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Abstract—There has recently been a great deal of interest in the
development of algorithms that objectively measure the integrity
of video signals. Since video signals are being delivered tohuman
end users in an increasingly wide array of applications and
products, it is important that automatic methods of video quality
assessment (VQA) be available that can assist in controlling
the quality of video being delivered to this critical audience.
Naturally, the quality of motion representation in videos plays
an important role in the perception of video quality, yet existing
VQA algorithms make little direct use of motion information ,
thus limiting their effectiveness. We seek to ameliorate this
by developing a general, spatio-spectrally localized multiscale
framework for evaluating dynamic video fidelity that integr ates
both spatial and temporal (and spatio-temporal) aspects of
distortion assessment. Video quality is evaluated not onlyin space
and time, but also in space-time, by evaluating motion quality
along computed motion trajectories. Using this framework,we
develop a full reference VQA algorithm for which we coin
the term the MOtion-based Video Integrity Evaluation index,
or MOVIE index. It is found that the MOVIE index delivers
VQA scores that correlate quite closely with human subjective
judgment, using the Video Quality Expert Group (VQEG) FRTV
Phase 1 database as a test bed. Indeed, the MOVIE index is found
to be quite competitive with, and even outperform, algorithms
developed and submitted to the VQEG FRTV Phase 1 study, as
well as more recent VQA algorithms tested on this database.

I. I NTRODUCTION

D IGITAL videos are increasingly finding their way into the
day-to-day lives of people due to the rapid proliferation

of networked video applications such as video on demand,
digital television, video teleconferencing, streaming video over
the Internet, video over wireless, consumer video appliances
and so on. Quality control of videos from the capture device
to the ultimate human user in these applications is essential in
maintaining Quality of Service (QoS) requirements and meth-
ods to evaluate the perceptual quality of digital videos form
a critical component of video processing and communication
systems.

Humans can, almost instantaneously, judge the quality of an
image or video that they are viewing, using prior knowledge
and expectations derived from viewing millions of time-
varying images on a daily basis. The right way to assess
quality, then, is to ask humans for their opinion of the quality
of an image or video, which is known as subjective assessment
of quality. Indeed, subjective judgment of quality must be
regarded as the ultimate standard of performance by which
image quality assessment (IQA) or video quality assessment
(VQA) algorithms are assessed. Subjective quality is measured
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by asking a human subject to indicate the quality of an image
or video that they are viewing on a numerical or qualitative
scale. To account for human variability and to assert statis-
tical confidence, multiple subjects are required to view each
image/video, and a Mean Opinion Score (MOS) is computed.
While subjective methods are the only completely reliable
method of VQA, subjective studies are cumbersome and
expensive. For example, statistical significance of the MOS
must be guaranteed by using sufficiently large sample sizes;
subject naivety must be imposed; the dataset of images/videos
must be carefully calibrated; and so on [1], [2]. Subjective
VQA is impractical for nearly every application other than
benchmarking automatic or objective VQA algorithms.

To develop generic VQA algorithms that work across a
range of distortion types, full reference algorithms assume
the availability of a “perfect” reference video, while eachtest
video is assumed to be a distorted version of this reference.

We survey the existing literature on full reference VQA in
Section II. The discussion there will highlight the fact that
although current full reference VQA algorithms incorporate
features for measuring spatial distortions in video signals, very
little effort has been spent on directly measuring temporal
distortions or motion artifacts. As described in Section II,
several algorithms utilize rudimentary temporal information by
differencing adjacent frames or by processing the video using
simple temporal filters before feature computation. However,
most existing VQA algorithms do not attempt to directly com-
pute motion information in video signals to predict quality;
notable exceptions include [3], [4], [5], [6], [7]. [3] is not a
generic VQA algorithm and targets video coding applications,
where models of visual motion sensors developed in [8] are
utilized to perform computations that signal the directionof
motion. In [4], [5], [6], motion information is only used to de-
sign weights to pool localspatial quality indices into a single
quality score for the video. TetraVQM appeared subsequent
to early submissions of this work [9] and computes motion
compensated errors between the reference and distorted videos
[7].

Yet, motion plays a very important role in human perception
of moving image sequences [10]. Considerable resources in the
human visual system (HVS) are devoted to motion perception.
The HVS can accurately judge the velocity and direction of
motion of objects in a scene, skills that are essential to survival.
Humans are capable of making smooth pursuit eye movements
to track moving objects. Visual attention is known to be drawn
to movement in the periphery of vision, which makes humans
and other organisms aware of approaching danger [10], [11].
Additionally, motion provides important clues about the shape
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of three dimensional objects and aids in object identification.
All these properties of human vision demonstrate the important
role that motion plays in perception, and the success of VQA
algorithms depends on their ability to model and account for
motion perception in the HVS.

While video signals do suffer from spatial distortions, they
are often degraded by severetemporalartifacts such as ghost-
ing, motion compensation mismatch, jitter, smearing, mosquito
noise (amongst numerous other types), as described in detail in
Section III. It is imperative that video quality indices account
for the deleterious perceptual influence of these artifacts, if
objective evaluation of video quality is to accurately predict
subjective judgment. Most existing VQA algorithms are able
to capture spatial distortions that occur in video sequences
(such as those described in Section III-A), but don’t do an
adequate job in capturing temporal distortions (such as those
described in Section III-B).

We seek to address this by developing a general framework
for achieving spatio-spectrally localized multiscale evaluation
of dynamic video quality. In this framework, both spatial and
temporal (and spatio-temporal) aspects of distortion assess-
ment are accounted for. Video quality is evaluated not only in
space and time, but also in space-time, by evaluating motion
quality along computed motion trajectories.

Using this framework, we develop a full reference VQA
algorithm which we call the MOtion-based Video Integrity
Evaluation index, or MOVIE index. MOVIE integrates explicit
motion information into the VQA process by tracking per-
ceptually relevant distortions along motion trajectories, thus
augmenting the measurement of spatial artifacts in videos.
Our approach to VQA represents an evolution, as we have
sought to develop principles for VQA that were inspired by
the structural similarity and information theoretic approaches
to IQA proposed in [12], [13], [14], [15]. The Structural
SIMilarity (SSIM) index and the Visual Information Fidelity
(VIF) criterion are successful still image quality indicesthat
correlate exceedingly well with perceptual image quality as
demonstrated in extensive psychometric studies [16]. Indeed,
our early approaches were extensions of these algorithms,
called Video SSIM and Video Information Fidelity Criterion
(IFC) [9], [17], where, roughly speaking, quality indices were
computed along the motion trajectories.

Our current approach, culminating in the MOVIE index,
represents a significant step forward from our earlier work,as
we develop a general framework for measuring both spatial
and temporal video distortions over multiple scales, and along
motion trajectories, while accounting for spatial and temporal
perceptual masking effects. As we show in the sequel, the
performance of this approach is highly competitive with algo-
rithms developed and submitted to the VQEG FRTV Phase 1
study, as well as more recent VQA algorithms tested on this
database.

We review the existing literature on VQA in Section II.
To supply some understanding of the challenging context
of VQA, we describe commonly occurring distortions in
digital video sequences in Section III. The development of
the MOVIE index is detailed in Section IV. We explain the
relationship between the MOVIE model and motion perception

in biological vision systems in Section V. We also describe
the relationship between MOVIE and the SSIM and VIF still
image quality models in that section. The performance of
MOVIE is presented in Section VI, using the publicly available
Video Quality Expert Group (VQEG) FRTV Phase 1 database.
We conclude the paper in Section VII with a discussion of
future work.

II. BACKGROUND

Mathematically simple error indices such as the Mean
Squared Error (MSE) are often used to evaluate video quality,
mostly due to their simplicity. It is well known that the
MSE does not correlate well with visual quality, which is the
reason why research into full reference VQA techniques has
been intensely studied [18]; see [19] for a review of VQA.
Several types of weighted MSE and Peak Signal to Noise
Ratio (PSNR) have also been proposed by researchers; see,
for example, [20], [21], [22].

A substantial amount of the research into IQA and VQA
has focused on using models of the HVS to develop quality
indices, which we broadly classify as HVS-based indices. The
basic idea behind these approaches is that the best way to
predict the quality of an image or video, in the absence of
any knowledge of the distortion process, is to attempt to “see”
the image using a system similar to the HVS. Typical HVS-
based indices use linear transforms separably in the spatial
and temporal dimensions to decompose the reference and test
videos into multiple channels, in an attempt to model the
tuning properties of neurons in the front-end of the eye-brain
system. Contrast masking, contrast sensitivity and luminance
masking models are then used to obtain thresholds of visibility
for each channel. The error between the test and reference
video in each channel is then normalized by the corresponding
threshold to obtain the errors in Just Noticeable Difference
(JND) units. The errors from different channels at each pixel
are then combined, using the Minkowski error norm or other
pooling strategies, to obtain a space-varying map that predicts
the probability that a human observer will be able to detect
any difference between the two images.

Examples of HVS-based image quality indices include [23],
[24], [25], [26], [27]; see [28] for a review. It is believed that
two kinds of temporal mechanisms exist in the early stages of
processing in the HVS, one lowpass and one bandpass, known
as the sustained and transient mechanisms [29], [30]. Most
HVS-based video quality indices have been derived from still
image quality indices by the addition of a temporal filtering
block to model these mechanisms. Popular HVS-based video
quality indices such as the Moving Pictures Quality Metric
(MPQM) [31], Perceptual Distortion Metric (PDM) [32] and
the Sarnoff JND vision model [24] filter the videos using one
bandpass and one lowpass filter along the temporal dimension.
Other methods such as the Digital Video Quality (DVQ) metric
[33] and the scalable wavelet based video distortion index
in [34] utilize a single low pass filter along the temporal
dimension. A VQA algorithm that estimates spatiotemporal
distortions through a temporal analysis of spatial perceptual
distortion maps was presented in [6].
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One of the visual processing tasks performed by the HVS
is the computation of speed and direction of motion of objects
using the series of time-varying images captured by the retina.
All the indices mentioned above use either one or two temporal
channels and model the temporal tuning of only the neurons
in early stages of the visual pathway such as the retina, lateral
geniculate nucleus (LGN) and Area V1 of the cortex. This
is the first stage of motion processing that occurs in primate
vision systems, the outputs of which are used in latter stages
of motion processing that occur in Area MT/V5 of the extra-
striate cortex [35]. Visual area MT is believed to play a role
in integrating local motion information into a global percept
of motion, guidance of some eye movements, segmentation
and structure computation in 3-dimensional space [36]. Models
of processing in MT is hence essential in VQA due to the
critical role of these functions in the perception of videosby
human observers. The response properties of neurons in Area
MT/V5 are well studied in primates and detailed models of
motion sensing have been proposed [37], [38], [39]. To our
knowledge, no VQA index has attempted to incorporate these
models to account for visual processing of motion in Area
MT.

More recently, there has been a shift toward VQA tech-
niques that attempt to characterize features that the human
eye associates with loss of quality; for example, blur, block-
ing artifacts, fidelity of edge and texture information, color
information, contrast and luminance of patches and so on.
Part of the reason for this shift in paradigm has been the
complexity and incompleteness of models of the HVS. A more
important reason, perhaps, is the fact that HVS based models
typically model threshold psychophysics, i.e., the sensitivity
of the HVS to different features are measured at the threshold
of perception [40], [41], [10]. However, while detection of
distortions is important in some applications, VQA deals
with supra-threshold perception, where artifacts in the video
sequences are visible and algorithms attempt to quantify the
annoyance levelsof these distortions. Popular VQA algorithms
that embody this approach include the Video Quality Metric
(VQM) from NTIA [42], the SSIM index for video [4], [5],
Perceptual Video Quality Measure (PVQM) [43] and other
algorithms from industry [44], [45], [46], [47], [48]. However,
these models also predominantly capture spatial distortions in
the video sequence and fail to do an adequate job in capturing
temporal distortions in video. VQM considers 3D spatio-
temporal blocks of video in computing some features, and
the only temporal component of the VQM method involves
frame differences [42]. The extensions of the SSIM index for
video compute localspatialSSIM indices at each frame of the
video sequence and use motion information only as weights
to combine these local quality measurements into one single
quality score for the entire video [4], [5]. TetraVQM is a
VQA algorithm that appeared subsequent to early submissions
of this work, that utilizes motion estimation within a VQA
framework, where motion compensated errors are computed
between the reference and distorted images [7].

There is a need for improvement in the performance
of objective quality indices for video. Most of the indices
proposed in the literature have been simple extensions of

quality indices for images. Biological vision systems devote
considerable resources to motion processing. Presentations of
video sequences to human subjects induce visual experiences
of motion and the perceived distortion in video sequences is
a combination of both spatial and motion artifacts. We argue
that accurate representation of motion in video sequences,as
well as of temporal distortions, have great potential to advance
video quality prediction. We present such an approach to VQA
in this paper.

III. D ISTORTIONS INDIGITAL V IDEO

In this section, we discuss the kinds of distortions that
are commonly observed in video sequences [49]. Distortions
in digital video inevitably exhibit both spatial and temporal
aspects. Even a process such as blur from a lens has a
temporal aspect, since the blurred regions of the video tend
to move around from frame to frame. Nevertheless, there
are distortions that are primarily spatial, which we shall call
“spatial distortions”.

Likewise, there are certain distortions that are primarily
temporal in that they arise purely from the occurrence of
motion, although such distortions may affect individual frames
of the video as well. We will refer to these as “temporal
distortions”.

A. Spatial Distortions

Examples of commonly occurring spatial distortions in
video include blocking, ringing, mosaic patterns, false con-
touring, blur and noise [49].Blocking effectsresult from block
based compression techniques used in several Discrete Cosine
Transform (DCT) based compressions systems including Mo-
tion Picture Experts Group (MPEG) systems such as MPEG-
1, MPEG-2, MPEG-4 and H.263, H.264. Blocking appears
as periodic discontinuities in each frame of the compressed
video at block boundaries.Ringing distortionsare visible
around edges or contours in frames and appear as a rippling
effect moving outward from the edge toward the background.
Ringing artifacts are visible in non-block based compression
systems such as Motion JPEG-2000 as well.Mosaic Patterns
are visible in block based coding systems and manifest as a
mismatch between the contents of adjacent blocks as a result
of coarse quantization.False contouringoccurs in smoothly
textured regions of a frame containing gradual degradationof
pixel values over a given area. Inadequate quantization levels
result in step-like gradations having no physical correlate in
the reconstructed frame.Blur is a loss of high frequency
information and detail in video frames. This can occur due to
compression, or as a by-product of image acquisition.Additive
Noise manifests itself as a grainy texture in video frames.
Additive noise arises due to video acquisition and by passage
through certain video communication channels.

B. Temporal Distortions

Examples of commonly occurring temporal artifacts in
video include motion compensation mismatch, mosquito noise,
stationary area fluctuations, ghosting, jerkiness and smear-
ing [49]. Motion compensation mismatchoccurs due to the
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assumption that all constituents of a macro-block undergo
identical motion, which might not be true. This is most evident
around the boundaries of moving objects and appears as
the presence of objects and spatial characteristics that are
uncorrelated with the depicted scene.Mosquito effectis a
temporal artifact seen primarily as fluctuations in light levels in
smooth regions of the video surrounding high contrast edgesor
moving objects.Stationary area fluctuationsclosely resemble
the mosquito effect in appearance, but are usually visible in
textured stationary areas of a scene.Ghostingappears as a
blurred remnant trailing behind fast moving objects in video
sequences. This is a result of deliberate lowpass filtering of the
video along the temporal dimension to remove additive noise
that may be present in the source.Jerkinessresults from delays
during the transmission of video over a network where the
receiver does not possess enough buffering ability to cope with
the delays.Smearingis an artifact associated with the non-
instantaneous exposure time of the acquisition device, where
light from multiple points of the moving object at different
instants of time are integrated into the recording.

It is important to observe that temporal artifacts such
as motion compensation mismatch, jitter and ghosting alter
the movement trajectories of pixels in the video sequence.
Artifacts such as mosquito noise and stationary area fluctua-
tions introduce a false perception of movement arising from
temporal frequencies created in the test video that were not
present in the reference. The perceptual annoyance of these
distortions is closely tied to the process of motion perception
and motion segmentation that occurs in the human brain while
viewing the distorted video.

IV. M OTION TUNED SPATIO-TEMPORAL FRAMEWORK

FOR V IDEO QUALITY ASSESSMENT

In our framework for VQA, separate components for spatial
and temporal quality are defined. First, the reference and test
videos are decomposed into spatio-temporal bandpass chan-
nels using a Gabor filter family. Spatial quality measurement is
accomplished by a method loosely inspired by the SSIM index
and the information theoretic methods for IQA [13], [15], [14].
Temporal quality is measured using motion information from
the reference video sequence. Finally, the spatial and temporal
quality scores are pooled to obtain an overall video integrity
score known as the MOVIE index [50]. Figure 1 shows a block
diagram of the MOVIE index and each stage of processing in
MOVIE is detailed in the following.

A. Linear Decomposition

Frequency domain approaches are well suited to the study of
human perception of video signals and form the backbone of
most IQA and VQA systems. Neurons in the visual cortex and
the extra-striate cortex are spatial frequency and orientation
selective and simple cells in the visual cortex are known to
act more or less as linear filters [51], [52], [53]. In addition,
a large number of neurons in the striate cortex, as well as
Area MT which is devoted to movement perception, are known
to be directionally selective; i.e., neurons respond best to a
stimulus moving in a particular direction. Thus, both spatial
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MOVIE map
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Fig. 1. Block diagram of MOVIE index. Flow of the reference video through
the MOVIE VQA system is color coded in red, while flow of the test video is
shown in blue. Both reference and test videos undergo lineardecomposition
using a Gabor filter family. Spatial and temporal quality is estimated using
the Gabor coefficients from the reference and test videos. Temporal quality
computation additionally uses reference motion information, computed using
the reference Gabor coefficients. Spatial and temporal quality indices are then
combined to produce the overall MOVIE index.

characteristics and movement information in a video sequence
are captured by a linear spatio-temporal decomposition.

In our framework for VQA, a video sequence is filtered
spatio-temporally using a family of bandpass Gabor filters
and video integrity is evaluated on the resulting bandpass
channels in the spatio-temporal frequency domain. Evidence
indicates that the receptive field profiles of simple cells inthe
mammalian visual cortex are well modeled by Gabor filters
[52]. The Gabor filters that we use in the algorithm we develop
later are separable in the spatial and temporal coordinates
and several studies have shown that neuronal responses in
Area V1 are approximately separable [54], [55], [56]. Gabor
filters attain the theoretical lower bound on uncertainty in
the frequency and spatial variables and thus, visual neurons
approximately optimize this uncertainty [52]. In our context,
the use of Gabor basis functions guarantees that video features
extracted for VQA purposes will be optimally localized.

Further, the responses of several spatio-temporally separable
responses can be combined to encode the local speed and
direction of motion of the video sequence [57], [58]. Spatio-
temporal Gabor filters have been used in several models of the
response of motion selective neurons in the visual cortex [57],
[59], [39]. In our implementation of the ideas described here,
we utilize the algorithm described in [60] that uses the outputs
of a Gabor filter family to estimate motion. Thus, the same
set of Gabor filtered outputs is used for motion estimation and
for quality computation.

A Gabor filterh(i) in three dimensions is the product of a
Gaussian window and a complex exponential:

h(i) =
1

(2π)
3

2 |Σ|
1

2

exp

(

− iT Σ−1i

2

)

exp
(

jUo
T i

)

(1)

where i = (x, y, t) is a vector denoting a spatio-temporal
location in the video sequence andU0 = (U0, V0, W0) is the
center frequency of the Gabor filter.Σ is the covariance matrix
of the Gaussian component of the Gabor filter. The Fourier
transform of the Gabor filter is a Gaussian with covariance
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matrix Σ−1:

H(u) = exp

(

− (u− U0)T Σ(u − U0)

2

)

(2)

Here, u = (u, v, w) denotes the spatio-temporal frequency
coordinates.

Our implementation uses separable Gabor filters that have
equal standard deviations along both spatial frequency coor-
dinates and the temporal coordinate. Thus,Σ is a diagonal
matrix with equal valued entries along the diagonal. Our filter
design is very similar to the filters used in [60]. However,
our filters have narrower bandwidth and are multi-scale as
described below.

All the filters in our Gabor filter bank have constant octave
bandwidths. We useP = 3 scales of filters, with35 filters at
each scale. Figure 2(a) shows iso-surface contours of the sine
phase component of the filters tuned to the finest scale in the
resulting filter bank in the frequency domain. The filters at
coarser scales would appear as concentric spheres inside the
sphere depicted in Fig. 2(a). We used filters with rotational
symmetry and the spatial spread of the Gabor filters is the
same along all axes. The filters have an octave bandwidth of
0.5 octaves, measured at one standard deviation of the Gabor
frequency response. The center frequencies of the finest scale
of filters lie on the surface of a sphere in the frequency domain,
whose radius is0.7π radians per sample. Each of these filters
has a standard deviation of2.65 pixels along both spatial
coordinates and2.65 frames along the temporal axis. In our
implementation, the Gabor filters were sampled out to a width
of three standard deviations; so the support of the kernels at
the finest scale are 15 pixels and 15 frames along the spatial
and temporal axes respectively. The center frequencies of the
filters at the coarsest scale lie on the surface of a sphere of
radius0.35π, have a standard deviation of5.30 pixels (frames)
and a support of33 pixels (frames).

Nine filters are tuned to a temporal frequency of 0 radians
per sample corresponding to no motion. The orientations of
these filters are chosen such that adjacent filters intersectat
one standard deviation; hence the orientations of these filters
are chosen to be multiples of20◦ in the range[0◦, 180◦).
Seventeen filters are tuned to horizontal or vertical speedsof
s = 1/

√
3 pixels per frame and the temporal center frequency

of each of these filters is given byρ∗ s√
s2+1

radians per sample,
whereρ is the radius of the sphere that the filters lie on [60].
Again, the orientations are chosen such that adjacent filters
intersect at one standard deviation and the orientations ofthese
filters are multiples of22◦ in the range[0◦, 360◦). The last
nine filters are tuned to horizontal or vertical velocities of

√
3

pixels per frame. The orientations of these filters are multiples
of 40◦ in the range[0◦, 360◦).

Figure 2(b) shows a slice of the sine phase component of
the Gabor filters along the plane of zero temporal frequency
(w = 0) and shows the three scales of filters with constant
octave bandwidths. Figure 2(c) shows a slice of the sine phase
component of the Gabor filters along the plane of zero vertical
spatial frequency. Filters along the three radial lines aretuned
to the three different speeds of(0, 1√

3
,
√

3) pixels per frame.

Finally, a Gaussian filter is included at the center of the
Gabor structure to capture the low frequencies in the signal.
The standard deviation of the Gaussian filter is chosen so that it
intersects the coarsest scale of bandpass filters at one standard
deviation.

B. Spatial MOVIE Index

Our approach to capturing spatial distortions in the video
of the kind described in Section III-A is inspired both by the
SSIM index and the information theoretic indices that have
been developed for IQA [13], [61], [14]. However, we will
be using the outputs of thespatio-temporalGabor filters to
accomplish this. Hence, the model described here primarily
captures spatial distortions in the video and at the same time,
responds to temporal distortions in a limited fashion. We will
hence term this part of our model the “Spatial MOVIE Index”,
taking this to mean that the model primarily captures spatial
distortions. We explain how the Spatial MOVIE index relates
to and improves upon prior approaches in Section V.

Let r(i) andd(i) denote the reference and distorted videos
respectively, wherei = (x, y, t) is a vector denoting a spatio-
temporal location in the video sequence. The reference and
distorted videos are passed through the Gabor filterbank to
obtain bandpass filtered videos. Denote the Gabor filtered
reference video byf̃(i, k) and the Gabor filtered distorted
video by g̃(i, k), wherek = 1, 2, . . . , K indexes the filters
in the Gabor filterbank. Specifically, letk = 1, 2, . . . K

P

correspond to the finest scale,k = K
P

+ 1, . . . , 2K
P

the second
finest scale and so on.

All quality computations begin locally, using local windows
B of coefficients extracted from each of the Gabor sub-
bands, where the windowB spansN pixels. Consider a pixel
locationi0. Let f(k) be a vector of dimensionN , wheref(k)
is composed of thecomplex magnitudeof N elements of
f̃(i, k) spanned by the windowB centered oni0. The Gabor
coefficientsf̃(i, k) are complex, but the vectorsf(k) are real
and denote the Gabor channel amplitude response. Notice that
we have just dropped the dependence on the spatio-temporal
locationi for notational convenience by considering a specific
location i0. If the window B is specified by a set of relative
indices, thenf(k) = {f̃(i0+m, k),m ∈ B}. Similar definition
applies forg(k). To index each element off(k), we use the
notationf(k) = [f1(k), f2(k), . . . , fN (k)]T .

Contrast masking is a property of human vision that refers to
the reduction in visibility of a signal component (target) due to
the presence of another signal component of similar frequency
and orientation (masker) in a local spatial neighborhood [62].
In the context of VQA, the presence of large signal energy
in the image content (masker) masks the visibility of noise or
distortions (target) in these regions. Contrast masking has been
modeled using a mechanism of contrast gain control that often
takes the form of a divisive normalization [63], [25], [64].
Models of contrast gain control using divisive normalization
arise in psychophysical literature from studies of the non-linear
response properties of neurons in the primary visual cortex
[65], [66], [67] and have also been shown to be well-suited for
efficient encoding of natural signals by the visual system [68].



IEEE TRANSACTIONS ON IMAGE PROCESSING 6

(a) (b) (c)

Fig. 2. (a) Geometry of the Gabor filterbank in the frequency domain. The figure shows iso-surface contours of all Gabor filters at the finest scale. The two
horizontal axes denote the spatial frequency coordinates and the vertical axis denotes temporal frequency. (b) A sliceof the Gabor filter bank along the plane
of zero temporal frequency. The x-axis denotes horizontal spatial frequency and the y-axis denotes vertical spatial frequency. (c) A slice of the Gabor filter
bank along the plane of zero vertical spatial frequency. Thex-axis denotes horizontal spatial frequency and the y-axisdenotes temporal frequency.

The Spatial MOVIE index attempts to capture this property
of human vision and we define the spatial error from each
subband response using:

ES(i0, k) =
1

2

1

N

N
∑

n=1

[

fn(k) − gn(k)

M(k) + C1

]2

(3)

whereM(k) is defined as

M(k) = max





√

√

√

√

1

N

N
∑

n=1

|fn(k)|2,

√

√

√

√

1

N

N
∑

n=1

|gn(k)|2


 (4)

C1 is a small positive constant that is included to prevent
numerical instability when the denominator of (3) goes to 0.
This can happen in smooth regions of the video (for instance,
smooth backgrounds, sky, smooth object surfaces and so on),
where most of the bandpass Gabor outputs are close to 0.
Additionally, since the divisive normalization in (3) is modeled
within a sub-band, the denominator in (3) can go to zero
for certain sub-bands in sinusoid-like image regions, high
frequency sub-bands of edge regions and so on.

In summary, the outputs of the Gabor filter-bank represent
a decomposition of the reference and test video into bandpass
channels. Individual Gabor filters respond to a specific range
of spatio-temporal frequencies and orientations in the video,
and any differences in the spectral content of the reference
and distorted videos are captured by the Gabor outputs.
Spatial MOVIE then uses a divisive normalization approach
to capture contrast masking wherein the visibility of errors
between the reference and distorted images (f(k) and g(k))
are inhibited divisively byM(k), which is a local energy
measure computed from the reference and distorted sub-bands.
(3) detects primarily spatial distortions in the video suchas
blur, ringing, false contouring, blocking, noise and so on.

The error indexES(i0, k) is bounded and lies between 0

and 1:

ES(i0, k) =
1

2

1

N

N
∑

n=1

[

fn(k) − gn(k)

M(k) + C1

]2

=
1

2

{

1
N

∑N

n=1 fn(k)2

[M(k) + C1]2
+

1
N

∑N

n=1 gn(k)2

[M(k) + C1]2

− 2
1
N

∑N

n=1 fn(k)gn(k)

[M(k) + C1]2

}

≤ 1

2

{

1
N

∑N

n=1 fn(k)2

[M(k) + C1]2
+

1
N

∑N

n=1 gn(k)2

[M(k) + C1]2

}

(5)

≤
[

M(k)

M(k) + C1

]2

(6)

(5) uses the fact thatfn(k) and gn(k) are non-negative. (6)
follows from the definition ofM(k). Therefore,ES(i0, k) lies
between 0 and 1. Observe that the spatial error in (3) is exactly
0 when the reference and distorted videos are identical.

The Gaussian filter responds to the mean intensity or the
DC component of the two images. A spatial error index can
be defined using the output of the Gaussian filter operating at
DC. Let f(DC) and g(DC) denote vectors of dimensionN
extracted ati0 from the output of the Gaussian filter operating
on the reference and test videos respectively, using the same
window B. f(DC) and g(DC) are low pass filtered versions
of the two videos. We first remove the effect of the mean
intensity from each video before error computation, since this
acts as a bias to the low frequencies present in the reference
and distorted images that are captured by the Gaussian filter.
We estimate the mean as the average of the Gaussian filtered
output:

µf =
1

N

N
∑

n=1

fn(DC), µg =
1

N

N
∑

n=1

gn(DC) (7)

An error index for the DC sub-band is then computed in a
similar fashion as the Gabor sub-bands:

EDC(i0) =
1

2

1

N

N
∑

n=1

[ |fn(DC) − µf | − |gn(DC) − µg|
MDC + C2

]2

(8)
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whereMDC is defined as

MDC = max





√

√

√

√

1

N

N
∑

n=1

|fn(DC) − µf |2,

√

√

√

√

1

N

N
∑

n=1

|gn(DC) − µg|2


 (9)

C2 is a constant added to prevent numerical instability when
the denominator of (8) goes to 0. This can happen in smooth
image regions since the DC sub-band is close to constant in
these regions.

It is straightforward to verify thatEDC(i0) also lies between
0 and 1. The spatial error indices computed from all of the
Gabor sub-bands and the Gaussian sub-band can then be
pooled to obtain an error index for locationi0 using

ES(i0) =

∑K

k=1 ES(i0, k) + EDC(i0)

K + 1
(10)

Finally, we convert the error index to a quality index at
location i0 using

QS(i0) = 1 − ES(i0) (11)

C. Motion Estimation

To compute temporal quality, motion information is com-
puted from the reference video sequence in the form of optical
flow fields. The same set of Gabor filters used to compute the
spatial quality component described above is used to calculate
optical flow from the reference video. Our implementation
uses the successful Fleet and Jepson [60] algorithm that uses
thephaseof the complex Gabor outputs for motion estimation.
Notice that we only used the complex magnitude in the spatial
quality computation and, as it turns out, we only use the
complex magnitudes to evaluate the temporal quality. As an
additional contribution, we have realized a multi-scale version
of the Fleet and Jepson algorithm, which we briefly describe
in the Appendix.

D. Temporal MOVIE Index

The spatio-temporal Gabor decompositions of the reference
and test video sequences, and the optical flow field computed
from the reference videousing the outputs of the Gabor
filters can be used to estimate the temporal video quality.
By measuring video quality along the motion trajectories, we
expect to be able to account for the effect of distortions of
the type described in Section III-B. Once again, the model
described here primarily captures temporal distortions inthe
video, while responding to spatial distortions in a limited
fashion. We hence call this stage of our model the “Temporal
Movie Index”.

First, we discuss how translational motion manifests itself
in the frequency domain. Leta(x, y) denote an image patch
and letA(u, v) denote its Fourier transform. Assuming that
this patch undergoes translation with a velocity[λ, φ] where
λ andφ denote velocities along thex andy directions respec-
tively, the resulting video sequence is given byb(x, y, t) =

a(x − λt, y − φt). Then,B(u, v, w), the Fourier transform of
b(x, y, t), lies entirely within a plane in the frequency domain
[8]. This plane is defined by:

λu + φv + w = 0 (12)

Moreover, the magnitudes of the spatial frequencies do not
change but are simply sheared:

B(u, v, w) =

{

A(u, v) if λu + φv + w = 0

0 otherwise
(13)

Spatial frequencies in the video signal provide informa-
tion about the spatial characteristics of objects in the video
sequence such as orientation, texture, sharpness and so on.
Translational motion shears these spatial frequencies to create
orientation along the temporal frequency dimension without
affecting the magnitudes of the spatial frequencies. Transla-
tional motion has an easily accessible representation in the
frequency domain and these ideas have been used to build
motion estimation algorithms for video [8], [57], [58].

Assume that short segments of video without any scene
changes consist of local image patches undergoing translation.
This is quite reasonable and is commonly used in video
encoders that use motion compensation. This model can be
used locally to describe video sequences, since translation
is a linear approximation to more complex types of motion.
Under this assumption, the reference and test videosr(i) and
d(i) consist of local image patches (such asa(x, y) in the
example above) translating to create spatio-temporal video
patches (such asb(x, y, t)). Observe that (12) and (13) assume
infinite translation of the image patches [8], which is not
practical. In actual video sequences, local spectra will not be
planes, but will in fact be the convolution of (13) with the
Fourier transform of a truncation window (a sinc function).
However, the rest of our development will assume infinite
translation and it will be clear as we proceed that this will
not significantly affect the development.

The optical flow computation on the reference sequence
provides an estimate of the local orientation of this spectral
plane at every pixel of the video. Assume that the motion
of each pixel in the distorted video sequenceexactlymatches
the motion of the corresponding pixel in the reference. We
would then expect that the filters that lie along the motion
plane orientation identified from the reference are activated
by the distorted video and that the outputs of all Gabor
filters that lie away from this spectral plane are negligible.
However, when temporal artifacts are present, the motion in
the reference and distorted video sequences do not match.
This situation happens, for example, in motion compensation
mismatches, where background pixels that are static in the
reference move with the objects in the distorted video due to
block motion estimation. Another example is ghosting, where
static pixels surrounding moving objects move in the distorted
video due to temporal low-pass filtering. Other examples
are mosquito noise and stationary area fluctuations, where
the visual appearance of motion is created from temporal
frequencies in the distorted video that were not present in
the reference. All of these artifacts shift the spectrum of the
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distorted video to lie along a different orientation than the
reference.

The motion vectors from the reference can be used to
construct responses from the reference and distorted Gabor
outputs that are tuned to the speed and direction of move-
ment of the reference. This is accomplished by computing a
weighted sum of the Gabor outputs, where the weight assigned
to each individual filter is determined by its distance from the
spectral plane of the reference video. Filters that lie veryclose
to the spectral plane are assigned positive excitatory weights.
Filters that lie away from the plane are assigned negative
inhibitory weights. This achieves two objectives. First, the
resulting response is tuned to the movement in the reference
video. In other words, a strong response is obtained when the
input video has a motion that is equal to the reference video
signal. Additionally, any deviation from the reference motion
is penalized due to the inhibitory weight assignment. An error
computed between these motion tuned responses then serves
to evaluate temporal video integrity. The weighting procedure
is detailed in the following.

Let λ be a vector of dimensionN , whereλ is composed of
N elements of the horizontal component of the flow field of the
reference sequence spanned by the windowB centered oni0.
Similarly, φ represents the vertical component of flow. Then,
using (12), the spectrum of the reference video lies along:

λnu + φnv + w = 0, n = 1, 2, . . .N (14)

Define a sequence of distance vectorsδ(k), k = 1, 2, . . . , K
of dimensionN . Each element of this vector denotes the
distance of the center frequency of thekth filter from the
plane containing the spectrum of the reference video in a
window centered oni0 extracted usingB. Let U0(k) =
[u0(k), v0(k), w0(k)], k = 1, 2, . . . , K represent the center
frequencies of all the Gabor filters. Then,δ(k) represents the
perpendicular distance of a point from a plane defined by (14)
in a 3-dimensional space and is given by:

δn(k) =

∣

∣

∣

∣

∣

λnu0(k) + φnv0(k) + w0(k)
√

λ2
n + φ2

n + 1

∣

∣

∣

∣

∣

, n = 1, 2, . . . , N

(15)

We now design a set of weights based on these distances.
Our objective is to assign the filters that intersect the spectral
plane to have the maximum weight of all filters. The distance
of the center frequencies of these filters from the spectral
plane is the minimum of all filters. First, defineα′(k), k =
1, 2, . . . , K using:

α′
nk =

ρ(k) − δn(k)

ρ(k)
(16)

whereρ(k) denotes the radius of the sphere along which the
center frequency of thekth filter lies in the frequency domain.
Figure 3 illustrates the geometrical computation specifiedin
(16).

From the geometry of the Gabor filterbank, it is clear that
0 ≤ α′

n(k) ≤ 1∀n, k since the spectral plane specified by (14)
always passes through the origin. If the spectral plane passes
through the center frequency of a Gabor filterk, then it passes

through the corresponding Gabor filter at all scales.α′
n(k) = 1

for this filter and the corresponding filters at other scales.If
the center frequency of a Gabor filterk lies along a plane that
passes through the origin and is perpendicular to the spectral
plane of the reference video, thenα′

n(k) = 0.
Since we want the weights to be excitatory and inhibitory,

we shift all the weights at each scale to be zero-mean [58].
Finally, to make the weights insensitive to the filter geometry
that was chosen, we normalize them so that the maximum
weight is 1. This ensures that the maximum weight remains 1
irrespective of whether the spectral plane exactly intersects the
center frequencies of the Gabor filters. Although the weights
are invariant to the filter geometry, observe that due to the
Gaussian falloff in the frequency response of the Gabor filters,
the Gabor responses themselves are not insensitive to the
filter geometry. We hence have a weight vectorα(k), k =
1, 2, . . . , K with elements:

αn(k) =
α′

n(k) − µα

maxk=1,2,..., K
P

[α′
n(k) − µα]

, k = 1, 2, . . . ,
K

P
(17)

where

µα =

∑
K
P

k=1 α′
n(k)

K
P

(18)

Similar definitions apply for other scales.
Motion tuned responses from the reference and distorted

video sequences may be constructed using these weights.
DefineN -vectorsνr andνd using:

νr
n =

(fn(DC) − µf )
2 +

∑K

k=1 αn(k)fn(k)2

(fn(DC) − µf )2 +
∑K

k=1 fn(k)2 + C3

(19)

νd
n =

(gn(DC) − µg)2 +
∑K

k=1 αn(k)gn(k)2

(gn(DC) − µg)2 +
∑K

k=1 gn(k)2 + C3

(20)

The constantC3 is added to prevent numerical instability when
the denominators of (19) or (20) go to 0. This can happen in
smooth image regions.

The vector νr represents the response of the reference
video to a mechanism that is tuned toits own motion. If the
process of motion estimation was perfect and there was infinite
translation resulting in a perfect plane, every element ofνr

would be close to 1. The vectorνd represents the response
of the distorted video to a mechanism that is tuned to the
motion of thereference video. Thus, any deviation between
the reference and distorted video motions are captured by (19)
and (20).

The denominator terms in (19) and (20) ensure that temporal
quality measurement is relatively insensitive to spatial distor-
tions, thus avoiding redundancy in the spatial and temporal
quality measurements. For example, in the case of blur, we
would expect that the same Gabor filters are activated by
the reference and distorted videos. However, the response of
the finest scale filters are attenuated in the distorted video
compared to the reference. Since each video is normalized
by its own activity across all filters, the resulting response is
not very sensitive to spatial distortions. Instead, the temporal
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Fig. 3. A slice of the Gabor filters and the spectral plane shown in 2
dimensions. The horizontal axis denotes horizontal spatial frequency and the
vertical axis denotes temporal frequency. Each circle represents a Gabor filter
and the centers of each filter are also marked. The radiusρ of the single scale
of Gabor filters and the distanceδ of the center frequency of one Gabor filter
from the spectral plane are marked.

mechanism responds strongly to distortions where the orien-
tation of the spectral planes of the reference and distorted
sequences differ.

Define a temporal error index using

ET (i0) =
1

N

N
∑

n=1

(νr
n − νd

n)2 (21)

The error index in (21) is also exactly 0 when the reference
and test images are identical. Finally, we convert the error
index into a quality index using

QT (i0) = 1 − ET (i0) (22)

E. Pooling Strategy

The output of the spatial and temporal quality computation
stages is two videos - a spatial quality videoQS(i) that
represents the spatial quality at every pixel of the video
sequence and a similar video for temporal quality denoted as
QT (i). The MOVIE index combines these local quality indices
into a single score for the entire video. Consider a set of
specific time instantst = {t0, t1, . . . , tτ} which corresponds
to frames in the spatial and temporal quality videos. We
refer to these frames of the quality videos,QS(x, y, t0) and
QT (x, y, t0) for instance, as “quality maps”.

To obtain a single score for the entire video using the local
quality scores obtained at each pixel, several approaches such
as probability summation using psychometric functions [26],
[24], mean of the quality map [13], weighted summation [4],
percentiles [42] and so on have been proposed. In general, the
distribution of the quality scores depends on the nature of the
scene content and the distortions. For example, distortions tend
to occur more in “high activity” areas of the video sequences
such as edges, textures and boundaries of moving objects.
Similarly, certain distortions such as additive noise affect the
entire video, while other distortions such as compression or
packet loss in network transmission affect specific regionsof
the video. Selecting a pooling strategy is not an easy task since

the strategy that humans use to evaluate quality based on their
perception of an entire video sequence is not known.

We explored different pooling strategies and found that use
of the the mean of the MOVIE quality maps as an indicator
of the overall visual quality of the video suffered from certain
drawbacks. Quality scores assigned to videos that contain a
lot of textures, edges, moving objects and so on using the
mean of the quality map as the visual quality predictor is
consistently lower than quality scores computed for videosthat
contain smooth regions (backgrounds, objects). This is because
many distortions such as compression alter the appearance
of textures and other busy regions of the video much more
significantly than the smooth regions of the video. However,
people tend to assign poor quality scores even if only parts of
the video appear to be distorted.

The variance of the quality scores is also perceptually
relevant. Indeed, a higher variance indicates a broader spread
of both high and low quality regions in the video. Since
lower quality regions affect the perception of video quality
more so than do high quality regions, larger variances in the
quality scores are indicative of lower perceptual quality.This
is intuitively similar to pooling strategies based on percentiles,
wherein the poorest percentile of the quality scores have been
used to determine the overall quality [42]. A ratio of the
standard deviation to the mean is often used in statistics and
is known as the coefficient of variation. We have found that
this moment ratio is a good predictor of the perceptual error
between the reference and test videos.

Define frame levelerror indices for both spatial and tem-
poral components of MOVIE at a frametj using:

FES(tj) =
σQS(x,y,tj)

µQS(x,y,tj)
, FET (tj) =

σQT (x,y,tj)

µQT (x,y,tj)
(23)

Use of the coefficient of variation in pooling, with the
standard deviation appearing in the numerators of (23), results
in frame level error indices, as opposed to frame level quality
indices. However, this ensures that the frame level MOVIE
indices do not suffer from numerical instability issues dueto
very small values appearing in the denominator. The frame
level error indices in (23) are exactly zero when the reference
and distorted videos are identical, sinceQS(x, y, tj) = 1
for all x, y. The error indices increase whenever the standard
deviation of the MOVIE quality scores increases or the mean
of the MOVIE quality scores decreases, which is desirable.
Notice that the standard deviation term in the coefficient of
variation captures the spread in quality that occurs when
videos contain smooth regions, thus avoiding the drawback
of using just the mean.

Video quality is fairly uniform over the duration of the video
sequence (for instance, compression distortions behave this
way) in the VQEG FRTV Phase 1 database that we use to
evaluate MOVIE in Section VI. We adopted the simple pooling
strategy of using the mean of the frame level descriptors for
temporal pooling, although more advanced temporal pooling
strategies may be investigated for future improvements of the
MOVIE index. The Spatial MOVIE index is defined as the
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average of these frame level descriptors.

Spatial MOVIE=
1

τ

τ
∑

j=1

FES(tj) (24)

The range of values of the Temporal MOVIE scores is
smaller than that of the spatial scores, due to the large divisive
normalization in (19) and (20). To offset this effect, we use
the square root of the temporal scores.

Temporal MOVIE=

√

√

√

√

1

τ

τ
∑

j=1

FET (tj) (25)

We adopt the simple strategy of defining the overall MOVIE
index for a video using the product of the Spatial and Temporal
MOVIE indices. This causes the MOVIE index to respond
equally strongly to percentage changes in either the Spatial
or Temporal MOVIE indices and makes MOVIE relatively
insensitive to the range of values occupied by the Spatial and
Temporal MOVIE indices. The MOVIE index is defined as:

MOVIE = Spatial MOVIE× Temporal MOVIE (26)

F. Implementation Details and Examples

We now discuss some implementation details of MOVIE.
To reduce computation, instead of filtering the entire video
sequence with the set of Gabor filters, we centered the Ga-
bor filters on every16th frame of the video sequence and
computed quality maps for only these frames. We selected
multiples of 16 since our coarsest scale filters span 33 frames
and using multiples of 16 ensures reasonable overlap in the
computation along the temporal dimension. The windowB
was chosen to be a7× 7 window. To avoid blocking artifacts
caused by a square window, we used a Gaussian window of
standard deviation 1 sampled to a size of7 × 7 [13]. If we
denote the Gaussian window usingγ = {γ1, γ2, . . . , γN} with
∑N

n=1 γn = 1, (3) and (4) are modified as:

ES(i0, k) =
1

2

N
∑

n=1

γn

[

fn(k) − gn(k)

M(k) + C1

]2

(27)

M(k) = max





√

√

√

√

N
∑

n=1

γn|fn(k)|2,

√

√

√

√

N
∑

n=1

γn|gn(k)|2


 (28)

Similar modifications apply for (7), (8) and (9). (21) is
modified as:

ET (i0) =

N
∑

n=1

γn(νr
n − νd

n)2 (29)

There are three parameters in MOVIE:C1,C2 andC3. The
role of these constants have been described in detail in [69].
The divisive nature of the masking model in (3) and (19)
makes them extremely sensitive to regions of low signal energy
in the video sequences. The constants serve to stabilize the
computation in these regions and are included in most divisive
normalization models [65], [67], [24], [64], [68]. We chose
the parametersC1, C2 and C3 to be of the same order of

magnitude as the quantities in the denominators of (3), (8)
and (19) that they are intended to stabilize. We selected the
constants to be:C1 = 0.1, C2 = 1 and C3 = 100. C1, C2

are chosen differently since the Gaussian filter is lowpass and
produces larger responses than bandpass Gabor filters. This
is intuitively reasonable from the power spectral properties of
natural images [70].C3 is larger because it is intended to sta-
bilize (19) and (20), where the denominator terms correspond
to sums of the squares of all Gabor coefficients. We found that
MOVIE is not very sensitive to the choice of constant as long
as the constant used was not too small. Using small values for
the constants leads to incorrect predictions of poor qualities
in smooth regions of the videos due to the instability of the
divisive models, which does not match visual perception.

Figure 4 illustrates quality maps generated by MOVIE on
one of the videos in the VQEG FRTV Phase 1 database. The
temporal quality map has been logarithmically compressed for
visibility. First of all, it is evident that the kind of distortions
captured by the spatial and temporal maps is different. The
test video suffers from significant blurring and the spatial
quality map clearly reflects the loss of quality due to blur.
The temporal quality map, however, shows poor quality along
edges of objects such as the harp where motion compensation
mismatches are evident. Of course, the spatial and temporal
quality values are not completely independent. This is because
the spatial computation uses the outputs ofspatio-temporal
Gabor filters and the constantC3 in (19) and (20) permits the
temporal computation to respond to blur.

V. RELATION TO EXISTING MODELS

The MOVIE index has some interesting relationships to
spatial IQA indices and to visual perception.

A. Spatial MOVIE

The spatial quality in (3) is closely related to contrast gain
control models that use divisive normalization to model the
response properties of neurons in the primary visual cortex
[65], [67], [66]. Several HVS modeling based IQA algorithms
account for contrast masking in human vision using divisive
normalization models of contrast gain control [25], [64], [24].
Additionally, the spatial quality in (3) is closely relatedto
the structure term of the SSIM index and the information
theoretic basis of IQA [69]. Indeed, in previous work, we
have established that the Gaussian Scale Mixture (GSM) image
model assumption used by the information theoretic indices
made them equivalent to applying the structure term of the
SSIM index in a sub-band domain. Spatial MOVIE falls out
naturally from our analysis in [69] and represents an improved
version of these metrics.

We also discuss the relation of both SSIM and IFC to
contrast masking models in human vision based IQA systems
in [69]. The structure term of the SSIM index applied between
sub-band coefficients (without the stabilizing constant and
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(a) (b)

(c) (d)

Fig. 4. Illustration of the performance of the MOVIE index. Top left - frame from reference video, Top right - corresponding frame from distorted video,
Bottom left - logarithmically compressed temporal qualitymap, Bottom right - spatial quality map. Bright regions correspond to regions of poor quality.

assuming zero mean sub-band coefficients) is given by [69]:

1

2

1

N

N
∑

n=1





fn(k)
√

1
N

∑N

n=1 |fn(k)|2
− gn(k)

√

1
N

∑N

n=1 |gn(k)|2





2

(30)

Divisive normalization is performed in (30), wherein di-
visive inhibition is modeled within the sub-band, while the
divisive inhibition pool (in the denominator of (30)) is com-
posed of coefficients from the same sub-band but at adjacent
spatial locations. The divisive inhibition pool and divisive
normalization model used here differ from other contrast gain
control models. For example, Lubin models divisive inhibition
within the same sub-band, while the Teo and Watson models
seek to account for cross-channel inhibition [24], [25], [64].

A chief distinction between the divisive normalization in
the SSIM index in (30) and the Spatial MOVIE index in (3)
is the fact that we have chosen to utilize both the reference
and distorted coefficients to compute the masking term. Thisis
described as “mutual masking” in the literature [26]. Masking
the reference and test image patches using a measure of their
own signal energy in (30) (“self masking”) is not an effective
measure of blur in images and videos. Blur manifests itself as
attenuation of certain sub-bands of the reference image and
it is easily seen that the self masking model in (30) does not

adequately capture blur.
However, our model is differs from mutual masking models

such as [26], where the minimum of the masking thresholds
computed from the reference and distorted images is used.
Using a minimum of the masking thresholds is well suited
for determining whether an observer can distinguish between
the reference and test images, as in [26]. However, MOVIE is
intended to predict the annoyance of supra-threshold, visible
distortions. Using the maximum of the two masking thresholds
in (3) causes the spatial quality index to saturate in the
presence of severe distortions (loss of textures, severe blur,
severe ringing and so on). This prevents over-prediction of
errors in these regions. An additional advantage of using the
maximum is that it guarantees bounded quality scores.

B. Temporal MOVIE

Motion perception is a complex procedure involving low-
level and high-level processing. Although motion processing
begins in the striate cortex (Area V1), Area MT/V5 in the
extra-striate cortex is known to play a significant role in
movement processing. Several papers in psychophysics and
vision science study the properties of neurons in these areas
in primates such as the macaque monkey. The properties
of neurons in Area V1 that project to Area MT have been
well studied [35]. This study reveals that cells in V1 that
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project to MT may be regarded as local motion energy filters
that are spatio-temporally separable and tuned to a specific
frequency and orientation (such as the Gabor filters used
here). Area MT receives directional information from V1 and
performs more complex computations using the preliminary
motion information computed by V1 neurons [35]. A subset
of neurons in Area MT have been shown to bespeed tuned,
where the speed tuning of the neuron is independent of the
spatial frequency of the stimulus [39], [71]. Models for such
speed tuned neurons have been constructed by combining the
outputs of a set of V1 cells whose orientation is consistent with
the desired velocity [58]. Our temporal quality computation
bears several similarities with the neuronal model of MT in
[58], [72]. Similarities include the weighting procedure based
on the distance between the linear filters and the motion plane
and the normalization of weighted responses. The models in
[58], [72] are rather elaborate, physiologically plausible mech-
anisms designed to match the properties of visual neurons.
Our model is designed from an engineering standpoint of
capturing distortions in videos. Differences between the two
models include the choice of linear decomposition and our
derivation of analytic expressions for the weights based on
filter geometry. Interestingly, the models of Area MT construct
neurons tuned to different speeds and use these responses to
determine the speed of the stimulus. Our model computes the
speed of motion using the Fleet and Jepson algorithm and
then constructs speed tuned responses based on the computed
motion.

To the best of our knowledge, none of the existing VQA
algorithms attempt to model the properties of neurons in Area
MT despite the availability of such models in the vision
research community. Our discussion here shows that our pro-
posed VQA framework can match visual perception of video
better, since it integrates concepts from motion perception.

VI. PERFORMANCE

We tested our algorithm on the VQEG FRTV Phase 1
database [73] since this is the largest publicly available VQA
database to date. Although the VQEG has completed and is
in the process of conducting several other studies on video
quality, the videos from these subsequent studies have not been
made public due to licensing and copyright issues [74]. Since
most of the videos in the VQEG FRTV Phase 1 database are
interlaced, our algorithm runs on just one field of the interlaced
video. We ran our algorithm on the temporally earlier field
for all sequences. We ignore the color component of the
video sequences, although color might represent a direction
for future improvements of MOVIE. The VQEG database
contains 20 reference sequences and 16 distorted versions of
each reference, for a total of 320 videos. Two distortions
types in the VQEG database (HRC 8 and 9) contain two
different subjective scores assigned by subjects corresponding
to whether these sequences were viewed along with “high” or
“low” quality videos [73]. We used the scores assigned in the
“low” quality regime as the subjective scores for these videos.

Table I show the performance of MOVIE in terms of the
Spearman Rank Order Correlation Coefficient (SROCC), the
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Fig. 5. Scatter plot of the subjective DMOS scores against MOVIE scores
on the VQEG database. Each point on the plot represents one video in the
database. The best fitting logistic function used for non-linear regression is
also shown. (a) On all sequences in the VQEG database (b) After omitting
the animated videos.

Linear Correlation Coefficient (LCC) after non-linear regres-
sion and the Outlier Ratio (OR). We used the same logistic
function specified in [73] to fit the model predictions to the
subjective data. PSNR provides a baseline for comparison
of VQA models. Ten leading VQA models were tested by
the VQEG in its Phase 1 study including a model from
NTIA that was a precursor to VQM, as well as models from
NASA, Sarnoff Corporation, KDD and EPFL [73]. Proponent
P8 (Swisscom) was the best performing model of these ten
models tested by the VQEG [73]. SSIM (without weighting)
refers to a frame-by-frame application of the SSIM index
that was proposed for video in [4]. SSIM (weighting) refers
to the model in [4] that incorporated rudimentary motion
information as weights for different regions of the video
sequence. Speed SSIM refers to the VQA algorithm in [5]
that incorporates a model of human visual speed perception
to design spatiotemporal weighting factors that are used to
weight local SSIM indices in the pooling stage.

The Root Mean Squared Error (RMSE) between subjective
scores and MOVIE scores after non-linear regression on the
entire VQEG database is 8.76. Outliers are defined by the
VQEG as points for which the absolute error between the
DMOS score and model prediction is larger than twice the
standard deviation of the DMOS score and the outlier ratio
is defined as the ratio of the number of outlier videos to
the total number of videos [73]. A more standard way to
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define outliers is using the three sigma rule, where outliers
are defined as points for which the absolute error between the
DMOS score and model prediction is larger than three times
the standard deviation of the DMOS scores [75]. Use of the
three sigma rule guarantees that the probability that a point
lies outside the range of three standard deviations is≤ 0.3%
assuming that the errors are normally distributed. The outlier
ratio for MOVIE using the three sigma rule is0.488 on the
entire VQEG database.

The VQEG database contains 4 sequences that are animated
(sources 4,6,16 and 17). Animated videos are quite distinct
from natural videos and often contain perfectly smooth and
constant regions, perfect step edges, text and so on that seldom
occur in natural images. Natural images have several character-
istic statistical properties such as self-similarity across scales,
heavy tailed wavelet marginal distributions and so on [70],
[76], that do not occur in synthetic videos of these types.
Although our model does not explicitly assume any statistical
model for the images or videos, our spatial quality model is
closely related to the IFC, which assumes that the reference
images are the output of a natural scene statistical model [69].
Several aspects of our VQA model such as the choice of Gabor
filters, scale invariant processing of the Gabor sub-bands and
divisive normalization in the spatial and temporal qualitycom-
putation are implicitly geared toward natural videos. Indeed,
it has been suggested that the divisive normalization that is
used in both Spatial and Temporal MOVIE results in efficient
encoding, since it reduces the statistical dependencies that
are present when natural images are decomposed using linear
filters [68]. Hence, the divisive normalization in MOVIE can
be interpreted as a dual of natural scene statistical modeling.
A further discussion of the relation between natural scene
statistics and the SSIM and IFC IQA techniques can be found
in [69]. The presence of text in three of these animations is
further cause for concern, since the subjective perceptionof
these videos might have been influenced by the readability of
the text in the distorted video.

We also present performance indices of our VQA model
for only the 16 natural videos and their distorted versions (a
total of 256 videos) in the VQEG database in Table II. We
present these results in a separate table since these numbers
are not directly comparable against the reported performance
of other quality models on all the videos in the database. Table
II also shows the performance of PSNR and SSIM (without
weighting) on the same set of natural videos in the VQEG
database. For a fair comparison with MOVIE, we used only
the luminance component of the video to compute PSNR and
SSIM (without weighting) on these natural videos. Note that
the performance of PSNR and SSIM is slightly worse in Table
II than on the entire dataset as reported in Table I. The outlier
ratio for MOVIE on only the natural videos is 0.461 at three
standard deviations.

Scatter plots of the model prediction and DMOS values,
along with the best fitting logistic function, for the MOVIE
index are shown in Fig. 5 on the entire VQEG database and
after omitting animations.

It is clear that the MOVIE index is competitive with other
leading algorithms on the VQEG database. Note that the

Prediction Model SROCC LCC OR
Peak Signal to Noise Ratio 0.786 0.779 0.678
Proponent P8 (Swisscom) 0.803 0.827 0.578
SSIM (without weighting) 0.788 0.820 0.597

SSIM (weighting) 0.812 0.849 0.578
Spatial MOVIE 0.793 0.796 0.666

Temporal MOVIE 0.816 0.801 0.647
MOVIE 0.833 0.821 0.644

TABLE I
COMPARISON OF THE PERFORMANCE OFVQA ALGORITHMS USING

SROCC, LCCAND OR.

Prediction Model SROCC LCC OR RMSE
PSNR 0.739 0.718 0.699 10.968

SSIM (without weighting) 0.802 0.810 0.633 9.245
Spatial MOVIE 0.825 0.830 0.656 8.803

Temporal MOVIE 0.835 0.825 0.621 8.902
MOVIE 0.860 0.858 0.656 8.093

TABLE II
COMPARISON OF THE PERFORMANCE OFVQA ALGORITHMS AFTER

OMITTING THE ANIMATION SEQUENCES USINGSROCC, LCC, ORAND

RMSE. PSNRAND SSIM (WITHOUT WEIGHTING) ARE COMPUTED USING
ONLY THE LUMINANCE COMPONENT OF THE VIDEO IN THIS TABLE FOR A

FAIR COMPARISON WITHMOVIE.

reported performance of the VQEG proponents is from [73],
where the proponents did not have access to the VQEG
database. The performance of some of these algorithms have
been improved since the publication of the study in 2000 [73].
VQM from NTIA is the only publicly available algorithm of
the ten proponents in the study. However, since VQM was
trained using the VQEG data, we are unable to report the
performance of VQM on the VQEG dataset [42]. None of
the parameters of the MOVIE index were trained using the
VQEG data. The results in Tables I and II show the competitive
performance of MOVIE with other leading VQA techniques
whose performance has been reported on the VQEG dataset
in the eight years since the study.

The performance of Spatial MOVIE is poorer than that of
the Temporal MOVIE index, which powerfully illustrates the
importance of capturing and assessing temporal video distor-
tions. Using both in conjunction improves over using either
separately. It is also seen from Table II that the performance
of MOVIE is considerably better on just the natural videos in
the VQEG database. The performance of MOVIE in Table
I is particularly impressive because it does not use color
information and uses only one field of the interlaced video
sequence.

VII. C ONCLUSIONS ANDFUTURE WORK

We have introduced a new, motion-based paradigm for
VQA that successfully captures temporal distortions as well as
spatial distortions. The performance of the resulting algorithm,
known as MOVIE, bears out the underlying philosophy that
such distortions contribute significantly to the perception of
video quality, and is in agreement with physiological findings.
An obvious avenue for improving MOVIE that we wish to
investigate is the inclusion of color information. Additionally,
there is a need for more diverse publicly available databases of
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reference videos, distorted videos, and statistically significant
subjective scores taken under carefully controlled measure-
ment conditions to enable improved verification and testing
of VQA algorithms. Such a database will be of great value
to the VQA research community, particularly in view of the
fact that the videos from recent VQEG studies (including the
VQEG FRTV-Phase 2 study and the Multimedia study) are not
being made public [74]. Toward this end, we are creating such
a database of videos that will complement the existing LIVE
Image Quality Database [77] and which seeks to improve the
accessibility and diversity of such data. The upcoming LIVE
Video Quality Database will be described in future reports.

Lastly, there naturally remains much open field for im-
proving current competitive VQA algorithms. We believe
that these will be improved by the development of better
models for naturalistic videos, for human image and motion
processing, and by a better understanding of the nature of
distortion perception. Important topics in these directions
include scalability of VQA, utilizing models of visual attention
and human eye movements in VQA [78], [79], [80], [6],
exploration of advanced spatial and temporal pooling strategies
for VQA [80], reduced reference VQA, and no reference VQA.
However, in our view, the most important development in the
future of both IQA and VQA is the deployment of the most
competitive algorithms for such diverse and important tasks
as establishing video Quality of Service (QoS) in real-time
applications; benchmarking the performance of competing
image and video processing algorithms, such as compression,
restoration, and reconstruction; and optimizing algorithms
using IQA and VQA indices to establish perceptual objective
functions [81]. This latter goal is the most ambitious owing
to the likely formidable analytical challenges to be overcome,
but may also prove to be the most significant.

APPENDIX

OPTICAL FLOW COMPUTATION V IA A NEW MULTI -SCALE

APPROACH

The Fleet and Jepson algorithm attempts to find constant
phase contours of the outputs of a Gabor filterbank to estimate
the optical flow vectors [60]. Constant phase contours are
computed by estimating the derivative of the phase of the
Gabor filter outputs, which in turn can be expressed as a
function of the derivative of the Gabor filter outputs [60]. The
algorithm in [60] uses a 5-point central difference to perform
the derivative computation. However, we chose to perform the
derivative computation by convolving the video sequence with
filters that are derivatives of the Gabor kernels, denoted by
h′

x(i), h′
y(i), h

′
t(i):

h′
x(i) = h(i)

(−x

σ2
+ jU0

)

(31)

Similar definitions apply for the derivatives alongy and t
directions. This filter computes the derivative of the Gabor
outputs more accurately and produced better optical flow
estimates in our experiments.

Due to the aperture problem, each Gabor filter is only able
to signal the component of motion that is normal to its own

orientation. The Fleet and Jepson algorithm computes normal
velocity estimates at each pixel for each Gabor filter. Given
the normal velocities from the different Gabor outputs, a linear
velocity model is fit to each local region using a least squares
criterion to obtain a 2D velocity estimate at each pixel of the
video sequence. A residual error in the least squares solution
is also obtained at this stage. See [60], [82] for further details.

The original Fleet and Jepson algorithm uses just a single
scale of filters. We found that using a single scale of filters
was not sufficient, since optical flow was not computed in fast
moving regions of the several video sequences due to temporal
aliasing [60], [57]. We hence used 3 scales of filters to
compute motion by extending the Fleet and Jepson algorithm
to multiple scales. We compute a 2D velocity estimate at each
scale using the outputs of the Gabor filters at that scale only.
It is important not to combine estimates across scales due to
temporal aliasing [57], [60]. We also obtain an estimate of the
residual error in the least squares solution for each scale of
the Gabor filterbank. The final flow vector at each pixel of the
reference video is set to be the 2D velocity computed at the
scale with the minimum residual error. Note that more complex
solutions such as coarse to fine warping methods have been
proposed in the literature to combine flow estimates across
scales [83], [84], [85]. We chose this approach for simplicity
and found that reasonable results were obtained.

The Fleet and Jepson algorithm does not produce flow
estimates with 100% density, i.e. flow estimates are not
computed at each and every pixel of the video sequence.
Instead, optical flow is only computed at pixels where there
is sufficient information to do so. We set the optical flow to
zero at all pixels where the flow was not computed.
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