
Extracted from:

Metaprogramming Ruby

This PDF file contains pages extracted from Metaprogramming Ruby, published by the

Pragmatic Bookshelf. For more information or to purchase a paperback or PDF copy,

please visit http://www.pragprog.com.

Note: This extract contains some colored text (particularly in code listing). This is

available only in online versions of the books. The printed versions are black and white.

Pagination might vary between the online and printer versions; the content is otherwise

identical.

Copyright © 2009 The Pragmatic Programmers, LLC.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form, or by any

means, electronic, mechanical, photocopying, recording, or otherwise, without the prior consent of the publisher.

http://www.pragprog.com

Many of the designations used by manufacturers and sellers to distinguish their prod-

ucts are claimed as trademarks. Where those designations appear in this book, and The

Pragmatic Programmers, LLC was aware of a trademark claim, the designations have

been printed in initial capital letters or in all capitals. The Pragmatic Starter Kit, The

Pragmatic Programmer, Pragmatic Programming, Pragmatic Bookshelf and the linking g

device are trademarks of The Pragmatic Programmers, LLC.

Every precaution was taken in the preparation of this book. However, the publisher

assumes no responsibility for errors or omissions, or for damages that may result from

the use of information (including program listings) contained herein.

Our Pragmatic courses, workshops, and other products can help you and your team

create better software and have more fun. For more information, as well as the latest

Pragmatic titles, please visit us at

http://www.pragprog.com

Copyright © 2010 Paolo Perrotta.

All rights reserved.

No part of this publication may be reproduced, stored in a retrieval system, or transmit-

ted, in any form, or by any means, electronic, mechanical, photocopying, recording, or

otherwise, without the prior consent of the publisher.

Printed in the United States of America.

ISBN-10: 1-934356-47-6

ISBN-13: 978-1-934356-47-0

Printed on acid-free paper.

P1.0 printing, January 2010

Version: 2010-1-29

http://www.pragprog.com

Whenever someone says they have “a cool trick,” take them

outside and slap them up.

Jim Weirich

Appendix C

Spell Book
This appendix is a “spell book”—a quick reference to all the “spells” in

the book, in alphabetical order. Most of these spells are metaprogram-

ming related (but the ones from Appendix A, on page 242, are arguably

not that “meta”).

Each spell comes with a short example and a reference to the page

where it’s introduced. Go to the associated pages for extended examples

and the reasoning behind each spell.

C.1 The Spells

Argument Array

Collapse a list of arguments into an array.

def my_method(*args)

args.map {|arg| arg.reverse }

end

my_method('abc', 'xyz', '123') # => ["cba", "zyx", "321"]

For more information, see page 248.

Around Alias

Call the previous, aliased version of a method from a redefined method.

class String

alias :old_reverse :reverse

def reverse

"x#{old_reverse}x"

end

end

THE SPELLS 259

"abc".reverse # => "xcbax"

For more information, see page 157.

Blank Slate

Remove methods from an object to turn them into Ghost Methods (75).

class C

def method_missing(name, *args)

"a Ghost Method"

end

end

obj = C.new

obj.to_s # => "#<C:0x357258>"

class C

instance_methods.each do |m|

undef_method m unless m.to_s =~ /method_missing|respond_to?|^__/

end

end

obj.to_s # => "a Ghost Method"

For more information, see page 86.

Class Extension

Define class methods by mixing a module into a class’s eigenclass (a

special case of Object Extension (153)).

class C; end

module M

def my_method

'a class method'

end

end

class << C

include M

end

C.my_method # => "a class method"

For more information, see page 153.

Class Extension Mixin

Enable a module to extend its includer through a Hook Method (183).

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 260

module M

def self.included(base)

base.extend(ClassMethods)

end

module ClassMethods

def my_method

'a class method'

end

end

end

class C

include M

end

C.my_method # => "a class method"

For more information, see page 187.

Class Instance Variable

Store class-level state in an instance variable of the Class object.

class C

@my_class_instance_variable = "some value"

def self.class_attribute

@my_class_instance_variable

end

end

C.class_attribute # => "some value"

For more information, see page 129.

Class Macro

Use a class method in a class definition.

class C; end

class << C

def my_macro(arg)

"my_macro(#{arg}) called"

end

end

class C

my_macro :x # => "my_macro(x) called"

end

For more information, see page 138.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 261

Clean Room

Use an object as an environment in which to evaluate a block.

class CleanRoom

def a_useful_method(x); x * 2; end

end

CleanRoom.new.instance_eval { a_useful_method(3) } # => 6

For more information, see page 109.

Code Processor

Process Strings of Code (165) from an external source.

File.readlines("a_file_containing_lines_of_ruby.txt").each do |line|

puts "#{line.chomp} ==> #{eval(line)}"

end

>> 1 + 1 ==> 2

>> 3 * 2 ==> 6

>> Math.log10(100) ==> 2.0

For more information, see page 166.

Context Probe

Execute a block to access information in an object’s context.

class C

def initialize

@x = "a private instance variable"

end

end

obj = C.new

obj.instance_eval { @x } # => "a private instance variable"

For more information, see page 107.

Deferred Evaluation

Store a piece of code and its context in a proc or lambda for evaluation

later.

class C

def store(&block)

@my_code_capsule = block

end

def execute

@my_code_capsule.call

end

end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 262

obj = C.new

obj.store { $X = 1 }

$X = 0

obj.execute

$X # => 1

For more information, see page 110.

Dynamic Dispatch

Decide which method to call at runtime.

method_to_call = :reverse

obj = "abc"

obj.send(method_to_call) # => "cba"

For more information, see page 66.

Dynamic Method

Decide how to define a method at runtime.

class C

end

C.class_eval do

define_method :my_method do

"a dynamic method"

end

end

obj = C.new

obj.my_method # => "a dynamic method"

For more information, see page 70.

Dynamic Proxy

Forward to another object any messages that don’t match a method.

class MyDynamicProxy

def initialize(target)

@target = target

end

def method_missing(name, *args, &block)

"result: #{@target.send(name, *args, &block)}"

end

end

obj = MyDynamicProxy.new("a string")

obj.reverse # => "result: gnirts a"

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 263

For more information, see page 80.

Flat Scope

Use a closure to share variables between two scopes.

class C

def an_attribute

@attr

end

end

obj = C.new

a_variable = 100

flat scope:

obj.instance_eval do

@attr = a_variable

end

obj.an_attribute # => 100

For more information, see page 105.

Ghost Method

Respond to a message that doesn’t have an associated method.

class C

def method_missing(name, *args)

name.to_s.reverse

end

end

obj = C.new

obj.my_ghost_method # => "dohtem_tsohg_ym"

For more information, see page 75.

Hook Method

Override a method to intercept object model events.

$INHERITORS = []

class C

def self.inherited(subclass)

$INHERITORS << subclass

end

end

class D < C

end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 264

class E < C

end

class F < E

end

$INHERITORS # => [D, E, F]

For more information, see page 183.

Kernel Method

Define a method in module Kernel to make the method available to all

objects.

module Kernel

def a_method

"a kernel method"

end

end

a_method # => "a kernel method"

For more information, see page 53.

Lazy Instance Variable

Wait until the first access to initialize an instance variable.

class C

def attribute

@attribute = @attribute || "some value"

end

end

obj = C.new

obj.attribute # => "some value"

For more information, see page 246.

Mimic Method

Disguise a method as another language construct.

def BaseClass(name)

name == "string" ? String : Object

end

class C < BaseClass "string" # a method that looks like a class

attr_accessor :an_attribute # a method that looks like a keyword

end

obj = C.new

obj.an_attribute = 1 # a method that looks like an attribute

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 265

For more information, see page 243.

Monkeypatch

Change the features of an existing class.

"abc".reverse # => "cba"

class String

def reverse

"override"

end

end

"abc".reverse # => "override"

For more information, see page 35.

Named Arguments

Collect method arguments into a hash to identify them by name.

def my_method(args)

args[:arg2]

end

my_method(:arg1 => "A", :arg2 => "B", :arg3 => "C") # => "B"

For more information, see page 247.

Namespace

Define constants within a module to avoid name clashes.

module MyNamespace

class Array

def to_s

"my class"

end

end

end

Array.new # => []

MyNamespace::Array.new # => my class

For more information, see page 43.

Nil Guard

Override a reference to nil with an “or.”

x = nil

y = x || "a value" # => "a value"

For more information, see page 246.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 266

Object Extension

Define Singleton Methods by mixing a module into an object’s eigen-

class.

obj = Object.new

module M

def my_method

'a singleton method'

end

end

class << obj

include M

end

obj.my_method # => "a singleton method"

For more information, see page 153.

Open Class

Modify an existing class.

class String

def my_string_method

"my method"

end

end

"abc".my_string_method # => "my method"

For more information, see page 33.

Pattern Dispatch

Select which methods to call based on their names.

$x = 0

class C

def my_first_method

$x += 1

end

def my_second_method

$x += 2

end

end

obj = C.new

obj.methods.each do |m|

obj.send(m) if m.to_s =~ /^my_/

end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 267

$x # => 3

For more information, see page 69.

Sandbox

Execute untrusted code in a safe environment.

def sandbox(&code)

proc {

$SAFE = 2

yield

}.call

end

begin

sandbox { File.delete 'a_file' }

rescue Exception => ex

ex # => #<SecurityError: Insecure operation `delete' at level 2>

end

For more information, see page 174.

Scope Gate

Isolate a scope with the class, module, or def keyword.

a = 1

defined? a # => "local-variable"

module MyModule

b = 1

defined? a # => nil

defined? b # => "local-variable"

end

defined? a # => "local-variable"

defined? b # => nil

For more information, see page 102.

Self Yield

Pass self to the current block.

class Person

attr_accessor :name, :surname

def initialize

yield self

end

end

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 268

joe = Person.new do |p|

p.name = 'Joe'

p.surname = 'Smith'

end

For more information, see page 250.

Shared Scope

Share variables among multiple contexts in the same Flat Scope (105).

lambda {

shared = 10

self.class.class_eval do

define_method :counter do

shared

end

define_method :down do

shared -= 1

end

end

}.call

counter # => 10

3.times { down }

counter # => 7

For more information, see page 106.

Singleton Method

Define a method on a single object.

obj = "abc"

class << obj

def my_singleton_method

"x"

end

end

obj.my_singleton_method # => "x"

For more information, see page 135.

String of Code

Evaluate a string of Ruby code.

my_string_of_code = "1 + 1"

eval(my_string_of_code) # => 2

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

THE SPELLS 269

For more information, see page 165.

Symbol To Proc

Convert a symbol to a block that calls a single method.

[1, 2, 3, 4].map(&:even?) # => [false, true, false, true]

For more information, see page 253.

CLICK HERE to purchase this book now.

http://www.pragprog.com/titles/ppmetr

The Pragmatic Bookshelf
The Pragmatic Bookshelf features books written by developers for developers. The titles

continue the well-known Pragmatic Programmer style and continue to garner awards and

rave reviews. As development gets more and more difficult, the Pragmatic Programmers

will be there with more titles and products to help you stay on top of your game.

Visit Us Online
Metaprogramming Ruby’s Home Page

http://pragprog.com/titles/ppmetr

Source code from this book, errata, and other resources. Come give us feedback, too!

Register for Updates

http://pragprog.com/updates

Be notified when updates and new books become available.

Join the Community

http://pragprog.com/community

Read our weblogs, join our online discussions, participate in our mailing list, interact

with our wiki, and benefit from the experience of other Pragmatic Programmers.

New and Noteworthy

http://pragprog.com/news

Check out the latest pragmatic developments, new titles and other offerings.

Buy the Book
If you liked this eBook, perhaps you’d like to have a paper copy of the book. It’s available

for purchase at our store: pragprog.com/titles/ppmetr.

Contact Us
Online Orders: www.pragprog.com/catalog

Customer Service: support@pragprog.com

Non-English Versions: translations@pragprog.com

Pragmatic Teaching: academic@pragprog.com

Author Proposals: proposals@pragprog.com

Contact us: 1-800-699-PROG (+1 919 847 3884)

http://pragprog.com/titles/ppmetr
http://pragprog.com/updates
http://pragprog.com/community
http://pragprog.com/news
pragprog.com/titles/ppmetr
www.pragprog.com/catalog

