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ABSTRACT

Let d(n} be the number of divisors of n. S. Ramanujan has defined
n to be highly composite, if, for any m < n, we have d{m) < d(n). We
shall try to describe the results obtained by Ramanu jan mvo:ﬁ,ﬁrmmm
numbers, and improvements and generalizations of his work. The main
problem, which is not completely solved, is to estimate the number of
highly composite numbers {or of similar numbers defined with some others

arithmetical functions) up to x.

I. Intreduction and notations.

In 1915, S. Ramanujan published in the Proceedings of the London
Mathematical Society a memoir of sixty-three pages entitled "highly
composite numbers"” and consisting of 52 paragraphs {cf. [54] and [55]. no.
15). The purpose of this memoir was to study how large the number of
divisors of an integer n can be wvhen n tends to infinity. We shall try
to describe the results obtained by Ramanujan, and the improvements and

generalizations of his work.
We shall use the following classical notations:
th :
Py = 2, By = w.....ﬁw = w. prime;

p.P.q will denote prime numbers;
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d(n) = M 1 = number of divisors of n;
aqn
s th -
Qmﬁ:v = aHmzacmmﬂosmﬂcmm~<pmnqmown

m_:

{observe that clmﬁsu = Qmﬁdu\amu"

af{n) = Qpﬁzu = M d;
Q_u

w{n) = M 11 ¢(n) = Euler's totient function;
pln

dy(m) = d(n) 5 d(n) = ) d,_,(d) for k3
dln

m{x} = M 1 8(x) = M log p 1is the Chebyshev function;

pix pix
1-e dt
Li x = lim ﬁ % + I wg is the integral logarithm.
£=0 8] 1+e OB

The notation [ < g {or g2 ) will mean f = O{g).

If I 1is an arithmetical function, we shall define n as an
[~champion number if m ¢ n = F{m} < £(n).

For real x , [x] will denote the integral part of x .

The memoir of Ramanujan encompasses 5 parts: Elementary results on the
maximal order of d(n), <the definition and the structure {that is to say
the farm of the standard factorization in primes} of the highly composite

numbers, the superior highly composite numbers, the maximal order of d(n)
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with or without the assumption of the Riemann hypothesis, and special forms

of N.

In the last part (846-51). the value of d(N) 1is studied for various
N's: N a perfect power, N = l.c.m. (1.2.....0), N = n! . The smallest
integer N with exaectly ot divisars is also determined, and this is a

good contest question.

In the very last paragraph (852) a few words are said about the
iterated d-function: &ﬁmu =d., and mﬁryﬁuu = man|Hﬁzvv. A deeper study

of &ﬁru has been undertaken by Erdis and Katai (ef. [8]).

II. Elementary results concerning the maximal order of d(n).

It was proved by C. Runge in 1885 (cf. [68]) that for fixed & > 0,
(1) lim d{n)/n® = 0.

S. Wigert proved in 1807 (cf. [74]1) that the maximal order of log d{n)
is WMMIMIWWWIW . that is to say that

toglog n
Tim Hog d(n)}(loglog n)
) Hm S e M (log 3y — — = 1-

For this result, S. Wigert uses the prime number theorem: w{x} ~ x/log x.

8. Ramanujan proved {2) without assuming the prime number theorem, as

is mentioned in the notes in Hardy and Wright's book (cf. [19],

Chapter 18).
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The upper bound of ({2} is based on the inequality, valid for all N

with w(N) = k,

((8(p,) + log Ny/i)"

a0 ety T (e )

and on the relation
(4) 7(x)log x - B(x) = _\x ) g
2

It is easy to deduce from the prime number theorem that, as k — w,
mﬁﬁru i,vw ~ k log k,

but, using {4}, it is possible to prove mﬁﬁxu ~ Lk log k without the prime

number theorem (cf. [62]). and this was mainly Ramanumjan‘s idea.

Let us define the muitiplicative function r{n} as follows:

i p=lImodd, r(p) =dp) <k + 1,
if p =3 mod 4, nﬁv#u =0 for k odd, and aﬁv#y =1 for k even;
if p=2, (2% =1 foranl

It is known that the number of ways in which n can be written as a

sum of two sguares is equal to 4r{n) {cf. [19], Chapter 16}.

An application of {2} with Ramanujan's proof gives the maximal order of

r(n) (ef. [37]):
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—— {log r{n loglog n
(5) lim {log 9)(log n] = 1.

Actually r{n) counts {crudely) the divisors of n made up of primes
=1 mod 4; these primes are about half of all the primes. but the maximal
orders of log r(n}) and log d(n) are the same. This is somewhat
surprising and sometimes misleading. For instance, Theorem 33§ in [19]

Eives erroneously 1/2 instead of 1 on the right hand side of (5) .

I1I. Highly composite mmbers.
S. Ramanujan defined an integer n to be highly composite (we shall
write h.c.} if for all m ¢ n. we have d{m} < d(n). So. with our

definition, h.c. numbers are d—champion numbers.

For every integer n 2> 1, let us draw a point with coordinates
(n.d(n)} and look at the increasing envelope of these points, that is the
smzllest nondecreasing function lying above all these points. This

envelope is a step function, and the vertices of the steps correspond to

h.c. numbers.

d{n)

ml
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How, let us write the standard factorization of an integer n in the

form
N
n = P with @, = RWAnu.

where only finitely many @; are non-zero. Then we have

a(n} =TT {a; +1).

i=1

An integer n is said to be w.n.i.e. {with nonincreasing exponent) if

the sequence ﬁﬁhvm is nonincreasing. Clearly, a h.c. number is w.n.i.e..

For a w.n.i.e. integer, we define q; = max p {so that all the primes
pln
< q; divide n), and

The nonincreasing sequence nnuuuvm characterizes n.

IV, Superior highly composite mmbers.

Let £ >0 be fixed. It follows from (1} that d{n)}/n° is bounded
and reaches its maximum in one or several points. Ramanujan has defined an
integer N to be superior h.c. {s.h.c.} if there exists & > 0 such that

for all n we have
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d{n) ¢ d{Nj
E  E
n N
£
For n <N we have d(n) ¢ m& d{N) < d(N}, which shows that a s.h.c.

number is h.c..

The stucture of these numbers has been completely determined by

Ramanujan. Let us define

E = JLos(l + 1/k} | k > 1, p prime

log p ' =
If & ¢ E, then the maximum of &ﬁnu\am is attained at only one integer

ZM. and we have

{6) N =TTp.! with a; nﬁ\:m - 1)].

It was known by Siegel (cf. [1], p. 455) that for real A and three
different primes p,q.r, the numbers Uy.nw.qy cannot be all rational,
except when A is an integer {cf. [27] and [28]}, Chapter 2). This implies
that three elements of E cannot be equal. It seems very likely that two
elements of E are always distinct, but this is still unproved. If it is
true, then, for £ € E, the maximum of d{n)/n" is attained at two
integers. If it is false, this maximum is attained at four integers for

some & {ecf. [9], p. 71). This question was probably overlooked by

Ramanujan; for instance, the result of §44 is false in the latter case.

In bath cases, the integer 2m defined by (8) is a s.h.e. number,

maximizing mﬁzu\:m. If we set
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(M x = Mu\m. x, = Mmomnw+u\#v\yom 2 for k¥ 1.
8
then we have ¥ =X and Ay =% with
log (3/2
(8} g8 = oz 2 = 0.885 ...,
and from (6) we see that
pIN, & ¢ x,
ey =k e=x,, (p $x,
1 1 log x
a £ < = .
1 of _; T £ log 2 (log Muw

(9) log N, = ) 6(x),
1¢kea,

(10} log d(N_) = M (x, ) og(l + 1/K).
ke

It follows from {9) that log Zm ~ .
V. The oumber of highly composite numbers up to x.

Let us define @Q{X) as the number of h.c. numbers ¢ X. It is easy to

see that between X and 2X there is always a h.c. number (because

d{2n} > d(n}). and this implies that Q{(X) > log X.
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.
&
e

It was proved by Ramanujan that lim Q(X)}/log X = += (cf. [B4], §28).
Given a h.c. number n, the iden is to construct n' as close as possible
to n, and with d{n'} > d{n}. Then there exists a h.c. number n" with
n<n" {n. Ramanujan chose n' with the same exponents as n  for the

large primes, modifying only the exponents of the small primes.

The problem of estimating Q(X) was of some interest to Ramanujan. In
a joint paper with Hardy (cf. [18)] and [55], no. 34), the number of
w.n.i.e. {cf. §III) integers up to X is estimated. The introduction
mentions: "That class of numbers includes as a subclass the h.c. numbers
recently studied by Mr. Ramanujan. The problem of determing the number
Q{X} of h.c. numbers not exceeding X appears to be one of extreme
difficulty. It is still uncertain whether or not the order of Q(X) is

greater than that of any power of log X".

P. Erdds proved in 1944 that for a positive c; we have
H+nH
Q(X) > (log X) - A new tool was Hoheisel's theorem {cf. {21]): for
some O <71 <1,
{11) w{x + xﬂu - m{x) > xﬂ\pcm x
(the best T is now ok ~ -l = 0.547308 ef. [32])
20 384 T 7 : )

Erdts used it to construet no’' by multiplying and dividing n by large
primes., and using the diophantine approximations of & {defined by (8))

given by Dirichlet's theorem (cf. [7]).
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c
In 1971, I proved {cf. [36]) that (X} € (log X) M. I used for this
the result of Feldmann {cf. [15]) that there exists « such that for all
integers u,v > 1 we have:

{12} [vo - u} » v7F,

I also used the structure of the h.c. numbers between two consecutive
5. h. c. numbers that we shall describe in the next paragraph.

Let us define c¢(X) by
Q(X) = (log x)°X),

and let us assume two very strong conjectures: first, (11) holds for all
T > 0, and secondly, for all m > 0, there exists a positive constant

B = B(n) such that for all u,v,w in Z we have:

lu fog 5+ v log 3 + w log 2| 3 B({ju| + 1){|v] + 1)1,
Then the method of [36] shows that (cf. [73])

Lim c{X) = (log 30)/{log 16) = 1.927. ..

9 :
More recently (cf. [48]) I used the value i« = M& log 3 pgiven by M.
Waldschmidt to show that lim c(X) £ 3.48, and a new result of G. Rhin
(ef. [57]), namely « = 7.616, implies Iim c{X} £ 1.71 . I also show that

lim c(X) € 1.44. It was proved in [36] that

Lim o(x) 2 & _oﬂowmmm {1 -} = 1.13682.
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with Mozzochi's value Tt = 11/20 - 1/384.

All these results are based on diophantine approximations of
8= Ho~oM\w . and similar numbers arising from the values of the function
d. Actually the 3 is &ﬁhmu and bhoth 2's oceuring in the definition of B

are d{(p). Now, suppose we cansider a multiplicative function &, such

~ 2
that mﬁﬁnu depends only on @ and 8 = 198 womﬁmﬂva is, say, a
Liouvilie number. Then the method of [36] no longer works (ef. [73]).
For such a function &, let 0mﬁxu be the number of champion numbers up

to X. It is an open question whether there exists ¢{&) such that
Q5(X) € (lag x) (8},

Another open question is the following: Let n, be the mnr h.e.

number. Erdds proved in [7] that there exists c > O such that, for 1

large encugh,

B /m S+ (log :»ule.

and deduced from this that Q(X) 2 (log xv~+n+oﬁmu. But does there exist

T

nwcnwﬁwmn n/n ~ 13 (log :»uro ? In [48] it is only proved that

174
017"y — 12 exp{—(log :ww ).

V1. 'The structure of highly composite npumbers.

let n bea h.c. number, and 9 its largest prime divisor. We write
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Ramanujan has proved that ma =1 unless n=4 or n=36. Then he
1

divides the primes from 2 to q; in five ranges and for each range gives
an asymptotic estimate of a_ in terms of Q- For instance, he has

p
proved thart

log q,
{13) a, log p = Tog 2 % 0{V1log 9 loglog nuu

holds for log p = O(loglog nwu.

The study of the structure of h.e. numbers takes up about half of the
whole paper. In the introduction to the "Collected Fapers" (cf. [55]. p.
wxxiv) Hardy has written that this study is "most remarkable, and shows
very clearly Ramanujan's extraodinary mastery over algebra of

inequalities.™

To estimate 2 the idea of Ramanujan is to write d{m) < d(n) for

an appropriate choice of m < n. In [1], Alacglu and Erdds have improved

Ramanujan? s estimations for mu. mainly using Hoheisel's result in the

construction of a better m.

In [3G] and [48] estimates of a, are obtained with the so-called

"benefit” method. Let n be h.c. and N the s.h.c. number just preceding

n. Let & be any parameter such that N = N , and x = MH\m. zmswmﬁm

£
(cf. (8))
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b
N=TTpP with b, = [1/(° - 1)].
pix

The benefit of n (relative to N and e} is

ben n = log am log dfn)

N® n"
(14)
+ 1
= M ﬁpom mmrﬂlﬂw - mﬂvv - Nvuwnm vg.
p$max(q, . x) P

From the definition of the s.h.c. numbers, each term in the above sum

in nonnegative. In [38] I proved that there exists €, such that, when =

is h.c.,

benn ¢ Cx ¢

for v = 6(1 - T){x + 1) = 0.0307... with the Mozzochi and Rhin values of

T and k., Using this I showed:

: _ 1 ~y _
if £ log p Homﬁw + Uﬁ - Hg £Cx ' then NU = vv or mﬁ = wﬂ 4+ 1;
: 1 _ -y
(15} 4if log MH + wv - wg £ log p £ Cx Y, then mﬁ = Vﬁ or mv = Uﬁ - 1;
in other cases, a = b .
p P
Formulas (15) show that _mHU - Uv_ is at most 1. If q) is the

largest prime dividing n with exponent 2 k. end x, is defined by {7},

then we have for k (X', k' = [1/(e""8 2 - 1}] _ 46, (of. [48])

(16) [r(x,) - m(q)] < gxrxue :
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and for kK ¢ k ¢ a,
() ~ w(a ) < 1.
With k =1, we get, by Hoheisel's theorem

(17} q; =X + oﬁqu ~ log N ~ log n.

From this we can see that in (13} the error term is in fact 0f1}).

Horeover, from (15} and {17}, when q, is given, we can calculate

with an error of at most I, for all p’'s between 2 and ;-

Vil. Effective upper bounds.

For each integer n > 1, let us draw a point with coordinates

and log d{n), and then consider the convex envelope of all these

.mn.m d{n) &
3k

log n

points,

120

The first s.h.c. numbers are 2,6,12,60. Observe that h.c.
not superior such that 4,24,36,48 are close to the convex

.N.u.u T

numbers which are

envelope,

The

ON HIGHLY COMPOSITE NUMBERS 229

Now consider all the straight lines with fixed slope & and going through
the points (log n, log d{n}). These lines cut the y-axis in a point whose
ordinate is log d(n} - £ log n, and so. from the definition of s.h.c.
numbers, the highest possible such line, is going through (log N, log
d{N)} where N = Zm. Thus s.h.c. numbers are characterized by the

vertices of the preceding convex envelope.

It follows from (2) that there exists an absolute constant A such that

logdln) o p logn . . 153
log 2 = * loglog n =

(18)

{(n = 2 is not possible because loglog 2 1is negative).
Ax 2

is concave for x 2 &
log x

and that 2520 is the smallest s.h.c. number bigger than mxvﬁmwu. So to

Ve now observe that the function x ——

prove (I8) for a certain A, it is sufficient to prove it for all n ¢
2520, and then for all s.h.c. number bigger than 2520, because, if the
curve y = Ax/log x 1is above all the vertices of the convex envelope, it
will be above all the points {log n, log d{n}}.

Calculations can be carried out easily for two reasons: first, s.h.c.
numbers are rare, and secondly, their factorization into primes is known by

{6) or {9). and effective estimates of Rosser and Schoenfeld can be used

{cf. [66]. [67], [70]). The result is that

WMMIMhmM.m 1.5379 ... _lez n_

log 2 loglog n n23

with equality for n = 6983776800 cf ([43]). By the same method more

accurate estimates can be given {cf. [61]}:
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log d{n) leg n 1.9349 ...; 5 3.
log 2 < loglog n 1+ loglog n ' n23
log d(n) , _log n T N 1 . A.7624 g L ono o
log 2 ~ loglog n loglog n (loglog :um
log d{n} log n
log 2 § loglog n - 1.38177 ... ' n 2 56.

Under the assumption of the Riemann hypothesis, it follows from the upper
bound obtained by Ramanujan (cf. [54]. §43, and (19) below), that there

exists c such that

mmmmmmmw < Li{log n) + e{log mym

with 8 defined by (8). The above method enmbles one to find the best
possible ¢, but the calculations have not yet been done.
VIII. The maximal order of d{n).

Using the definition of s.h.c. numbers, Ramanujan has defined the
maximal order of d(n) as a certain function I {cf. ﬁmAu. 338}.
Constder the piecewise linear function u +—— A(u) such that for all
s.h.c. numbers

K, 4{log N} = log d{N}. that is the convex envelope of the

set of points {log n, log d{n)} considered in the preceding paragraph.

Then Ramanujan's D-function is equal to

D(t) = exp (A(log t))

and satisfies d(n} ¢ D{(n} for all n, with equality when n is s.h.c.
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The reasons why Ramanujan chose D as the maximal order of d{n} are

not clear to me. F{t) = max d{n) might be a better choice.

n&t

Anyway D
and F are very close (cf. [41]. p. 13-15, where more about this notion
of maximal order can be found).

However, it was a great idea of Ramanujan to use s.h.c. numbers to get
a good estimate of the maximal order, that is to find an analytic function
as close as pussible to the maximal order.

His estimation for D, under

the assumption of the Riemann hypothesis,

. g
log D{n} .. ; ] {log n}
(19) Tog & = Li{log n) + 8 Li{(leg n} ) - logiog m ~ R(log n}
+0 gwom n <
(loglog n)
with

R{x) = Tcﬂm + M mg\?om xuw
P

where the sum is over all the nonreal zeroes of the Rieman {-function, is
certainly very nice.

Let A > 1, and let

f.(n) = log d{n) _ A log n
A log 2 loglog n

HnwOHHoimmwcaawunrmﬁH»a mynsv uls.mbmﬂ:mwmmowm wyﬁuw wmmmh
T

J..

absolute maximum attained for at least one integer zy (cf. [64]). Little

~

is known about these integers 27. but they are still closer to the

maximal order of d{n) than the s.h.c. mmbers themselves.
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IX. Tables,

In his memoir, Ramanujan has included a table of the first one hundred
h.c. numbers, and of the First fifty s.h.c, numbers. It is worth while
mentioning that the table on pp. 2 and 3 in the notebooks {cf. [56], Vol.
2) is a table of the h.c. numbers.

In [60]. Robin has calculated the first 5000 h.c. numbers, and
independently the same calculation was carried out by te Riele. They used
o method of dynamical programming. Let us define mr as the set of
integers made up of primes vu....vw. We say that n is k - h.e. if

nées mdm if
meE mw and m < n = d{m) < d(n).

These Ik -~ h.c, numbers are easily determined by induction, and small
k - h.c. numbers are actually h.c.
A theoretical study of 2 - h.c. numbers (of the form anbw has been
undertaken in [2], using the continued fraction expansion of log 3/log 2.
A more powerful algorithm is alse given in [60]. It allows one to
caleulate h.c. numbers between two consecutive s.h.c. numbers. This
algorithm uses the "benefit” method mentioned in §VI. First You guess a
positive real number B which should be the maximal value of the beneflit of
a h.c. number. Then you calculate all integers n in the considered
range, the benefit of which is smaller than B. From these n's You
calculate an exact upper bound B' for the maximal benefit of a h.c.
number. If B (B, h. c. numbers are included in the calculated n's . If
B'" > B, you start again with B' instead of B.

Robin has used this algorithm to determine the smallest number which

has more than HoHooc divisors, It is an integer of 13198 decimal digits,
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[B]
)
e

the largest prime factor of which is 30113.
Aloaglu and Erdds conjectured in [1] that if n is h.c., then there
exist two primes p and q such that Np and NK/q are h. ¢.. G. Robin

has found a counterexample to this conjecture (cf. [GO]).

X. Optimization problems in integers.

Calculation of the largest h.c. numbers €A is equivalent to solving

max M Homﬁxﬁ + 1},
k=1
(20}

@0

M xw_om Py < a=log A, x, €N,
k=1

As P, £ A, the number of variables is Finite, and solving (20} with XL

real is easy using Leagrange multipliers.

In fact, it is also possible to use Lagrange multipliers to solve (20}
when the kw.m are integers. Suppose that f and g are two real-valued
functions defined on a subset {1 of 55. and that g 1is nonnegative. We

want to solve

max f{x}
x€N

(21)

(x) <C

for different values of C. Suppose that for A » 0 there exists Xq

such that f ~ Ag is maximal at x that is to say

q*

¥x € Q, f(x) - Ag(x) < Haxou - wmﬁxog.
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Then ¥y 1is a selution of (21} for C = mﬁxou. Indeed, we have for

x € {1, with mnx\g £ C = HTAOVu
F00) € T0xg) + Ml - glxg)) € lxg)-

Such C's which can be written in the form waﬁou are called Lagrange
bounds for the problem (21). Lagrange bounds of (20) are logarithms of
s.h.c. numbers.

In general, not zll possible values of C in {21} are Lagrange bounds,
and to solve (20) when C 1is not a Lagrange bound, we can use Everett's
method (cf. [14]) which is about the same as the benefit method I used in
EVI.

A few bridges have been built between h.c. numbers and optimization
problems in integers. {cf. [38], [39], [40]. (58], [60]}. Probably it is
worthwhile working in that area. In my opinion, optimization theory sheds
an interesting light on h.c. numbers, and from this point of view it can no

longer be said that h.c. numbers are in a backwater of mathematics.

XI. Other champion numbers.

Ramanujan’s work on h.c. numbers has been first extended te the sum of
the divisors of n by Alaocglu and Erdds (cf. [1], [51] and [69]). They
define a highly abundant (h.a.) number as a champion number for the
function n ~— o(n}, and a superabundant {s.a.) number as a champion
number for the function n +~— o{n)/n. Furthermore they say that n is
colossally abundant (c.a.) if there exists £ > O such that for all m,

a(m) . o(n)

T+e = 1+4e
m n
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[
e
tn

It is easy to see that c.a. = s.a. = h.a.

Llet n be h.a. and P 1its largest prime divisor. It is not knwon
whether P ~ log n, or if wm divides n for infinitely many n's. Let
Drﬁxu and omﬁxu be the number of h.a. and s.a. numbers up to X. It has
been proved in [9] that Omﬁxu > (log xuu+m. We don't know whether Dwﬁxu.
or even Omﬁxu. is smaller than (log xun.

More recently, Masser and Shiu (ef. [31] and [4]) have studied sparsely
totient numbers, that is to say integers n such that m > n = p(m) >
#{n}. In this case the superior numbers are easy: they are the product of
the first k primes {cf. [49]. Chapter 1), but that does nat malke the
study of sparsely totient numbers really easier.

Landau has defined g(n} as the maximal order of an element in the
symmetric group of n elements. Let ¢ be the additive function defined

by mﬁﬁnv = p%. One can prove that

g{n) = max M
2{M}<n

and

NEg() M >N=>2(M) > 2(N).
So the values of g(n) appear as a generalization of h.c. numbers {cF.
[34], [35]. [29]. [301).

Let us define n to be largely composite (l.c.) if

m < n = d{m} < d{n).
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These numbers are not hecessarily w.n.i.e. (ef. §III}, and they are much
more numerous than h.c. numbers (cf. [421}. An open question is whether
between two consecutive h.c. numbers that are large enough there is always
a l.c, number,

Champion numbers are considered in [52] for m#ﬁuu (cf. §1), in [3]
for the function f{(n), defined as the number of unordered factorizations
of n into factors > 1, 1in [48] for the function n d(n) + d{n + 1),

in [10] for the function

F(n) = max ﬁ > L.

t

d|n
t/2¢d<t
k~1
. . % "
in f13] for the function f{n) = M nﬁ\nw+w where n = 9; SRR with
i=l
9 < dg < ... ¢ 9+ and for the function w ~ f, and in [11] for the

function F, where f(n} is the largest integer k for which there

exists m such that n divides the product T (m+ i), but does not
1<igk
divide this product if any of its factors is omitted.

Champion numbers For w are the products of the [irst primes.
Integers n  such that

m<n=w(m { wun)

have been studied in [12].
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XII. Maximal order of various functions.
It has been proved by Landan (ef. [26]) that
—_ n +

b ¢(n) loglog n - ©

where ¥ is Fuler's constant. In [45] and [46] it is proved that for

infinitely many n's,

n > meﬁﬁnumowHom n

holds.

The maximal erder of o{n} was first obtained by Gronwall {cf. [18])

who showed

Tim _o{n) .

n loglog n

Robin has proved in [63] that the property

¥n 2 5041, o(n) ¢ e'n loglog n

is equivalent to the Riemann hypothesis (cf. also [59] and [65]).

Let a({n) be the number of abelian groups of order n. This is a
multiplicative function, and mﬁvny is equal to the number of partitions
of a. The maximal order of a(n} is a little more difficult to study
than that of d{n). The reason is that the "superior” numbers are more
complicated. Schwarz and Wirsing have proved in [71] that the maximal

order of a(n) is



1
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ﬁpummurw ﬁmmmlm; +oﬁwomzmxvﬁlnammmwmwlmcv.
improving the results of [22] and [25]. 1In [41] the maximal order of a(n)
under the assumption of the Riemann hypothesis is given.

When dealing with an arithmetical function, it is now a classical
problem to study its maximal order. This has been done for the
coefficlents of some modular forms and especially Ramanujan's function T
(ef. {51 and [33]), and some other functions (cf. [17], [23] and [24]).

A more general study has been undertzken for those meltiplicative
functions f{n)} for which mﬁvnu does depend on a, but not on p.

(cf. [6]. [53]. [20], [72]. and [44]).
Explicit upper bounds for mua:u and r(n} defined in §II can be

found in [61].

XILI. The unpublished mapuscript.

In the notes on the memoir "Highly composite numbers” at the end of the
"Collected Papers” of S. Ramanujan (cf. [55], p. 339), it is stated: “The
paper. as long as it is, is not complete. The London Math. Soc. was in
some financial difficulty at the time, and Ramanujan suppressed part of
what he had written, in order to save expense,”

During the Ramanujan centenary conference at Urbana, many documents
were displayed, and among them, I have found about 20 pages, handwritten by
Ramanujan, that belong to this suppressed part. This unpublished part
deals with the maximal order of some arithmetical functions under the
assumption of the Riemann hypothesis, and generalizes the results of
5% 39-43. One type of these arithmetical functions is the number of
representations of n by a sum of 2, 4,, 6, 8 squares, or by some other

simpie quadratic forms. Large values of &Wﬁuv are also studied,
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The more interesting part of this manuscript pertains to the maximal

order of

leﬁbv = Mﬂlm
m_u

where s > 0. We have

s
Qmﬁuv =n leﬁdu
and Ramanujan studied in detail those functions Qmﬁuu which cecur in
Eisenstein series. To study the maximal order of leﬁsu. generalized
superior h.c. numbers are introdcued. In the case s = 1, these numbers
were rediscovered by Alaoglu and Erdss whe czll them colossally abundant

numbers.

Three cases are to be considered: 0 < 5 ¢ 1/2, s = 1/2 and s > 1/2.

¥hen s = 1, Ramamujan gives the formula

Tim ﬁalwadv - memcmHnm n}{vlog n)

Fa¥

eV(4 - 2/2 + v - log 4n)

I

o
]
[ie}

which was rediscovered by Robin {cf. [63]. p. 194). In fact, Ramanujan has

estimations for every s.

I shall try to get this manuscript of Ramanujan published elsewhere.
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