (4 .2 .3)
w i R i

where the radius R; of the ion i determines the rainimum impact parameter . The adiabatic cutoff
sets in at

max Icwi

	

R i

and we put, for simplicity,
max

ni (ca i) = 0

	

for

	

wi > co1

(4 .2 .4a)

(4 .2 .4b)

The Lorentz-factor y is related to the corresponding Lorentz-factor y, of the projeetile (for a fixed
target machine) by

yp _ 2y 2 -- 1 .

	

(4 .2 .5)

The total cross section erc for the two-photon process Z, + Z2 Z, + Z2 + X is given by

dw tj'

	

dw2 n
l (

	

nz (w2)
ayy x( co 1 'c~2) .

	

(4 .2 .6)
w2

	

ra ~ )

Introducing the variable x = w, wz ( 4x corresponds to the square of the invariant mass of the
2y-system) one obtains .

/ Z 1 Z2aQc = i	 ) J dx ayy_x(x) 1(x) ,

	

(4 .2 .7a)

where

C

	

3

	

I(x)-
3x

In	 y	
vjxR 1 R2

There are irnportant differences of this equation as compared to the one used for the e i-e- col-
lisions (Lo-60, AB-86) . In the derivation of eqs . (4 .2 .1) and (4 .2.2), it was assumed that y » 1 (as
is appropriate for the e + e colliders) . This means that the adiabatic cutoff, eq . (4 .2 .4) , which is
relevant for the RHI collisions, is not important for the e+e case . The maximum energies of the
equivalent photons are determined these by the kinematics of the process (total energy loss for
ey or e-, sec, e .g ., eq . 15 of Lo-60) . This means that the higher energies will not be easily obtained
in RHI collisions.

An important process in y-y collisions is the e+e pair production

y+y e+ +e .

The corresponding e`e pair production in RHI collisions, being of 'arge importance, will be
studied in more detail in chapter 7. Another purely quantum electrodynamical process is

y + y -> y + y, the elastic scattering of light an light (see, e .g . La-86) . Its cross section involves an

(4 .2 .7b)
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additional factor ;z 2 as compared to the pair production, it is, therefore, rather small and it has neuer
been possible to study it directly. On the other hand, the elastic scattering of y's in the Coulomb
field of nuclei has been experimentally investigated (Delhriick seattering) . In Rlll collisions the
saure proeesses can also be studied.

lt is also possible to form strongly interacting neutral C= + 1, particies in 2y-collisions, like
n, n,, . . . . The production was originally suggested by Low (Lo-60), the n,-particle was re-

cently produced at PETRA (Berg-86) . The resonances are usually sufficiently narrow, so that their
Breit-\Vigner form can well be approximated by a b-function in the integral, eq. (4 .2 .7a,b) . For
example, the na production cross section is given by (Lo-60)

2

	

~ Yy =	 8tb(i 2 4x) ,

	

(4.2 .10)

where a = 0.83 x 10- 16 sec and = 134.9 MIeV are the lifetime and mass of the 2f° ; respectively
(AB-86) . One obtains

128

	

2	 1

	

(

	

2y

	

3	 3	 (L i L2 x)	 ln

	

(4 .2 .11)

12 37

	

t2k,/R t R2 /

A sirnilar formula can also be used for the production of other particles, where one has to replace
1) r by the y-y width E, ., of the particular resonance to be studied, and include an appropriate factor
for the spie of the particle . One obtains values of the order of some ub for the lt° production by the
two-photon mechanism for the conditions of the prescht RHI experiments at CERN (60 and 200
GeV/'nucleon oxygen beams an Pb targcts).

Figure 4 .5 . Two relativistic heavy ions collide in a system where they move with opposite ve-
locities v and -v towards each other . This corresponds to the collision of two photons with opposite
momenta with photon energy distribution given by n, (w 1 ) and n2 (w 2 ), according to the equivalent
photonmethod.

Let us compare the characteristics of the RHI collisions with the e-e- collisions_ Even in the
highest energy RHI experiments, the y-values achieved are rather low : for yp - 60 or 200, appro-
priate for the CERN experiments, the corresponding y-values are rather modest . For a 1 GeV
electron, e .g, one has already y ee 2000 . The y-factor enters, however, only logarithmically in the
cross section, whereas the (Z I Z2 )2 factor enters directly in the cross section formula, giving a distinct
advantage for the the RIil collisions. The comparatively Iow value of y for RHI collisions Ieads to
a limitation of the invariant mass of the 2y-system.
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Finally, let us mention some speculations . Due to the large flux of equivalent photons in the
MeV range, RHI collisions would be of interest to look for resonances in the y-y system . This could
be of special interest at present in the search for an unknown particle which deeays into e/ and e
(for a recent review on the GSI experiments on positron emission in low energy heavy ion colli-
sions, see Ki-86) . Various proposals using y-y collisions (see, e .g ., Za-87, Br-86, and Ts-86) or the
Primakoff effect ( as mentioned in ref. Ya-87) exist in order to look for such an unknown particle.
If it is heavier than 2mec2 then it could decay into e + e pairs and one could look for peaks in the
invariant e-e mass spectrum as produced in RHI collisions . This would also complement the
search for resonances in the e_e collisions in the MeV region (see, e .g ., Wi-87 and Ma-87).
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5.0 Bremsstrahlung

The emission of y-rays in RHI collisions is an important diagnostic tool for the time develop-
ment of the nuclear collision (see e .g . Ka-77 and Bj-85) . We will ferst investigate the
bremsstrahlung process for Coulomb collisions (b > Rr + R2 ) . This Gould be a potential source of
background to be considered in experiments . A unique feature of this bremsstrahlung effect is the
interference of the radiation from the target and projectile . This will be specially important at low
values of y ; it leads particularly to the well known vanishing of the El bremsstrahlung for systems
with equal charge to mass ratio Z1 1v!1 = Z2 ~ M2 . In contrast to the low energy case, the emission
of Coulomb bremsstrahlung at relativistic energies will be predominantly of El origin, even for
systems with equal charge-to-mass ratio.

In section 5 .1 we calculate the spectrurn of bremsstrahlung in RHI electromagnetic collisions,
and in section 5.2 we compare it to the bremsstrahlung occuring in the violent central collisions.

5.1 Bebe ss rahliing in Coulomb collisions

According to eq . (14.67) of the texbook of Jackson (Ja-75), the energy radiated per unit solid
angle per unit frequency interval is given classically by

	 d21
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where E? = Ilca is now the energy of a real photon and

Al=Z2
ir
~oo

nx (Anx . eiw (r- .r jc) dt

_~ l
)

where i= 1(2) refers to the projectile (target) labels, r, (v ; ) are their respective positions (velocities),
arid n is the direction of emission of the photon . By expanding eq . (5 .1 .1), the first (second) term
corresponds to the radiation emitted by the projectile (target) and the third terrn to the interference
between the two previous ones . Let us ferst discuss the radiation ernitted by the target, assumed to
be the laboratory system of reference.

Thc electric fields at the position of the target and at time t, when the projectile passes by with
an impact parameter b, are given by eqs . (1 .la-b) of the introduction_ In the laboratory system the
target has a non-relativistic motion and we can use the dipole approximation (see Ja-75)

where M2 denotes the target rest mass, i .' is its acceleration, and E; (u,), ET (w) are the Fourier

transforms of the electric fields of eqs . (1 .1) . Expanding the triple vector product in (5 .1 .3) we obtain

where x = tob yv , and (0,0 ) are the angular coordinates of n.
The relation between (5 .1 .4) and the differential cross section for emission of bremsstrahlung.

radiation is

Z 2Z4eb2
	 2	 232V2 [(1 - cos~8) . Kp2(x) + (1 - si28 sing ) K 2(x)

	

«5 .1 .4)1cb
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2 4
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xnx[EZ (w)+ET (w)]1 2
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(5 .1 .5)

Both integrations can be done analytically and the final result can be written as

der b,

	

8r Z22 e2 )
n6r(Ei),

dEy

	

(2)

	

3
M2c 2

	

E

where n) (Ev ) is equal to the equivalent photon number n E , as given by eq . (1 .9) with Z = Z, . The
result (5 .1 .6a) has a very nice interpretation : the emission of bremsstrahlung by the target (or by the
projectile) can be viewed as the rescattering of the equivalent photons generated by the projectile
(target) . The bremsstrahlung cross section is then given by the product of the equivalent photon
number per unit energy, given by nf,(EE ) /

	

and the classical Thomson cross section

(5 .1 .6a)

	

_

	

Z 2 e

	

aaT--

	

2
3

\ Mc2

(5 .1 .6h)
2

To calculate the radiation emitted by the projectile we can use (5 .1 .4) for the radiation emitted
in the frame of reference of the projectile by exchanging the indices 1 and 2 . Then we make a
Lorentz transformation of d21 / dw de, co and 8 to the corresponding variables in the laboratory
system (see eqs . 11 .30 and 15 .5 of 7a-75) . We obtain

2

	

Z 47262	 d I	 l	 2 2 x
{[(1-ßcos8)2 -(cos8 ß)2 ]Ko(y)

dco dQ (1) ;r 2Mic 3 b2 v 2

+ [ cos 2 ¢ (1 - ß cos 8)2 + ( cos 8 - ß)2 ] K; (y)} ,

where ß = v/ c and y = yx (1 - ß cos 8). Integrating (5 .1 .7) in the Same way as in (5 .1 .5) one finds

2 2(das. 8 ,z

	

Zi 	 e

	

2 	 1	 n2}() ,

idEy ){i}	3

	

1I c 2

	

Ev

where

l

Jdu{[1-
u
-ß 12	

(K -Ko)
I

	

1 ßu /

	

y12

+2[1+(	 1a_	 )2 (K KZ K;

with the KN as functions of x = y (1 ßu), and u= cos B . This Iast integration has to be solved
numerically.

The radiation emitted by the projectile interferes with that from the target . To calculate it we
have to expand the expression

	d2 1

	

2X02
(dwdQ)(3) = 4;~2c

(Al . A 2 + A l . A 2 ) .

To that aim, we rewrite A, in the form

i Z i	°° n x	 [ (iz - v /c) x v/c
A i ^3 	

We then use v = v z in the laboratory system . We also calculate the acceleration V in the projectile
frame of reference by the action of the fields (1 .1) . Transforming v to the laboratory system, the
integration in (5 .1 .11) can be solved analytically . The amplitude A2 is simpler to calculate as we
already shown in eq . (5 .1 .3) and (5 .1 .4) . Inserting A, and A2 obtained in this way in eq . (5 .1 .10)

we find _

(5 .1 .7)

n(r}()= 3 Z22
(-2

2
Ort

	

v

(5 .1 .8)

(5 .1 .10)

-c>o

	

(1v .11f02

e iwt(i-ßc ..)s8}
dt .

	

(5.1 .11)
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(5 .1 .12)

+ 4 (1 + cos 26 2ß cos 8) K1 (x) KI (y)1 .

Integrating (5 .1 .12) in the saure way as in (5 .1 .5) one finds

(d ar 1
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Z1Z2e2

	

2 1 nbr}(Ey),

	

(5 .1 .13)
dEv %( 3 )

	

i12M1 c 2 y

where

n,

	

3 ZZ 1 (c)2 ; 	 	 du
ö{ y) =	,

	

1 [(1_ßu)2- 1/y 2](1-ßu)

X 1-3u2
(1 - ßu) Ko() K I (x) - Y K 3 () Ko(x)]

y

+ Z (1+u2-2ßu)[(1-ßu)K>{)Ko(x) ~ K©(,)KI(x)]}

For Z1 = Z2 and y - 1, we obtain nbr>= rt2+ na?> which expresses the well-known result of Ab-

sence of bremsstrahlung dipole radiation for non-relativistic Coulomb collisions of particles with
equal charge-to-mass ratio .

7 =10

wR/c

Figure 5 .1 . The adimensional bremsstrahlung strength functions n,(,r> (see text) plotted as a
fiinction of the ratio between the nuclear dimension R and the photon wavelength for several values
ofy .

(5 .1 .14)
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In figure 5 .1 we show nc > (for i = 1 solid line, for i = 2 dashed line, and for i = 3 dash-dotted line)
as a function of the ratio between the nuclear dimension R and the photon wavelength, and for
several values of y . We used Z 1 = ZZ = 10. One observes that nb,) becornes smaller in comparison
to n9) and na?) as y inczeases . In the lir it y oo, -+ 0, This means that the radiations emitted
by the projectile and by the target do not interfere with each other as y -# oo . It occurs because the
recoil of the projectile is not instantaneously proceeded by the recoil of the target as in the non-
relativistic case . For relativistic energies the recoil of the nuclei is displaced in time by the retarda-
tion, which leads to the incoherent emission of radiation. Also, in that limit, the radiation emitted
by the projectile is more intense than the one emitted by the target . This is because photons of
energy E,,' in the projectile system of reference, emitted approximately isotropically, appear in the
laboratory within a fonvard cone 1/y and with energies of the order of E,, E .,', i .e.
energetic photons in the laboratory system come from soft photons in the frame of reference of the
projectile (see e .g . Ja-75, p . 708).

Sa g Comparison with nuclear bremsstrahlung

A more violent source of bremsstrahlung radiation has its origin in the collisions with
b < R, + Rz where pari of the charges carried by the projectile almost comes into stop . To compare
the relevance of these two different mechanisms of produeing bremsstrahlung, i .e . the Coulomb and
the nuclear one, we use the results of the work of Kapusta (Ka-77) where the nuclear
bremssstrahlung in RHI collisions was calculated an the basis of a nuclear fireball modelt which

accounts for the possible fow,wiation of two fireballs . Integrating eq . (5) of that reference with respect
to the solid angle we obtain (for the special case of symmetrical Systems, i .e . Z1 = ZZ = Z )

V'br=0 .12	 Z ER2[F(ß)+F(ßpF)+ F (ßTF)

11
-- 2 { G (ß, ßPF) + G (ß, ßTF) - G (ßPF , ßTF)}]

where

(5 .2 .1a)

(5 .2 . l b)

G(ß,ßF)=
	 ß

2(ß

	 -

ßF)

1 - ßF
(ßF) - 1
	 ßß 2

F(ß) + 2 (ß ßF)
ßF

(5 .2 . l c)

and

ß[1+(1-ß2)112](1+r])

	

(5 .2.2)
ßPF =

	

	ßTF = ß1'F - >
[1+( 1 -ß2 ) 112] 2 + ß 2

are, respectively, equal to the projectile and target-fireball velocity . For one-fireball production,
= 0, so that ß,,= ß rf, and for two-fireball production, 0 < i < 1 . We use the transparency faetor
equal to 75%, and define the adimensionless quantity

(Y

	

)- (do (dEy)Nbr

	

(5 .2 .3)
(da- / dEy)Cbr

where the Coulomb bremsstrahlung cross section (dc ( dE,,), r is given by the sum of eqs . (5 .1 .6),

(5 .1 .8) and (5 .1 .13) . In table 5 .1 we show r (y, E),) for the reaction 4 °Ca + Ca and = 10 MeV.

One observes that only for low values of y (in which case Coulomb repulsion corrections to the
trajectory raust be taken into consideration) the Coulomb bremsstrahlung is relevant . Also, for
greater values of E., the ratio r increases.
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y r(y, E,1 = 10 MeV) E.,(da/dE,),,, (mb)

1 .1
1 .5

10
100

2.6x10 2
5.3 x 10 s

1 .0 x 10'
1 .5 x 10'

5.1x10 -2

0 .69
18 .5
27 .7

Table 5 .1 . Ratio of nuclear and Coulomb bremsstrahlung cross sections for the reaction
40 Ca + 40 Ca and 4- 10 74ieV; the value of E, (dajdE,)h5r is also given.

Coulomb bremsstrahlung seems to be of little relevance in RHI collisions . Its role increases for
collisions of less massive particles like electron or muon-nucleus scattering, as can be seen directly
from (5 .1 .6a) arid, e .g ., could be useful for obtaining information on the elastic scattering of photons
on unstable particles, like pions . For example, in the process Z + r --F Z + rt + y the scattering of
photons on pions has beeil studied by Antipov et al. (Ant-83, Ant-85), as was already mentioned
in chapter 4 . With this method a value of the pion polarizability via the Rayleigh scattering ampli-
tude could be obtained. This Rayleigh contribution increases in importance as compared to the
Thomsom scattering term (see ecl . 5 .1 .6b) with increasing y-energy .
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6 .0

	

rase ionization

Ionization of K-shell atomic electrons by means of relativistic particles is a subject of increasing
theoretical and experimental interest (see e .g . An-87, Me-83) . Opposite to heavy ion scattering at
nonrelativistic energies, in the relativistic case K-shell ionization is favored as compared to L, M, etc.
ionization of the atoms of a dense target as the ions penetrate it . Among the huge amount of the-
oretical calculations in this field, we cite Jamnik and Zupancic (Ja-57), Merzbacher and Lewis
(Me-58), Davidovic et al. (Da-78), based on I'WBA, Bang and Hansteen (Ba-59), Arnundsen and
Aashamar (Am-81), Becker et al. (Be-85, Va-84), based on semiclassical approaches, and
Kolbenstvedt (Ko-67), Komarov (Ko-80), based on the equivalent photon method . Due to its
simplicity and the possibility of having an easier insight into the subject we shell here use the same
method as the last authors . We compare the final results with the ones obtained in the other ap-
proaches.

The method consists in separating the ionization processes into those arising from dose,
b < aK , and from distant, b > aK , collisions, where the K-shell radius is given by aK = 2j(m Ze2 ).

6.1 Close collisions
The period, T, for an electron in the K-shell is given by

	 4rrh	

mc 2 (Za) 2

where 1

	

(Zcc)2mc2f2 is the ionization energy of the K-shell electron . The ratio of the collision
time t~orr

	

b/yv in a RHI collision and the period of an electron in the K-shell is

tcolt

	

1 Za b

	

(6 .1 .2)
T

ti
4r_ yß ax

When the impact parameter b is smaller than the K-shell radius a K, we see that the collision time
is always stnaller than the period of the atomic electron for ß 1, and that their ratio goes to zero
in RHI collisions for which y» 1. For such collisions the ionizing process can be considered as
a collision between the projectile and a free electron, with an energy exchange larger than the
ionization energy. In a semiclassical sense, we can say that the probability for the ionization of the
atom in a collision with impact parameter b < aK is given by

P(bc aK) =
f

A(z) '

where

A(z) = [ 2 p (b, z) CT BC (v, b, z)] -1

	

(6 .1 .4)

is the mean free path for the collision between the projectile and the electron in a K-shell . In (6 .1 .4)
the quantity p(b, z) is the electronic density in the K-shell at the point with coordinate r = (b, z)
with respect to the atomic nucleus, and dBc (v, b, z) is the cross section for the (free) binary colli-
sion of the projectile and the electron . The factor two accounts for the presence of two electrons
in the K-shell : if the atom contains only one electron in the K-shell, all following results raust be
divided by a factor two. In the case y» 1, we can take cBc outside the integral in (6 .1 .3), and for
the electronic density. in theK-shell . we use the simplified, non-relativistic, hydrogenic ls
wavefunetion, i.e .,
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By means of these assumptions, we obtain

z
P (b c ax) =	 4

Q

Bc

Ja
exp -	 2-\/b2+az

	

dz = 2 x K 1 (x )
x

where x- 2b/aK .
8ince

xKi(x)

	

-1,

	

forx<1
(617)

/ mix ex .

	

for x> 1 .
2

the ionization probability, as a function of b, will be approxirnately constant up to b a K/2, after
which it diminishes exponentially. This behaviour was indeed been found in the more elaborate
calculations of Arnundsen and Aashamar (Am-81), and later an eonftrmed by Becker et al. (Be-85),
which used First order time-dependent perturbation theory and exact Dirac-Coulomb wave fune-
tions for the electrons.

The total Cross section due to dose collisions is obtained from the integration of (6 .1 .6) over
b. One finds

i .e ., the total cross section for atom ionization in dose R1-I1 collisions is about the Same as the bi-
nary collision cross section Q BC . To calculate r , we observe that, due to Coulomb repulsion, the
momentuni and energy transferred to the electron, are given by

Ap = 2ym v sen ,

	

and

	

AE= 2m y 2v z sinn 8 .

	

(6 .1 .9)

\ow we use the Matt differential cross section for the free binary collision between projectile and
electron, i .e .,

where r,= e 2/mc2 is the classical electron radius . Using (6 .1 .9) we can transform dcr/de into an
expression for do /d(AE), which after integration from AE,,,,n = 1 to AE,,, = 2m y2v2 results in

	

z z i

	

ßk

	

o-Bc= C
ßZ4 ~2E

f

	

z

	

d

	

(6.1 .11)

J.

where x = I/(2m y2v2 ), and C is a factor which account for the uncertainties in the integration limits:
for example, the energy transferred to the atom can be of order 1 and be shared by the two electrons,
what will not lead to ionization . For y » 1 this integral gives

	

2

	

4nZzr2
A BC - 2r~ CZiYe

I

	

C	 ~21e

	

(6.1 .12)

Inserting this in eq . (6 .1 .6) we find that the probability for ionizing an atom in a RHI collision with
b < a K is approximately given by

P (b < ax)

	

8 C(Z ia)2 x K1 (x) .

Due to (6 .1 .7), this result means that probability to ionize the atom in a RHI collision with impact
parameter smaller than the K-shell radius is approximately constant, independent of the eharge of
the atom, and proportional to the square of the Charge of the projectile . The calculations of
Komarov .suggest the value . C= 1, whereas themost exact calculations of Arnundsen and Aashamar
(Am-81) and of Becker et al. (Be-85) give C ^ 0 .45, that is,

P(b<a- x/.2)

	

3 .6 (Zia)z :

	

(6 .1 .14)

We observe that the simple description above shows remarkable good agreement with the main
features of more precise calculations . Nonetheless, the ionization probability as given by (6 .1 .14)
becomes greater than unity for Zi > 72 (!) . This means that ferst order perturbation calculations,
as those performed by Amundsen and Aashamar and by Becker et al., are not adequate to describe
the impact parameter dependence of the ionization prohabiiities, even for projectileswith interme-
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diate charge values . This can be easily explained by observing that for projectiles with large charges
the Coulomb repulsion suffered by electrons in the K-shell will always be large enough to kick them
off the orbit, i .e ., the ionization probability will be one . Therefore, any perturbation theory will nm
into trouble in this limit.

For very high energies the contribution of impact parameters larger than the K-shell radius will
become larger and larger, as we shall see . Also, for these impact parameters the ionization proba-
bility will always be much smaller than one, even for projectiles with very large charges . This mcans
that the violation of the unitarity condition will not have a big influence in the calculation of the
total ionization cross section.

6.2 Distant collisions
The probability to ionize the atom in a RH1 collision with impact parameter larger than the

K-shell radius can be calculated in the equivalent photon method by

ca,

P(b> aK)=
J

.N'(w, b) c (w)
	 de.)

(6 .2 .1)

II~

where N (to, b) is the number of equivalent photons incident an the atom per unit area (sec chapter
1), and

K

	

1287*

	

I

	

4 e--4a arc cot a

a () _ 22x3 ha> )

	

1 - e
2ra

	

'
2

is the photo-electric cross section (see e .g . ref. 1-le-54, p . 208) . In the above equality

	

o-_ 8n
re

_ 8>t	 e2

	

and a =	 	 I	
3

e

	

3 mc2w

The integration in the eq. (6 .2 .1) can be soived analytically by using the approximation (6 .1 .7) arid
by expanding the exponentials in (6 .2 .2a) around hco 'a 1, i .e . by putting

a yK(w) ti
Z2 x23 \ liw

	

)4 e r4 ,

	

(6 .2 .3)

in the integrand . We find

P(b> aK) = 0.39 (Z1Z2a2)2	 1 K2($	 ,

	

(6 .2 .4)
Y

	

i .e . P (b> a K) will decay proportionally to lfb2 until a Gutoff impact parameter b

	

yhcjl , after
which it decays exponentially . For b = a, we find

	

P(b= aK )

	

1 .56 (Z 1 )2 ,

which will always be appreciably smaller than one . This means that for these irnpact parameters
one can perform caiculations in the First order perturbation theory without problems . The
behaviour of the ionization probabilities should not be much different than that given by eq . (6 .2 .4),
what is indeed shown in refs . Am-81 and Be-85.

Integrating (6 .2.4) from b = aK to b = oo, we find
2

ab> a 4 .9 r2	 Z~

	

2 j KÖ - KF + 2 K0KI jx

	

(Z2 a)2

	

L

	

J

	

2

	

1

	

9 .8re	
Z12 ln(Z~-

	

(Z2 9t)

	

2 1

where = IaKf yhc.
In fig. 6.1 we show the cross sections for K-shell ionization of lead atoms by means of

relativistic argon projectiles as a function of y . One notes that for great values of y the contribution
of distant collisions 6 b, Q is much larger than that from close collisions o -,,,,K which tends to a
constant vortue for y » 1.

There exist detailed experirnental investigation of inner-shell ionization in electron irnpact at
very high energies (see, for example, ref. Ge-82) .
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Figure 6 .1 . Cross sections for atomie K-shell ionization of lead atorns by means of relativistic
argon projectiles, as a function of the Lorentz factor y . The dashed curve (dash-dotted) corresponds
to the contribution of impact parameters smaller (larger) than the K-shell radius . The solid curve
is the sum of the two contributions.

Since the ionization cross sections are lange, the relativistic heavy ion ionization could perhaps
be used as a variant of the well-known PIXE (see e .g. Ca-80) technique for the analysis of materials_
PIXE means Particle Induced X-ray Emission : one irradiates a target wich light particles (mostly
protons) and analyses the spectrum of the emitted Röntgen-radiation, which originates when the
electronic orbital holes of the ionized atoms are ftlled by electrons of the exterior orbits . This
method has already many applications in physics, as well as in chemistry (See, e ._g ., Jo-76 and
Kh-81).

In ref. An-84 it is mentioned that the K-sheli ionization contributes significantly to the stopping
power of heavy ions. Therefore, the knowledge of these ionization processes is of interest for pos-
sible application of heavy ion bombardmcnt to trigger the deuteron-tritium fusion reaction.
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Lepton

	

produetion in

	

collisions
Soon after the discovery of the positron in 1932, many theoretical works were perforrned

which aimed to evaluate the cross sections for the production of electron-positron pairs in collisions
of light (or a fast charged particle) with a nucleus . This was expected to be present in collisions
originated by cosmic rays reaching the earth surface and this process would be an experimental
check of the validity of the positron theory of Dirac which had just been born . Most of the earlier
theoretical works on that subject have been done at about the saure time, and in the special case
of pair production in the collisions of relativistic charged particles, there were works by Furt} , and
Carlson (1{u-33) , Landau and Lifshitz (La-34), Bhabha (Bh-35), Racah (Ra-37), and Nishina,
Tomonaga, and Kobayasi (Ni-35) . Except in the work by Furry and Carlson where the final result
was shown to be wrong by a missing logarithmic factor, all other works reproduced the saure results
as that of Landau and Lifshitz (La-34) which studied e+e production in a collision of tvvo fast
nuclei in the Born approximation and treating the projectile motion semiclassically.

lt was only recently, with the construction of relativistic heavy ion accelerators, that a new in-
terest in this Field appeared (An-87) . The cross sections for pair-production in a collision between
two charged particles is roughly proportional to Z ; Z and for heavy systems like 2"U+ 2"U they
will be very large, up to many kilobams . This can be a cause of marly difficulties in the study of
experiments with relativistic heavy ions (Rill) . For example, in RHI colliders they can lead to a
beam loss due to the capture of slow electrons in an inner orbit of one of the ions (see e .g . Be-87);
or it could even be useful in order to keep control of the beam luminosity, as was pointed out by
Anholt and Gould (An-87).

Among the newest works on this subject (So-80; Ni-82, Be-86a, Ber-86b, Ber-87a, Ba-87,
Be-87), the most exact approach is the one followed by Becker, Grün and Scheid (I3e-86a, Be-87)
in the semiclassical approximation . They expanded the interaction potential in multipoles and used
-Coulomb-Dirac wavefunctions for the electron and the positron . In this way, they obtained the
impact parameter dependence, as well as the cross sections, for e_e production for any energy of
the pair and for RHI beams up to 100 GeV/nucleon . One of the difficulties of the calculation is the
evaluation of the multipole sums for beam energies around 100 GeV/nucleons and greater, because
it relies strongly on long numerical computing. Another very useful approach is the equivalent
photon method, which was used in refs . So-80, Ber-86b and Ba-87 . Besides of beilag very simple
to calculate, this method provides good quantitative derivation of the total cross sections, although
it lacks of a more complete description of the process.

Bertulani and Baur (Ber-87a) have also used the semiclassical approach (which is appropriate
for RHI collisions) to deduce the lepton pair (also muon and tau pairs) production probabilities
and cross sections in RHI collisions, but instead of using the Coulomb-Dirac wave functions, they
used the Sommerfeld-Maue wavefunctions for the pair (see e .g. ref. Be-54 and references therein).
These wave functions are equal to the Coulomb-Dirac ones for the spatial region around the nuclei
which most contribute to the cross sections . In this way one can avoid the multipole expansion
used by Becker, Grün, and Scheid (actually, this had already been suggested by those authors in that
paper) . Since this process is very similar to the production of pairs by a real photon, we can use
many of the Integrals that were evaluated by Bethe, Maximon, Davies and Nordsiek (Be-54, Da-54,
No-54) . \'Ve will show that analytical expressions can be obtained only in special cases of the pair
energy. If we call these energies by e T and we show that we can deduce analytically the pair
production probabilities and cross sections when (we use here natural units, with
h=I, andc=1)

(slow pairs)

	

s_ , s+ ti m ,

	

(7 .Ia)

(fast pairs)

	

m« s_ , s+ «y in,

	

(7 .Ib)

and

(ultra fast pairs)

	

s_ , s+	y m ,

	

(7 .Ic)

where y is the relativistic Lorentz factor associated with the heavy ion beam . (see eq . 1 .2).
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The results of Landau and Lifshitz are valid rohen the condition (7 .Ib) is valid . Indeed, that is
the energy region, which give the greatest contribution to the total cross section, integrated over the
energy of the pair . We show that for heavy ions there will be a correction to their results in a similar
way as that found for pair production by a real photon in the field of a large Z nucleus (Be-54,
Da-54, No-54) . Analogous study has also been Bone by Nikishov and Pichkurov (Ni-82) in the
energy region (7 .1b), but slightly different final results were obtained . The energy region inferred
by the condition (7_Ic) is easily studied by means of a Lorentz transformation of the results ob-
tained in the energy region (7 .Ia), and it is also important since it can originate a cloud of pairs
surrounding the projectile in RHI colliders.

In section 7 .1 we evaluate the differential probabilities and cross sections for lepton pair pro-
duction, and we apply it in section 7 .2 to the case of slow and ultra-fast lepton pairs, and in section
7.3 to fast lepton pairs, which is the most important case for e'-e- pairs . In section 7.4 we extend
the calculations to include the case for which the target (or the projectile) is not completely naked
but still have a part (or all) of its atomic electrons.

Since their masses are rauch higher, the production of j+y- and z+z- pairs depends much more
an the energy of the heavy ion beams, as we show in section 7 .5 . There we show that, if the heavy
ion beam energy is not very high (y » 16 for i +/.- production, and y » 270 for L +T- production),
there is a big difference from the results for e+e production.

In section 7 .6 we obtain the cross sections for the pair-production with capture of the electron
in an atomic orbit of the projectile, or of the target.

701 Probability am litzides

In the following we shall calculate the electromagnetic production amplitude of lepton pairs in
the field of a target nucleus with mass and charge number A 2 and Z2 , respectively, by means of a
relativistic projectile with velocity v, impact parameter b, and mass and charge number A, arid Z,.
The calculation is valid for impact parameters such that b > R = R, + R2 , where R, and R2 are the
respective nuclear radii . We shall consider the target nucleus as fixed, neglecting its recoil, and we
place the origin of our coordinate system in its Center of mass.

In the semiclassical approach the projectile is assumed to move in a straight-line and will gen-
erate a time-dependent electromagnetic field which will lead to the production of pairs in the field
of the target . Since the probability amplitude for pair production is, generally, smaller than unity,
we can calculate it in the First order time-dependent perturbation theory (as soon as we take into
account the distortion of the wavefunctions of the pair due to the field of the target nucleus) . lt is
given by

ae +r

	

1 ce alt eia' <'Fe V(r, t) I ,pe, > ,

	

(7 .1 .1)
i __c

.0

rohere

ca=e¢+c_

	

(7 .1 .2)

and 'I' e + ('I't,-) is the wavefunction of the positive (negative) lepton . The interaction potential
V(r, t) is gven by eqs . (2 .1 .3) and (2 .1 .4).

According to eq . (B.11) from appendix B, we can rewrite (7 .1 .1) as

Z t

e Jc12PT

	

H(p )

	

e t g,r .b (7 .1 .3)

where

a~+r i rrv

	

PT+ (co ( yv)2

(7 .1 .4)P = (pp co{ v) ,

and .

11(p') = J dar < Tr

	

vu jj(r) r I We+ > , (7 .1 .5)

whith v~ _ (1, v) . The index T means an arbitrary direction, perpendicular to the beam. Using the
continuity equation for the transition current and eq . (7 .1 .4), we can express the above matrix el-
ement in tcrms of the longitudinal and transversal components of the transition current as

H(P) = dar <Wr I -7z2 +
PT•iT

`ny 2

	

w
e i P

.r „'t,+

	

(7 .1 .6)
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For Y » 1 we can neglect the ferst term inside brackets in the above equation, as it is done quite
generally in the equivalent photon approximation . Then (7 .1 .3) reduces to

a + -
z, e2

I j d2

	

d3 r PT	 C li'	

ISf

	 a r erp- r r~+	 e r Pr b

	

dj

	

PT

	

(7 .1 .7)
-

	

z naiv

	

T + (w f Yv) 2

where we used j T = ea ., and a T is a Dirac matrix of component perpendicular to the bearn direc-
tion .

For tl' e we use the Sommerfeld-Maue wave functions which were also used by Davies, Bethe,
and Maximon (Be-54, Da-54) (see also Ak-65, p. 143) to calculate pair production by means of a
real photon (see Be-54 for a complete discussion about these wavefunetions), namely

	

f4' e i

	

1	 	 I	 x .O u F( -ia_, 1, -ikr- i k_ . r) ,

	

(7 .1 .8a)
2s_

and

e-' k+ r 1 +2	E	 .V l w F(---ia+ , 1, ik+ r + i €~+ . r) ,

	

(7 .1 .86)
L

	

+

where u and w are the Dirac spinors corresponding to the negative and positive leptons with
momenta k. and 14, respectively, F is the confluent hypergeometric funetion and

Z2e 2
a± = v+ ,

na+
A'=exp +	 2]F(1 + l ), (7 .1 .8c)

with v, equal to the respective velocities of the created pair.
Inserting (7 .1 .8) in (7 .I .7) we find

Ze 2	-
a+--	 N

+
Nz°i7.wv

7=1,2
u* [a' G11_+

a: (x.G2))+(ä .G32)J
,

	

(7 .1 .9)

where 2-- 1,2 represents the two orthogonal components transverse to the beam . The tensors
G 1 z, Ges, and G3'_ are given by

	 L Ii , I 2	

	

[ G ta_, G2i., G3,d=jr d2 PT
PT	 ,I3] i pr .b

pT
	 e

+ (w i Y v)2

where

I l = J e z r F1 F2 d3r,

12

	

2'
	 f eir

VF2 d3r,

13

	

2i

	 Je1 .rF2vFi d3r ,

(7 .1 .11d)

and

	

Ft -F(ia_, 1, ik_r+ik_ .r),

	

F2 F(-ia+ , 1, ik4 r+ik+ .r) .

	

(7 .1 .lle)

The integrals (7 .1 .11) were calculated analytically by Nordsiek, Bethe, and Maximon (Be-54,
No-54).

The differential probability for the production of lepton pairs is obtained from (7 .1 .9) as

	

d P , , + e- _

	

a~+- 1 2 P f ,

	

(7 .1 .12a)

spins

where
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(7 .1 .10)

(7 .1 .11a)

(7.1 .11b)

(7 .1 .11c)

with



k{k_
Pf=	6 s+E_de+ds_dQ+dQ_

(2ir)

is the density of final states of the pair.
Using the properties of the Dirac matrices we fmd

(7.12 .b)

2Zle
dPe+e, - = (7rcov )2 i A r+

	

1 2 EQs

	

{ [E+e----k+zk_z+m2] G , :.

+[s+E_+k+zk_z-m2 [1G2i 1 2 + Gur t - 2 ( G 3äi)z(G2a)z]- 2 ( k .G 2, )(k+• G;T)

+2(k+ .kT) [(G3?)* .GTA +2(k_ .G3i)[ k+ .Gu- k+z( G3F)z]

+ 2 G1'i [ E- ik+ G2a - k+z (G3))2} + E+ {
k~ . G3) k_ 2 ( G2 : )z}

+ 2k_(G)z [ k + . ( G3, - G2) )] +

	

complex conjugate

	

} .

	

(7 .1 .13)

In the approximations we are going to make, the integrals [G,, ., G2,,, G32] will be zero for one of
the componcnts, say ).= 2 if we choose b along the x-axis, and the sum in 2 reduces to only one
term.

7.2 Slow arm WWltrafast eleetron ositron pairs

7 .2.1 Slow pairs

We now consider the production of low energetic lepton pairs obeying the condition (7 .1a).
We use the analytic expressions for the integrals (7 .1 .11) as given by the equations (6 .13) of the
work of Maximon and Bethe (Be-54) and keep only the terms in lowest order in
k+ f m and k_ / m . Since only values of A- up to co j yv « m will contribute to the integrals (7 .1 .11),
we also put Pr-= 0 in the numerators of that expressions . Inserting the obtained results for
I„ 12 , and 13 in (7 .1 .10), we fmd

G 12 , G22, G32 _ 0 ,

	

(7 .2 .1 a)

C [G 11
= w3

2 (k_z - k+z) i co Z2 e2 (k+k+z	 +

	k+k

k_kz) M(b, w, y) ,

	

(7 .2 .1 b)

C r +iZ2 e2
~

	

(k+k+P / 2)
1 1(bG21 = -

	

k+k

	

,

and

w, y), (7 .2_1c)

F A

	

2 (k_k z .+Pf2)
z--1Z2e

	

k+ k-
M(b, w, y) ,

	

(7.2 .1d)

wich

P = k k+ k+k_ ,

	

(7 .2 .2)

and where is a uni' vector in the RHI beam direction . The function M(b, w, y) is given by
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only the lovvest order terms in k+ / m and k_ j m, we fmd

dPe+ , -(b) =	 8	
s	 Z

j
Z2 e4	

6k2
I N+ _N_C 2 I M(b, co, y)1

2

	

(2x)

	

2v

x {[kam singe+ + k2 sin 28_] [ 1 - (Z2 e 2 )2] + 2 s & E_(Z2 e 2 )2 1 dQTde_dE~de_ .

The impact parameter dependence of (7 .2 .4) is imbedded in the function M(b, w, y), which we
plot in figure 7 .1 as a function of w b and for y = 100 . We observe that M tends rapidly to its

asymptotic value for w b ? 1 . This asymptotic value is obtained by neglecting the second teilt' in-
side brackets in the numerator, and the second tcuii in the denorninator of (7 .2.3), i .e . we can set

M

	

2~v 1 K 1 (~),

	

for b > l

	

(7 .2 .5)

where we used the approximation w

	

2 m.

wb

Figure 7 .1 . Impact parameter dependence of the production-probability of slow electron-
positron pairs in RI-1I collisions expressed in terms of the adimensional function M(b) as given by
eq. (7 .2.3) . The dashed line corresponds to its asymptotic limit, as given by eq . (7 .2.5).

Since the Compton wavelength of the muon (or tau) is much smaller than the nuclear dirnen-
sions, this approximation is very good for describing the irnpact pararneter dependence of y-'/ ..t- and
i+z- pair production . Nonetheless, in the rase of e +e it will only be appropriate for irnpact pa-
rameters larger than the Compton wavelength of the electron, which is much larger than the nuclear
dimensions . As we will soon sec, this will haue as a consequence that the total cross section, inte-
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pT cos B e 1 T b cos e
M(b, w, y) = w

f
d p7-

[p22T+ (w J yv') 2 ] [pT+ w 2 ]

-	 2iri 2 2 [_-_Ki(-±_)_Ki(cob)]
1-1Jyv

where K, is the modified Bessel function of first order . Inserting eq . (7 .2 .1) in (7 .1 .13) and keeping

(7 .2 .4)



grated over all impact parameters will depend an the nuclear dimensions in the case of muon and
tau pair production, but not in the case of electron pair production . This will Iead to very different
behaviour of the cross sections in the two cases . Let us therefore study first the case of e+e pro-
duction and let the study of y+y- and z + z production to the section 7 .5.

In the case of e-e- production one can have impact parameters rauch smaller than the Compton
wavelength, for which we see in figure 7 .1 that M -* 0 , what seems to be an unrealistic behaviour.
In fact, the probability to produce an electron-positron pair should go to a constant value as
b -* 0, what was indeed shown in the calculations of Becker, Grün and Scheid (Be-86a) . We would
obtain the Same in our calculations if we had not neglected the fast tenn inside bracket in eq. (7 .1 .6)
which although do not contribute appeciably to the cross section, have a finite, non-zero contrib-

ution for the differential probability as 12-> 0 . But for w b ? 1 the impact parameter dependence is
very well reproduced by using the approximation (7 .2 .5) . Moreover, the differential probability de-
creases very slowly until impact parameters mach larger than the Compton wavelength of the

electron and the uncertainty about the impact parameter dependence for b 1 f m is not very im-
portant for the total cross section, specially for RHI collisions.

The modified Bessel function of fast order has the following property (sec eq . 6 .1 .7):

	

1,

	

for Yb<1

	0,

	

for

	

wb>1.

This i_rnplies that the pair production probability decays like 1 { b 2 for irnpact parameter b larger
than the Compton wavelength, i .e ., for b > 1 / m, until to a cutoff limit given by b y v j w .
Above this cutoff limit it will decay exponentialiy, which will guarantee the convergence of the cross
section. Indeed, with these simplifications the differential cross section can be easily obtained by
using

g«) = 2
1 ~

b( v )Z Kf( wb db-1~ 2
L
KQ-x + KoK

dj 1/m

	

21 1n j A E

	

for « 1 ,

where the Bessel functions KN are functions of the parameter

w
y m v '

and d = 0 .681 . . . is a number related to the Fuler's constant . We can write the result as (putting
v= 1)

a+a

	

( ySm
die+e_ =	 4

1 (2122 Ye a)2
k+k-

w 6	(e 27ra+ 1)(1 - e -2na_ )	co

x {[k+2 si.n20+ + k? sin 20_] [1 (Z2 a)2 + 2 a+E_(Z2a)2 } dQ+ d1-2_dE+dE_ ,

where re = e 2 / mc2 = 2.817 . . . fm is the classical electron radius, a = e 2 / hic ' 1 { 137 is the fine
structure constant, and we used

J+N
02-

	

4(21)4 a2 a+ a
(7 .2.9)

(e2za+-1)(1- e-27
a_ )

which can be inferred from the defmitions (7 .1 .8c) . From equation (7 .2.8) one can calculate the
invariant mass of the e+e pairs for a given experimental setup. We observe that the angular dis-
tribution of the slow pairs is symmetric around 90° degrees due to the presence of the sirre functions
inside brackets of the equation (7 .2 .8) ; i.e ., slow pairs are created preferentially with respective ve-
locities perpendicular to the beam direction.

The angular integrations can be carried out easily and we get

( wb )K1( wb (7 .2 .6)

(7 .2 .7a)

(7 .2 .7b)

(7 .2 .8)
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dzcree	 _ 128
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a+a_

	

~l (E + - m) (s- -	 in)(Z 1 Z2 re )

	

i ) (1 - ede+dE_

	

3

	

(e zrca+	-z~ra_)

	

4

	

(7 .2 .10)

x{(w-2m)+(Z2a)2(2m - w)] In

For heavy ions, and for pair energies such that (s + - m) « m , we have in most cases

a+=Z 2 x I	 "i	 » 1.
2 (s± - m)

Then equation (7 .2 .10) simplifies to

d2
Q e + e	 = 32 tr. Zi Z26 cc 6 r2	 m~ ln

( Y3Mdu+de_

	

co

In figure 7 .2 we plot the adimensional function (m / re) 2 d' 6 / de + de_ obtained from eq . (7 .2.10) as
a function of (u _ -m) / m for (e .. - m) j m= 0.01, and as a function of (E + -m) / m for
(c_ - m) / m = 0 .01 . The dashed lines correspond to the approximation (7 .2 .12) . We observe that,
while it increases rapidly as a function of e + , it is approximately constant as a function of e_ . This
is a consequence of the different behaviour of the electron and the positron wavefunctions in the
Coulomb field of the target . The positrons are very unlikely to be produced with small kinetic en-
ergies due to the Coulomb repulsion in the field of the target nucleus . For targets with small charge
this effect diminishes because a+ gets smaller and the energy distribution for positrons and electrons
tends to be a symmetric function of and e .. (see eq . 7 .2 .13).

Figure 7.2 . The double differential cross section d2 c / de + dE_ in units of re / m 2 , for
Z, = Z2 = 92, and as a function of (e+ -m) / m for (E_ - m) / m = 0.01 increasing curve) . Also
shown is the dependence of this function with respect to (e_ -m) / m for (E+ - m) / m = 0 .01 (flat
curve) . This curve is multiplied by 10 a in order to be shown in the Same figure . The dashed lines
correspond to the approximation (7 .2 .12).

In the collisions of nuciei with small Charge (like e .g . a- collisions) and for pair energies such
that a+ « 1, equation (7 .2 .10) becomes

(7 .2 .11)

e-2 ;za+ (7 .2 .12)
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d2o-	 e	 32

	

2

	

(to - 2 m)

	

!cbm

dE dE_

	

3 (ZI Z2 re a) \j(e

	

m} (E_ - m)	
a
	 ln (	

' )

	

(7 .2 .13)

which is symmetric in e and E_ . ln figure 7 .3 we plot the saure function as in figure 7 .2, but for
Z f Z2 = 2. The solid curves correspond to the approximation (7 .2.13) for (e - m)/ rn = 0.1 (up-

per curve), and 0 .01 (Iower curve) . The other curves are obtained from (7 .1 .10) for e + = constant
(dotted curves), and for E_ = constant (dashed curves), and Show the deviations from the approxi-
mation (7 .2 .13).

As a last remark, we observe that when the relative velocity v, of the created pair is very small,
i .e ., when

v r < a = l / 137 ,

	

(7 .2 .14)

then one must take into account the Coulomb interaction between these particles . This was con-
sidered by Sacharov (Sa-48) in connection with the formation of a bound state of the eleetron-
positron system (positronium). Since the main effect of considering the distortion of the Coulomb
Field is the presence of the terms containing a+ in equation (7 .2 .8), we can also make a correction
to include the case (7 .2 .14) by multiplying (7 .2.8) by the factor

2itc /v T

1-e-2ra/vr

This correction will have as a consequence that the momentum of the electron and of the positron
will be strongly correlated and that the cross section (7 .2 .8) will have a sharp maximum when they
are approximately equal in magnitude and in direction, i .e ., for 1

	

k_ (sec also La-86, p . 387).

(E -m)/M
+

Figure 7 .3 . The double differential cross section et' v / de,dr_ in units of r»1 m 2 and as a func-

tion of (s+ -m) / m for (E_ - m) j m = 0.1 (upper dashed curve), and 0 .01 (lower dashed curve) for

ZI = ZZ = 2 . Also shown is the dependence of this function with respect to (c_ -in) m for

(E r - m) j m= 0.01 (upper dotted curve), and 0 .01 (lower dotted curve) . The solid curves corre-

spond to the approximation (7 .2 .15) .

(7 .2 .15)
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7.2 .2 Ultra-fast pairs

The calculations of the last section can also be used to determine the probabilities and cross
sections to produce slow pairs in the frame of reference of the projectile, as soon as we make the
exchange Z14Z2 and evaluate the pair momenta and energies in that frame . However, in the lab-
oratory frame of reference (talget frame) these pairs will be very fast, with energies in the region
given by eq. (7 .Ic) . Since the pairs are Seen in the projectile frame moving approximately perpen-
dicular to the beam direction, they will be observed in the laboratory frame moving very fonvardly
up to a maximum spreading angle of about m j E + 1 J y « 1 (hexe use the notation g ' ± , etc . in
the projectile frame, and £+, etc . in the laboratory frame).

We can deduce the cross section for the production of ultra-fast . pairs by making a Lorentz
transformation of the expression (7 .2 .8) to the laboratory system . We use that k+ k_dS2 ±dS2_dE,dr_
is a Lorentz invariant quantity, and that for y » 1 , and 0 « 1

	

we have
£'+

	

(e,/ 2y) (1 + y2 8 2 ) . We also use

	

, E +., and since the average value of y2 0 2 is of order of
unity, we set E',

	

E, f y where possible . Then the angular integration can be performed easily and
we obtain

d2o- +e_

	

647r 2	 a+aT

	

E +e_
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	 ZZ r e
dE+dE_
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1 2 e

	

(e2rar
1)(1

e-2ra_} w 6

x {(E2 + r 2 ) [1 - (Z 1 cc) 2 + 2 E +E(Z 1 U)2

where

T Z1 1
a±

	

T
v+

with vT equal to the transverse velocity of the pair . When aT« 1 eq . (7 .2 .16) simplifies to

d2
6e e	 	 lb  (Z1Z2r8x)2 E+5 (E++El) In ( 	

y2bm

	

(7 .2 .18)
.tudE+d£_

	

5

	

w

Although this formula is only valid for pair energies £+ ym, it shows a dose resemblance to
the results for fast-pairs which we calculate in the next section . Nonetheless, sülze the energy region
where the above equation can be applied is very restricted, most of the pairs will be created with
energies obeying the condition (7 .Ib), as we shall see in next section.

7.3 Fast electro positron pairs

We now consider the production of energetic lepton pairs obeying the condition (7_lb) . We use
again the expressions (6 .13) given in the work of Maximon and Bethe (Be-54) and disregard terms
of order (m f E + ) 2 and higher . We also put Pr = 0 in the numerators of that expressions . We find

(7 .2 .16)

(7 .2 .17)

E+E_
I~ = 2 C	 „

1
[m2

+ ( p T - k+)2 [m2 + (p T - kT)2
1

(7 .3 .la)
k T2 k T2

x V+(x)	

[(PTT +) (kT++ kT) 2
	 + i	 m22 W+(x) [m2 + (k+)2 + (k) 2 1

~

£

	

1
12=C W

[m2 + (pr- kT)2 ]
(7 .3 . l b)

V}(x)	 (1T	 k	 T z + im24W+(x) [k+(kT) 2 mzkT] ,

[ pT (+ + --),
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m 2 + (pT-
T2]

(7 .3 .1c)

	 (k
T + kT) Z a

x - V+(x)	 +T	 T	 + i	
m4 w±(x) [L.(k)2 - ni 2 k+ri

where

V+(x)= F(- ia+ , ia ; 1 ; x),

	

(7 .3 .2a)

W+(x) = F(l - ia+ , 1 + ia_; 2; x),

	

(7 .3 .2b)

and

(k7
+'+ kT)2 [cv 2 - ( k+ - k_)2 ]

x = 1 -	 	 (7 .3 .2c)
4 co 2(E+ -- k+2) ( E- - k-2 )

Substituting these equations in the i .n,tegrals (7 .1 .10) we will find that they are much more
complicated than the ones in the section 7.2 due to the fact the the denominators contain the
quantities k+T and kT which are not negligible in comparison wich m. indeed, for fast pairs the an-
gular distribution is very forward peaked and their transverse momenta will be of order

k+, kT

	

m .

	

(7 .3.3)

But this implies that, again for b > 1 1 m we can take that denominators outside of the integrals
over pr by putting p T = 0 in them. This simplifies the calculation enormously, since now we can
calculate the integral in p T analytically as in the Gase of slow pairs, and we obtain

s+&--G11=4r~C 	 ~y Kt (	 b)

	

2

	

T2 1 2

	

TZ[m + (k+) j [m + (k_)

k T2 (kT )2
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G21 = 2n Cv K1(Y	 b

m2
+ (kT) 2]

	

(7 .3 .4b)

(7 .3 .4a)

(k+ + kT)

	

Z2 c
x V +(x)	 +i

(k++ kT)2	m 4
W-(x) [k+(kT)2 m

2kTJ

G31 '= 27r C
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2 1 T2

Cm + (k+)

(k+
x

	

V

	

+ kT)

	

Z2 a

	

±()	 -+

	

x	
	(k+ + kT)2	m 4

Inserting this result in (7 .1 .13) we will find a complicated angular structure for the differential
probability. But, this angular distribution is of the sahne form as that found by Bethe and Maxinton
(Be-54) for e+e -production by a real photon . Therefore, using the saure steps as they used for the
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evaluation of the angular Integration, it is straightfoward to show that the differential probability
for the production of fast pairs is given by

where

Fiere we find already a crucial physical difficulty within this approach . Since the pairs with en-
ergies in the range given by eq . (7 .Ib) obey the same conditions in the projectile frame of reference,
this expression should have the saure structure if it was calculated in that frame of reference . But
it is not so, because if we had calculated it in the frame of reference of the projectile, it would mean
a simple exchange Z2 . -*Z1 in (7 .3 .5), what would lead to a different result due to the presence of the
function f(Z,) in (7 .3 .5) . This difficulty arises because our approach is not symmetric in the nuclcar
charges from the very beginning . For exaznple, the wave functions for the electron and positron are
determined in the frame of reference of the nucleus at rest, neglecting the influence of the other
nucleus an them . A solution to this Problem by using a Lorentz covariant theory with Lorentz
transfolmed wave functions for the electron-positron pair is, by no way, simple, and to restore the
required syrnmetry in the nuclear charges we postulate an average of the expressions obtained in the
projectile and in the target system of reference as a rcasonable result . This amounts in the substi-
tution of the function f (Z2 ) by the averaged one

When Z1 « Z2 (or Z2 ~< Z 1 ), this modification is not relevant, since in eq . (7 .3 .5) it will appear
f(ZG) where ZG is the greater from (Z1 , Z2 ) . But, when Z 1 ZZ the approximation (7 .3 .7) is radier
speculative, because we do not know how the influence of both nuclear charges an the electron-
positron wave functions will be . This point may be a source for future investigations.

Integrating (7 .3 .5) over e_ we find

dPe+e 112 2 e+b \
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} 2
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2 -f (Z1 ,

	

Z2)] .

	

(7 .3 .8)

The same result can be obtained for dPe + e ] de_ by exchanging the indices - and + in (7 .3 .8).
The respective expressions for the differential cross sections can be deduced from (7 .3.5) and (7 .3 .8)
by using the integral (7 .2.7) . For example, the differential cross section da f de.. is equal to

	

di e+ e	 56  (Z
1 Z2xr'e) 2 1 [

1n l

	

de+	9 r

	

E¢

	

m

In figure 7 .4 we plot the differential cross section da e + e _ f dE+ for production of e+ e- pairs in
uranium-uranium collisions and calcium-calcium collisions as a function of the positron energy e + ,
and for y = 100 and 1000 . Already here we see that the creation of positrons (and electrons) with
small energies is strongly supressed in comparison with the ones with higher energies and, when y
increases, more and more positrons (and electrons) with higher energies are produced . Indeed, in
this figure we see that the dashed curve (y = 100) decreases faster with increasing energy of the
positrons than the full curve (y - 1000).
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Figure 7.4. The differential cross section di e + e _ / de, for production of e +e pairs in uranium-
uranium collisions (upper curves) and calcium-calcium collisions (lower curves) as a function of the
positron energy e+ , and for I = 100 and 1000 .
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Figure 7 .5. The probability P + e for production of e + e pairs in uranium-uranium collisions
and calcium-calcium collisions as a function of the relativistic Lorentz factor y, and for impact pa-
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In figure 7.5 we plot the probability to create a e'e - pair in uranium-uranium and calcium-

calcuim collisions as a function of the Lorentz factor y , and for impact parameter equal to the
Compton wavelength b= 1 / m. We note that for calcium-calcium collisions, Pe e « 1, even for
very large values of y, which justifies the use of first order perturbation theory . Nonetheless, for

uranium-uranium collision, Pe + e > 1, for y 500, which violates the unitarity condition . This
means that for extremely high energies, greater than several hundreds of GeV/nucleon, and for very
heavy ions, it will be necessary to account for higher order terms in the perturbation theory . In
other words, one raust consider the probability of creating two or more pairs in a single collision
above those energies.

Now we integrate (7 .3 .8) over er and use the approximation (7 .2.6), in order to obtain the
probability to ereate a e +e pair in a RHI collision as a function of the impact parameter :

(7 .3 .10)
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Figure 7.6. The cross section Q e + e for production of e±e pairs in uranium-uranium collisions
and calcium-calcium collisions as a function of the relativistic Lorentz factor y . The ordinate is
given in kilobarns.

As we mentioned before, Pe + e .(b) goes to a constant, finite value for b 1 / m, and diminishes
very slowly (like 1 / b 2 ) as a function of b, up to a limit y / m after which it decays exponentially,
and this is the reason why the cross sections for pair production will be very large . In fact, inte-
grating (7 .3 .10) from b = 1 / m to b = y / m we find

	

/

27(
Z 1 ZZ a r)2 in3	-

2 (
1 + 2 f) 2

	

(7 .3 .11)

Sinee the integration of (7 .3 .5) over b can be done analy tically by using (7 .2 .7), a better result

can be also found by integrating numerically d 2o- / de de_ over s+ and s_ . But, for y 100 the eq.
(7 .3 .11) agrees very well with the numerical calculations . Except for the second term inside brackets
and an irrelevant factor in the logarithm which is not important for y » 1, the above expression
agrees with the result found by Landau and Lifshitz (La-34) in the Born approximation . The second
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term inside brackets is a correction due to the distortion of the electron-positron wavefunctions in
the Field of the nuclei.

In figure 7.6 we plot the cross section for production of e-e pairs in relativistic uranium-
uranium collisions and calcium-calcium collisions as a function of the Lorentz factor y, based on
eq. (7 .3 .11) . These cross sections are about one to two orders of magnitude smaller than the ones
calculated by Bertulani and Baur (Ber-86b), where the equivalent photon method was used . This
occurs because there the equivalent photon numbers were integrated from a minimum impact pa-
raineter equal to R (surrt of the nuclear radii) . As we saw, the minimum impact parameter that
should be used is equal to the Compton wavelength, below which the contribution to the total cross
section for pair production is negligible . That error makes the cross section in ref . (Ber-86b) rauch
bigger than it should be . But the results agree quite well with the ones obtained here if we make
the substitution R -~ 1 / in in that calculations . In view of our previous discussion about the pair
production probability, there must exist some corrections to (7 .3 .11) for uranium-uraniurn colli-

sions with y ? 500 . There one must take also into account the probability of creating two or more
pairs in a single RHI collision . This may change the dependence of the cross section on y.

Fror the previous results one observes that the probability for the production of fast e +e pairs
in the collision of two fast nuclei in comparison with slow (or ultra-fast) ones scales like

p
fast
	 e	 	 1112

	

(7 .3 .12a)
p slow

	

mb
e + e

and the ratio between the cross sections scale Ilke

fast
6e e

	

ln 2y

which means that for y» 1, most of the e + e- pairs will be fast ones, i .e ., will have energies in the
range given by (7 .lb) . Therefore, we can say that the total probability or cross section for producing
e+ e pairs in RHI collisions are given accurately enough by eqs . (7 .3 .10) and (7 .3 .11), or by the
respective numerical integration of (7 .3 .5).

7.4 Effects of screening
The above cross sections were evaluated under the assumption that the RHI were naked,

without their electron cloud . Let us, for simplicity, assume that only one of the ions is screened by
the atomic electrons, say the target . Then, the correction to the previous results can be performed
in a completely analogous way as in the case of pair production by a real photon (Be-54) . There-
fore, we only present the final results, which for partial screening are

1bm
d ds+
	

-- 9>r
	(Zi Z2 a re)2¢ L 6 1 (x) -i- ~2(x) 38 In Z2 - 28f J In 2 e+

	

(7 .4.1)

where 4), and

	

are the Bethe functions for atomic screening (Be-34) as functions of the parameter
(see also Ak-65, p . 395)

x = (2mw / s +x ) Z 113 •

In case of complete screening, i .e ., when e±/m» Zr x, then we can use
(r ,(0) = 41n 183 and X 3 (0) = 4 In 183 - 2 (3, arid (7 .4 .1) reduces to

d'e+e- _ 56

	

2	 I- (Z 1 Z2 xre ) £
da+
	

- 9,

	

+

The total cross sections for e + e--pair production in RHI when one of the ions is completely
screened is obtained by integrating (7 .4.2) from e + = Z2r3 am to ym, i .e .,

183f-
42
1 - f [12 (y5Z2 /3a)-12 (2)] .

	

(7 .4 .3)
f

2

In the case of partial screening a numerical integration of eq . (7 .4 .1) will be neeessary.
In figure 7.7 we show the cross section for pair production in oxygen-calcium and oxygen-

uranium collisions as a function of the Lorentz factor y . The solid lines correspond to the case of
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no-screening of the target and of the projectile, as it could be the situation in a RIII collider . The
dashed lines correspond to the case of complete screenig of the target . The effect of screening is
very important for low energies of the beam and dirninishes in importance for very high energies.
However, when screening is present the cross sections will always be smaller by at least a factor 2-4,
also for very high beam energies .

I

Figure 7 .7. The cross section for production of e*e- pairs in oxygen-uranium collisions
and oxygen-calcium collisions as a function of the relativistic Lorentz factor y . The solid lines refers
to completely naked projectile and target and the dashed lines refers to completely naked projectile,
but completely screened target.

7.5 Production of heavy leptons
The Same previous calculations can be applied for ,u-i - and z-a -pair production in R111, but

care must be taken an the following facts . First, since the Compton wavelength of these leptons
satisfy the condition

10 1

10 0

10
10 10

2
10 10

4
10 5

h « RR 1 +R2 , (7 .5.1a)
mc

where

I?3R 1 2 ^ 1 .2 A 1,2 (7 .5 .lb)

are the nuclear radii of the ions, the impact parameter depeindence of the pair production proba-
bilities are accurately enough described by expressions given in section 2, but in the cross sections
one must substitute the variable as given in (7 .2 .7b) by another one given by

wR (7 .5 .2)

16,

= yv

for y+ , u - production , (7 .5 .3a)

270, for i+i pair production , (7 .5 .3b)

This means•that, for

y »

y »

Eve can replace the mass of the electron by the mass of the respective lepton and
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ln

	

co

in the equations for the cross sections given in the previous sections to obtain the respective cross
sections for u'Fr- and z-r- production.

The conditions (7 .5 .3) are quite severe and only for RHI accelerators working at extremely
large energies it will be useful, specially for z l z - production . Therefore, we consider the opposite

$( )

	

1* 2 e-2

The expressions (7 .2 .8) and (7 .2.10) will be correct if we replace

This means that the double differential cross section for lr' fr- and z'z production with beam en-
ergies satisfying the above condition is

where the subscript ?+t- is used in this section for muon or tau pairs.
When the charges of the ions are srnall, such that the approximation a . « 1 can be used, we

can integrate (7 .5 .7) from e + = m to 2m and obtain

dde,-e-

	

2 1 (	 Y	 )312 ( +	 _ )3/2 [,- 3

	

3 2mR)

	

-2(8, +m)RIY
m

dE

	

3- (Z1 Z2 ?"e,)

	

2mR

	

1

	

(2) -(2 ;	 e
(7 .5 .8)

_ ti6 (Z1Z2 re)2 1 ( 2mR	 )372 m

	

1)372 e2(E + + m)R7y

where I ,(1 ; y) is the incornplete gamma function (sec Gr-65, p . 940), and the last equality corre-
sponds to the asymptotie Limit mR/y » 1.

We integrate (7 .5 .8) over E + in order to find the total cross section for muon (or tau) production

under the condition that mR j y ? 1, namely

4mR

1281
:z2 IX rr)2 (mR

	 )4
e

	

Y .

This result is in good agreement with that of ref. (Ba-87), where the cross section was calculated
by using the equivalent photon method . There the cross section was given in terms of the expo-
nential integral function Ei (x) (see Gr-65, p. 312) and the asymptotic limit for mR/ y » 1 is exactly
the saure as the one obtained above (see eq . 10 of that reference) . In RHI collisions, for which the
above aproximations are not valid, a numerical integration of (7 .5 .7) has to be performed.

Numerical values are plotted in figure 7.8 for 4~ -e in the collision ' 6 0 + ' 60 as a function of
the Lorentz factor y . The cross sections are much smaller than that for e +e production in the Same
energy regime . This is due to the severe limitation imposed by the adiabatic cutoff in the cross

section for projectile energies such that mR/y 1, which strongly inhibits the creation of very
massive particles when this condition is attained . When the projectile energy is very high, such that
the conditions (7 .5 .3) are valid, than we can use (7 .3 .11) also for y-fr- and i--i- production . But
even in that case the cross sections will be smaller by a factor (m, J mm ) « i .e ., approximately 10- 4

for

	

production, and approximately 10 - ' for r }z_ production) in comparison with that for
ete- production.
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Figure 7 .8. The cross section 6e+~- for production of p+g (a) and r+i- (b) pairs in oxygen-
oxygen collisions as a function of the Lorentz faetor y . The solid lines corresponds to the eq . (7 .5 .9)
and the dashed ones to its asymptotic limit.

Lepton-pair production is suggested (see e .g . Do-83) as beeing a potentially efficient probe of
quark matter formed in RHI collisions. As we saw in this chapter, the electromagnetic production
of leptons is by no means negligible, and although the multiplicity (i .e . the number of pairs) in a
single collision is smaller or about one, the cross sections for it are very high and can be a source
of experimental difficulties in the signature of that aspect of the quark-gluon plasma formation.

As a final remark, 1et us compare the electromagnetic production of leptons in RHI collisions
with the corresponding process in relativistic electron colliders . For a detailed theoretical study of
that see Bu-75. In such machines, the y -values achieved are muck higher than in the heavy ion case,
therefore the cross sections are accurately enough given by eq . (7 .3 .11) . We have astonishingly large

e+e production cross sections in RHI collisions, due to the large charge factor Z?Z2, however,
heavy leptons pairs (ptg- , r + z- pairs) are practically not produced unless the beam energy is very

high (y» 16 for 1»-p.- , and y » 270 for a +rr pairs) . Also, the electromagnetic production, in the
two-photon mechanism, of quark-antiquark states (like the rk, which was recently studied with the
PLUTO detector at PETRA in high energy e+e collisions (Berg-86)), will be negligible unless the
beam energy is extremely Zarge (y.» 600 in case of rk production).
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iah Pair production with ato ic s ell capture
With the obtained large values of the cross sections for production of free electron-positron

pairs, it is also of interest to study those pair production processes where the electron is captured
in a bound atornic orbit in the projectile, or in the target . The first theoretical work on this subject
was carried out by Becker, Grün and Scheid (Be-87) . There they used a partial wave expansion of
the electron and the positron in terms exact Dirac-Coulomb wave functions, and calculated nu-
merically the probabilities and cross sections for the process in the first order semiclassical theory.
Bertulani and Baur (Ber-87b) have performed a different calculation to the same process by trying
to avoid the partial wave expansion and to obtain analytical formulas for the important cases . This
can be accomplished by using approximate wave functions for the final bound state of the electron
and for the free positron . We use the same approach as in chapter 7 on the production of free pairs
in the collisions of fast nuclei.

In figure 7 .9 (taken from Be-86c) a scheren of the Dirac spectrum, describes the two distinct
pair-production situations: (a) pair-production with K-shell capture and (b) production of free
pairs .

mc 2

1 ' 1 /2

0

- m C 2

Figure 7 .9. A perturbation of the vacuum leading . to (a) pair-creation with the capture of the
electron in the K-shell and (b) production of free electron-positron pairs.

We show that explicit analytical results can be found for the capture of the created electron in
a K-shell of the projectile, or in the target . The cross sections for the capture in higher atomic or-
bits, being of rauch less importance, are easily guessed . \Ve also show how the lirniting cases can
be obtained by using the equivalent photon method.

7.6.1 Pair production with K-shdi capture

In the previous sections we have shown that the probability amplitude to create an electron-
positron pair, with respective energies equal to s + , s_, in a RHI collision with y» 1 is given by
eq. (7 .1 .7) . .,If the electron is created in a K-shell orbit (see fig . 7 .9) then, instead of (7 .1 .2), we must
use .

co=c+ +m --IK ,

	

(7 .6 .1)

with Ix equal to the ionization energy of the K-shell electron (in the following we shall use IX = 0,
which is appropriate only for small Z nuclei).

For the positron wave function,'I r e + , we use the Sommerfeld-Maue function (7 .1 .8b), and for
the captured electron we use the bound K-shell wavefunction, valid for Z, e 2 « 1,

i
Ye = .V_ 1 + 2Z2 e2 x r

e-~r u
0 ,

	

(7 .6 .2a)
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where

and 1V = \/(Z2me2 ) 3 frr . (7.6 .2b)

0

The components uo+l12 and u,- l/ 2 of the spinor u0 correspond to the electron with spie up and
down, respectively (see Ak-65, eq . 31 .11).

Although, due to the use of these approximate wavefunctions, the following results may be
appropriate for RHI collisions for which one (or both) nuclei satisfy the condition Ze 2 « 1, we
expect that even for very heavy nuclei they will be useful, since the main ingredients are contained
in the calculations.

Inserting (7 .1 .8b) and (7.6 .2) in (7 .1 .7) we find

0
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1u0'2 =
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-112

	

1
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11[wV
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[ä G 1 a + (a . G 2a) x' + a "̀ (x . G3 )] 1v ,

	

(7 .6 .3)
2

where 1~ = 1,2 represents the two orthogonal components transverse to the beam. As in (7 .1 .10), the
tensors G,,, G2 , and G3,, are given by

	 2 , `3]
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J3 =	 i	 f e i r_ 1TVFd3r
2 E +

(7 .6 .4)

(7 .6 .5a)

(7 .6 .5b)

(7 .6.5c)

with

q= p'-k+ ,

	

(7 .6 .5d)

and

F2 F(-ia+, 1, ik+r+ik+ .r) .

	

(7 .6.5e)

The integrals (7 .6.5) are very similar to the ones involved in the photoelectric effect and can be
carried out analytically (see e .g . Ak-65, p . 435 and 436).

Since only values ofpr up to co/yv cc m will contribute to the integrals (7 .6 .4), we put p T = 0
in (7 .6 .5), which amounts to use q = (cof v) z - k: in them, where 2 is equal to a unit vector in the
beam direction . In this way, the integral in p T of (7.6 .4) can be done exactly in terms of the mod-
ified Bessel function of ferst order . As we have shown in last chapter, this approximation is good
for RHI collisions with impact parameters larger than the Compton wavelength of the electron, i .e .,

for b 1/m, which are the impact parameters which most contribute to the total cross sections.

Indeed, for b 1/m the probability amplitude for pair production tends to a constant value (see

the exact numerical calculations of Becker, Grün and Scheid Be-87), while . for b 1/m it decays
proportionally to 1/b 2 , up to a cutoff limit given by b

	

y/w. This has as a consequence that the

contribution of impact parameters b 1/m to the total cross sections increases logarithmically with
the RHI-beam energy, while the contribution from smaller impact parameters gives a constant and
Small quantity.

With these approximations the integrals (7 .6 .4) can be solved analytically and we obtain (we
choose b along the x-axis)

G12, G22, G32 = 0 ,

	

(7 .6 .6a)
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K1(~r`,'b)

	

(7 .6 .6d)

where K1 represents the modified Bessel function of first order, and 0+ and 8 + are, respectively,
the azimuthal and the polar angles of emission of the created positron with respect to the beam
direction.

The differential probability for pair production with K-shell capture is obtained from (7 .6 .3) as

kE
dPe + e = % aee J 2 + 3

	 dE + dQ .
(2r)

where the summation is taken over different spin orientations of the electron and the positron.
Using the properties of the Dirac matrices we find

~Ze2)2 ='

	

k
d1 e+ e = irWv

	

+

	

1 2	 	 (E	m) G, 1 1 2
(27r )3

+2G11 [k+ . (G2 1 - G3 1 )-- 2k+ .G21 ]

	

(7 .6 .8)

+ (E+ - m) [ 1 G211 221 1 2 + I G31 1 2 + 2 (2 G21 . G 31 G21 - G31) ] } dE +df2+

where kT (G,,) denotes the transverse component of k + (G,,).
Now we insert the expressions (7 .6 .6) in (7 .6 .8), putting v - c = 1 overall, and we find

dPK - 2 2z68	 1	 m 3
(e2

	

- 1) E+ (E+ + m)3 1 k+cos 8
E+

	

}

-(1+x+2cos2.95+)(x2- 1)3/2 cos 8+

	

2

where x = E+ /m, and a - e2 / hc ^ 1 / 137 is the fine structure constant.
The angular distribution for the direction of emission of the created positron may be expressed

in terms of the adimensional function

27 sin2 B
+

	

[24

	

2
+2x3 + (4(2+X)(C2 1)3J2 cos 0+

(7 .6 .10a)

which is obtained by integration of the angular part of eq . (7 .6.9) over the azimuthal angle 0 + .
When (e+ - m) « m, then
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(7 .6 .10b)

which means that low energetic positrons will be ernitted preferentially in the direction perpendic-
ular to the RHI-beam. For E + » m, the angular distribution is approximately

2 0 2

WK-- - 4n (E+

)a

	

sin

	

+
~+647r ( E+ )a (7 .6 .10c)e e m
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4 m

	

m[)2 +6 2 ]
+ cose+~

which implies that highly energetic positrons will be created with their momenta directed very

de

forwardly, up to a maximum angle ex T-__- m/E+ .

Integrating (7 .6 .9) over the angular distribution of the positrons we find

dPe+ e -_
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2wb

	

$Z~Z2~

	

7ra 3

	

2

	

1( ,

(7 .6 .11)

x

The modified Bessel function of first order has the property given by (7 .2 .6), which implies that
the pair production probability decays like I/b 2 for impact parameter b larger than the Compton
wavelength, i .e . for b > 1/m, until to a cutoff limit given by b y/co . Above this cutoff limit it
will deeay exponentially, which will guarantee the convergence of the cross section . Indeed, with
these simplifications the differential cross section can be easily obtained by using (7 .2 .7) . We can
write the result as
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where re = e 2 / mc2 = 2.817 . . . fm is the classical electron radius.
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For E + » m,
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(7 .6 .13)
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E + (7 .6.14)

In figure 7.10 we plot eq . (7.6.12), in units of r,2/m, as a function of e,/m, and for
Z1 = Z2 = 8 and y = 100. Also shown are the low (dashed line) and high (dotted line) positron
energy approximation. We observe that the spectrum is strongly supressed for E + fm 1, what is
due to the Coulomb repulsion in the field of the nucleus, which prevents creation of low energy
positrons . lt has a maxirnum around e + 2m, and decays like (7 .6 .14) after that . Since, as a
function of s .., the differential cross for production of free pairs decays proportionally to 1/s + , the
total cross section (integrated over E+ ) for pair production with capture, besides of an extra factor
(Z2x) 3, will iricrease more slowly as a function of y than that for production of free pairs.

+
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Figure 7 .10 . The differential cross section d o- ds+ in units of re l m, for Z 1 = Z2 = 8 (naked
oxygen ions), y - 100, and as a function of £+ / m. The dotted curve corresponds to the approxi-
mation (7 .6 .13) for low energy positrons . The dashed curve corresponds to the high energy ap-
proximation (7.6 .14).
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Figure 7 .11. The cross section for pair production with sirnultaneous capture of the
electron in the K-shell of one of the nucleus, in a RHI collision with Z 1 = Zz = 8 (naked oxygen
ions), and as a function of y.
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If we integrate numerically eq_ (7 .6A2) over the positron energy we obtain the solid curve as
shown in figure 7 .11, for Zt = ZZ 8 and as a function of y . Also shown (dashed line) in that figure
is the approxirnate expression

e e

	

310
	 Z1 Z2a6re e2rZzaln

	

lb	5

-1

	

2 ) - -
3

which can be obtained by setting k. = e, overall in (7 .6 .12) and integrating it from E } = 2m to 00

It will be a good approximation to the numerical i -ntegration of (7 .6 .12) for y ? 50.
The ratio of the total cross section for the production of free pairs (sec eq . 7 .3 .11) and that for

which the electron is captured in a K-shell atomic orbit (which give the biggest contribution, as
we shall see in the next section) is approximately given by

eapr

	

e°fies

	

20
(Z2x)3 [ In

()2

-

	

33g
C
	 e

	

?

	

(7 .6 .16)

ee

This means that, eompared to the production of free pairs, pair production with capture will be
more important for ions with !arger charges and for lower energies . For Z2 = 8 and y = 100, we
find 6-caprl rfree

	

10-4

7 .6.2 Contribution from higher orbits

In principle, it is possible to calculate the cross sections for capture of the eleetron to higher
atomic orbits in a way similar to the K-shell capture . I-Iowever, since the calculations become more
cumbersome and the contributions are much smaller than that for capture in the K-shell, we prefer
to use another method which is based an the previous works for the one-photon annihilation of
positrons with atomically bound electrons (Fe-33, Ni-34, Ak-65).

First we mention how some of the results of the previous section can be obtained with the
equivalent photon method . In this approach one needs the cross section for the photoproduction
process

(7 .6 .15)

y+Z2e++(Z2+e )K,L, ....

By time reversal, this process is related to the one-photon annihilation process

e + (Z2 + e )K,L, .. .

	

y + Z2 ,

(7 .6 .17)

(7 .6.18)

the theoretical cross sections for which are known since the thirties, like e .g . in the calculations of
Fermi and Uhlenbeck (Fe-33), Nishina, Tomonaga and Tamäki (Ni-34), and others (see e .g . Ak-65,
p . 463, and references therein) . In the extreme relativistic (E .R .), s_» m, and non-relativistic
(N.R.), e

	

m , cases we have (Ni-34)

1 N.R.
o-

	

= Sr Z 6 52
2

	

e
3m e2Ta" (7 .6.19)
m 1 E.R.
E{ e21Zrx 1

By means of the detailed balance theorem, these cross sections are related to the photoproduction
cross sections by

In the equivalent photon method it is assumed that the processes originated by the time-varying
electromagnectic field generated by a relativistic charge are the same as those caused by a plane wave
pulse of light containing n (w)ko photons per unit energy. In this way, the cross sections for any
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(7 .6 .20)
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electromagnetic process in RIII collisions can be related to that for the same process originated by
a real photon 6, by means of the expression (see chapter 1)

der

	

n ( W ) o-prod

	

(7 .6 .21)

In the case of pair production dco = de, and (see eq . 1 .11a)

n (w)

	

Zi
In (Y'n)

	

(7 .6 .22)

Now it is a simple matter to show that inserting (7 .6 .20)in (7 .6 .21) and using (7 .6 .22) we reproduce
the eqs . (7 .6 .13) and (7 .6 .14).

In ref. Ni-34 the one-photon annihilation of L-shell electrons and positrons was also considered.
It was found that the dominant contribution comes from the L I -subshell and that the cross section
is given by 1/8 of the K-shell cross section . This is related to a general scaling law, which also ap-
pears in the photo-electric effect (see e .g . Be-77, p . 303), given by

(Y ls
6ns

	

3 ,
n

(7.6 .23)

where the index ns devotes the spherically symmetric atomic subshells of order n. This relation
reflects the behaviour of the bound state wave functions in momentum space at large momenta.
Assurning that this behaviour is valid for contribution of all atomic shells, one would obtain an
increase of the total capture cross section (into s-orbits, which are the most important), as com-
pared to that for capture in the K-shell, by a factor

1 = ,Z(3)= 1 .202 ,

	

(7 .6 .27)

n=t n 3

where is the Riemann--function . This means that (7 .6.12) and (7.6 .15) should be multiplied by
(7 .6 .27) if we wart to have the contribution of all atomic orbits, what implies in a correction of
about 20% for the total cross section.

The capture process in RHI collisions could well be cnicial for future relativistic colliders : the
electron capture process changes the charge state of the circulating ions and leads to a beam-lass
in further tums (An-87) . In a 100 GeV/nucleon uranium collider with a luminosity of
10" cm- 2 s- i one can easily estimate the number of electron captures per second : this energy corre-
sponds to an equivalent laboratory energy of 20400 GeV/nucleon, i .e ., a value of y 2 x 104 .
From eq . (7 .3 .11) we find that the total cross section for the production of free pairs is approxi-
mately 60 kb. This means that approximately 10' pairs are produced per second . From eq.
(7 .6 .15) we find that approximately 10 $ electrons per second will be captured in atomic orbits of the
ions in the interaction region of the saure beam . As pointed out by Anholt and Gould (An-87) this
may Limit to an upper value the beam energy to be obtained in a RHI collider, or may even be used
to control the bearn luminosity by measuring the total amount of positrons created per unit time.
The capture cross section should also be put into relation with other characteristic cross sections.
For example, the nuclear geometric cross section is of order of one bare, i .e . they are a small frac-
tion of the atornic capture cross section.

In principle, it is also possible to produce heavy lepton pairs (see Mo-87), like and i-z -
with a capture of the negative lepton . But, due to the muck higher masses of these leptons, the
corresponding cross sections are Inueh smaller and expected to be of minor importance.

Also interesting in this context is the possibility of founzation of rz--atoms by means of the
strong interactions in RHI . For a experimental proposal in this direction see ref . HK-87.
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8.0 C d usi® s

Electromagnetic effects in relativistic nuclear collisions are very important and interesting . Since
the electromagnetic interaction is well known, reliable theoretical predictions are possible . This
makes, e .g ., the electron an ideal probe to investigate nuclear structure . Since there is only the
electromagnetic interaction between the electron and the target nucleus, a detailed study of
electromagnetic forrn-factors is possible, which aliows an extensive determination of nuclear tran-
sition densities . With nuclear scattering below the Coulomb barrier, it is possible to avoid the strong
nuclear interaction between them and obtain very interesting and useful information about nuclear
electroragnetic matrix-elements (transition matrix-elements, as well as static moments, Ilke
quadrupole moments of excited states) . Specially with heavy ions, it becomes possible to multiply
excite nuclear levels (e .g ., rotational bands).

We have presented a study of the electromagnetic effects (Coulomb excitation, particle pro-
duction, etc .) in relativistic heavy ion collisions_ The method of equivalent photons has proven
to be a very powerful and transparent tool to study these effects . lt allows a clear separation into
a purely kinematical aspect (equivalent photon numbers) and the cross sections for a process in-
duced by real photons . Since with an increasing value of the relativistic parameter y the hardness
of the equivalent photons is increased, many new possiblities open up : We have studied these new
possibilities in a way as simple as possible.

In the case of relativistic Coulomb excitation, a comparison between detailed calculations in the
semiciassical and in the plane wave Born approximation was useful in obtaining a new insight into
this subject . In both approaches it is possible to develop the interaction potential in terms of dif-
ferent multipolarities, which enables the study of the contribution of each multipolarity to a par-
ticular nuclear reaction . The PWBA cross section integrated over angles is shown to be equal to the
scrniclassical one integrated over impact parametets_ By factorizing the cross section integrated over
the excitation energy, we reach an expression for the number of equivalent photons for different
multipolarities and frequencies of the electromagnetic interaction . A comparison with the results
derived by other methods was useful to clarify some points in this matter.

Rather simple classical and quantal considerations show the importance of giant resonance
excitations in peripheral RFII collisions . The present experimental status can be compared to the-
oretical calculations using a sum rule approach to the nuclear states, and a completely satisfactory
agreernent is found. Fragmentation can also be of practieal importance, like, e .g ., the production
of new and interesting isotopes (like 1 9Ne) . In view of recently proposed detailed experimental
studies of extreme peripheral collisions, the possibility of multiphonon giant dipole oscillations is
discussed . Such a possibility docs not seem to exist in electron scattering due to the much smaller
charge as corpared to a heavy ion . Using a harmonic oscillator model, absolute values for total
cross sections can be obtained with simple forrnulas . The cross sections are found to be quite ap-
preciable . Whereas the cross sections for heavy projectile excitation are Iarger than those for light
projectile excitation, such as ' 60 or 32S, the separation amplitude of neutrons and protons will be
larger for lighter projectiles_ This could prove to be a means of producing new and exotic nuclei,
perhaps, e .g ., polyneutrons . We can also include - in a phenomenological way - the effects of
damping of the giant dipole collective motion in the theory . A theoretical study indicates quite
safely the possibility of excitation of such states with appreciable values for the cross sections . A
beautiful application of the theory of relativistic Coulomb excitation was illustrated by the exper-
iment for the n ° conversion in the field of a nucleus with lange charge . Besides of allowing a test
to the theory, it showed that the theory can be a basis for powerful studies of electromagnetic
properties of hadrons . In the special case of that experiment it was used to extract the lifetime of
the ° particle, which agreed with the theoretical values predicted by the SLi(3) theory for the
hadrons.

With increasing collision energy, pion production due to electromagnetic processes will become
important : it can be quantitatively calculated based an our knowledge of pion production in
photonuclear interactions . Bremsstrahlung, the elastic scattering of the equivalent photons an
charged particles, is relatively unimportant for the heavy ions, although interesting effects are also
to be observed in this field . Atomic ionization by means of relativistic projectiles is of large im-
portance, due to the enormous values for the ionization cross sections. Lepton pair production,
specially e°e- pairs, is also of great interest due to its large cross sections . We found tractable ana-

Conclusions

	

97



lytical results for the relevant kinematical situations in this process : there are slow pairs produced
around the sarget and the projectile (what we called ultra-fast paus) eharges, respectively, and
dominantly, an intermediate energy region . In addition, we saw that an analysis of the impact Pa-
rameter dependence of this process points directly to the limitation of First order perturbation theory
for extremely relativistic heavy ion collisions . The capture of the created electrons in an orbit of the
projectile will tend to reduce the beam luminosity due to the Charge change.

The central and peripheral collisions of relativistic heavy ions may be compared to the rase of
two potential lovers walking on the Same side of the street, but in opposite directions . If they do
not care, they can collide frontally, what could be not bad at all . lt may be a good opportunity for
the beginning of strong interactions between them. A third observer will easily notice this situation,
or the consequences of it . On the other hand, if they pass far from each other, they can still ex-
change glances (just electromagnetic interaction!), which can even lead to their excitation. But for
the observer this will not be so easily noticed. He raust be very interested in this situation to be able
to detect something. Ile can surprisingly discover that the effects of there peripheral collisions are
sometimes meire interesting than the violent frontal ones.
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9 .0 Appendix

9.1

	

- The relativistic c Wüaher-Alder fir etions
In this appendix we make a resume of the relativistic kinematic functions G,,,,,, introduced in

chapter 2, eq . (2 .1 .15), and ferst calculated by Winther and Alder (Wi-79).
The functions GG e m(x), where x = cfv, are given in terms of the Legendre polynomials

calculated for x > 1 . For m � 0 they are

G m (x) = i+m	 (i - m)! t!2 (x 2 - 1) h12
P (2 ? + 1)!!

	

(P + m)!

GMj,m(x) i e+m+t	 -'/16n	 (g'	 -	in)! 1/2 (x2 1) - 172 m P~ (x) ,
P(2?+ 1)!!

	

(7+m)!

GEe,

	

( - 1 )m GEem(x)

GMB, m(x ) = ( -1)m+l Gme,.,(x) .

In the non-relativistic limit, x= cjv» 1, we find from the above definitions

GEe
.
m(civ ) = i

t°+m	 'I16r	 (cf v) e'

2i+1 [(v
., +m)l(P--m)!]'t2

and

In the extreme relativistic limit, y » 1, we obtain

while

GEeo(civ)

	

g (t'+ 1)\/4r 1
=

	

(2 ? + 1)fl 1Y

	

and Gwo(c/v ) = 0 .

From the general expressions (A.1) we find the values of Gzem for f < 3 :



GMI I(x) - i 3 Nl8rt ,

	

G MI o(x) = 0 ;

	

(A .4b)

GE22(x) _ - x5 2 - 1 )1 6 ,

	

GE2I(x) = i 5 ,/n/6 (2x 2 - 1) , GE20(x ) = 5 x -I rt ( x2 - 1 ) ;

(A .4c)

G "rtit22( x ) = i 5

	

2
--- 1)/6 ,

	

Gm2I(x)= 5 x,,/ /6 ,

	

GM2o(x) = 0 ;

	

(A .4d)

GE33(x ) = 21
	 ,%rtf 5 x (x2 - 1),

	

GE32(x) = - i 21

	

2rr (x 2 - 1?115 (3x 2 - 1),

(A .4e)

GE3o(x) = i 10
2

5 ~rr 2

	

1) (5x 2 - 1).

To obtain the other components one can usc eqs . (A.lc) and (A .1d).

9.2 B The total cross sections in the PWBA and in the
se riclassical approximation

We shall prove that the P\'VBA and semiclassical total cross sections are the saure for the ine-
lastic electromagnetic collision of relativistic spin-zero particles with an atomic or a nuclcar system.
The proof was given by Bertulani and Baur (Bcr-85) and is similar to the one for the nonrelativistic
Base found in the textbook of Bethe and Jackiw (13e-68).

I sing the integral representation

ik r-r'~

	

f

	

p .(r-r')e	 1

	

e i	 d3p

	

(B.1)r-r

	

27[ 2

	

p 2 -k 2

we can write eq . (2 .3 .1) as

ZIe
JJd3pd3r'

1 (q- p ) .r
Tfi =	 2

	

F(p ) ,
2n

	

2

	

2p - k

where

q - (qx, qy, (iz) = ( q -, w/v),

F(p) = f d ar <f l

c2
ju(r) e i p " r i> .

Integrating over r' we obtain

Tfi = 4n Z i e	 2(9)2.

q -k

According to the relations (2 .4 .1) and (2 .4 .7) the total cross section is

GE31(x)= - 105
	 x v rt (15x 2 - 11),

(B.2)

(B.3)

(B.4)

(B.5)

Z i e
0- PWBA = 8rr - -

or
max

F (9) 2	

fo

	

[qr
2

+ (U31yv)2]2
g T dgT ,

sp,ns

(B.6)

(B.8)

where we used

q 2 - k2 = qT--- (w/yv)2 .

In the semiclassical calculations the excitation amplitude is given by

af i = 1
f

dt e
i a r c f ~ T ju(r) (13(r, t) I i>

i i

	

c
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where t(r, t) is the Lienard-Wiechart potential given by eq . (2 .1 .4) . We can also write it in the in-
tegral representation

i p . CR-R '(r)]
0(r, t)	

~2e j.

	 - d3p e

	

2

p

where

R = (x, y, yz) ,

	

R' = (bx , by , yvt) .

Inserting this in (B.8), the integral in t yields

tv b (PZ wJyv) ,

and therefore,

_	 Z 1 e	 F(P)	 rpra

	

af` ihv Jd2pf
	 e
per+ ((oh'v )

2

where

P'=(pT, w{v).

The total cross section is obtaincd by integrating the above squared expression over all possible
impact parameters :

J alt' 2 d2b
spinn

8~*
(	 Zle

f 2

	

J~	 IF(P' )1 2 	 	 d .,
hv /

	

2

	

2 2 pT p l

spinn ° [pr+ (w t ;v)

Comparing (B .6) and (B .13), we observe that the equality between the semiclassical and the PWBA
cross section is guaranteed if we are allowed to replace gjix by infinity in eq . (B.6), which is gen-
erally the case, as soon as the form factor F(q) is a rapidly decreasing function of q7_.

9.3 C Useful

	

y formulas
In the following we give some approximate formulas, useful for the fast calculation of a given

electromagnetic process in ultra-relativistic heavy ion collisions (i .e ., for y » 1 ) . For more details
see the corresponding chapters of this review.

Equivalent photon method
For one photon processes :

a=Jn(w)
o-y .N(w)

	

,da>

where

n(w)=
2 2

Z
P

a ha (	 wR
),

	

(C.2)

ö is the photo-nuclear cross section for photon energy hw, R = 1 .2 (A. 3 + Ay 3 ) is the sum of the
nuclear radii, and a is the fine-structure constant . The indices P and T denote the projectile and
the target parameters, respectively.

fror two-photon processes :

	

JI(x) o-yy(x) dx

	

(C.3)

where
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(B.9)

(B .10 )

(B.11)

(B.12)

(B.13)

(C.1)



	

1(x) =

3

16 (ZPZT
)2

1n3	
ync

	

(C.4)
\/xR p RT

rr., Y is the photon-photon cross section, and 4x is the square of the invariant mass of the 2y-system.

Excitation of giant dipole resonances in RHI collisions:
Direct electromagnetic excitation of GDR's an a nuclear target by means of RHI's:

2yA 3

a=27r. S1n! AY	 3
+j

where

S = 5 .45 x -410	 45	 ZT	 NT

	

2j3	 mb ,

T

Multiple electromagiietic excitation of GDR's an a nuclear target by means of RHI's:

es(N>1)	 nS	 	 S )

	

il'?(N--l)

	

R 2

Ionization of K-shell atomic electrons
2

6 = 9.8 r-,. (	
Tz)2

	 In
ZTa

	

(C.8)

where c = e 2 /mc2 is the classical electron radius.

Production of lepton-pairs

Production of e + e-pairs :

cr

278
	 (Zp

ZTa re)2

	

(4) .

	

(C.9)

Production of 12+ -- and of i + a--pairs :.
Here we have to distinguish between two cases : (a) if y» 16 for muon-pair production, or

y » 200 for tau-pair production, then we can use the the previous formula with re ( = or z)
in place of re , (b) if the Lorentz factor does not satisfy the above conditions, then we have the fo1-
lowing formula

(C.5)

(C.6)

(C.7)

6 =	
128
	(Zp Zp r')2 7 e'h

	

4

	

4 m . c R
e

` m~ c R
(C.10)

Electron-pair production with capture of the electron in an atomic K-shell orbit:

a
20
	 Zp Z 2-x 5 re 2

(2 )

	

(C.11)33 2 5

Production of a neutral resonance particle with mass m and positive charge conjugation parity

h 3 F

	

2 h
Q

	

1
3

8 (ZpZT 2 	 YY(2J+ 1) 1n3

	

r

m 3 c4	mc,JRpRT

where

	

is the branching ratio for yy-decay, and J the spie of the resonance .

(C.12)
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