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Abstract—There has recently been a great deal of interest in the by asking a human subject to indicate the quality of an image
development of algorithms that objectively measure the iregrity  or video that they are viewing on a numerical or qualitative
of video signals. Since video signals are being delivered uiman — ge516 To account for human variability and to assert statis

end users in an increasingly wide array of applications and . ' . . . .
products, it is important that automatic methods of video quality tical confidence, multiple subjects are required to viewheac

assessment (VQA) be available that can assist in controlin image/video, and a Mean Opinion Score (MOS) is computed.
the quality of video being delivered to this critical audierce. While subjective methods are the only completely reliable
Naturally, the quality of motion representation in videos pays method of VQA, subjective studies are cumbersome and
an important role in the perception of video quality, yet exsting  gynensive. For example, statistical significance of the MOS
VQA algorithms make little direct use of motion information, T - . .
thus limiting their effectiveness. We seek to ameliorate tis mus_t be g.uaranteed by_usmg sufficiently large §amp|e S,'Zes’
by developing a general, spatio-spectrally localized muicale Subject naivety must be imposed; the dataset of images/side
framework for evaluating dynamic video fidelity that integrates must be carefully calibrated; and so on [1], [2]. Subjective
both spatial and temporal (and spatio-temporal) aspects of VQA is impractical for nearly every application other than
distortion assessment. Video quality is evaluated not onlin space benchmarking automatic or objective VQA algorithms.

and time, but also in space-time, by evaluating motion quaty . .
along computed motion trajectories. Using this framework,we To develop generic VQA algorithms that work across a

develop a full reference VQA algorithm for which we coin range of distortion types, full reference algorithms assum
the term the MOtion-based Video Integrity Evaluation index, the availability of a “perfect” reference video, while eaest

or MOVIE index. It is found that the MOVIE index delivers  video is assumed to be a distorted version of this reference.

VQA scores that correlate quite closely with human subjectie ot ; ;
judgment, using the Video Quality Expert Group (VOEG) FRTV We survey the existing literature on full reference VQA in

Phase 1 database as a test bed. Indeed, the MOVIE index is fodin Section II. The discussion there will highl_ight th_e fact tha
to be quite competitive with, and even outperform, algoritms ~ @lthough current full reference VQA algorithms incorperat
developed and submitted to the VQEG FRTV Phase 1 study, as features for measuring spatial distortions in video signatry

well as more recent VQA algorithms tested on this database. little effort has been spent on directly measuring temporal
distortions or motion artifacts. As described in Section Il
l. INTRODUCTION s_everal a_lgorlth_ms utilize rudimentary tempqral |nfor|_na1by _
. ) ] o ) . differencing adjacent frames or by processing the videngusi
D IGITAL videos are increasingly finding their way into thegjm jje temporal filters before feature computation. Howeve

day-to-day lives of people due to the rapid proliferatiop, ogt existing VQA algorithms do not attempt to directly com-
of networked video applications such as video on demange motion information in video signals to predict quality

digital television, video teleconferencing, streamindeo over qi-pja exceptions include [3], [4], [5], [6], [7]. [3] is ba

the Internet, video over wireless, consumer video appda'an_cgeneric VQA algorithm and targets video coding applicaion

and so on. Quality control c_)f videos from the ca_pture qe\_/'%‘here models of visual motion sensors developed in [8] are
to the ultimate human user in these applications is essémtia iiji-ed to perform computations that signal the directifn

maintaining Quality of Service (QoS) requirements and meth, yiiqn | [4], [5], [6], motion information is only used teed
ods to evaluate the perceptual quality of digital wdeosn‘orsign weights to pool locapatial quality indices into a single

a critical component of video processing and communicatic&r&a”ty score for the video. TetraVQM appeared subsequent
systems. . . . to early submissions of this work [9] and computes motion
Humans can, almost instantaneously, judge the quality of @ hensated errors between the reference and distortedsvid

image or video that they are viewing, using prior knowled

and _ expectanons denve(_i from_ viewing millions of time- Yet, motion plays a very important role in human perception
varying images on a daily basis. The right way 10 asse§pmoying image sequences [10]. Considerable resourcegin t
quality, then, is to ask humans for their opinion of the dyali ;14 visual system (HVS) are devoted to motion perception.
of an image or video, which is known as subjective assesSmefily jys can accurately judge the velocity and direction of
of quality. Indeed, subjective judgment of quality must bg,tion of objects in a scene, skills that are essential toigair
regarded as the ultimate standard of performance by Whighy\ans are capable of making smooth pursuit eye movements

image quality assessment (IQA) or video quality assessmefirack moving objects. Visual attention is known to be draw
(VQA) algorithms are assessed. Subjective quality is me@isu 1, movement in the periphery of vision, which makes humans

This research was supported by a grant from the Nationaln&ei&oun- and_qther organi.sms aW.are (?f approaching danger [10], [11]-
dation (Award Number: 0728748). Additionally, motion provides important clues about thassé
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of three dimensional objects and aids in object identificati in biological vision systems in Section V. We also describe
All these properties of human vision demonstrate the ingrdrt the relationship between MOVIE and the SSIM and VIF still
role that motion plays in perception, and the success of VQiage quality models in that section. The performance of
algorithms depends on their ability to model and account fMOVIE is presented in Section VI, using the publicly avaitab
motion perception in the HVS. Video Quality Expert Group (VQEG) FRTV Phase 1 database.
While video signals do suffer from spatial distortions,jtheWe conclude the paper in Section VIl with a discussion of
are often degraded by sevammporalartifacts such as ghost-future work.
ing, motion compensation mismatch, jitter, smearing, masq
noise (amongst numerous other types), as described i ietai
Section lll. It is imperative that video quality indices acnt
for the deleterious perceptual influence of these artiféitts Mathematically simple error indices such as the Mean
objective evaluation of video quality is to accurately peeéd Squared Error (MSE) are often used to evaluate video quality
subjective judgment. Most existing VQA algorithms are ableostly due to their simplicity. It is well known that the
to capture spatial distortions that occur in video sequenddSE does not correlate well with visual quality, which is the
(such as those described in Section Ill-A), but don’t do ai@ason why research into full reference VQA techniques has
adequate job in capturing temporal distortions (such asethdeen intensely studied [18]; see [19] for a review of VQA.
described in Section l1I-B). Several types of weighted MSE and Peak Signal to Noise
We seek to address this by developing a general framewdttio (PSNR) have also been proposed by researchers; see,
for achieving spatio-spectrally localized multiscale leation for example, [20], [21], [22].
of dynamic video quality. In this framework, both spatiadan A substantial amount of the research into IQA and VQA
temporal (and spatio-temporal) aspects of distortion szssehas focused on using models of the HVS to develop quality
ment are accounted for. Video quality is evaluated not omly indices, which we broadly classify as HVS-based indiceg Th
space and time, but also in space-time, by evaluating motibasic idea behind these approaches is that the best way to
quality along computed motion trajectories. predict the quality of an image or video, in the absence of
Using this framework, we develop a full reference VQAany knowledge of the distortion process, is to attempt te™"se
algorithm which we call the MOtion-based Video Integritythe image using a system similar to the HVS. Typical HVS-
Evaluation index, or MOVIE index. MOVIE integrates exptici based indices use linear transforms separably in the spatia
motion information into the VQA process by tracking perand temporal dimensions to decompose the reference and test
ceptually relevant distortions along motion trajectorigsis videos into multiple channels, in an attempt to model the
augmenting the measurement of spatial artifacts in videdsning properties of neurons in the front-end of the eyarbra
Our approach to VQA represents an evolution, as we hasgstem. Contrast masking, contrast sensitivity and lundea
sought to develop principles for VQA that were inspired bynasking models are then used to obtain thresholds of \itgibil
the structural similarity and information theoretic appeches for each channel. The error between the test and reference
to 1QA proposed in [12], [13], [14], [15]. The Structuralvideo in each channel is then normalized by the correspgndin
SIMilarity (SSIM) index and the Visual Information Fidelit threshold to obtain the errors in Just Noticeable Diffeeenc
(VIF) criterion are successful still image quality indickmt (JND) units. The errors from different channels at each Ipixe
correlate exceedingly well with perceptual image quality sare then combined, using the Minkowski error norm or other
demonstrated in extensive psychometric studies [16].ddde pooling strategies, to obtain a space-varying map thatigsed
our early approaches were extensions of these algorithrttee probability that a human observer will be able to detect
called Video SSIM and Video Information Fidelity Criterionany difference between the two images.
(IFC) 9], [17], where, roughly speaking, quality indiceenrg Examples of HVS-based image quality indices include [23],
computed along the motion trajectories. [24], [25], [26], [27]; see [28] for a review. It is believetiat
Our current approach, culminating in the MOVIE indextwo kinds of temporal mechanisms exist in the early stages of
represents a significant step forward from our earlier wask, processing in the HVS, one lowpass and one bandpass, known
we develop a general framework for measuring both spated the sustained and transient mechanisms [29], [30]. Most
and temporal video distortions over multiple scales, and@l HVS-based video quality indices have been derived frorh stil
motion trajectories, while accounting for spatial and tenap image quality indices by the addition of a temporal filtering
perceptual masking effects. As we show in the sequel, thiock to model these mechanisms. Popular HVS-based video
performance of this approach is highly competitive withaalg quality indices such as the Moving Pictures Quality Metric
rithms developed and submitted to the VQEG FRTV Phase(MPQM) [31], Perceptual Distortion Metric (PDM) [32] and
study, as well as more recent VQA algorithms tested on thigse Sarnoff JIND vision model [24] filter the videos using one
database. bandpass and one lowpass filter along the temporal dimension
We review the existing literature on VQA in Section [I.Other methods such as the Digital Video Quality (DVQ) metric
To supply some understanding of the challenging contg@3] and the scalable wavelet based video distortion index
of VQA, we describe commonly occurring distortions irin [34] utilize a single low pass filter along the temporal
digital video sequences in Section Ill. The development dimension. A VQA algorithm that estimates spatiotemporal
the MOVIE index is detailed in Section IV. We explain thalistortions through a temporal analysis of spatial percapt
relationship between the MOVIE model and motion perceptiatistortion maps was presented in [6].

Il. BACKGROUND
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One of the visual processing tasks performed by the HWiality indices for images. Biological vision systems devo
is the computation of speed and direction of motion of olsjectonsiderable resources to motion processing. Presamgatio
using the series of time-varying images captured by theaeti video sequences to human subjects induce visual expesience
All the indices mentioned above use either one or two tempord motion and the perceived distortion in video sequences is
channels and model the temporal tuning of only the neuroascombination of both spatial and motion artifacts. We argue
in early stages of the visual pathway such as the retinaglatethat accurate representation of motion in video sequerases,
geniculate nucleus (LGN) and Area V1 of the cortex. Thigell as of temporal distortions, have great potential toseude
is the first stage of motion processing that occurs in primateleo quality prediction. We present such an approach to VQA
vision systems, the outputs of which are used in latter stage this paper.
of motion processing that occur in Area MT/V5 of the extra-
striate cortex [35]. Visual area MT is believed to play a role [1l. DISTORTIONS INDIGITAL VIDEO

in integrating local motion information into a global pepte | this section, we discuss the kinds of distortions that
of motion, guidance of some eye movements, segmentatig®d commonly observed in video sequences [49]. Distortions
and structure computation in 3-dimensional space [36]. &#0d j digital video inevitably exhibit both spatial and tempbr

of processing in MT is hence essential in VQA due to thgspects. Even a process such as blur from a lens has a
critical role of these functions in the perception of vidé®ys temporal aspect, since the blurred regions of the video tend
human observers. The response properties of neurons in Ai¢amove around from frame to frame. Nevertheless, there
MT/VS are well studied in primates and detailed models fre distortions that are primarily spatial, which we shaill ¢
motion sensing have been proposed [37], [38], [39]. To ou§patial distortions”.

knowledge, no VQA index has attempted to incorporate these| jkewise, there are certain distortions that are primarily
models to account for visual processing of motion in Aregmporal in that they arise purely from the occurrence of
MT. motion, although such distortions may affect individuakfres

More recently, there has been a shift toward VQA teclyf the video as well. We will refer to these as “temporal
nigues that attempt to characterize features that the humg&ortions”.

eye associates with loss of quality; for example, blur, kloc

ing artifacts, fidelity of edge and texture information, @ol Spatial Distortions
information, contrast and luminance of patches and so on. . . . . .
Part of the reason for this shift in paradigm has been theExampIes of commonly occurring spatial distortions in

complexity and incompleteness of models of the HVS. A moyédeo include blocking, ringing, mosaic patterns, falseico

important reason, perhaps, is the fact that HVS based moo@ging' blur and noise [49Blocking effectsesuit from block
typically model threshold psychophysics, i.e., the st ased compression techniques used in several DiscretaeCosi

of the HVS to different features are measured at the thrdsh&ransform (DCT) basGed compresséons systems ir;]cluding Mg—
of perception [40], [41], [10]. However, while detection oII'onMi'gg; E|\);|F|;e|5rt(§ 4roug %Mgé )Hsésétjmgl Sulf_ as MPEG-
distortions is important in some applications, VQA dealé’ e 4 an -£03, H.2b4. blocking appears

with supra-threshold perception, where artifacts in theeui as periodic discontinuities in each frame of the compressed

sequences are visible and algorithms attempt to quantéy twdeo at block boundariesRinging distortionsare visible

annoyance levelsf these distortions. Popular VQA aIgorithmsa;found edges or conéofurs inhfrarr(;es and agpﬁarbasl? ripplgng
that embody this approach include the Video Quality Metr%.ec_t moving outwar rom t e edge toward the bac ground.
(VQM) from NTIA [42], the SSIM index for video [4], [5], inging artifacts are y|S|bIe in non-block baseo! compi@ssi
Perceptual Video Quality Measure (PVQM) [43] and otheystems such as Motion JPEG-2000 as wMdlhsaic Patterns

algorithms from industry [44], [45], [46], [47], [48]. Hower, are visible in block based coding systems and manifest as a
these models also predominantly capture spatial distetio mismatch between the contents of adjacent blocks as a result

the video sequence and fail to do an adequate job in capturm coarse quantizatiorkalse contouringoccurs in smoothly

temporal distortions in video. VOQM considers 3D spatiot-e_ tured regions of a_frame containing gradual de_gra_daifon
el values over a given area. Inadequate quantizaticgldev

temporal blocks of video in computing some features, arm<e! Ve : ) ) .

the only temporal component of the VQM method involve sult in step-like gradations .havmg no phy§|cal coreeiat

frame differences [42]. The extensions of the SSIM index fépe recqnstructed frgmeBIyr Is a loss Of. high frequency

video compute locaspatial SSIM indices at each frame of themforma'uon and detail in video frames. This can occur due to

video sequence and use motion information only as weig mpfeSS"?f”’ ?r z_ats alfby—product_of |rt‘na?e ac_qws_|ctj/kﬂd:ctlve

to combine these local quality measurements into one sin IS€ Maniiests I1Selt as a grainy lexiure in viceo irames.

quality score for the entire video [4], [5]. TetraVQM is & ditive noise arises due to vujeo_acqwsmon and by passag

VQA algorithm that appeared subsequent to early submissi&HrO“gh certain video communication channels.

of this work, that utilizes motion estimation within a VQA ) )

framework, where motion compensated errors are compuféd Temporal Distortions

between the reference and distorted images [7]. Examples of commonly occurring temporal artifacts in
There is a need for improvement in the performancgdeo include motion compensation mismatch, mosquitoaois

of objective quality indices for video. Most of the indicesstationary area fluctuations, ghosting, jerkiness and smea

proposed in the literature have been simple extensionsinf§ [49]. Motion compensation mismatabccurs due to the



IEEE TRANSACTIONS ON IMAGE PROCESSING 4

assumption that all constituents of a macro-block undergo Referen 1 Tes e

identical motion, which might not be true. This is most evitle

around the boundaries of moving objects and appears as Decfnﬁ‘gg;ﬁon

the presence of objects and spatial characteristics theat ar eference e cients

uncorrelated with the depicted scendosquito effectis a

temporal artifact seen primarily as fluctuations in lighes in Motion Spatial MOVIE
. . . . Estimation Computation

smooth regions of the video surrounding high contrast edges

moving objectsStationary area fluctuationslosely resemble T epaion

the mosquito effect in appearance, but are usually visible i _ optica opatel map

textured stationary areas of a sce@hostingappears as a o ap

blurred remnant trailing behind fast moving objects in wide @

sequences. This is a result of deliberate lowpass filterirtigeo

video along the temporal dimension to remove additive noise _ . .

- . Fig. 1. Block diagram of MOVIE index. Flow of the referenceeo through
that may be present in the sourderkinessesults from delays e movie VQA system is color coded in red, while flow of thettegleo is
during the transmission of video over a network where th#own in blue. Both reference and test videos undergo lideaomposition
receiver does not possess enough buffering ability to Cdﬂfe wusing a Gabor filter family. Spatial and temporal quality &irated using

L. . . . the Gabor coefficients from the reference and test videosipdeal quality

the delays.Smearlngls an artifact associated with the non'computation additionally uses reference motion infororgticomputed using
instantaneous exposure time of the acquisition deviceravhene reference Gabor coefficients. Spatial and temporaltguatlices are then
light from multiple points of the moving object at differentcombined to produce the overall MOVIE index.

instants of time are integrated into the recording.

It is important to observe that temporal artifacts suc - q i L id
as motion compensation mismatch, jitter and ghosting al aracteristics an _movemenfcm ormation in a vi €0 seqgen
e captured by a linear spatio-temporal decomposition.

the movement trajectories of pixels in the video sequendae(. , o
Artifacts such as mosquito noise and stationary area fluctua " OUr framework for VQA, a video sequence is filtered

tions introduce a false perception of movement arising froﬁpatlofttjemp_orally_ using a Ifam'lg of bﬁndpassl _Gabl;)r thers
temporal frequencies created in the test video that were Vi qu m;egrlty IS €eva uatel fon the re;u ting bandpass
present in the reference. The perceptual annoyance of thggd@nnes in the spatio-temporal frequency domain. Evidenc
distortions is closely tied to the process of motion pericept indicates that the receptive field profiles of simple cellshie

and motion segmentation that occurs in the human brain Whﬂpmmahan V|su:_;1I cortex are weII_ modeled _by Gabor filters
viewing the distorted video [52]. The Gabor filters that we use in the algorithm we develop

later are separable in the spatial and temporal coordinates
and several studies have shown that neuronal responses in
IV. MOTION TUNED SPATIO-TEMPORAL FRAMEWORK .
FORVIDEO QUALITY ASSESSMENT Area V1 are approxmatgly separable [54], [55], [56]. _Gabpr
filters attain the theoretical lower bound on uncertainty in
In our framework for VQA, separate components for spatighe frequency and spatial variables and thus, visual neuron
and temporal quality are defined. First, the reference astd tgpproximately optimize this uncertainty [52]. In our cortte
videos are decomposed into spatio-temporal bandpass ch@-use of Gabor basis functions guarantees that videorésatu
nels using a Gabor filter family. Spatial quality measureni®n extracted for VQA purposes will be optimally localized.
accomplished by a method loosely inspired by the SSIM indexpyther, the responses of several spatio-temporally abfgar
and the information theoretic methods for IQA [13], [ISKI1 responses can be combined to encode the local speed and
Temporal quality is measured using motion information fromirection of motion of the video sequence [57], [58]. Spatio
the reference video sequence. Finally, the spatial anddeahp temporal Gabor filters have been used in several models of the
quality scores are pooled to obtain an overall video intggriresponse of motion selective neurons in the visual cort@ [5
score known as the MOVIE index [50]. Figure 1 shows a blogsg], [39]. In our implementation of the ideas describedeher
diagram of the MOVIE index and each stage of processing i utilize the algorithm described in [60] that uses the atstp

MOVIE is detailed in the following. of a Gabor filter family to estimate motion. Thus, the same
set of Gabor filtered outputs is used for motion estimatioth an
A. Linear Decomposition for quality computation.

Frequency domain approaches are well suited to the study of* GaPor filtera(i) in three dimensions is the product of a
human perception of video signals and form the backbone GRUSSian window and a complex exponential:
most IQA and VQA systems. Neurons in the visual cortex and . 1 i1 .
— exp (_]UO 1) (1)

the extra-striate cortex are spatial frequency and oriiemta h(i) = ﬁex
selective and simple cells in the visual cortex are known to (2m)3[2]

act more or less as linear filters [51], [52], [53]. In additio wherei = (z,y,t) is a vector denoting a spatio-temporal
a large number of neurons in the striate cortex, as well Exation in the video sequence akf, = (Uy, Vo, Wy) is the
Area MT which is devoted to movement perception, are knowaenter frequency of the Gabor filtét.is the covariance matrix

to be directionally selective; i.e., neurons respond besh t of the Gaussian component of the Gabor filter. The Fourier
stimulus moving in a particular direction. Thus, both splati transform of the Gabor filter is a Gaussian with covariance
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matrix L~ Finally, a Gaussian filter is included at the center of the
( V)T U Gabor structure to capture the low frequencies in the signal
H(u) = exp (_ u— "o (u— 0)) (2) The standard deviation of the Gaussian filter is chosen s$dttha
2 intersects the coarsest scale of bandpass filters at ordastan
deviation.

Here,u = (u,v,w) denotes the spatio-temporal frequency
coordinates.
Our implementation uses separable Gabor filters that ha¥e Spatial MOVIE Index

equal standard deviations along both spatial frequency-coo oyr approach to capturing spatial distortions in the video
dinates and the temporal coordinate. Thhisis a diagonal of the kind described in Section IlI-A is inspired both by the
matrix with equal valued entries along the diagonal. Ouerfilt 55|\ index and the information theoretic indices that have
design is very similar to the filters used in [60]. Howevelyoap developed for IQA [13], [61], [14]. However, we will
our fi!ters have narrower bandwidth and are multi-scale gg using the outputs of thepatio-temporalGabor filters to
described below. accomplish this. Hence, the model described here primarily
All the filters in our Gabor filter bank have constant octavgaptures spatial distortions in the video and at the same, tim
bandwidths. We us@ = 3 scales of filters, witf85 filters at responds to temporal distortions in a limited fashion. W wi
each scale. Figure 2(a) shows iso-surface contours of tige Shence term this part of our model the “Spatial MOVIE Index”,
phase component of the filters tuned to the finest scale in Tt'&‘Ring this to mean that the model primarily captures spatia
resulting filter bank in the frequency domain. The filters afistortions. We explain how the Spatial MOVIE index relates
coarser scales would appear as concentric spheres ingdetghand improves upon prior approaches in Section V.
sphere depicted in Fig. 2(a). We used filters with rotational | et (i) andd(i) denote the reference and distorted videos
symmetry and the spatial spread of the Gabor filters is tP@spectively, wheré = (z,y,t) is a vector denoting a spatio-
same along all axes. The filters have an octave bandwidthtefporal location in the video sequence. The reference and
0.5 octaves, measured at one standard deviation of the Gag@fiorted videos are passed through the Gabor filterbank to
frequency response. The center frequencies of the finel&t Sgihtain bandpass filtered videos. Denote the Gabor filtered

of filters lie on the surface of a sphere in the frequency domajeference video byf(i, k) and the Gabor filtered distorted

whose radius i9).77 radians per sample. Each of these filtergigeo by (i, k), wherek = 1,2,..., K indexes the filters
has a standard deviation af65 pixels along both spatial j5 the Gabor filterbank. Specifically, let = 1,2,...%
coordinates an@.65 frames along the temporal axis. In oUlcorrespond to the finest scale= K41,...,2K the secoPnd

implementation, the Gabor filters were sampled out to a Widffpest scale and so on.
of three standard deviations; so the support of the kerrtels ay quality computations begin locally, using local windew
the finest scale are 15 pixels and 15 frames along the spafiglyf coefficients extracted from each of the Gabor sub-
and temporal axes respectively. The center frequencieseof bands, where the windo® spansN pixels. Consider a pixel
filters at the coarsest scale lie on the surface of a spherejfationi,,. Let £(k) be a vector of dimensiofV, wheref (k)
radius0.357, havea§tandard deviation ®B0 pixels (frames) g composed of theecomplex magnitudef N elements of
and a support 083 pixels (frames). f(i, k) spanned by the windou centered oriy. The Gabor
Nine filters are tuned to a temporal frequency of 0 radiargefficientsf (i, k) are complex, but the vectof§k) are real
per sample corresponding to no motion. The orientations ghd denote the Gabor channel amplitude response. Notite tha
these filters are chosen such that adjacent filters inteegectye have just dropped the dependence on the spatio-temporal
one standard deviation; hence the orientations of thesefiltjocationi for notational convenience by considering a specific
are chosen to be multiples @0° in the range[0°,180°). |ocationi,. If the window B is specified by a set of relative
Seventeen filters are tuned to horizontal or vertical speédsindices, therf(k) = { f(io+m, k), m € B}. Similar definition
s = 1/+/3 pixels per frame and the temporal center frequengyplies forg(k). To index each element df(k), we use the
of each of these filters is given by ——=— radians per sample, notationf (k) = [f1(k), f2(k), . .., fn (k)]Z.
wherep is the radius of the sphere that the filters lie on [60]. Contrast masking is a property of human vision that refers to
Again, the orientations are chosen such that adjacentsfiltghe reduction in visibility of a signal component (targetiecto
intersect at one standard deviation and the orientatiotieese e presence of another signal component of similar frecyien
filters are multiples o22° in the range[0°,360°). The last and orientation (masker) in a local spatial neighborhod].[6
nine filters are tuned to horizontal or vertical velocitigs3 |n the context of VQA, the presence of large signal energy
pixels per frame. The orientations of these filters are el jn the image content (masker) masks the visibility of noise o
of 40° in the range0°, 360°). distortions (target) in these regions. Contrast maskirsgeen
Figure 2(b) shows a slice of the sine phase componentrbdeled using a mechanism of contrast gain control thahofte
the Gabor filters along the plane of zero temporal frequengykes the form of a divisive normalization [63], [25], [64].
(w = 0) and shows the three scales of filters with constamodels of contrast gain control using divisive normaligati
octave bandwidths. Figure 2(c) shows a slice of the sinegohagise in psychophysical literature from studies of the tinear
component of the Gabor filters along the plane of zero vértiagsponse properties of neurons in the primary visual cortex
spatial frequency. Filters along the three radial linestared [65], [66], [67] and have also been shown to be well-suited fo
to the three different speeds @, -, v/3) pixels per frame. efficient encoding of natural signals by the visual syste.[6
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Fig. 2. (a) Geometry of the Gabor filterbank in the frequenoyndin. The figure shows iso-surface contours of all Gabarilat the finest scale. The two
horizontal axes denote the spatial frequency coordinatdste vertical axis denotes temporal frequency. (b) A ditéhe Gabor filter bank along the plane
of zero temporal frequency. The x-axis denotes horizomatial frequency and the y-axis denotes vertical spat&jufency. (c) A slice of the Gabor filter
bank along the plane of zero vertical spatial frequency. ¥agis denotes horizontal spatial frequency and the y-d&isotes temporal frequency.

The Spatial MOVIE index attempts to capture this propergnd 1:
of human vision and we define the spatial error from each

subband response using: Es(io, k) = %% i {fy;é[k()k)—fgk)]z
N 2 - { k Zi:[:l fah)® | & 21]:[:1 gn(k)*
Bs(io, k) = 21 > [M] @) 2\ M)+ i k) + €]

M(k)+ Cy

-9 % Zg:l fn(k)gn(k)
[M (k) + C1]?

where M (k) is defined as 15 Sonly fu(k)? N & Sony gn(k)? (5)
— 2| [M(k)+Ci)? [M (k) + C1]?
M) 1?
< | ) ©

N N
w(k) = max |\ SRR |+ S lo b | @

n=1 n=1 (5) uses the fact thaf,, (k) and g,,(k) are non-negative. (6)
follows from the definition ofM (k). Therefore Es(ig, k) lies
between 0 and 1. Observe that the spatial error in (3) is xact
C; is a small positive constant that is included to preveftwhen the reference and distorted videos are identical.
numerical instability when the denominator of (3) goes to 0. The Gaussian filter responds to the mean intensity or the
This can happen in smooth regions of the video (for instand@C component of the two images. A spatial error index can
smooth backgrounds, sky, smooth object surfaces and so &i¢) defined using the output of the Gaussian filter operating at
where most of the bandpass Gabor outputs are close toD&. Let f(DC) and g(DC) denote vectors of dimensioN
Additionally, since the divisive normalization in (3) is mieled extracted aiy from the output of the Gaussian filter operating
within a sub-band, the denominator in (3) can go to zemn the reference and test videos respectively, using the sam
for certain sub-bands in sinusoid-like image regions, higindow B. f(DC) andg(DC) are low pass filtered versions
frequency sub-bands of edge regions and so on. of the two videos. We first remove the effect of the mean

In summary, the outputs of the Gabor filter-bank represe'rq{ens'ty fro_m each video before error computa_tlon, sifti t
ts as a bias to the low frequencies present in the reference

a decomposm_o_n of the refer_ence and test video mto_pam;dp%%d distorted images that are captured by the Gaussian filter
channels. Individual Gabor filters respond to a specific €an

of spatio-temporal frequencies and orientations in thew;d We estimate the mean as the average of the Gaussian filtered

and any differences in the spectral content of the referen%%tpm'

and distorted videos are captured by the Gabor outputs. 1 Y 1 X

Spatial MOVIE then uses a divisive normalization approach pe= Z fn(DC), g = N Zgn(DC) (7)

to capture contrast masking wherein the visibility of esror n=1 n=1

between the reference and distorted imadés)(and g(k)) An error index for the DC sub-band is then computed in a

are inhibited divisively byM (k), which is a local energy similar fashion as the Gabor sub-bands:
measure computed from the reference and distorted subsband N 9
! 3 {Ifn(DC) — pg| — 19 (DC) — ugl}
n=1

(3) detects primarily spatial distortions in the video suh Eoclio) =
Mpc + Cs

1
blur, ringing, false contouring, blocking, noise and so on. 2N
The error indexEs(ip, k) is bounded and lies between 0 (8)
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whereMp¢ is defined as a(x — At,y — ¢t). Then,B(u, v, w), the Fourier transform of
b(x,y,t), lies entirely within a plane in the frequency domain
[8]. This plane is defined by:

N

1
Mpc = max NZUn(DC)—Mle,
n=1 Au+opv+w=0 (12)

1 & Moreover, the magnitudes of the spatial frequencies do not
N > 19n(DC) — pg> | (9) change but are simply sheared:
n=1

A, v) if u+¢v+w=0

13
0 otherwise (13)

C, is a constant added to prevent numerical instability when  B(u,v,w) = {
the denominator of (8) goes to 0. This can happen in smooth

image regions since the DC sub-band is close to constant "Epatial frequencies in the video signal provide informa-

thel.\s_e reglpnhs.f q if thafie (i) also lies b tion about the spatial characteristics of objects in theewid
tis straightforward to verify thafipc(io) also lies between sequence such as orientation, texture, sharpness and so on.

0 and 1. The spatial error indices computed from all of t - ; ; ;
. anslational motion shears these spatial frequenciestate
Gabor sub-bands and the Gaussian sub-band can then0 b 9

led btai index for | 4 . Entation along the temporal frequency dimension withou
pooled to obtain an error index for locatidg using affecting the magnitudes of the spatial frequencies. Taans

. Zszl Es(io, k) + Epcl(io) tional motion has an easily accessible representationén th
Eg(io) = K+1 (10) frequency domain and these ideas have been used to build
Finally, we convert the error index to a quality index aEnOtlon estimation algorithms for V'de9 (8], [5.7]’ [58].
locationi, using Assume that short segments of video without any scene
changes consist of local image patches undergoing tréorslat

Qs(ip) =1— Es(ip) (11) This is quite reasonable and is commonly used in video
encoders that use motion compensation. This model can be
C. Motion Estimation used locally to describe video sequences, since translation

To compute temporal quality. motion information is Comi_s a linear approximation to more complex types of motion.
P P quanty, Under this assumption, the reference and test vid¢sand

puted from the reference video sequence in the form of dptic {) consist of local image patches (such @, y) in the
flow fields. The same set of Gabor filters used to compute t ge p oL Y .
eXample above) translating to create spatio-temporalovide

qutlal quality component descnbe_d above is _used to (aib:ylﬁatches (such dga, y,1)). Observe that (12) and (13) assume
optical flow from the reference video. Our implementation _. . . . Ou
infinite translation of the image patches [8], which is not

uses the successful Fleet and Jepson [60] algorithm that use . . .
? .. “practical. In actual video sequences, local spectra willb®
the phaseof the complex Gabor outputs for motion estimatior].

. ; . If’mes, but will in fact be the convolution of (13) with the
Notice that we only used the complex magnitude in the spat : : ) . .
ourier transform of a truncation window (a sinc function).

quality comput.a'uon and, as it wrns out, we only_ use tt]f\lowever, the rest of our development will assume infinite
complex magnitudes to evaluate the temporal quality. As an

L o ) . ; ranslation and it will be clear as we proceed that this will
additional contribution, we have realized a multi-scalesian L
not significantly affect the development.

of the Fleet and Jepson algorithm, which we briefly describe . .
in the Appendix. Th_e optical fI_ow computation on _the rc_aference_ sequence
provides an estimate of the local orientation of this sgctr
plane at every pixel of the video. Assume that the motion
D. Temporal MOVIE Index of each pixel in the distorted video sequemectlymatches
The spatio-temporal Gabor decompositions of the referertte motion of the corresponding pixel in the reference. We
and test video sequences, and the optical flow field computeduld then expect that the filters that lie along the motion
from the reference videousing the outputs of the Gaborplane orientation identified from the reference are aaat
filters can be used to estimate the temporal video qualityy the distorted video and that the outputs of all Gabor
By measuring video quality along the motion trajectories, wilters that lie away from this spectral plane are negligible
expect to be able to account for the effect of distortions ¢fowever, when temporal artifacts are present, the motion in
the type described in Section IlI-B. Once again, the modtle reference and distorted video sequences do not match.
described here primarily captures temporal distortionthin This situation happens, for example, in motion compensatio
video, while responding to spatial distortions in a limitednismatches, where background pixels that are static in the
fashion. We hence call this stage of our model the “Tempornaference move with the objects in the distorted video due to
Movie Index”. block motion estimation. Another example is ghosting, weher
First, we discuss how translational motion manifests fitsedtatic pixels surrounding moving objects move in the distbr
in the frequency domain. Let(z,y) denote an image patchvideo due to temporal low-pass filtering. Other examples
and let A(u,v) denote its Fourier transform. Assuming thatre mosquito noise and stationary area fluctuations, where
this patch undergoes translation with a velodity$] where the visual appearance of motion is created from temporal
A and¢ denote velocities along theandy directions respec- frequencies in the distorted video that were not present in
tively, the resulting video sequence is given by, y,t) = the reference. All of these artifacts shift the spectrumhef t
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distorted video to lie along a different orientation tham ththrough the corresponding Gabor filter at all scatégk) = 1
reference. for this filter and the corresponding filters at other scalgs.
The motion vectors from the reference can be used tiwe center frequency of a Gabor filtedies along a plane that
construct responses from the reference and distorted Gapasses through the origin and is perpendicular to the spectr
outputs that are tuned to the speed and direction of moy#ane of the reference video, thei) (k) = 0.
ment of the reference. This is accomplished by computing aSince we want the weights to be excitatory and inhibitory,
weighted sum of the Gabor outputs, where the weight assigned shift all the weights at each scale to be zero-mean [58].
to each individual filter is determined by its distance frdie t Finally, to make the weights insensitive to the filter geamyet
spectral plane of the reference video. Filters that lie woge that was chosen, we normalize them so that the maximum
to the spectral plane are assigned positive excitatory W®ig weight is 1. This ensures that the maximum weight remains 1
Filters that lie away from the plane are assigned negatiireespective of whether the spectral plane exactly intassthe
inhibitory weights. This achieves two objectives. Firdtet center frequencies of the Gabor filters. Although the weight
resulting response is tuned to the movement in the refererzere invariant to the filter geometry, observe that due to the
video. In other words, a strong response is obtained when Baussian falloff in the frequency response of the Gaborsilte
input video has a motion that is equal to the reference vidége Gabor responses themselves are not insensitive to the
signal. Additionally, any deviation from the reference oot filter geometry. We hence have a weight vectefk), k =
is penalized due to the inhibitory weight assignment. Ameerr1, 2, ..., K with elements:
computed between these motion tuned responses then serves
to evaluate temporal video integrity. The weighting praged an(k) = oy (k) — pia E—=1.9 ..
is detailed in the following. max,_; o . s [0, (k) — pa]’ B
Let X be a vector of dimensiofN, where is composed of (17)
N elements of the horizontal component of the flow field of thehere
reference sequence spanned by the windbeentered orip. Z;ﬁ o, (k)
Similarly, ¢ represents the vertical component of flow. Then, Ha = % (18)
using (12), the spectrum of the reference video lies along: P

Similar definitions apply for other scales.
Motion tuned responses from the reference and distorted
Define a sequence of distance vec®(k), k = 1,2,..., K video sequences may be constructed using these weights.
of dimension N. Each element of this vector denotes th®efine N-vectorsv™ andv? using:
distance of the center frequency of tié" filter from the

A+ v +w=0n=1,2,...N (14)

plane containing the spectrum of the reference video ina . _ (fa(DC) — p1e)? + S| (k) f(K)? (19)
window centered oni, extracted usingB. Let Uy(k) = " (fa(DC) = )2 + Sy fu(k)? + Cs
[uo(k),vo(k),wo(k)],k = 1,2,..., K represent the center

frequencies of all the Gabor filters. Thaf(k) represents the vd = (9:(DC) = pg)® + Ty 0 (k)gu(k)? (20)
perpendicular distance of a point from a plane defined by (14) (gn(DC) — p1g)2 + Y4y gn (k)2 + Cs

in a 3-dimensional space and is given by: The constan€’; is added to prevent numerical instability when

U & the denominators of (19) or (20) go to 0. This can happen in
on (k) = Antio (k) n20(k) + wo(k) n=12... N smooth image regions
VAL + o+ 1 ge Tegions.

(15) The vectorv” represents the response of the reference
video to a mechanism that is tunedits own motion. If the
We now design a set of weights based on these distangamcess of motion estimation was perfect and there wastafini
Our objective is to assign the filters that intersect the spkc translation resulting in a perfect plane, every element /of
plane to have the maximum weight of all filters. The distanagould be close to 1. The vectar? represents the response
of the center frequencies of these filters from the specti@ the distorted video to a mechanism that is tuned to the

plane is the minimum of all filters. First, define’(k),k = motion of thereference videoThus, any deviation between
1,2,..., K using: the reference and distorted video motions are captured®y (1
p(k) — 6,(k) and (20).
ank = Tk}n (16) The denominator terms in (19) and (20) ensure that temporal

quality measurement is relatively insensitive to spatiatad-
wherep(k) denotes the radius of the sphere along which thi®ns, thus avoiding redundancy in the spatial and temporal
center frequency of the!” filter lies in the frequency domain. quality measurements. For example, in the case of blur, we
Figure 3 illustrates the geometrical computation speciiied would expect that the same Gabor filters are activated by
(16). the reference and distorted videos. However, the respdinse o
From the geometry of the Gabor filterbank, it is clear thdahe finest scale filters are attenuated in the distorted video
0 < o, (k) < 1Vn, k since the spectral plane specified by (14)ompared to the reference. Since each video is normalized
always passes through the origin. If the spectral planeegasby its own activity across all filters, the resulting respois
through the center frequency of a Gabor filkethen it passes not very sensitive to spatial distortions. Instead, theperal
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the strategy that humans use to evaluate quality based on the
perception of an entire video sequence is not known.

We explored different pooling strategies and found that use
of the the mean of the MOVIE quality maps as an indicator
of the overall visual quality of the video suffered from ant
drawbacks. Quality scores assigned to videos that contain a
lot of textures, edges, moving objects and so on using the
mean of the quality map as the visual quality predictor is
consistently lower than quality scores computed for vidbas
contain smooth regions (backgrounds, objects). This ialmz
_al ‘ ‘ ‘ ‘ ‘ ‘ ‘ | many distortions such as compression alter the appearance

* 2 1 0o 1 2z 3 of textures and other busy regions of the video much more
Fig. 3. A slice of the Gabor filters and the spectral plane shaw2 Significantly than the smooth regions of the video. However,

dimensions. The horizontal axis denotes horizontal spliguency and the people tend to assign poor quality scores even if only pdrts o

vertical axis denotes temporal frequency. Each circleesgmts a Gabor filter the video appear to be distorted
and the centers of each filter are also marked. The radifsthe single scale . PP o .
of Gabor filters and the distandeof the center frequency of one Gabor filter The variance of the quality scores is also perceptually

from the spectral plane are marked. relevant. Indeed, a higher variance indicates a broadeadpr
of both high and low quality regions in the video. Since

lower quality regions affect the perception of video qualit

mechanism responds strongly to distortions where the origfgre so than do high quality regions, larger variances in the
tation of the spectral planes of the reference and distortgdyjity scores are indicative of lower perceptual qualltyis

-2t

sequences differ. is intuitively similar to pooling strategies based on peties,
Define a temporal error index using wherein the poorest percentile of the quality scores haea be
N used to determine the overall quality [42]. A ratio of the
Er(ig) = 1 Z(y; — )2 (21) standard deviation to the mean is often used in statistids an
n—1 is known as the coefficient of variation. We have found that

The error index in (21) is also exactly 0 when the referen Qis moment rafio is a good predictor of the perceptual error
?tween the reference and test videos.

and test images are identical. Finally, we convert the err i o ]
index into a quality index using Define frame levekrror indices for both spatial and tem-

poral components of MOVIE at a frante using:
Qr(io) =1 - Er(io) (22)
FEs(t;) = —2swti) ey = Z9nlewt) - (o3)
NQs(z,y,tj) NQT(m,y,tj)

E. Pooling Strategy

The output of the spatial and temporal quality computation Use of the coefficient of variation in pooling, with the
stages is two videos - a spatial quality vidéds (i) that standard deviation appearing in the numerators of (23)jtees
represents the spatial quality at every pixel of the viddd frame level error indices, as opposed to frame level guali
sequence and a similar video for temporal quality denoted iiglices. However, this ensures that the frame level MOVIE
Qr(i). The MOVIE index combines these local quality indice#dices do not suffer from numerical instability issues doe
into a single score for the entire video. Consider a set ¥ery small values appearing in the denominator. The frame
specific time instant$ = {to,¢;,...,t,} which corresponds level error indices in (23) are exactly zero when the refegen
to frames in the spatial and temporal quality videos. Wand distorted videos are identical, sinés(z,y,t;) = 1
refer to these frames of the quality vide@3g(z,y,t,) and for all z,y. The error indices increase whenever the standard
Qr(z,y,to) for instance, as “quality maps”. deviation of the MOVIE quality scores increases or the mean

To obtain a single score for the entire video using the locgf the MOVIE quality scores decreases, which is desirable.
quality scores obtained at each pixel, several approacius sNotice that the standard deviation term in the coefficient of
as probability summation using psychometric functiong)[26variation captures the spread in quality that occurs when
[24], mean of the quality map [13], weighted summation [4)ideos contain smooth regions, thus avoiding the drawback
percentiles [42] and so on have been proposed. In geneeal, ® using just the mean.
distribution of the quality scores depends on the naturdeft Video quality is fairly uniform over the duration of the vide
scene content and the distortions. For example, distatiemd sequence (for instance, compression distortions behdse th
to occur more in “high activity” areas of the video sequencegay) in the VQEG FRTV Phase 1 database that we use to
such as edges, textures and boundaries of moving objeetgluate MOVIE in Section VI. We adopted the simple pooling
Similarly, certain distortions such as additive noise etfftne strategy of using the mean of the frame level descriptors for
entire video, while other distortions such as compression mporal pooling, although more advanced temporal pooling
packet loss in network transmission affect specific regimins strategies may be investigated for future improvementfief t
the video. Selecting a pooling strategy is not an easy taslesi MOVIE index. The Spatial MOVIE index is defined as the



IEEE TRANSACTIONS ON IMAGE PROCESSING 10

average of these frame level descriptors. magnitude as the quantities in the denominators of (3), (8)
1T and (19) that they are intended to stabilize. We selected the
Spatial MOVIE= — ZFES(tj) (24) constants to beC; = 0.1, C; = 1 and C3 = 100. C1,C2
= are chosen differently since the Gaussian filter is lowpask a

groduces larger responses than bandpass Gabor filters. This
iS intuitively reasonable from the power spectral progsrof
natural images [70]C}5 is larger because it is intended to sta-
Bilize (19) and (20), where the denominator terms corredpon
to sums of the squares of all Gabor coefficients. We found that
MOVIE is not very sensitive to the choice of constant as long
(25) as the constant used was not too small. Using small values for
the constants leads to incorrect predictions of poor dealit

We adopt the simple strategy of defining the overall MOVI%T _sr_nooth zjegllonsh(_)fhthde videos due :]O Fhe ||nstab|I|ty_ of the
index for a video using the product of the Spatial and TeMporat'Vlslve mo -e S, whic ogs not match visual perception.
MOVIE indices. This causes the MOVIE index to respond Figure 4 illustrates quality maps generated by MOVIE on
equally strongly to percentage changes in either the Spaff€ Of the videos in the VQEG FRTV Phase 1 database. The
or Temporal MOVIE indices and makes MOVIE relativelyf€mporal quality map has been logarithmically compressed f
insensitive to the range of values occupied by the Spatil aWsibility. First of all, it is evident that the kind of distbons

Temporal MOVIE indices. The MOVIE index is defined as: c@Ptured by the spatial and temporal maps is different. The
test video suffers from significant blurring and the spatial

MOVIE = Spatial MOVIE x Temporal MOVIE  (26) quality map clearly reflects the loss of quality due to blur.
The temporal quality map, however, shows poor quality along
F. Implementation Details and Examples edges of objects such as the harp where motion compensation

W di impl tation details of MOVI ismatches are evident. Of course, the spatial and temporal
€ nhowdiscuss some implementation details ot ., guality values are not completely independent. This is beea
To reduce computation, instead of filtering the entire vid

e spatial computation uses the outputssphtio-temporal

EeqL:c_eche with the fg}holf Gaborffltl';]ers,.;ve centered the abor filters and the consta@t in (19) and (20) permits the
or filters on every rame of the video sequence an e&‘nporal computation to respond to blur.

computed quality maps for only these frames. We selecte
multiples of 16 since our coarsest scale filters span 33 feame

and using multiples of 16 ensures reasonable overlap in the

computation along the temporal dimension. The windBw V. RELATION TO EXISTING MODELS

was chosen to be ax 7 window. To avoid blocking artifacts

caused by a square window, we used a Gaussian window offhe MOVIE index has some interesting relationships to
standard deviation 1 sampled to a size7ok 7 [13]. If we spatial IQA indices and to visual perception.

denote the Gaussian window usiyg= {1, 72, ..., yn } With

SN 4 =1, (3) and (4) are modified as:

The range of values of the Temporal MOVIE scores |
smaller than that of the spatial scores, due to the largsidéi
normalization in (19) and (20). To offset this effect, we us
the square root of the temporal scores.

Temporal MOVIE=

N

, 1 (k) — g.(k) ]
Es(io k) = 5 > [%} (27)

n=1

A. Spatial MOVIE

The spatial quality in (3) is closely related to contrastngai
control models that use divisive normalization to model the
~ ~ response properties of neurons in the primary visual cortex
M (k) = max Z%m(,{”g’ Z mlgn(B)2 | (28) [65], [67], [66]. Several HVS m_odeling bas_eq IQA algori_thms
— — account for contrast masking in human vision using divisive
o o _normalization models of contrast gain control [25], [644].
Similar modifications apply for (7), (8) and (9). (21) isadditionally, the spatial quality in (3) is closely relatdd

modified as: the structure term of the SSIM index and the information
N theoretic basis of IQA [69]. Indeed, in previous work, we
Er(io) = Z V(v — v)? (29) have established that the Gaussian Scale Mixture (GSM)émag

n=1

model assumption used by the information theoretic indices

There are three parameters in MOVIE;,C, andCs. The made them equivalent to applying the structure term of the
role of these constants have been described in detail in [6§IM index in a sub-band domain. Spatial MOVIE falls out
The divisive nature of the masking model in (3) and (19)aturally from our analysis in [69] and represents an impcbv
makes them extremely sensitive to regions of low signalgnerversion of these metrics.
in the video sequences. The constants serve to stabilize th&Ve also discuss the relation of both SSIM and IFC to
computation in these regions and are included in most g&isicontrast masking models in human vision based IQA systems
normalization models [65], [67], [24], [64], [68]. We chosén [69]. The structure term of the SSIM index applied between
the parameter€’;, Cy; and C3 to be of the same order of sub-band coefficients (without the stabilizing constant an
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Fig. 4. lllustration of the performance of the MOVIE indexofTleft - frame from reference video, Top right - correspoigdirame from distorted video,
Bottom left - logarithmically compressed temporal qualitgp, Bottom right - spatial quality map. Bright regions espond to regions of poor quality.

assuming zero mean sub-band coefficients) is given by [69%dequately capture blur.

9 However, our model is differs from mutual masking models
11 & In(k) gn (k) such as [26], where the minimum of the masking thresholds
2N Z L N 5 /1N 5 computed from the reference and distorted images is used.
n=1 \/N 2 n=1 [fn(F)| \/ﬁ > ne1 lgn(K)] Using a minimum of the masking thresholds is well suited

(30) for determining whether an observer can distinguish betwee

Divisive normalization is performed in (30), wherein di{h€ reference and test images, as in [26]. However, MOVIE is
visive inhibition is modeled within the sub-band, while thdtended to predict the annoyance of supra-thresholdbleisi
divisive inhibition pool (in the denominator of (30)) is cem distortions. Using the maximum of the two masking threskold
posed of coefficients from the same sub-band but at adjackht(3) causes the spatial quality index to saturate in the
spatial locations. The divisive inhibition pool and divisi Presence of severe distortions (loss of textures, severe bl
normalization model used here differ from other contragt gaS€Vere ringing and so on). This prevents over-prediction of
control models. For example, Lubin models divisive inhidsit €OrS in these regions. An additional advantage of usieg th
within the same sub-band, while the Teo and Watson mod8}éximum is that it guarantees bounded quality scores.
seek to account for cross-channel inhibition [24], [25K][6

A chief distinction between the divisive normalization irB- Témporal MOVIE
the SSIM index in (30) and the Spatial MOVIE index in (3) Motion perception is a complex procedure involving low-
is the fact that we have chosen to utilize both the refereniewel and high-level processing. Although motion procegsi
and distorted coefficients to compute the masking term. iEhisbegins in the striate cortex (Area V1), Area MT/V5 in the
described as “mutual masking” in the literature [26]. M&ski extra-striate cortex is known to play a significant role in
the reference and test image patches using a measure of th@vement processing. Several papers in psychophysics and
own signal energy in (30) (“self masking”) is not an effeetiv vision science study the properties of neurons in thesesarea
measure of blur in images and videos. Blur manifests itself an primates such as the macaque monkey. The properties
attenuation of certain sub-bands of the reference image afdneurons in Area V1 that project to Area MT have been
it is easily seen that the self masking model in (30) does nwtll studied [35]. This study reveals that cells in V1 that
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project to MT may be regarded as local motion energy filters 80

that are spatio-temporally separable and tuned to a specific 700

frequency and orientation (such as the Gabor filters used 60-

here). Area MT receives directional information from V1 and T ]
performs more complex computations using the preliminary @ LR

motion information computed by V1 neurons [35]. A subset % s

of neurons in Area MT have been shown to ¢meed tuned
where the speed tuning of the neuron is independent of the
spatial frequency of the stimulus [39], [71]. Models for Buc
speed tuned neurons have been constructed by combining the
outputs of a set of V1 cells whose orientation is consistetit w

the desired velocity [58]. Our temporal quality computatio
bears several similarities with the neuronal model of MT in

1 15 2 25 3 35 4

[58], [72]. Similarities include the weighting proceduraded 80
on the distance between the linear filters and the motioreplan 700
and the normalization of weighted responses. The models in 60k

[58], [72] are rather elaborate, physiologically plausibiech-
anisms designed to match the properties of visual neurons.
Our model is designed from an engineering standpoint of
capturing distortions in videos. Differences between the t
models include the choice of linear decomposition and our
derivation of analytic expressions for the weights based on 10
filter geometry. Interestingly, the models of Area MT counstr
neurons tuned to different speeds and use these responses to -1 o5 5 G 5
determine the speed of the stimulus. Our model computes the hgg)v'Eswre
speed of motion using the Fleet and Jepson algorithm and
ther} constructs speed tuned responses based on the Com%eg. Scatter plot of the subjective DMOS scores againstVMOscores
motion. on the VQEG database. Each point on the plot represents ciee v the

To the best of our knowledge, none of the existing VQAatabase. The best fitting logistic function used for noedr regression is

. . . also shown. (a) On all sequences in the VQEG database (b) éfitétting

algorithms attempt to model the properties of neurons iIrRArg ", imated videos.
MT despite the availability of such models in the vision
research community. Our discussion here shows that our pro-
posed VQA framework can match visual perception of videoinear Correlation Coefficient (LCC) after non-linear regr
better, since it integrates concepts from motion percaptio sion and the Outlier Ratio (OR). We used the same logistic
function specified in [73] to fit the model predictions to the
subjective data. PSNR provides a baseline for comparison
of VQA models. Ten leading VQA models were tested by

We tested our algorithm on the VQEG FRTV Phase the VQEG in its Phase 1 study including a model from
database [73] since this is the largest publicly availab@AV NTIA that was a precursor to VQM, as well as models from
database to date. Although the VQEG has completed andNiASA, Sarnoff Corporation, KDD and EPFL [73]. Proponent
in the process of conducting several other studies on vide8 (Swisscom) was the best performing model of these ten
quality, the videos from these subsequent studies haveseot bmodels tested by the VQEG [73]. SSIM (without weighting)
made public due to licensing and copyright issues [74]. Sinecefers to a frame-by-frame application of the SSIM index
most of the videos in the VQEG FRTV Phase 1 database ahat was proposed for video in [4]. SSIM (weighting) refers
interlaced, our algorithm runs on just one field of the irtegld to the model in [4] that incorporated rudimentary motion
video. We ran our algorithm on the temporally earlier fielthformation as weights for different regions of the video
for all sequences. We ignore the color component of tequence. Speed SSIM refers to the VQA algorithm in [5]
video sequences, although color might represent a directidiat incorporates a model of human visual speed perception
for future improvements of MOVIE. The VQEG databaséo design spatiotemporal weighting factors that are used to
contains 20 reference sequences and 16 distorted versions/eight local SSIM indices in the pooling stage.
each reference, for a total of 320 videos. Two distortions The Root Mean Squared Error (RMSE) between subjective
types in the VQEG database (HRC 8 and 9) contain twszores and MOVIE scores after non-linear regression on the
different subjective scores assigned by subjects correpg entire VQEG database is 8.76. Outliers are defined by the
to whether these sequences were viewed along with “high” UYQEG as points for which the absolute error between the
“low” quality videos [73]. We used the scores assigned in tteBMOS score and model prediction is larger than twice the
“low” quality regime as the subjective scores for these uile standard deviation of the DMOS score and the outlier ratio

Table | show the performance of MOVIE in terms of thés defined as the ratio of the number of outlier videos to
Spearman Rank Order Correlation Coefficient (SROCC), titlee total number of videos [73]. A more standard way to
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- . . . - . Prediction Model SROCC | LCC OR
define puthers is using the_three sigma rule, where outliers Peak Signal to Noise Rafid_ 0.786 | 0779 | 0.678
are defined as points for which the absolute error between the Proponent P8 (Swisscom) 0.803 | 0.827 | 0.578
DMOS score and model prediction is larger than three times SSIM (without weighting) | 0.788 | 0.820 | 0.597
the standard deviation of the DMOS scores [75]. Use of the SSIM (weighting) 0812 | 0.849 | 0.578
h i I tees that the probability that atpoin Spatial MOVIE 0733 | 0.7 | 0.69%
three sigma rule guaran probabiiity P Temporal MOVIE 0.816_| 0.801 | 0.647
lies outside the range of three standard deviations 3% MOVIE 0.833 | 0.821 | 0.644
assuming that the errors are normally distributed. Theieutl TABLE |
ratio for MOVIE using the three sigma rule 5488 on the COMPARISON OF THE PERFORMANCE OV QA ALGORITHMS USING
entire VQEG database. SROCC, LCCaND OR.

The VQEG database contains 4 sequences that are animated
(sources 4,6,16 and 17). Animated videos are quite distinct

from natural videos and often contain perfectly smooth and Prediction Model SROCC| LCC | OR | RMSE

; PSNR 0.739 | 0.718 | 0.699 | 10.968
consta_mt regions, perfect step eo!ges, text and so on tldatsel SSIV (Without weilghting) | 0.802 | 0.810 | 0.633 | 9.245
occur in na_tural images. Natural |mageslha.ve _several clegirac Spatial MOVIE 0825 | 0.830 | 0.656 | 8.803
istic statistical properties such as self-similarity asrscales, Temporal MOVIE 0.835 | 0.825| 0.621| 8.902
heavy tailed wavelet marginal distributions and so on [70], MOVIE 0.860 | 0.858 | 0.656 | 8.093
[76], that do not occur in synthetic videos of these types. TABLE II

Although our model does not explicitly assume any statitic COMPARISON OF THE PERFORMANCE ON QA ALGORITHMS AFTER
9 p y y . OMITTING THE ANIMATION SEQUENCES USINGSROCC, LCC, ORAND

model for the images or V|deO_Sa our spatial quality model {8\sg. PSNRaND SSIM (WITHOUT WEIGHTING) ARE COMPUTED USING
closely related to the IFC, which assumes that the referengsLy THE LUMINANCE COMPONENT OF THE VIDEO IN THIS TABLE FOR A

images are the output of a natural scene statistical mo8g! [6 FAIR GOMPARISON WITHMOVIE.

Several aspects of our VQA model such as the choice of Gabor

filters, scale invariant processing of the Gabor sub-bands a

divisive normalization in the spatial and temporal quatiom-

putation are implicitly geared toward natural videos. ledle reported performance of the VQEG proponents is from [73],
it has been suggested that the divisive normalization that\here the proponents did not have access to the VQEG
used in both Spatial and Temporal MOVIE results in efficierftatabase. The performance of some of these algorithms have
encoding, since it reduces the statistical dependenciats theen improved since the publication of the study in 2000.[73]
are present when natural images are decomposed using liné@M from NTIA is the only publicly available algorithm of
filters [68]. Hence, the divisive normalization in MOVIE carthe ten proponents in the study. However, since VQM was
be interpreted as a dual of natural scene statistical nmuglelitrained using the VQEG data, we are unable to report the
A further discussion of the relation between natural scef@rformance of VQM on the VQEG dataset [42]. None of
statistics and the SSIM and IFC I1QA techniques can be fouffte parameters of the MOVIE index were trained using the
in [69] The presence of text in three of these animations \éQEG data. The results in Tables | and Il show the Competitive
further cause for concern, since the subjective perceptfonpPerformance of MOVIE with other leading VQA techniques
these videos might have been influenced by the readabilitygfose performance has been reported on the VQEG dataset
the text in the distorted video. in the eight years since the study.

We also present performance indices of our VQA model The performance of Spatial MOVIE is poorer than that of
for only the 16 natural videos and their distorted versions the Temporal MOVIE index, which powerfully illustrates the
total of 256 videos) in the VQEG database in Table II. wénportance of capturing and assessing temporal videordisto
present these results in a separate table since these rmumiiis. Using both in conjunction improves over using either
are not directly comparable against the reported perfocmarpeparately. It is also seen from Table Il that the perforreanc
of other quality models on all the videos in the databaseleTat®f MOVIE is considerably better on just the natural videos in
Il also shows the performance of PSNR and SSIM (withotfte VQEG database. The performance of MOVIE in Table
weighting) on the same set of natural videos in the VQEGIs particularly impressive because it does not use color
database. For a fair comparison with MOVIE, we used onif)formation and uses only one field of the interlaced video
the luminance component of the video to compute PSNR af@duence.

SSIM (without weighting) on these natural videos. Note that

the performance of PSNR and SSIM is slightly worse in Table VII. CONCLUSIONS AND FUTURE WORK

[l than on the entire dataset as reported in Table I. Theayutli We have introduced a new, motion-based paradigm for
ratio for MOVIE on only the natural videos is 0.461 at thre& QA that successfully captures temporal distortions ad asel
standard deviations. spatial distortions. The performance of the resulting atgm,

Scatter plots of the model prediction and DMOS valueknown as MOVIE, bears out the underlying philosophy that
along with the best fitting logistic function, for the MOVIEsuch distortions contribute significantly to the perceptaf
index are shown in Fig. 5 on the entire VQEG database audieo quality, and is in agreement with physiological firghn
after omitting animations. An obvious avenue for improving MOVIE that we wish to

It is clear that the MOVIE index is competitive with otherinvestigate is the inclusion of color information. Additilly,
leading algorithms on the VQEG database. Note that tkieere is a need for more diverse publicly available databate
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reference videos, distorted videos, and statisticallypiiant orientation. The Fleet and Jepson algorithm computes norma
subjective scores taken under carefully controlled measuvelocity estimates at each pixel for each Gabor filter. Given
ment conditions to enable improved verification and testirthe normal velocities from the different Gabor outputspaéir
of VQA algorithms. Such a database will be of great valueelocity model is fit to each local region using a least sgsiare
to the VQA research community, particularly in view of theriterion to obtain a 2D velocity estimate at each pixel @& th
fact that the videos from recent VQEG studies (including thedeo sequence. A residual error in the least squares soluti
VQEG FRTV-Phase 2 study and the Multimedia study) are nigtalso obtained at this stage. See [60], [82] for furtheailiet
being made public [74]. Toward this end, we are creating suchThe original Fleet and Jepson algorithm uses just a single
a database of videos that will complement the existing LIVEcale of filters. We found that using a single scale of filters
Image Quality Database [77] and which seeks to improve thas not sufficient, since optical flow was not computed in fast
accessibility and diversity of such data. The upcoming LIVEoving regions of the several video sequences due to tefnpora
Video Quality Database will be described in future reports. aliasing [60], [57]. We hence used 3 scales of filters to
Lastly, there naturally remains much open field for imeompute motion by extending the Fleet and Jepson algorithm
proving current competitive VQA algorithms. We believdo multiple scales. We compute a 2D velocity estimate at each
that these will be improved by the development of bettsicale using the outputs of the Gabor filters at that scale only
models for naturalistic videos, for human image and motidhis important not to combine estimates across scales due to
processing, and by a better understanding of the naturetefporal aliasing [57], [60]. We also obtain an estimatehef t
distortion perception. Important topics in these direusio residual error in the least squares solution for each sdale o
include scalability of VQA, utilizing models of visual attéon  the Gabor filterbank. The final flow vector at each pixel of the
and human eye movements in VQA [78], [79], [80], [6]reference video is set to be the 2D velocity computed at the
exploration of advanced spatial and temporal poolingetyias scale with the minimum residual error. Note that more comple
for VQA [80], reduced reference VQA, and no reference VQAsolutions such as coarse to fine warping methods have been
However, in our view, the most important development in theroposed in the literature to combine flow estimates across
future of both IQA and VQA is the deployment of the mosscales [83], [84], [85]. We chose this approach for simplici
competitive algorithms for such diverse and important sasknd found that reasonable results were obtained.
as establishing video Quality of Service (QoS) in real-time The Fleet and Jepson algorithm does not produce flow
applications; benchmarking the performance of competiggtimates with 100% density, i.e. flow estimates are not
image and video processing algorithms, such as compressi@dmputed at each and every pixel of the video sequence.
restoration, and reconstruction; and optimizing algongh Instead, optical flow is only computed at pixels where there

using IQA and VQA indices to establish perceptual objectivis sufficient information to do so. We set the optical flow to
functions [81]. This latter goal is the most ambitious owingero at all pixels where the flow was not computed.

to the likely formidable analytical challenges to be oveneo
but may also prove to be the most significant.
(1]

(2]
(3]

APPENDIX
OpPTICAL FLOow COMPUTATION VIA A NEW MULTI-SCALE
APPROACH

The Fleet and Jepson algorithm attempts to find constafft
phase contours of the outputs of a Gabor filterbank to estimat
the optical flow vectors [60]. Constant phase contours arg]
computed by estimating the derivative of the phase of the
Gabor filter outputs, which in turn can be expressed as @]
function of the derivative of the Gabor filter outputs [60hel
algorithm in [60] uses a 5-point central difference to parfo 1
the derivative computation. However, we chose to perforen th
derivative computation by convolving the video sequendé wi
filters that are derivatives of the Gabor kernels, denoted bl

W,6), 1, 5, )
)=o) (5 + it

Similar definitions apply for the derivatives alongand ¢
directions. This filter computes the derivative of the Gabdt!!
outputs more accurately and produced better optical flque]
estimates in our experiments.

Due to the aperture problem, each Gabor filter is only ab[lle?’]
to signal the component of motion that is normal to its own

[9]
(31)
[10]

REFERENCES

Z. Wang and A. C. Bovik,Image Quality Assessment New York:
Morgan and Claypool Publishing Co., 2006.

S. Winkler, Digital Video Quality New York: Wiley and Sons, 2005.
C. J. van den Branden Lambrecht, D. M. Costantini, G. lcuginza,
and M. Kunt, “Quality assessment of motion rendition in wdmding,”
IEEE Trans. Pattern Anal. Mach. Intellvol. 9, no. 5, pp. 766—782, 1999.
Z. Wang, L. Lu, and A. C. Bovik, “Video quality assessmérased on
structural distortion measuremengignal Processing: Image Commu-
nication, vol. 19, no. 2, pp. 121-132, Feb. 2004.

Z. Wang and Q. Li, “Video quality assessment using a stiail model

of human visual speed perceptioddurnal Optical Society America A:
Optics Image Science Visipwol. 24, no. 12, pp. B61-B69, Dec 2007.
A. Ninassi, O. Le Meur, P. Le Callet, and D. Barba, “Corsidg tem-
poral variations of spatial visual distortions in video bifyaassessment,”
IEEE J. Sel. Topics Signal Processol. 3, no. 2, pp. 253-265, 2009.
M. Barkowsky, J. Bialkowski, B. Eskofier, R. Bitto, and A<aup,
“Temporal trajectory aware video quality measul&EE J. Sel. Topics
Signal Process.vol. 3, no. 2, pp. 266-279, 2009.

A. B. Watson and J. Ahumada, A. J., “Model of human visoadtion
sensing,” Journal Optical Society America A: Optics Image Science
Vision, vol. 2, no. 2, pp. 322-342, 1985.

K. Seshadrinathan and A. C. Bovik, “A structural simitgrmetric for
video based on motion models,” IEEE Intl. Conf. Acoustics, Speech,
and Signal Processin@2007.

B. A. Wandell, Foundations of Vision
Associates Inc., 1995.

L. Itti and C. Koch, “Computational modelling of visualttention,”
Nature Reviews Neuroscienceol. 2, no. 3, pp. 194-203, 2001.

Z. Wang and A. Bovik, “A universal image quality indeXEEE Signal
Process. Letf.vol. 9, no. 3, pp. 81-84, 2002.

Z. Wang, A. C. Bovik, H. R. Sheikh, and E. P. Simoncelllmage
quality assessment: from error visibility to structuraingarity,” IEEE
Trans. Image Processvol. 13, no. 4, pp. 600-612, April 2004.

Sunderland, MA: Sinauer



IEEE TRANSACTIONS ON IMAGE PROCESSING

[14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

[30]

[31]

[32]

(33]

[34]

[35]

[36]

[37]

(38]

[39]

[40]

H. R. Sheikh and A. C. Bovik, “Image information and \éwquality,” [41]
IEEE Trans. Image Processvol. 15, no. 2, pp. 430-444, 2006.

H. R. Sheikh, A. C. Bovik, and G. de Veciana, “An inforrieet fidelity
criterion for image quality assessment using natural scasstics,” [42]

IEEE Trans. Image Processvol. 14, no. 12, pp. 2117-2128, 2005.

H. R. Sheikh and A. C. Bovik, “An evaluation of recent Ifuéference
image quality assessment algorithm$ZEE Trans. Image Process. [43]
vol. 15, no. 11, pp. 3440-3451, November 2006.

K. Seshadrinathan and A. C. Bovik, “An information thetic video
quality metric based on motion models,” rhird Intl. Workshop Video
Processing and Quality Metrics for Consumer Electroni2807.

B. Girod, “What’s wrong with mean-squared error,” Digital Images
and Human VisionA. B. Watson, Ed. The MIT Press, 1993, pp.
207-220. [45]
K. Seshadrinathan and A. C. Bovik, “Video quality assaent,” inThe
Essential Guide to Video Processjng. C. Bovik, Ed. Elsevier, 2009.
J. M. Libert, C. P. Fenimore, and P. Roitman, “Simulatiof graded
video impairment by weighted summation: validation of thetinodol-
ogy,” Proc. SPIE vol. 3845, no. 1, pp. 254-265, Nov. 1999.

C. Lee and O. Kwon, “Objective measurements of videolityuasing
the wavelet transform Optical Engineeringvol. 42, no. 1, pp. 265-272,
Jan. 2003.

C. Taylor and S. Dey, “Run-time allocation of buffer oesces for
maximizing video clip quality in a wireless last-hop systéein Proc.
IEEE Intl. Conf. Communication®2004.

J. Mannos and D. Sakrison, “The effects of a visual figledriterion of
the encoding of images/EEE Trans. Inf. Theoryvol. 20, no. 4, pp.
525-536, 1974.

J. Lubin, “The use of psychophysical data and modelshi dnalysis
of display system performance,” Digital Images and Human Vision
A. B. Watson, Ed. The MIT Press, 1993, pp. 163-178.

P. C. Teo and D. J. Heeger, “Perceptual image distattianProc. IEEE
Intl. Conf. Image Processing 994.

S. Daly, “The visible difference predictor: An algdmh for the assess-
ment of image fidelity,” inDigital Images and Human VisiorA. B.
Watson, Ed. The MIT Press, 1993, pp. 176-206.

D. M. Chandler, K. H. Lim, and S. S. Hemami, “Effects ofasial
correlations and global precedence on the visual fidelitydisforted
images,”Proc. SPIE vol. 6057, no. 1, p. 60570F, Feb 2006.

K. Seshadrinathan, T. N. Pappas, R. J. Safranek, J.,Gh&Wang, H. R.
Sheikh, and A. C. Bovik, “Image quality assessment, Time Essential
Guide to Image Processind\. C. Bovik, Ed. Elsevier, 2008.

G. E. Legge, “Sustained and transient mechanisms inanumision:
Temporal and spatial propertiesvision Researchvol. 18, no. 1, pp.
69-81, 1978.

J. J. Kulikowski and D. J. Tolhurst, “Psychophysicalidence for
sustained and transient detectors in human visidournal Physiology
vol. 232, no. 1, pp. 149-162, Jul 1973.

C. J. van den Branden Lambrecht and O. Verscheure, éparal quality
measure using a spatiotemporal model of the human visua¢rays
Proc. SPIE vol. 2668, no. 1, pp. 450-461, Mar 1996.

S. Winkler, “Perceptual distortion metric for digitablor video,” Proc.
SPIE vol. 3644, no. 1, pp. 175-184, May 1999.

A. B. Watson, J. Hu, and J. F. McGowan I, “Digital videguality
metric based on human visionJournal Electronic Imagingvol. 10,
no. 1, pp. 20-29, Jan. 2001.

M. Masry, S. S. Hemami, and Y. Sermadevi, “A scalable eleirbased
video distortion metric and applicationslEEE Trans. Circuits Syst.
Video Techno).vol. 16, no. 2, pp. 260-273, 2006.

J. A. Movshon and W. T. Newsome, “Visual Response Piigsernof
Striate Cortical Neurons Projecting to Area MT in Macaquenieys,”
Journal Neurosciengevol. 16, no. 23, pp. 77337741, 1996.

R. T. Born and D. C. Bradley, “Structure and function a$ual area
MT,” Annual Reviews Neuroscienoeol. 28, pp. 157-189, 2005.

M. A. Smith, N. J. Majaj, and J. A. Movshon, “Dynamics ofotion
signaling by neurons in macaque area MNIdture Neuroscienge/ol. 8,
no. 2, pp. 220-228, Feb. 2005.

J. A. Perrone, “A visual motion sensor based on the pt@seof V1
and MT neurons,Vision Researchvol. 44, no. 15, pp. 1733-1755, Jul.
2004.

N. J. Priebe, S. G. Lisberger, and J. A. Movshon, “Turfimgspatiotem-
poral frequency and speed in directionally selective nesiaf macaque
striate cortex.”Journal Neurosciengevol. 26, no. 11, pp. 2941-2950, [65]
Mar 2006.

J. Nachmias and R. V. Sansbury, “Grating contrast: iisication may
be better than detectionY¥ision Researchvol. 14, no. 10, pp. 1039—
1042, Oct. 1974.

[44]

[46]

[47]

(48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

[66]

15

G. Legge and J. Foley, “Contrast masking in human viSidournal
Optical Society America A: Optics Image Science Visiah 70, no. 12,
pp. 1458-1471, Dec. 1980.

M. H. Pinson and S. Wolf, “A new standardized method fbjeatively
measuring video quality,IJEEE Trans. Broadcast.vol. 50, no. 3, pp.
312-322, Sep. 2004.

A. P. Hekstra, J. G. Beerends, D. Ledermann, F. E. dev@al6. Kohler,
R. H. Koenen, S. Rihs, M. Ehrsam, and D. Schlauss, “PVQM - A@er
tual video quality measureSignal Processing: Image Communication
vol. 17, pp. 781-798, 2002.

International Telecommunications Union, “Objectiperceptual multi-
media video quality measurement in the presence of a fudlreete,”
ITU-T Rec. J. 247, Tech. Rep., 2008.

NTT. (2008) NTT News Release. [Online]. Available: gattwww.ntt.
co.jp/news/news08e/0808/080825a.html

Opticom. [Online]. Available: http://www.opticomedechnology/pevq
video-quality-testing.html

M. Malkowski and D. Claben, “Performance of video tdlepy services
in UMTS using live measurements and network emulationjteless
Personal Communicationol. 1, pp. 19-32, 2008.

M. Barkowsky, J. Bialkowski, R. Bitto, and A. Kaup, “Teroral regis-
tration using 3D phase correlation and a maximum likelihapgroach
in the perceptual evaluation of video quality,” HEEE Workshop
Multimedia Signal Processin@007.

M. Yuen and H. R. Wu, “A survey of hybrid MC/DPCM/DCT vide
coding distortions,'Signal Processingvol. 70, no. 3, pp. 247-278, Nov.
1998.

K. Seshadrinathan and A. C. Bovik, “Motion-based pptaal quality
assessment of video,” iRroc. SPIE - Human Vision and Electronic
Imaging 2009.

J. A. Movshon, |. D. Thompson, and D. J. Tolhurst, “Saksummation
in the receptive fields of simple cells in the cat’s striatet@a” Journal
Physiology vol. 283, pp. 53-77, Oct 1978.

J. G. Daugman, “Uncertainty relation for resolution Space, spatial
frequency, and orientation optimized by two-dimensioniaual cortical
filters,” Journal Optical Society America A: Optics Image Scienc@®Njs
vol. 2, no. 7, pp. 1160-1169, 1985.

A. C. Bovik, M. Clark, and W. S. Geisler, “Multichannaiture analysis
using localized spatial filtersfEEE Trans. Pattern Anal. Mach. Intell.
vol. 12, no. 1, pp. 55-73, Jan. 1990.

D. J. Tolhurst and J. A. Movshon, “Spatial and temporahtcast
sensitivity of striate cortical neuroned\ature vol. 257, no. 5528, pp.
674-675, Oct. 1975.

S. M. Friend and C. L. Baker, “Spatio-temporal frequeseparability
in area 18 neurons of the catision Researchvol. 33, no. 13, pp.
1765-1771, Sep 1993.

M. C. Morrone, M. D. Stefano, and D. C. Burr, “Spatial atenporal
properties of neurons of the lateral suprasylvian cortexthef cat.”
Journal Neurophysiologyvol. 56, no. 4, pp. 969-986, Oct 1986.

D. J. Heeger, “Optical flow using spatiotemporal filterkitl. Journal
Computer Visionvol. 1, no. 4, pp. 279-302, 1987.

E. P. Simoncelli and D. J. Heeger, “A model of neuronapeanses in
visual area MT."Vision Researchvol. 38, no. 5, pp. 743-761, Mar
1998.

E. H. Adelson and J. R. Bergen, “Spatiotemporal energydefs for
the perception of motion.Journal Optical Society America A: Optics
Image Science Visiorvol. 2, no. 2, pp. 284—-299, Feb 1985.

D. Fleet and A. Jepson, “Computation of component imagkcity
from local phase information,Intl. Journal Computer Visionvol. 5,
no. 1, pp. 77-104, 1990.

H. R. Sheikh and A. C. Bovik, “A visual information fidgli approach
to video quality assessment,” Hirst Intl. workshop video processing
and quality metrics for consumer electronic&005.

R. Fox, “Visual masking,” inHandbook of Sensory Physiology. VIII.
Perception R. Held, H. W. Leibowitz, and H. L. Teuber, Eds. Springer-
Verlag, 1978.

J. Foley, “Human luminance pattern-vision mechanismasking ex-
periments require a new modeljburnal Optical Society America A:
Optics Image Science Visipwol. 11, no. 6, pp. 1710-1719, Jun. 1994,
A. Watson and J. Solomon, “Model of visual contrast gedamtrol and
pattern masking,”Journal Optical Society America A: Optics Image
Science Visionvol. 14, no. 9, pp. 2379-2391, Sep. 1997.

D. J. Heeger, “Normalization of cell responses in caiat¢ cortex.”
Visual Neurosciengevol. 9, no. 2, pp. 181-197, Aug 1992.

D. G. Albrecht and W. S. Geisler, “Motion selectivity gthe contrast-
response function of simple cells in the visual cortexiSual Neuro-
science vol. 7, no. 6, pp. 531-546, Dec 1991.



IEEE TRANSACTIONS ON IMAGE PROCESSING

[67] W. S. Geisler and D. G. Albrecht, “Cortical neurons:limn of contrast

gain control.”Vision Researchvol. 32, no. 8, pp. 1409-1410, Aug 1992.

[68] O. Schwartz and E. P. Simoncelli, “Natural signal stits and sensory
gain control.” Nature Neurosciengevol. 4, no. 8, pp. 819-825, Aug
2001.

K. Seshadrinathan and A. C. Bovik, “Unifying analysisfall reference
image quality assessment,” IREE Intl. Conf. Image Processing008.
D. J. Field, “Relations between the statistics of naltuimages and the
response properties of cortical cellddurnal Optical Society America
A: Optics Image Science Visionol. 4, no. 12, pp. 2379-2394, Dec
1987.

J. A. Perrone and A. Thiele, “Speed skills: measuring tisual speed
analyzing properties of primate MT neuronsyature Neuroscienge
vol. 4, no. 5, pp. 526-532, May 2001.

N. C. Rust, V. Mante, E. P. Simoncelli, and J. A. Movshtidpw MT
cells analyze the motion of visual patternslature Neurosciengevol. 9,
no. 11, pp. 1421-1431, Nov 2006.

(2000) Final report from the video quality experts goan the validation
of objective quality metrics for video quality assessme@nline].
Available: http://www.its.bldrdoc.gov/vgeg/projedts/_phasel

A. Webster, “Progress and future plans for VQEG,” BTSI
STQ Workshop Multimedia Quality of Seryic008. [Online].
Available: http://portal.etsi.org/docbox/WorkshopZi332008 06_
STQWORKSHOP/VQEGArthurWebster.pdf

S. H. Dai and M. O. WangReliability analysis in engineering applica-
tions Van Nostrand Reinhold, 1993.

E. P. Simoncelli, “Statistical modeling of photographimages,” in
Handbook of Image and Video Processiamd ed., A. C. Bovik, Ed.
Academic Press, 2005.

(2003) LIVE image quality assessment database. [@hliAvailable:
http://live.ece.utexas.edu/research/quality/subjeditm

A. K. Moorthy and A. C. Bovik, “Perceptually significaspatial pooling
strategies for image quality assessment,Pinc. SPIE - Human Vision
and Electronic Imaging2009.

U. Rajashekar, I. van der Linde, A. C. Bovik, and L. K. @mck,
“GAFFE: A gaze-attentive fixation finding engindEEE Trans. Image
Process. vol. 17, no. 4, pp. 564-573, 2008.

A. K. Moorthy and A. C. Bovik, “Visual importance poolinfor image
quality assessment/EEE J. Sel. Topics Signal Processol. 3, no. 2,
pp. 193-201, 2009.

S. S. Channappayya, A. C. Bovik, C. Caramanis, and R. \datlh{
Jr., “Design of linear equalizers optimized for the struatwsimilarity
index,” IEEE Trans. Image Processol. 17, no. 6, pp. 857-872, 2008.
J. L. Barron, D. J. Fleet, and S. S. Beauchemin, “Peréorce of optical
flow techniques,’Intl. Journal Computer Visionvol. 12, no. 1, pp. 43—
77, Feb. 1994.

E. P. Simoncelli, “Distributed analysis and represéioh of visual
motion,” Ph.D. dissertation, MIT, 1993.

P. Anandan, “A computational framework and an algonitlior the
measurement of visual motionihtl. Journal Computer Visionvol. 2,
no. 3, pp. 283-310, Jan. 1989.

B. D. Lucas and T. Kanade, “An iterative image registnattechnique
with an application to stereo vision,” iRroc. Intl. Joint Conf. Artificial
Intelligence Vancouver, Canada, 1981.

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

(80]

(81]

(82]

(83]

(84]

[85]

Kalpana Seshadrinathan Kalpana Seshadrinathan

in Electrical Engineering from the University of

16

Alan Conrad Bovik Alan Conrad Bovik is the
Curry/Cullen Trust Endowed Chair Professor at The
University of Texas at Austin, where he is the
Director of the Laboratory for Image and Video
Engineering (LIVE). He is a faculty member in the
Department of Electrical and Computer Engineering,
the Department of Biomedical Engineering, and the
Institute for Neuroscience. His research interests
include image and video processing, computational
vision, and visual perception. He has published over
500 technical articles in these areas and holds two
U.S. patents. He is the author Dfie Handbook of Image and Video Processing
(Academic Press, 2005yJodern Image Quality Assessméhtorgan & Clay-
pool, 2006), and two new book3he Essential Guide to Image Processing
and The Essential Guide to Video Processiffgademic Press).

Dr. Bovik has received a number of major awards from the IEEHS
Processing Society, including: the Education Award (20@Bg Technical
Achievement Award (2005), the Distinguished Lecturer Aivg000); and the
Meritorious Service Award (1998). He is also a recipienthaf Hocott Award
for Distinguished Engineering Research at the Universitfexas at Austin;
received the Distinguished Alumni Award from the Univeysidf lllinois
at Champaign-Urbana (2008), the IEEE Third Millennium Me¢2000)
and two journal paper awards from the international PatfRetognition
Society (1988 and 1993). He is a Fellow of the IEEE, a Fellowtrsd
Optical Society of America, and a Fellow of the Society of hOptical and
Instrumentation Engineers. He has been involved in nunsepsafessional
society activities, including: Board of Governors, IEEEgi®l Processing
Society, 1996-1998; Editor-in-ChietEE Transactions on Image Processing
1996-2002; Editorial BoardThe Proceedings of the IEEE998-2004; Series
Editor for Image, Video, and Multimedia Processing, Morgamd Claypool
Publishing Company, 2003-present; and Founding Generaln@hn, First
IEEE International Conference on Image Processihgld in Austin, Texas,
in November, 1994.

Dr. Bovik is a registered Professional Engineer in the Stdt&exas and
is a frequent consultant to legal, industrial and academsttutions.

received the B.Tech. degree from the University of
Kerala, India in 2002 and the M.S. and Ph.D. degrees

Texas at Austin, in 2004 and 2008, respectively. She
is currently a System Engineer with Intel Corpora-
tion in Phoenix, AZ. Her research interests include
image and video quality assessment, computational
aspects of human vision, motion estimation and
its applications and statistical modeling of images

and video. She is a recipient of the 2003 Texas

Telecommunications Engineering Consortium Graduateowship and the
2007 Graduate Student Professional Development Award fhenUniversity
of Texas at Austin. She was Assistant Director of the Lalmoyafor Image
and Video Engineering (LIVE) at the University of Texas atséio from
2005-2008. She is a member of the IEEE.



