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Whenever someone says they have “a cool trick,” take them

outside and slap them up.

Jim Weirich

Appendix C

Spell Book
This appendix is a “spell book”—a quick reference to all the “spells” in

the book, in alphabetical order. Most of these spells are metaprogram-

ming related (but the ones from Appendix A, on page 242, are arguably

not that “meta”).

Each spell comes with a short example and a reference to the page

where it’s introduced. Go to the associated pages for extended examples

and the reasoning behind each spell.

C.1 The Spells

Argument Array

Collapse a list of arguments into an array.

def my_method(*args)

args.map {|arg| arg.reverse }

end

my_method('abc', 'xyz', '123') # => ["cba", "zyx", "321"]

For more information, see page 248.

Around Alias

Call the previous, aliased version of a method from a redefined method.

class String

alias :old_reverse :reverse

def reverse

"x#{old_reverse}x"

end

end
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"abc".reverse # => "xcbax"

For more information, see page 157.

Blank Slate

Remove methods from an object to turn them into Ghost Methods (75).

class C

def method_missing(name, *args)

"a Ghost Method"

end

end

obj = C.new

obj.to_s # => "#<C:0x357258>"

class C

instance_methods.each do |m|

undef_method m unless m.to_s =~ /method_missing|respond_to?|^__/

end

end

obj.to_s # => "a Ghost Method"

For more information, see page 86.

Class Extension

Define class methods by mixing a module into a class’s eigenclass (a

special case of Object Extension (153)).

class C; end

module M

def my_method

'a class method'

end

end

class << C

include M

end

C.my_method # => "a class method"

For more information, see page 153.

Class Extension Mixin

Enable a module to extend its includer through a Hook Method (183).
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module M

def self.included(base)

base.extend(ClassMethods)

end

module ClassMethods

def my_method

'a class method'

end

end

end

class C

include M

end

C.my_method # => "a class method"

For more information, see page 187.

Class Instance Variable

Store class-level state in an instance variable of the Class object.

class C

@my_class_instance_variable = "some value"

def self.class_attribute

@my_class_instance_variable

end

end

C.class_attribute # => "some value"

For more information, see page 129.

Class Macro

Use a class method in a class definition.

class C; end

class << C

def my_macro(arg)

"my_macro(#{arg}) called"

end

end

class C

my_macro :x # => "my_macro(x) called"

end

For more information, see page 138.
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Clean Room

Use an object as an environment in which to evaluate a block.

class CleanRoom

def a_useful_method(x); x * 2; end

end

CleanRoom.new.instance_eval { a_useful_method(3) } # => 6

For more information, see page 109.

Code Processor

Process Strings of Code (165) from an external source.

File.readlines("a_file_containing_lines_of_ruby.txt").each do |line|

puts "#{line.chomp} ==> #{eval(line)}"

end

# >> 1 + 1 ==> 2

# >> 3 * 2 ==> 6

# >> Math.log10(100) ==> 2.0

For more information, see page 166.

Context Probe

Execute a block to access information in an object’s context.

class C

def initialize

@x = "a private instance variable"

end

end

obj = C.new

obj.instance_eval { @x } # => "a private instance variable"

For more information, see page 107.

Deferred Evaluation

Store a piece of code and its context in a proc or lambda for evaluation

later.

class C

def store(&block)

@my_code_capsule = block

end

def execute

@my_code_capsule.call

end

end
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obj = C.new

obj.store { $X = 1 }

$X = 0

obj.execute

$X # => 1

For more information, see page 110.

Dynamic Dispatch

Decide which method to call at runtime.

method_to_call = :reverse

obj = "abc"

obj.send(method_to_call) # => "cba"

For more information, see page 66.

Dynamic Method

Decide how to define a method at runtime.

class C

end

C.class_eval do

define_method :my_method do

"a dynamic method"

end

end

obj = C.new

obj.my_method # => "a dynamic method"

For more information, see page 70.

Dynamic Proxy

Forward to another object any messages that don’t match a method.

class MyDynamicProxy

def initialize(target)

@target = target

end

def method_missing(name, *args, &block)

"result: #{@target.send(name, *args, &block)}"

end

end

obj = MyDynamicProxy.new("a string")

obj.reverse # => "result: gnirts a"
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For more information, see page 80.

Flat Scope

Use a closure to share variables between two scopes.

class C

def an_attribute

@attr

end

end

obj = C.new

a_variable = 100

# flat scope:

obj.instance_eval do

@attr = a_variable

end

obj.an_attribute # => 100

For more information, see page 105.

Ghost Method

Respond to a message that doesn’t have an associated method.

class C

def method_missing(name, *args)

name.to_s.reverse

end

end

obj = C.new

obj.my_ghost_method # => "dohtem_tsohg_ym"

For more information, see page 75.

Hook Method

Override a method to intercept object model events.

$INHERITORS = []

class C

def self.inherited(subclass)

$INHERITORS << subclass

end

end

class D < C

end
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class E < C

end

class F < E

end

$INHERITORS # => [D, E, F]

For more information, see page 183.

Kernel Method

Define a method in module Kernel to make the method available to all

objects.

module Kernel

def a_method

"a kernel method"

end

end

a_method # => "a kernel method"

For more information, see page 53.

Lazy Instance Variable

Wait until the first access to initialize an instance variable.

class C

def attribute

@attribute = @attribute || "some value"

end

end

obj = C.new

obj.attribute # => "some value"

For more information, see page 246.

Mimic Method

Disguise a method as another language construct.

def BaseClass(name)

name == "string" ? String : Object

end

class C < BaseClass "string" # a method that looks like a class

attr_accessor :an_attribute # a method that looks like a keyword

end

obj = C.new

obj.an_attribute = 1 # a method that looks like an attribute
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For more information, see page 243.

Monkeypatch

Change the features of an existing class.

"abc".reverse # => "cba"

class String

def reverse

"override"

end

end

"abc".reverse # => "override"

For more information, see page 35.

Named Arguments

Collect method arguments into a hash to identify them by name.

def my_method(args)

args[:arg2]

end

my_method(:arg1 => "A", :arg2 => "B", :arg3 => "C") # => "B"

For more information, see page 247.

Namespace

Define constants within a module to avoid name clashes.

module MyNamespace

class Array

def to_s

"my class"

end

end

end

Array.new # => []

MyNamespace::Array.new # => my class

For more information, see page 43.

Nil Guard

Override a reference to nil with an “or.”

x = nil

y = x || "a value" # => "a value"

For more information, see page 246.
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Object Extension

Define Singleton Methods by mixing a module into an object’s eigen-

class.

obj = Object.new

module M

def my_method

'a singleton method'

end

end

class << obj

include M

end

obj.my_method # => "a singleton method"

For more information, see page 153.

Open Class

Modify an existing class.

class String

def my_string_method

"my method"

end

end

"abc".my_string_method # => "my method"

For more information, see page 33.

Pattern Dispatch

Select which methods to call based on their names.

$x = 0

class C

def my_first_method

$x += 1

end

def my_second_method

$x += 2

end

end

obj = C.new

obj.methods.each do |m|

obj.send(m) if m.to_s =~ /^my_/

end
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$x # => 3

For more information, see page 69.

Sandbox

Execute untrusted code in a safe environment.

def sandbox(&code)

proc {

$SAFE = 2

yield

}.call

end

begin

sandbox { File.delete 'a_file' }

rescue Exception => ex

ex # => #<SecurityError: Insecure operation `delete' at level 2>

end

For more information, see page 174.

Scope Gate

Isolate a scope with the class, module, or def keyword.

a = 1

defined? a # => "local-variable"

module MyModule

b = 1

defined? a # => nil

defined? b # => "local-variable"

end

defined? a # => "local-variable"

defined? b # => nil

For more information, see page 102.

Self Yield

Pass self to the current block.

class Person

attr_accessor :name, :surname

def initialize

yield self

end

end
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joe = Person.new do |p|

p.name = 'Joe'

p.surname = 'Smith'

end

For more information, see page 250.

Shared Scope

Share variables among multiple contexts in the same Flat Scope (105).

lambda {

shared = 10

self.class.class_eval do

define_method :counter do

shared

end

define_method :down do

shared -= 1

end

end

}.call

counter # => 10

3.times { down }

counter # => 7

For more information, see page 106.

Singleton Method

Define a method on a single object.

obj = "abc"

class << obj

def my_singleton_method

"x"

end

end

obj.my_singleton_method # => "x"

For more information, see page 135.

String of Code

Evaluate a string of Ruby code.

my_string_of_code = "1 + 1"

eval(my_string_of_code) # => 2
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For more information, see page 165.

Symbol To Proc

Convert a symbol to a block that calls a single method.

[1, 2, 3, 4].map(&:even?) # => [false, true, false, true]

For more information, see page 253.
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