Kompiuterio atmintis

Atmintis – kompiuterio įrenginys arba terpė informacijai (duomenims, programoms) saugoti.[2] Atminties pagrindinės savybės: talpa, sparta, galimybės tvarkyti duomenis, prieigos prie duomenų būdai, duomenų išlikimo trukmė ir pan.[3]

DDR4 SDRAM tipo atminties modulis, 2021 m. apie 90% atminties modulių asmeniniuose kompiuteriuose ir serveriuose buvo šio tipo.[1]

Terminas atmintis dažnai painiojamas su atminties įrenginiu, pvz., diskais. Norint pabrėžti atminties skirtumą nuo įrenginio, vietoje termino atmintis naudojamas terminas atmintinė – atminties fizinė realizacija.[4]

Atminties veikimas labai smarkiai susijęs su procesoriaus darbu, tam tikra atminties dalis (ar net visa atmintis) gali veikti, kaip neatskiriama procesoriaus dalis (registrai, registrų langai, stekas, akumuliatoriai ir pan.). Tokiu atveju gali būti keblu nagrinėti atmintį atskirai nuo procesoriaus ar procesorių – atskirai nuo atminties.

Atminties tipai

redaguoti

Pastovioji atmintis

redaguoti
Pagrindinis straipsnis – Pastovioji atmintis.
 
Magnetinė atmintis, kiekvienas feritinis žiedas saugo vieną bitą
 
Pakartotinai įrašoma, ultravioletine šviesa nutrinama atmintis (EPROM) su kvarciniu langeliu mikroschemos kristalui apšviesti
 
Vienąkart įrašoma (reikiamose vietose perdeginant dalį vidinių takelių) atmintis (PROM)

Šis atminties tipas išsaugo informaciją ir atjungus maitinimo šaltinį. Paprastesnėse sistemose (kalkuliatoriuose, mobiliuose telefonuose, įvairiuose specializuotuose kompiuteriuose) joje gali būti saugomos visos reikalingos vykdyti programos. Įprastiniuose kompiuteriuose šioje atmintyje esanti programinė įranga (BIOS) parengia darbui kompiuterio aparatinę dalį ir įkrauna paprastai magnetiniame diske saugomą operacinę sistemą.

Priklausomai nuo naudotų techninių sprendimų, pastovioji atmintis gali būti

  • Jau gaminama su tam tikra įrašyta informacija. Tokia atmintis tinka tik didelėmis serijomis gaminamuose įrenginiuose.
  • Vienąkart įrašoma. Ši atmintis yra palyginus greita, tačiau kartą įrašytų duomenų pakeisti neįmanoma.
  • Daugelį kartų pakartotinai įrašoma (su ankstesnės informacijos nutrynimo galimybe). Nutrynimas gali būti įvykdomas arba elektriškai arba tik specifinėmis manipuliacijomis (pavyzdžiui, apšviečiant ultravioletine šviesa). Ši atmintis yra daug lėtesnė. Darbui pagreitinti jos turinys vykdymo metu kai kada perkeliamas į greičiau dirbančią operatyvinę atmintį („šešėlinė atmintis“).

Operatyvinė statinė atmintis

redaguoti
Pagrindinis straipsnis – Statinė atmintis.
 
Šešių transzistorių statinės operatyvinės atminties ląstelė

Ši atmintis išsaugo įrašytą informaciją tol, kol tiekiama maitinimo įtampa, todėl kol prijungtas maitinimo šaltinis, duomenys išlieka kiek norima ilgai (neišliekamoji atmintis). Šiek tiek tokios atminties yra jau pačiame mikroprocesoriuje (registrai, kai kada ir stekas). Informacija saugoma įvairaus tipo trigeriuose.

Kadangi nereikalinga regeneracija, šio tipo atmintį patogu naudoti paprastuose kompiuteriuose. Ji neretai taip pat ir greitesnė už regeneruojamą atmintį. Tačiau statinės atminties mikroschemos paprastai brangesnės ir jų atminties talpa mažesnė nei dinaminės atminties mikroschemų. Taip yra todėl, kad jų atminties ląstelė (trigeris) yra palyginus sudėtinga. Ją sudaro šeši, aštuoni ar net dešimt tranzistorių (palyginus su dinamine atmintimi, kurią sudaro tik vienas tranzistorius).

Operatyvinė regeneruojama (dinaminė) atmintis

redaguoti
Pagrindinis straipsnis – Dinaminė atmintis.
 
Plokštė su operatyvinės regeneruojamos atminties mikroschemomis (64 Mb). Paprastai kompiuteris turi keletą lizdų tokioms plokštėms įstatyti. Dalis jų naujame kompiuteryje yra tušti, įgalindami atmintį prireikus išplėsti.

Ši atmintis išsaugo informaciją tik ribotą, paprastai gana trumpą (sekundės dalys) laiką. Taip yra todėl, jog jų įsimenantis elementas yra ne trigeris, o krūvį saugantis (taigi ir savaime išsikraunantis) kondensatorius. Norint neprarasti duomenų, jie turi būti periodiškai nuskaitomi ir iš naujo įrašomi (atminties regeneracija). Regeneracijai palengvinti dauguma šiuolaikinių tokios atminties mikroschemų sugeba pačios atnaujinti tuo metu skaitomus duomenis (neretai ne tik skaitomą, bet ir kelias dešimtis ar šimtus gretimų atminties ląstelių). Regeneracijos procesas vienu metu vyksta visose atminties mikroschemose, todėl atminties plėtimas kompiuterio darbo nesulėtina.

Kol procesorius neinicializavo regeneracijos aparatinės įrangos, ši atmintis apskritai neveikia. Tokiomis sąlygomis naujai įjungus kompiuterį dirba BIOS. Paprasčiausias būdas atminčiai regeneruoti – periodiškai kviesti reikiamą skaičių atminties ląstelių perrenkančią procesoriaus paprogramę. Neretai tokia paprogramė kviečiama kaip atsakas į periodiškai generuojamą pertraukimą.

Regeneracijai pagreitinti naudojamos įvairios išorinės schemos, tačiau kol jos dirba, atmintis lieka neprieinama procesoriui. Vienu metu buvo galima „skaidri regeneracija“, atmintį regeneruojant tuo metu, kai procesorius į ją nesikreipia. Šiuolaikiniai procesoriai dirba labai greitai ir taip regeneruoti nepakanka laiko, todėl procesorių reikia laikinai sustabdyti. Atminties ląstelės yra paprastos, todėl jos gaminamos didelės talpos (daugiau kaip 100 MB). Tai pagrindinis kompiuterių atminties tipas.

Adresavimo tipai

redaguoti

Paprasčiausiu atveju atminties mikroschema turi kontaktų grupę, kurioje nustatomas skaitomos (ar rašomos) ląstelės dvejetainis adresas. Siekiant sumažinti kontaktų skaičių, adresas gali būti padalintas į dvi ta pačia kontaktų grupe įvedamas dalis (stulpelis ir eilutė), naudojant papildomus įėjimo signalus CAS (įvedamas stulpelio numeris) ir RAS (įvedamas eilutės numeris). Dinaminėje atmintyje paprastai skaitant ar rašant į bet kurią stulpelio ląstelę, regeneruojamas ir kitų tame stulpelyje esančių ląstelių turinys.

Rečiau pasitaiko, tačiau taip pat naudojamos du adreso įėjimus turinčios atminties mikroschemos (procesorius ir, tarkim, displėjus gali dirbti su ta pačia atmintimi vienas kitam netrukdydami). Kai kada vietoje antrojo adreso naudojamas nuoseklaus perrinkimo signalų rinkinys, leidžiantis antrajam įrenginiui ląsteles perrinkti tik nuosekliai vieną po kitos.

Atminties mikroschemos išėjimas paprastai gali persijungti į didelės varžos (Z) būseną, todėl visų kompiuterio atminties mikroschemų vienavardžiai adreso, maitinimo, duomenų perdavimo ir dauguma valdymo signalų išvadų gali būti tiesiog sujungti tarpusavyje (taip prijungiant ir naujas mikroschemas, jei atmintį reikia plėsti). Mikroschema į signalus reaguoja ir pati juos formuoja tik jei jos išrinkimo įėjime (CS) yra aktyvus loginis lygmuo.

Klasifikacija pagal panaudojimą

redaguoti

Egzistuoja šios operatyvinės atminties rūšys: registrai, veikiantys, kaip neatskiriama procesoriaus dalis, procesoriaus spartinančioji atmintinė, laisvosios prieigos atmintis (RAM) ir stekinė atmintis. Pastaroji buvo įrengta pirmuosiuose masinės gamybos mikroprocesoriuose, tačiau šiuo metu menkai paplitusi dėl didelės kainos ir mažos greitaveikos, apdirbant didelius duomenų masyvus. Dėl programavimo ir podėliavimo patogumo kartais ir dabar naudojama superkompiuteriuose. Asmeniniuose kompiuteriuose naudojama tik laisvosios prieigos atmintis.

Klasifikacija pagal korpuso konstrukciją

redaguoti
 
Atminties tipai (iš viršaus į apačią): DIP, SIPP, 30 kontaktų SIMM, 168 kontaktų DIMM ir 184 kontaktų DDR DIMM

Atmintis dažniausiai būna gaminama, kaip kelių rūšių įrenginiai:

  • DIP – dvi kojyčių eiles turinčios mikroschemos
  • SIPP – mažagabaritės spausdintinės plokštės, turinčios vieną kojyčių eilę
  • SIMM – mažagabaritės spausdintinės plokštės, turinčios vieną (dubliuotą) kontaktinių išvadų eilę
  • DIMM – mažagabaritės spausdintinės plokštės, turinčios dvi kontaktinių išvadų eiles

Analoginiai atminties įrenginiai

redaguoti

Skaičiavimo technikoje dažniausiai naudojami reikiamą skaičių dvejetainių reikšmių (bitų) įsimenantys įrenginiai. Tačiau galimi ir analoginiai atminties įrenginiai, kurie sugeba išsaugoti ir grąžinti tam tikrą elektros įtampą.

„Atminties siena“

redaguoti

Šiuo metu operatyvinės atminties įrenginiai neretai dirba lėčiau nei procesorius, lėtindami ir visos sistemos darbą. Pavyzdžiui, nuo 1986 iki 2000 procesoriaus greitis kasmet didėjo maždaug 55 %, tuo tarpu atminties sparta didėjo tik po 10 %. Manoma, jog ateityje tai gali tapti viena svarbiausių skaičiavimo greitį ribojančių problemų.

Taip pat skaityti

redaguoti

Nuorodos

redaguoti
  1. Read, Jennifer (5 November 2020). „DDR5 Era To Officially Begin In 2021, With DRAM Market Currently Transitioning Between Generations, Says TrendForce“. EMSNow. Nuoroda tikrinta 2 November 2022.
  2. atmintis(parengė Algis Daktariūnas). Visuotinė lietuvių enciklopedija (tikrinta 2024-09-03).
  3. atmintisV. Dagienė, G. Grigas, T. Jevsikova. Enciklopedinis kompiuterijos žodynas. 4-as leidimas. Vilnius: VU MII, 2014 // EKŽ, 2021, nuolat atnaujinamas. ISBN 978-9986-680-52-9.
  4. atmintinė(parengė Gediminas Navickas). Visuotinė lietuvių enciklopedija (tikrinta 2024-08-28).