

A learner’s approach to understand design patterns

via Python programming language

Rahul Verma
 Chetan Giridhar

Brought to you by: Testing Perspective – www.testingperspective.com

http://www.testingperspective.com/

Design Patterns in Python

2 www.testingperspective.com

Design Patterns in Python
Copyright © 2011 Rahul Verma, Chetan Giridhar

This book is released under Creative Commons Attribution-NonCommercial-

NoDerivs 3.0 License, which essentially means that

You are free:

 To share – to copy, distribute and transmit this work

Under the following conditions:

 Attribution — You must include a link to www.testingperspective.com along

with mentioning the author names – Rahul Verma and Chetan Girdhar.

 Noncommercial — You may not use this work for commercial purposes.

 No Derivative Works — You may not alter, transform, or build upon this

work. You can choose to collaborate with the authors for the next version of

this work.

Please check this link for further details:

http://creativecommons.org/licenses/by-nc-nd/3.0/

First published: Version 0.1 – February 2011

Published by Testing Perspective

www.testingperspective.com

Cover Image

Renjith Krishnan /FreeDigitalPhotos.net

http://www.freedigitalphotos.net/images/view_photog.php?photogid=721

http://www.testingperspective.com/
http://creativecommons.org/licenses/by-nc-nd/3.0/
http://www.testingperspective.com/
http://www.freedigitalphotos.net/images/view_photog.php?photogid=721

Design Patterns in Python

3 www.testingperspective.com

About the Authors
Rahul Verma

Rahul is a software tester by choice, with focus on technical aspects of the craft.

He has explored the areas of security testing, large scale performance engineering

and database migration projects. He has expertise in design of test automation

frameworks.

Rahul has presented at several conferences, organizations and academic

institutions. His articles have been published in various magazines and forums. He

runs the website Testing Perspective www.testingperspective.com which he has got

the Testing Thought Leadership Award. He is a member of the ISTQB Advanced

Level Technical Test Analyst and Foundation Level certification working parties.

You can reach him at rahul_verma@testingperspective.com

Chetan Giridhar

Chetan Giridhar has 5 years experience of working in software services industry,

service, product companies and research organization. He runs the website –

TechnoBeans technobeans.wordpress.com where he shares his knowledge w.r.t.

day-to-day usage of programming for testers.

Chetan has a strong background in C++, Java, Perl and Python. He has developed

tools and libraries for users and community developers that could be easily

downloaded from Chetan @ sourceforge. He has written on wide variety of subjects

in the field of security, code reviews and agile methodologies for testing magazines

including TestingExperience and AgileRecord. He has given lectures on Python

Programming at Indian Institute of Astrophysics.

You can reach him at cjgiridhar@gmail.com.

http://www.testingperspective.com/
mailto:rahul_verma@testingperspective.com
http://technobeans.wordpress.com/
https://sourceforge.net/users/cjgiridhar
mailto:cjgiridhar@gmail.com

Design Patterns in Python

4 www.testingperspective.com

Table of Contents

COPYRIGHT INFORMATION.. 2

ABOUT THE AUTHORS .. 3

FOREWARD ... 6

PREFACE .. 7

Why Write This Book ... 7

What is a design pattern? ... 7

Context of Design Patterns in Python .. 8

Design Pattern Classifications ... 8

Who This Book is For .. 8

What this book covers .. 8

Pre-Requisites .. 9

Online Version ... 9

Feedback .. 9

MODEL-VIEW-CONTROLLER PATTERN ... 10

Controller ... 11

Model ... 11

View ... 11

A Sample Python Implementation ... 12

Example Description ... 12

Database .. 12

Python Code ... 12

Explanation ... 14

COMMAND PATTERN ... 15

A Sample Python Implementation ... 16

Example description .. 16

Python Code ... 16

Design Patterns in Python

5 www.testingperspective.com

OBSERVER PATTERN ... 19

A Sample Python Implementation ... 20

Example Description ... 20

Python Code ... 20

FAÇADE PATTERN ... 23

A Sample Python Implementation ... 25

Example Description ... 25

Python Code ... 25

MEDIATOR PATTERN .. 27

A Sample Python Implementation ... 28

Example Description ... 28

Python Code ... 28

FACTORY PATTERN ... 32

A Sample Python Implementation ... 33

Example Description ... 33

Python Code ... 33

PROXY PATTERN ... 35

A Sample Python Implementation ... 36

Example Description ... 36

Python Code ... 36

REFERNCES AND FURTHER READING ... 38

Design Patterns in Python

6 www.testingperspective.com

Foreword
Vipul Kocher

Shri Ramkrishna Paramhans, one of the greatest mystics of this age and Guru

of Swami Vivekananda, used to narrate a story that went like this…

“There was a Ghost who was very lonely. It is said that when a person dies an

accidental death on Tuesday or Saturday becomes a Ghost. Whenever that Ghost

saw an accidental death he would rush there hoping he would find a friend.

However, every time he was disappointed because all of them went to respective

places without even one becoming a Ghost.”

While He said it referring to difficulty of finding people with spiritual bent of mind, I

take the liberty of using this story for my own interests.

I got drawn to Object Oriented Design world in 1996 despite my job role being that

of system tester. I started my career as a developer and that probably was the

reason or probably my love for abstract. Whatever be the reason, I got drawn to

the world of Grady Booch,Rumbaugh, Shlaer and Mellor, Coad and Yourdon etc.

Then Gang of Four happened. I got blown away by the book Design Patterns –

Elements of Reusable Object-Oriented Software. Since then I kept looking for

testers who shared same love as me for design patterns. Alas! None was to be

found. That is, until I met Rahul Verma and Chetan Giridhar.

I used to wonder when automation framework developers would start talking about

the framework as a designer/architect rather than just as a user. Will they ever

take automation project as a development project? Will they ever apply design

patterns to the automation framework?

In the present book I hope to see this dream of mine fulfilled. While the book aims

to talk of design patterns in Python, I hope to see the examples and explanations

from the point of view of a tester who wants to create a framework utilizing sound

architecture and design patterns.

Patterns have begun to occupy a large portion of my thought process for almost

two years now; the process having begun in 1999 with my first attempt at testing

patterns by the name Q-patterns or Questioning-Patterns. I sincerely hope to see

one piece of the pattern puzzle falling in place with this book.

I hope you enjoy the journey that this book promises to take you through. Vipul Kocher

Vipul Kocher

Co-President, PureTesting

http://www.belurmath.org/
http://en.wikipedia.org/wiki/Swami_Vivekananda
http://www.amazon.com/Grady-Booch/e/B000AP85A2/ref=ntt_athr_dp_pel_1
http://www.amazon.com/James-Rumbaugh/e/B001IQX8R2/ref=ntt_athr_dp_pel_2
http://www.amazon.com/Object-Oriented-Systems-Analysis-Modeling/dp/013629023X
http://www.amazon.com/Object-Oriented-Analysis-Yourdon-Computing/dp/0136299814
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.amazon.com/Design-Patterns-Elements-Reusable-Object-Oriented/dp/0201633612
http://www.google.co.in/url?sa=t&source=web&cd=4&sqi=2&ved=0CDAQFjAD&url=http%3A%2F%2Fwww.puretesting.com%2Farticles%2FQPatternsV2.3sm.ppt&ei=3uUzTZe1EMerrAfl5KjjCA&usg=AFQjCNGXQ9k1qFHW4DTvzFNZVlTDb330YA&sig2=LeB-e04hVPRcCHhLXTwdzA
http://www.puretesting.com/

Design Patterns in Python

7 www.testingperspective.com

Preface
“Testers are poor coders.” – We here that more often than one would think. There

is a prominent shade of truth in this statement as testers mostly code to ―get the

work done‖, at times using scripting languages which are vendor specific, just

tweaking a recorded script. The quality of code written is rarely a concern and most

of the times, the time and effort needed to do good coding is not allocated to test

automation efforts.

The above scenario changes drastically when one needs to develop one‘s own

testing framework, extend an existing one or contribute new code to an existing

one. To retain the generic property of the framework and to build scalable

frameworks, testers need to develop better coding skills.

Why Write This Book

We, the authors of this book, are testers. We are in no way experts in the matter of

design patterns or Python. We are learners. We like object oriented programming.

We like Python language. We want to be better coders. We have attempted to write

this book in very simple language, picking up simple examples to demonstrate a

given pattern and being as precise as possible. This is done to provide a text so

that the concept of design patterns can reach to those who are not used to formal

programming practices. We hope that this would encourage other testers to pick up

this subject in the interest better design of test automation.

What is a design pattern?

As per Wikipedia:

A design pattern in architecture and computer science is a formal way of

documenting a solution to a design problem in a particular field of expertise. The

idea was introduced by the architect Christopher Alexander in the field of

architecture and has been adapted for various other disciplines, including computer

science. An organized collection of design patterns that relate to a particular field is

called a pattern language.

In the object oriented world, design patterns tell us how, in the context of a certain

problem, we should structure the classes and objects. They do not translate directly

into the solution; rather have to be adapted to suit the problem context.

With knowledge of design patterns, you can talk in ―pattern language‖, because a

lot of known design patterns have been documented. In discussions, one could ask,

http://en.wikipedia.org/wiki/Design_patterns

Design Patterns in Python

8 www.testingperspective.com

―Shouldn't we use <design-pattern> for this implementation?‖ without talking

about how classes would be implemented and how objects would be created. It is

similar to asking a tester to do Boundary Value Analysis (even BVA should do!),

rather than triggering a long talk on the subject.

Design patterns should not be confused with frameworks and libraries. Design

patterns are not implementations, though implementations might choose to use

them.

Context of Design Patterns in Python

Python is a ground-up object oriented language which enables one to do object

oriented programming in a very easy manner. While designing solutions in Python,

especially the ones that are more than use-and-throw scripts which are popular in

the scripting world, they can be very handy. Python is a rapid application

development and prototyping language. So, design patterns can be a very powerful

tool in the hands of a Python programmer.

Design Pattern Classifications

 Creational Patterns - They describe how best an object can be created.

A simple example of such design pattern is a singleton class where only a

single instance of a class can be created. This design pattern can be

used in situations when we cannot have more than one instances of

logger logging application messages in a file.

 Structural Patterns – They describe how objects and classes can work

together to achieve larger results. A classic example of this would be the

façade pattern where a class acts as a façade in front of complex classes

and objects to present a simple interface to the client.

 Behavioral Patterns – They talk about interaction between objects.

Mediator design pattern, where an object of mediator class, mediates the

interaction of objects of different classes to get the desired process

working, is a classical example of behavioral pattern.

Who This Book is For

If you are a beginner to learning Python or design patterns, this book can prove to

be a very easy-to-understand introductory text.

If you are a tester, in addition to the above this book would also be helpful in

learning contexts in which design patterns can be used in the test automation

world.

What this book covers

Design Patterns in Python

9 www.testingperspective.com

This is an initial version of the book covering the following 7 design patterns:

 DP#1 – Model-View-Controller Pattern

 DP#2 – Command Pattern

 DP#3 – Observer Pattern

 DP#4 – Facade Pattern

 DP#5 – Mediator Pattern

 DP#6 - Factory Pattern

 DP#7 - Proxy Pattern

Because the current number of design patterns is a handful, we have not

categorized them based on classifications mentioned earlier.

By the time we publish next version of this book with a target of 20 patterns, the

content would be organized into classification-wise grouping of chapters.

Pre-Requisites

 Basic Knowledge of Object-Oriented Programming

 Basic Knowledge of Python (see How Would Pareto Learn Python by Rahul

Verma to get started)

Online Version

An online version of the book is available on Testing Perspective website at the

following link:

http://dpip.testingperspective.com/

This version is a more updated version of this ebook at any given point of time in

terms of corrections and updated content. We plan to release updated version of

this offline PDF version at regular intervals to keep up with the updated content in

online version.

Feedback

There would be mistakes. Some of them would be directly visible and some of them

could be more subtle. Please write back to us so that we can correct the same.

You can use the contact form at Testing Perspective website to do so or write to us

at feedback@testingperspective.com.

http://hwplpython.testingperspective.com/
http://hwplpython.testingperspective.com/
http://dpip.testingperspective.com/
mailto:feedback@testingperspective.com

Design Patterns in Python

10 www.testingperspective.com

DP#1

The Model-View-Controller Pattern

Introduction

As per Wikipedia:

“Model–View–Controller (MVC) is a software

architecture, currently considered an architectural

pattern used in software engineering. The pattern

isolates “domain logic” (the application logic for the

user) from input and presentation (GUI), permitting

independent development, testing and maintenance of

each.”

In MVC Design Pattern, the application is divided into

three interacting categories known as the Model, the

View and the Controller. The pattern aims at

separating out the inputs to the application (the

Controller part), the business processing logic (the

Model part) and the output format logic (the View

part).

In simple words:

 Controller associates the user input to a Model and a View

 Model fetches the data to be presented from persistent storage

http://www.wikipedia.org/

Design Patterns in Python

11 www.testingperspective.com

 View deals with how the fetched data is presented to the user

Let‘s talk about all these components in detail:

Controller

Controller can be considered as a middle man between user and processing (Model)

& formatting (View) logic. It is an entry point for all the user requests or inputs to

the application. The controller accepts the user inputs, parses them and decides

which type of Model and View should be invoked. Accordingly, it invokes the chosen

Model and then the chosen View to provide to the user what he/she/it requested.

Model

Model represents the business processing logic of the application. This component

would be an encapsulated version of the application logic. Model is also responsible

for working with the databases and performing operations like Insertion, Update

and Deletion. Every model is meant to provide a certain kind of data to the

controller, when invoked. Further, a single model can return different variants of

the same kind of data based on which method of the Model gets called. What

exactly gets returned to the controller, could be controlled by passing arguments to

a given method of the model.

View

View, also referred as presentation layer, is responsible for displaying the results

obtained by the controller from the model component in a way that user wants

http://www.testingperspective.com/wiki/lib/exe/fetch.php?cache=cache&media=http://www.testingperspective.com/images/mvc.png

Design Patterns in Python

12 www.testingperspective.com

them to see or a pre-determined format. The format in which the data can be

visible to users can be of any ‗type‘ like HTML or XML. It is responsibility of the

controller to choose a view to display data to the user. Type of view could be

chosen based on the model chosen, user configuration etc.

A Sample Python Implementation

Example Description

Let‘s consider a case of a test management system that queries for a list of defects.

Here are two typical scenarios that work with any test management system.

 If the user queries for a particular defect, the test management system displays

the summary of the defect to the user in a prescribed format.

 If the user searches for a component it shows list of all defects logged against

that component.

Database

Let‘s consider a SQLite DB with the name ‗TMS‘ and a table defects.

TMS.[defects]

ID Component Summary

1 XYZ File doesn‘t get deleted

2 XYZ Registry doesn‘t get created

3 ABC Wrong title gets displayed

Download the SQLite Database file here: tms.rar

Python Code

Filename: mvc.py

import sqlite3

import types

class DefectModel:

 def getDefectList(self, component):

 query = '''select ID from defects where Component = '%s' ''' %component

 defectlist = self._dbselect(query)

 list = []

 for row in defectlist:

 list.append(row[0])

http://www.testingperspective.com/wiki/lib/exe/fetch.php/collaboration/chetan/designpatternsinpython/tms.rar?id=collaboration%3Achetan%3Adesignpatternsinpython%3Amvc&cache=cache

Design Patterns in Python

13 www.testingperspective.com

 return list

 def getSummary(self, id):

 query = '''select summary from defects where ID = '%d' ''' % id

 summary = self._dbselect(query)

 for row in summary:

 return row[0]

 def _dbselect(self, query):

 connection = sqlite3.connect('TMS')

 cursorObj = connection.cursor()

 results = cursorObj.execute(query)

 connection.commit()

 cursorObj.close()

 return results

class DefectView:

 def summary(self, summary, defectid):

 print "#### Defect Summary for defect# %d####\n%s" % (defectid,summary)

 def defectList(self, list, category):

 print "#### Defect List for %s ####\n" % category

 for defect in list:

 print defect

class Controller:

 def __init__(self):

 pass

 def getDefectSummary(self, defectid):

 model = DefectModel()

 view = DefectView()

 summary_data = model.getSummary(defectid)

 return view.summary(summary_data, defectid)

 def getDefectList(self, component):

 model = DefectModel()

 view = DefectView()

 defectlist_data = model.getDefectList(component)

 return view.defectList(defectlist_data, component)

Python Code for User

import mvc

controller = mvc.Controller()

Displaying Summary for defect id # 2

Design Patterns in Python

14 www.testingperspective.com

print controller.getDefectSummary(2)

Displaying defect list for 'ABC' Component

print controller.getDefectList('ABC')

Explanation

1. Controller would first get the query from the user. It would know that the query

is for viewing defects. Accordingly it would choose DefectModel.

2. If the query is for a particular defect, Controller calls getSummary() method of

DefectModel, passing the defect id as the argument, for returning the summary

of the defect. Then the Controller calls summary() method of DefectView and

displays the response to the user.

3. If the user query consists of a component name, , Controller calls

getDefectList() method of DefectModel, passing the component name as the

argument, for returning the defect list for the given component. Then the

Controller calls defectList() method of DefectView and displays the response to

the user.

Design Patterns in Python

15 www.testingperspective.com

DP#2

Command Pattern

Introduction

As per Wikipedia:

“In object-oriented programming, the command

pattern is a design pattern in which an object is used

to represent and encapsulate all the information

needed to call a method at a later time. This

information includes the method name, the object that

owns the method and values for the method

parameters.

Command pattern is one of the design patterns that are categorized under

‗Observer‘ design pattern. In command pattern the object is encapsulated in the

form of a command, i.e., the object contains all the information that is useful to

invoke a method anytime user needs. To give an example, let say we have a user

interface where in the background of the interface would turn into RED if the button

on the user interface named ‗RED‖ is clicked. Now the user is unaware what classes

or methods the interface would call to make the background turn RED, but the

command user sends (by clicking on ‗RED‘ button) would ensure the background is

turned RED. Thus command pattern gives the client (or the user) to use the

interface without the information of the actual actions being performed, without

affecting the client program.

The key to implementing this pattern is that the Invoker object should be kept

away from specifics of what exactly happens when its methods are executed. This

way, the same Invoker object can be used to send commands to objects with

similar interfaces.

http://www.wikipedia.org/

Design Patterns in Python

16 www.testingperspective.com

Command Pattern is associated with three components, the client, the invoker, and

the receiver. Let‘s take a look at all the three components.

 Client: the Client represents the one that instantiates the encapsulated object.

 Invoker: the invoker is responsible for deciding when the method is to be

invoked or called.

 Receiver: the receiver is that part of the code that contains the instructions to

execute when a corresponding command is given.

A Sample Python Implementation

For demonstrating this pattern, we are going to do a python implementation of an

example present on Wikipedia in C++/Java/C#.

Example description

 It's the implementation of a switch

 It could be used to switch on/off

 It should't be hard-coded to switch on/off a particular thing (a lamp or an

engine)

Python Code

class Switch:

 """ The INVOKER class"""

 def __init__(self, flipUpCmd, flipDownCmd):

 self.__flipUpCommand = flipUpCmd

http://en.wikipedia.org/wiki/Command_pattern
http://www.testingperspective.com/wiki/lib/exe/fetch.php?cache=cache&media=http://www.testingperspective.com/images/commandpattern.png

Design Patterns in Python

17 www.testingperspective.com

 self.__flipDownCommand = flipDownCmd

 def flipUp(self):

 self.__flipUpCommand.execute()

 def flipDown(self):

 self.__flipDownCommand.execute()

class Light:

 """The RECEIVER Class"""

 def turnOn(self):

 print "The light is on"

 def turnOff(self):

 print "The light is off"

class Command:

 """The Command Abstract class"""

 def __init__(self):

 pass

 #Make changes

 def execute(self):

 #OVERRIDE

 pass

class FlipUpCommand(Command):

 """The Command class for turning on the light"""

 def __init__(self,light):

 self.__light = light

 def execute(self):

 self.__light.turnOn()

class FlipDownCommand(Command):

 """The Command class for turning off the light"""

 def __init__(self,light):

 Command.__init__(self)

 self.__light = light

 def execute(self):

 self.__light.turnOff()

class LightSwitch:

 """ The Client Class"""

Design Patterns in Python

18 www.testingperspective.com

 def __init__(self):

 self.__lamp = Light()

 self.__switchUp = FlipUpCommand(self.__lamp)

 self.__switchDown = FlipDownCommand(self.__lamp)

 self.__switch = Switch(self.__switchUp,self.__switchDown)

 def switch(self,cmd):

 cmd = cmd.strip().upper()

 try:

 if cmd == "ON":

 self.__switch.flipUp()

 elif cmd == "OFF":

 self.__switch.flipDown()

 else:

 print "Argument \"ON\" or \"OFF\" is required."

 except Exception, msg:

 print "Exception occured: %s" % msg

Execute if this file is run as a script and not imported as a module

if __name__ == "__main__":

 lightSwitch = LightSwitch()

 print "Switch ON test."

 lightSwitch.switch("ON")

 print "Switch OFF test"

 lightSwitch.switch("OFF")

 print "Invalid Command test"

 lightSwitch.switch("****")

Design Patterns in Python

19 www.testingperspective.com

DP#3

Observer Pattern

Introduction

As per Wikipedia:

“The observer pattern (a subset of the

publish/subscribe pattern) is a software design pattern

in which an object, called the subject, maintains a list

of its dependants, called observers, and notifies them

automatically of any state changes, usually by calling

one of their methods. It is mainly used to implement

distributed event handling systems.”

Typically in the Observer Pattern, we would have:

1. Publisher class that would contain methods for:

 Registering other objects which would like to receive notifications

 Notifying any changes that occur in the main object to the registered objects

(via registered object's method)

 Unregistering objects that do not want to receive any further notifications

2. Subscriber Class that would contain:

 A method that is used by the Publisher Class, to notify the objects registered

with it, of any change that occurs.

3. An event that triggers a state change that leads the Publisher to call its

notification method

http://www.wikipedia.org/

Design Patterns in Python

20 www.testingperspective.com

To summarize, Subscriber objects can register and unregister with the Publisher

object. So whenever an event, that drives the Publisher's notification method,

occurs, the Publisher notifies the Subscriber objects. The notifications would only be

passed to the objects that are registered with the Subject at the time of occurrence

of the event.

A Sample Python Implementation

Example Description

Let's take the example of a TechForum on which technical posts are published by

different users. The users might subscribe to receive notifications when any of the

other users publishes a new post. To see this in the light of objects, we could have

a ‗TechForum‘ object and we can have another list of objects called ‗User‘ objects

that are registered to the ‗TechForum‘ object, that can observe for any new posts

on the ‗TechForum‘. Along with the new post notification, the title of the post is

sent.

A similar analogy could be drawn in terms of a Job Agency and Job

Seekers/Employers. This could be an extension where Employers and Job Seekers

subscribe to two different kinds of notification via a common subject (Job Agency).

Job Seekers would be looking for relevant job notifications and employers would be

looking for new job seeker registration fitting a job profile.

Python Code

class Publisher:

 def __init__(self):

 #MAke it uninheritable

 pass

 def register(self):

 #OVERRIDE

 pass

 def unregister(self):

 #OVERRIDE

 pass

 def notifyAll(self):

 #OVERRIDE

 pass

class TechForum(Publisher):

 def __init__(self):

 self._listOfUsers = []

 self.postname = None

Design Patterns in Python

21 www.testingperspective.com

 def register(self, userObj):

 if userObj not in self._listOfUsers:

 self._listOfUsers.append(userObj)

 def unregister(self, userObj):

 self._listOfUsers.remove(userObj)

 def notifyAll(self):

 for objects in self._listOfUsers:

 objects.notify(self.postname)

 def writeNewPost(self, postname):

 # User writes a post.

 self.postname = postname

 # When submits the post is published and notification is sent to all

 self.notifyAll()

class Subscriber:

 def __init__(self):

 #make it uninheritable

 pass

 def notify(self):

 #OVERRIDE

 pass

class User1(Subscriber):

 def notify(self,postname):

 print 'User1 notfied of a new post %s' % postname

class User2(Subscriber):

 def notify(self, postname):

 print 'User2 notfied of a new post %s' % postname

class SisterSites(Subscriber):

 def __init__(self):

 self._sisterWebsites = ["Site1","Site2","Site3"]

 def notify(self, postname):

 for site in self._sisterWebsites:

 # Send updates by any means

 print "Sent nofication to site: %s" % site

if __name__ == "__main__":

 techForum = TechForum()

 user1 = User1()

 user2 = User2()

Design Patterns in Python

22 www.testingperspective.com

 sites = SisterSites()

 techForum.register(user1)

 techForum.register(user2)

 techForum.register(sites)

 techForum.writeNewPost("Observer Pattern in Python")

 techForum.unregister(user2)

 techForum.writeNewPost("MVC Pattern in Python")

Design Patterns in Python

23 www.testingperspective.com

DP#4

Facade Pattern

Introduction

facade(n): the face or front of a building

As per Wikipedia:

“The facade pattern is a software engineering design

pattern commonly used with Object-oriented

programming. (The name is by analogy to an

architectural facade.). A facade is an object that

provides a simplified interface to a larger body of code,

such as a class library.”

Façade pattern falls under the hood of Structural Design Patterns. Façade is nothing

but an interface that hides the inside details and complexities of a system and

provides a simplified ―front end‖ to the client. With façade pattern, client can work

with the interface easily and get the job done without being worried of the complex

operations being done by the system.

An important point to understand about the Facade pattern is that it provides a

simplified interface to a part of the system, thereby providing ease-of-use for a

sub-set of the functionality rather than complete functionality. Beauty of this is that

the underlying classes are still available to the client if the client wants additional

features/greater control and customization that are not provided in the current

context of Facade pattern implementation.

Because of the above reason, Facade pattern is not about ―encapsulating‖ the sub-

system, rather about providing a simplified interface for a chosen functionality

http://www.wikipedia.org/

Design Patterns in Python

24 www.testingperspective.com

The pattern can be better explained with a block diagram (based on Facade pattern

example from Wikipedia.)

1. In this block diagram, we have three classes representing the CPU, the Memory

and the HardDrive of a computer. CPU Class has methods called as jump() and

execute(). Memory Class has a method load() and HardDrive Class has read()

method.

2. We have a Facade, the Class Computer, that is exposed to the Client with the

help of the start() method.

3. When the Client intends to start the Computer System, it calls the start()

method of Class Computer by calling Computer.start().

Let's see what actually happens behind the scenes!

In start(), CPU, Memory and HardDrive classes are instantiated. Then the load()

method of Class Memory is called where it gets the BOOT_ADDRESS and calls the

read() method of HardDrive Class from it gets the BOOT_SECTOR and

SECTOR_SIZE of the HardDrive. start() then calls the jump() method of CPU Class

with the BOOT_ADDRESS and then calls the execute() method.

Thus the client is not aware of the complex operations happening in the background

when the computer is started. It only has a facade exposed to it from where it

could start the computer easily without bothering about the inner details or

complexities.

http://en.wikipedia.org/wiki/Facade_pattern#Examples
http://en.wikipedia.org/wiki/Facade_pattern#Examples
http://www.testingperspective.com/wiki/lib/exe/detail.php/collaboration/chetan/designpatternsinpython/facadepattern_rahulverma_chetangiridhar_designpatternsinpython.png?id=collaboration:chetan:designpatternsinpython:facadepattern&cache=cache

Design Patterns in Python

25 www.testingperspective.com

As discussed earlier, in this implementation, only thing achieved via Facade is

―starting‖ the computer. There could be other finer operations in

CPU/Memory/HardDrive classes, which could be achieved by the client only by

directly calling their methods.

A Sample Python Implementation

Example Description

Let‘s consider the case of a Test Automation Framework. Tests that need to be run

for a particular build are written in the form of classes namely, ‗TC1, TC2…TCn‘.

Each of these classes contains a method called ‗run()‘ that gets called to execute

the test.

We provide a Facade - TestRunner - on top these Test classes as a simplified

interface to execute all tests. In this manner, the client, doesn't need to bother

about how many tests really exist and how to execute them. The ‗TestRunner‘ class

has a method named ‗runAll‘ that is responsible for running all the tests that are

registered with it.

Now when the user of the automation framework intends to run the tests for a

build, as a client, s/he needs to create an object of ‗TestRunner‘ class and call the

‗runAll‘ method. 'runAll' method would inturn create objects of all the Test Classes

and call their 'run' method., thereby executing all tests.

Python Code

#Complex Parts

import time

class TC1:

 def run(self):

 print "###### In Test 1 ######"

 time.sleep(1)

 print "Setting up"

 time.sleep(1)

 print "Running test"

 time.sleep(1)

 print "Tearing down"

 time.sleep(1)

 print "Test Finished\n"

class TC2:

 def run(self):

 print "###### In Test 2 ######"

 time.sleep(1)

 print "Setting up"

 time.sleep(1)

Design Patterns in Python

26 www.testingperspective.com

 print "Running test"

 time.sleep(1)

 print "Tearing down"

 time.sleep(1)

 print "Test Finished\n"

class TC3:

 def run(self):

 print "###### In Test 3 ######"

 time.sleep(1)

 print "Setting up"

 time.sleep(1)

 print "Running test"

 time.sleep(1)

 print "Tearing down"

 time.sleep(1)

 print "Test Finished\n"

#Facade

class TestRunner:

 def __init__(self):

 self.tc1 = TC1()

 self.tc2 = TC2()

 self.tc3 = TC3()

 def runAll(self):

 self.tc1.run()

 self.tc2.run()

 self.tc3.run()

#Client

if __name__ == '__main__':

 testrunner = TestRunner()

 testrunner.runAll()

Design Patterns in Python

27 www.testingperspective.com

DP#5

Mediator Pattern

Introduction

As per Wikipedia:

“ The mediator pattern provides a unified interface to a set of

interfaces in a subsystem. This pattern is considered to be a

behavioral pattern due to the way it can alter the program's

running behavior..”

Typically, mediator pattern is used in cases where many classes start

communicating amongst each other to produce result. When the software starts

getting developed, more user requests get added and in turn more functionality

need to be coded. This results in increased interaction with in the existing classes

and in addition of new classes to address new functionality. With the increasing

complexity of the system, interaction between classes becomes tedious to handle

and maintaining the code becomes difficult.

Mediator pattern comes in as a solution to this problem by allowing loose-coupling

between the classes, also called as Colleagues in the Mediator Design Pattern. The

idea is that there would be one Mediator class that is aware of the functionality of

all the classes in the system. The classes are aware of their functionality and

interact with the Mediator class. Whenever there is a need of interaction between

the classes, a class sends information to the Mediator and it is the responsibility of

the Mediator to pass this information to the required class. Thus the complexity

occurring because of interaction between the classes gets reduced.

http://www.wikipedia.org/

Design Patterns in Python

28 www.testingperspective.com

A Sample Python Implementation

Example Description

A typical example of Mediator Pattern can be manifested in a test automation

framework which consists of four classes namely, TC (TestCategory), TestManager,

Reporter and DB(Database).

1. Class TC is responsible for running the tests with the help of setup(), execute()

and tearDown() methods.

2. Class Reporter calls its prepare() method while the test category starts getting

executed and calls its report() method when the test category finishes its

execution. This helps in text based reporting of the tests that are run by the

framework.

3. Class DB stores the execution status of the test category by first calling the

insert() method while the test category is in setup(), and then calls the update()

method once the test category has finished execution. In this way, at any given

point of time, the test execution status is available for framework user to query

from the database.

4. TestManager Class is the one that co-ordinates for test category execution

(Class TC) and fetching the reports (Class Reporter) and getting the test

execution status in database (Class DB) with the help of prepareReporting() and

publishReport() methods.

5. Methods setTM(), setTC(), setReporter() and setDB() are used so that the

classes could register with each other and can communicate easily.

Building the analogy with the Mediator pattern, the TestManager class is a Mediator

between Class TC, Class Reporter and Class DB, the Colleagues in the system.

Let's have a look at a sample python code which would make the concept more

clear.

Python Code

import time

class TC:

 def __init__(self):

 self._tm = tm

 self._bProblem = 0

 def setup(self):

 print "Setting up the Test"

Design Patterns in Python

29 www.testingperspective.com

 time.sleep(1)

 self._tm.prepareReporting()

 def execute(self):

 if not self._bProblem:

 print "Executing the test"

 time.sleep(1)

 else:

 print "Problem in setup. Test not executed."

 def tearDown(self):

 if not self._bProblem:

 print "Tearing down"

 time.sleep(1)

 self._tm.publishReport()

 else:

 print "Test not executed. No tear down required."

 def setTM(self,TM):

 self._tm = tm

 def setProblem(self, value):

 self._bProblem = value

class Reporter:

 def __init__(self):

 self._tm = None

 def prepare(self):

 print "Reporter Class is preparing to report the results"

 time.sleep(1)

 def report(self):

 print "Reporting the results of Test"

 time.sleep(1)

 def setTM(self,TM):

 self._tm = tm

class DB:

 def __init__(self):

 self._tm = None

 def insert(self):

 print "Inserting the execution begin status in the Database"

 time.sleep(1)

Design Patterns in Python

30 www.testingperspective.com

 #Following code is to simulate a communication from DB to TC

 import random

 if random.randrange(1,4) == 3:

 return -1

 def update(self):

 print "Updating the test results in Database"

 time.sleep(1)

 def setTM(self,TM):

 self._tm = tm

class TestManager:

 def __init__(self):

 self._reporter = None

 self._db = None

 self._tc = None

 def prepareReporting(self):

 rvalue = self._db.insert()

 if rvalue == -1:

 self._tc.setProblem(1)

 self._reporter.prepare()

 def setReporter(self, reporter):

 self._reporter = reporter

 def setDB(self, db):

 self._db = db

 def publishReport(self):

 self._db.update()

 rvalue = self._reporter.report()

 def setTC(self,tc):

 self._tc = tc

if __name__ == '__main__':

 reporter = Reporter()

 db = DB()

 tm = TestManager()

 tm.setReporter(reporter)

 tm.setDB(db)

 reporter.setTM(tm)

 db.setTM(tm)

Design Patterns in Python

31 www.testingperspective.com

 # For simplification we are looping on the same test.

 # Practically, it could be about various unique test classes and their objects

 while (1):

 tc = TC()

 tc.setTM(tm)

 tm.setTC(tc)

 tc.setup()

 tc.execute()

 tc.tearDown()

 In the above Python Code, the user of the framework first creates instances of

Class Reporter, Class DB and Class TestManager and registers these classes with

each other with the help of setReporter(), setDB() and setTM() methods.

 When the test category starts execution, the TestManager Class and the TC

Class register with each other. TC Class first calls the setup() method which in

turn requests the TestManager Class (the Mediator) to be prepared for reporting

of the test execution results using the prepareReporting() method.

 prepareReporting() method of the TestManager, the Mediator Class,

communicates with the other Colleagues (Class Reporter and Class DB) in the

system by calling the prepare() and insert() methods.

 execute() method of Class TC is responsible for running the tests.

 When the test execution is getting finished, tearDown() method of Class TC is

called, which in turn calls the publishReport() method of the Mediator (Class

TestManager) which communicates with the Colleagues (Class Reporter and

Class DB) for preparing the report and getting the execution status in the

database (by calling the prepare() and update() methods respectively).

 Also, during insert(), if communication between Class TC (Colleague) and Class

TestManager (Mediator) fails, the next step in test execution is conveyed of this

failure.

By this example, it can be understood that the communication between Colleagues

in the system (Class TC, Class Reporter and Class DB) can easily be achieved by

the Mediator (Class TestManager) and the possibility of the complexity that could

arise as a result of communication between Colleagues without the Mediator is

avoided. This example also demonstrates the capability of a two way interaction

between the Colleague and the Mediator with the help of communication failure

case between Class TC and Class TestManager.

Design Patterns in Python

32 www.testingperspective.com

DP#6

Factory Pattern

Introduction

As per Wikipedia:

“The factory pattern is a creational design pattern used in

software development to encapsulate the processes involved in

the creation of objects.”

Factory pattern involves creating a super class which provides an abstract interface

to create objects of a particular type, but instead of taking a decision on which

objects get created it defers this creation decision to its subclasses. To support this

there is a creation class hierarchy for the objects which the factory class attempts

create and return.

Factory pattern is used in cases when based on a ―type‖ got as an input at run-

time, the corresponding object has to be created. In such situations, implementing

code based on Factory pattern can result in scalable and maintainable code i.e. to

add a new type, one need not modify existing classes; it involves just addition of

new subclasses that correspond to this new type.

In short, use Factory pattern when:

 A class does not know what kind of object it must create on a user‘s request

 You want to build an extensible association between this creater class and

classes corresponding to objects that it is supposed to create.

An example would be a better way to understand the above context.

http://www.wikipedia.org/

Design Patterns in Python

33 www.testingperspective.com

A Sample Python Implementation

Example Description

Let us consider an example to demonstrate the usage of factory pattern (based

on Example of Factory pattern in Java from allapplabs.com.)

1. We have a base class called Person that has methods for getting the name and

the gender and has two sub-classes namely Male and Female that print the

salutation message and a Factory Class.

2. Factory Class has a method named 'getPerson' that takes two arguments 'name'

and 'gender' of a person.

3. The Client instantiates the Factory Class and calls the getPerson method with

name and gender as arguments.

During run-time, based on the gender, that is passed by the Client, the Factory

creates an object of the class pertaining to that gender. Hence the Factory Class at

run-time decides which object it needs to create.

Python Code

class Person:

 def __init__(self):

 self.name = None

 self.gender = None

 def getName(self):

 return self.name

 def getGender(self):

 return self.gender

class Male(Person):

 def __init__(self, name):

 print "Hello Mr." + name

class Female(Person):

 def __init__(self, name):

 print "Hello Miss." + name

class Factory:

 def getPerson(self, name, gender):

 if gender == 'M':

 return Male(name)

 if gender == 'F':

 return Female(name)

http://www.allapplabs.com/java_design_patterns/factory_pattern.htm

Design Patterns in Python

34 www.testingperspective.com

if __name__ == '__main__':

 factory = Factory()

 person = factory.getPerson("Chetan", "M")

Design Patterns in Python

35 www.testingperspective.com

DP#7

Proxy Pattern

Introduction

As per Wikipedia:

“A proxy, in its most general form, is a class functioning

as an interface to something else. The proxy could

interface to anything: a network connection, a large

object in memory, a file, or some other resource that is

expensive or impossible to duplicate. A well-known

example of the proxy pattern is a reference counting

pointer object. ”

Proxy Pattern is an example of Structural Design Patterns. It is also referred to as

―Surrogate‖ pattern as the intention of this pattern is to create a surrogate for the

real object/class.

Proxy pattern has three essential elements:

 Real Subject (that performs the business objectives, represented by Proxy).

 Proxy Class (that acts as an interface to user requests and shields the real

Subject)

 Client (that makes the requests for getting the job done).

This design pattern is typically used in situations when:

1. Creation of object for a Real Subject Class is costly in terms of resources and a

simple object creation by Proxy Class can be a cheaper option.

http://www.wikipedia.org/

Design Patterns in Python

36 www.testingperspective.com

2. A need arises that an object must be protected from direct use by its clients.

3. There is a need that an object creation for the Real Subject Class can be delayed

to a point when it is actually required.

Some of the real world examples as described by allapplabs and userpages of a

Proxy Pattern are:

 Website where the Cache Proxy can cache certain set of frequently requested

web pages to cater to clients requests. This helps in avoiding many requests

getting hit on the server and improves performance.

 The message box which gives the status of a file copy operation giving the

progress in terms of percentage completion.

 Opening a large file in a word processor leads to a message saying ―Please wait

while the software opens the document…‖

A Sample Python Implementation

Example Description

Based on the example from Prof. Kiran, let us consider a case of a regular office

situation where, in order to speak to a Sales Manager of a company, the Client

makes a call first to the receptionist of the sales manager office and then the

Receptionist passes the call to the manager. In this case, Sales Manager would be

the Subject to whom the Client wants to speak to and the Receptionist would be the

Proxy that shields the Subject from talking directly to the Clients.

Expanding this example, we could consider 'Sales Manager' as the Real Subject and

create a common Subject Class referred to as 'Managers' from which 'Sales

Manager' and the 'Receptionist' can be derived.

Python Code

import time

class Manager(object):

 def work(self):

 pass

 def talk(self):

 pass

class SalesManager(Manager):

 def work(self):

 print "Sales Manager working..."

http://www.allapplabs.com/java_design_patterns/proxy_pattern.htm
http://userpages.umbc.edu/~tarr/dp/lectures/Proxy-2pp.pdf
http://www.cse.iitk.ac.in/users/vkirankr/Design%20Patterns%20lecture.ppt

Design Patterns in Python

37 www.testingperspective.com

 def talk(self):

 print "Sales Manager ready to talk"

class Proxy(Manager):

 def __init__(self):

 self.busy = 'No'

 self.sales = None

 def work (self):

 print "Proxy checking for Sales Manager availability"

 if self.busy == 'Yes':

 self.sales = SalesManager()

 time.sleep(2);

 self.sales.talk()

 else:

 time.sleep(2);

 print "Sales Manager is busy"

if '__name__' == '__main__':

 p = Proxy()

 p.work()

In the above code snippet, the Client has to speak to the Sales Manager. In order

to do that it first communicates to the Proxy Class. Proxy, which is the Receptionist

in this case, will check if the Subject (in this case the Sales Manager) is busy or

not. Depending on the busy status it either passes the call to the Sales Manager or

says the Sales Manager is busy. This way the Subject's object creation is delayed

until it's actually required and moreover the Subject is shielded from direct usage

by the Client.

Design Patterns in Python

38 www.testingperspective.com

References and Further Reading

 Design Patterns – Elements of Resuable Object-Oriented Software –

the GoF book (Pearson Publication)

Erich Gamma, Richard Helm, Ralph Johnson and John Vlissides

 Head First Design Patterns – Oreilly Publication

Eric Freeman and Elisabeth Freeman with Kathey Sierra and Bert Bates

 Automated Software Testing – Addison-Wesley

Elfriede Dustin, Jeff Rashka and John Paul

 Wikipedia – www.wikipedia.org

 Design Patterns in Python - Alex Martelli (aleax@google.com)

http://www.aleax.it/gdd_pydp.pdf

 Java Design patterns

www.allapplabs.com

 Design Patterns in Python Vespe Savikko

http://www.python.org/workshops/1997-10/proceedings/savikko.html

 Object-Oriented Programming in Python
Michael H Goldwasser (Author), David Letscher (Author)

 Dr Kiran – IIT Kanpur

http://www.cse.iitk.ac.in/users/vkirankr/Design%20Patterns%20lecture.ppt

http://www.wikipedia.org/
mailto:aleax@google.com
http://www.aleax.it/gdd_pydp.pdf
http://www.allapplabs.com/
http://www.python.org/workshops/1997-10/proceedings/savikko.html
http://www.amazon.com/Michael-H-Goldwasser/e/B003O2E08O/ref=ntt_athr_dp_pel_1
http://www.amazon.com/s/ref=ntt_athr_dp_sr_2?_encoding=UTF8&sort=relevancerank&search-alias=books&field-author=David%20Letscher
http://www.cse.iitk.ac.in/users/vkirankr/Design%20Patterns%20lecture.ppt

