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Abstract

In 1965, Intel co-founder Gordon Moore observed that the number of devices (transis-

tors, resistors, etc.) doubled every twelve months. Ten years later he predicted that the

number of transistors of CPUs doubled every 24 months. A consequence of what is now

known as “Moore’s Law” is that processing power also increases exponentially, albeit

not at a factor of two per two years. The consequences of this still precise prognosis for

today’s society are amazing. It is by now possible to rapidly generate or acquire data

sets that are so large in size that processing or displaying these data sets has become

a severe issue and typically requires both state-of-the-art hardware and sophisticated

algorithms.

The recent introduction of graphics accelerators for mainstream PCs, collectively

known as graphics processing units (GPUs), has offered the potential to explore these

data sets at interactive rates. However, due to the still limited video memory of today’s

GPUs and the von Neumann architecture of modern PCs, the storage and bandwidth

requirements arising during the visualization of large data sets have to be carefully an-

alyzed.

In this thesis, we explore a class of visualization algorithms commonly referred to

as level-of-detail (LOD) algorithms. These algorithms typically perform a hierarchical

analysis of large, highly detailed data sets during a preprocessing step. During run-

time, the amount and detail of the data necessary to form an image for a given set of

camera parameters is determined, and the respective data is sent to the GPU to be dis-

played. Since the data is usually too large to reside in host memory, paging strategies

that hide latencies of external storage solutions are employed. We demonstrate that in

this way highly interactive frame rates can be achieved for the visualization of massive

point clouds, high-resolution terrain, large, triangulated models, and gigapixel-sized

images. Furthermore, we demonstrate that interactivity leads to immediate visual feed-

back loops for user-made changes of the data set. This feedback offers the possibility
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to design highly intuitive and powerful editing environments—e.g., for fractal land-

scapes and the design of digital filters that operate on gigapixel images—that follow

the well-established WYSIWIG concept.



Zusammenfassung

Im Jahr 1965 beobachtete der Intel Mitbegründer Gordon Moore dass sich die Anzahl

der Bauteile (Transistoren, Widerstände usw.) in etwa alle zwölf Monate verdoppelt.

Zehn Jahre später formulierte er die nun als “Moores Gesetz” bekannte Prognose, dass

sich die Anzahl der Transistoren von CPUs alle 24 Monate verdoppelt. Obwohl sich

die Leistungsfähigkeit von Prozessoren langsamer entwickelt, ist doch aufgrund der

auch heute noch präzisen Prognose eine exponentielle Beschleunigung von generellen

CPUs zu beobachten. Die Konsequenzen für die heutige Gesellschaft sind erstaunlich.

Es ist heutzutage möglich, in kurzer Zeit Datensätze zu generieren oder zu messen,

deren schiere Größe bei der Darstellung echte Probleme aufwirft. Als Konsequenz sind

üblicherweise aktuellste Rechner und ausgefeilte Algorithmen erforderlich.

Die erst seit recht kurzer Zeit für Standard-PCs verfügbaren Grafikbeschleuniger,

die kollektiv auch GPUs (graphics processing units) genannt werden, haben das Po-

tential eine Echtzeitexploration solcher Datensätze zu ermöglichen. Jedoch müssen

die Speicher- und Bandbreitenanforderungen, die während der Visualisierung dieser

Daten anfallen, genau untersucht werden, da sich sowohl der verfügbare Videospeicher

als auch die verfügbaren Bandbreiten heutiger von Neumann Architekturen schnell als

limitierend erweisen.

Diese Dissertation untersucht eine Klasse von Visualisierungsalgorithmen die kollek-

tiv als level-of-detail (LOD) Algorithmen bekannt sind. Diese Algorithmen führen

typischerweise eine hierarchische Analyse von großen, hochdetailierten Datensätzen

in einem Vorverarbeitungsschritt durch. Zur Laufzeit werden dann die Teile und der

Detailgrad bestimmt, die für die Berechnung des finalen Bildes unter den aktuellen

Kameraparametern nötig sind. Diese Daten werden dann an die GPU gesendet und

dargestellt. Weil die Datensätze üblicherweise zu groß sind, um im Hauptspeicher

gehalten werden zu können, werden geeignete Auslagerungsstrategien beschrieben um

die Latenzen externer Speichermedien zu verstecken. Wir zeigen am Beispiel einer
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Reihe von unterschiedlichen Daten, etwa gigantischen Punktwolken, hochaufgelösten

Landschaftsdaten sowie Gigapixel-Bildern, dass auf diese Weise interaktive Darstel-

lungsraten erreicht werden. Diese Interaktivität kann dann für Editoren mit soforti-

gen visuellen Rückmeldungen im Stile des WYSIWIG-Konzeptes (What-You-See-Is-

What-You-Get) genutzt werden. Solche Rückmeldungen erlauben das Design hochin-

tuitiver und mächtiger Editierumgebungen, wie sie am Beispiel eines fraktalen Land-

schaftseditors und einer Rapid Prototyping Umgebung für digitale Bildfilter auf Giga-

pixel-Bildern demonstriert werden.
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mund Fülöp, Dr. Joachim Georgii, Stefan Hertel, Dr. Peter Kipfer, Dr. Polina Kon-
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Chapter 1

Introduction

In 1965, intel co-founder Gordon Moore observed that the number of devices inside

chips (including transistors, resistors, etc.) doubled every 12 months [Moo98]. Ten

years later he further predicted that the number of transistors in chips—including mod-

ern CPUs—doubled every 24 months. This exponential growth has led to amazing

aspects of today’s society, including the capability to rapidly generate data so large in

size that processing or displaying it consistently demands next-generation hardware as

well as sophisticated, dedicated algorithms. To call large, highly detailed data sets a

trend would be a clear understatement. Large data sets have been around for decades,

and the actual meanings of the terms “large” and “detailed” have been constantly re-

defined by the amount of memory available on state-of-the-art computers. However,

certain components in modern computers have not kept pace with the rapid growth in

processing power, e.g., the typical amount and speed of memory, including core RAM

as well as external storage. The result is that with the tremendous processing power

currently available even in off-the-shelf PCs it is easy to generate data sets that cannot

be explored interactively on the very same machine. Another aspect is the fact that the

ratio between the size of data sets and the main memory found in typical PCs has been

growing steadily during the last decades.

The rather recent introduction of mainstream graphics accelerators, collectively

known as graphics processing units (GPUs) offers the potential to be able to explore

these data sets visually and interactively. However, mostly—but not exclusively—due

to the still very limited local video memory1, GPUs also pose new challenges. GPU

vendors thus realized a growing demand for higher flexibility and high-level language

programming models stemming from both the programmers of video games and the

1GPUs with up to 4 GB video memory are available by now.

1
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scientific community alike. As a result, GPUs have evolved from a very dedicated im-

plementation of what is now known as the rasterization pipeline to very flexible and

powerful devices. While they are still dedicated graphics chips and require program-

mers to follow specific paradigms tailored to the needs of realtime computer graph-

ics, they can be programmed in high-level shader languages such as GLSL and HLSL

[Kes08, Bly06] which are very similar to the C programming language [KR88]. For

small and moderately sized data sets, the introduction and evolution of GPUs directly

translated into a quantum leap in both performance and availability. Whereas before

graphics capabilities had clearly been the domain of expensive work stations, computer

graphics has now become ubiquitous. It is also worth noting that computer graphics

has been exceptionally well received by society, especially taking into account that

computers as such have not always been accepted without resentments. This is clearly

demonstrated by recent successes such as Google Earth [Gooa], the video game indus-

try, and many more.

In the academic community it is clear for quite some time that the real challenge are

large, highly detailed data sets. Typically the demand is to visualize the data set entirely,

with the ability to zoom in on specific parts. This has given rise to so-called level-of-

detail (LOD) algorithms that seek to determine and display only the amount and detail

necessary for a given set of camera parameters. Furthermore, interactivity has proven

itself to be of paramount importance for several reasons. Firstly, interactivity allows

the user to fully immerse into the process of data exploration. This is very helpful if

the data is unkown or it is not a priori clear where interesting structures will be found.

Secondly, humans are usually very productive in interactive environments. Possible

reasons include that they are always provided with immediate visual feedback to their

actions. This allows them to become accomodated with user interfaces of interactive

simulations very quickly. Furthermore, if something “goes wrong”, i.e., the presented

image does not match the user’s expectation, she or he can typically correct the fault

rapidly if interactive interfaces are provided. Last but not least, humans tend to learn

very well from trial-and-error, a learning paradigm that is best tapped using interactiv-

ity. At this point, we would like to stress the example of video games once more. When

compard to board games it can be observed that video games typically offer a learning

curve that is a lot more gentle, albeit they are not necessary less complex than board

games. This effect is further fostered by the fact that only in interactive environments

an adaptation of “rules” is feasible that take the user’s behaviour into account. These

rules can be plainly the game mechanics, or—in case of scientific visualization—they

can be interaction metaphors changing depending on specific contextual features of the
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data set to be visualized.

Interactivity can be achieved more or less straightforwardly by standard techniques

that exploit recent GPUs for medium-sized data sets. Large, highly detailed data, how-

ever, requires the use of sophisticated, highly adapted visualization algorithms. One

among many reasons is the von Neumann architecture of current computers. The GPU

is connected to the CPU via a bus, i.e., AGP or PCI express. Since the GPU can only

render efficiently from local video memory, the visible part of the data has either to

reside on the GPU, or it has to be transferred there prior to rendering. In the optimum

case data can be transmitted to the GPU while concurrently rendering another part of

the data. As with all concurrent systems, this requires a sound timing of when to send

data, and as with all bus-based systems, only necessary data should be transmitted to

avoid that the bus becomes a bottleneck.

In this thesis we describe algorithms and methods to render such large and highly

detailed data sets. The data sets presented in this work stem from a broad spectrum of

sources, such as remote sensing, laser range scans, artistic content generation, digital

photography, etc. To keep this thesis as self-contained as possible, we will address the

data acquisition, the data processing, and, finally, the data visualization steps. We also

show that by understanding the data acquisition step specific algorithms can be man-

dated that can exploit certain properties of the data. Specifically, this thesis will address

the rendering of massive laser range point scans and large-scale terrain, the interactive

editing and rendering of fractal terrain, the interactive editing of displacements on 2-

manifold meshes, and a framework for rendering and filtering gigapixel images. In all

these applications, similar techniques are used.

First of all, due to the sheer size of the data sets to be used, data compression in such

a manner that the GPU can render directly from the compressed data stream is used.

The most obvious result of integrating data decompression into the rendering step itself

is a virtual increase of local video memory up to the point where actually the entire

data set can reside on the GPU. Furthermore, compression allows to circumvent the

bus bottleneck of von Neumann architectures by increasing virtual bandwidths across

the bus. Last but not least, the host memory can be used more efficiently. It should be

noted, however, that such compression schemes typically require bandwidths beyond

those required when rendering directly from raw data. Luckily, local bandwidths of

video memory currently surpass 100 GB/sec by a significant margin2 and they are easily

among the highest bandwidths in the entire system. Thus, decoding directly on the GPU

will affect the overall performance least with respect to bandwidth requirements.

2For instace, NVIDIA specifies the video RAM to GPU bandwidth of the GeForce 280 GTX with 141 GB/sec.
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Secondly, we show that interactivity is the key to intuitive user interfaces. By

providing the user with immediate visual feedback, a WYSIWIG (“What-You-See-Is-

What-You-Get”) interface can be built to facilitate even such complex editing opera-

tions as to modify auxiliary functions of fractal synthesis.

Thirdly, specific algorithms that fall into the “GPGPU” (general purpose GPU) cat-

egory are utilized to support rendering algorithms in their strive for interactivity. While

we do not present general purpose algorithms on the GPU per se, we exploit the GPUs

massive floating point processing potential to perform somewhat exotic tasks in terms

of the classical rendering pipline—for instance a spring-mass system that runs on the

GPU—in order to keep the entire application interactive. The appeal is generally that

we try to move methods that are closely related to rendering, such as intermediate com-

putations, directly to the GPU to avoid costly communication between the CPU and the

GPU.

Last but not least, each application comes with its own rendering algorithm that

is specifically tailored to the underlying data. These algorithms typically support ren-

dering at different levels-of-detail (LODs) or dynamic geometry generation to avoid

aliasing artifacts, as well as streaming data from host memory concurrently to render-

ing.

As we demonstrate in this thesis, the benefits of these techniques include the inter-

active editing or filtering of data without changing the underlying data representation

(which is especially important for large data), the possibility to perform rapid proto-

typing in various applications, and of course all possibilities offered by visual realtime

exploration of complex data, be it of scientific or artistic sources.

1.1 Research Publications and Contributions

The work described in this thesis has been partially published in a series of research

papers. We now give an overview of the following chapters, including a list of contrib-

utors and academic publications.

The next chapter provides a broad overview of basic concepts and algorithms, that

are not a major academic contribution of this thesis. However, they constitute basic

building blocks and will be referenced by chapters following thereafter. The motivation

for these overviews is the strive to make this thesis self-contained. In cases for which

such ambitions must fail because the topic in discussion has been under active research

for several decades, we at least provide references for further readings.

Chapter 3 deals with the compression and rendering of large point scans and volume
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data sets. Two papers were published in collaboration with Jens Krüger and Rüdiger

Westermann in that context. The first paper [KSW05] deals with the compression and

rendering of the point scans in the Digital Michelangelo Project, while the second one

[KSW06] extends the method towards the compression and rendering of isosurfaces.

Also, the second paper discusses memory and runtime complexity as well as the ge-

ometric properties of the underlying clustering in more detail. In contrast to these

publications, Chapter 3 provides a more concise description of the graph-theoretical

foundations of the method, and it provides ready-to-use algorithms to perform the re-

sampling and clustering steps in the method. Furthermore, the chapter in this thesis

is a lot more self-contained in comparison to previous publications, since an overview

of closest-sphere packings, an in-depth discussion of the differential encoding, and a

concise description of the normal estimation process are provided.

Chapter 4 discusses a system to render large-scale terrain provided as digital eleva-

tion maps using nested mesh hierarchies and progressive transmission of data into video

memory. It was partly published in collaboration with Rüdiger Westermann [SW06].

The chapter in this thesis has been extended by providing some additional details, and it

now contains a description of the algorithm used to generate zero-area triangles in order

to stitch chunks together. Furthermore, some parts of the system were re-used for the

more recent publication by Christian Dick, Jens Schneider, and Rüdiger Westermann

[DSW08], although this particular publication was not used for this thesis.

The synthesis of infinite terrain is the subject of Chapter 5. Parts of it have been

published in collaboration with Tobias Boldte and Rüdiger Westermann [SBW06]. In

this chapter, a WYSIWIG interface is proposed to allow interactive editing of fractal

terrain, including the real-time synthesis of geotypical textures. A projected grid ap-

proach is utilized for rendering.

Chapter 6 describes a system to interactively edit and modify any given 2-manifold

meshs by using displacements. Unlike previous approaches we do not rely on a homo-

geneous refinement of the base mesh, e.g., by evaluation of a subdivision kernel. This

is made possible by first tracing a locally parameterized patch on the base mesh. This

patch is then regularly tesselated and serves as the domain for a displacement height

field. By utilizing a fragment-based cutout technique, displacements both along the

positive and negative normal direction are possible. Also, this method avoids depth-

peeling, a rather expensive operation that is frequently needed to establish correct vis-

ibility order. The work described in this chapter is the result of a collaboration with

Joachim Georgii and Rüdiger Westermann. It has not yet been published.

Chapter 7 describes a system to render and filter gigapixel-sized images. It is closely



6 CHAPTER 1. INTRODUCTION

related to [DSW08], but the basic framework has not yet been published. The only

subset of this chapter that has been published is the GPU-based propagation filter to

compute discrete euclidean distance fields [SKW09]. The methods described in this

chapter are a collaboration with Dominik Meyer and Florian Wendel, who contributed

to this project during their bachelor and research projects, Christian Dick, who provided

the terrain engine described in [DSW08], and Rüdiger Westermann. The propagation

filter was developed jointly with Martin Kraus and Rüdiger Westermann.

Finally, we summarize the topics covered by this thesis, provide results, and give

interesting directions for future research.



Chapter 2

Basic Techniques

In this chapter we briefly discuss recent advances of data acquisition techniques. This

is accompanied by a broad overview of some of the more basic methods used in the

remainder of this thesis, and a discussion of the programmable rendering pipeline as

exposed through the DirectX 10 API. This chapter does not represent an academic

contribution per se, but serves to make the thesis as self-contained as possible.

2.1 GPUs and Graphics APIs

This thesis describes methods that have been developed and validated using either the

OpenGL or Direct3D 10 API [SA08, Bly06]. Since both APIs share very similar con-

cepts, we describe the Direct3D 10 rendering pipeline in this section and we use Di-

rect3D terminology when describing general concepts. Only in places where the details

of the actual implementation are discussed or where the decidedly better documentation

of OpenGL is beneficial will OpenGL terminology be used.

The Direct3D 10 rendering pipeline is depicted in Figure 2.1. In this figure, blue

blocks correspond to the parts of the pipeline which are fully controlled by the program-

mer, i.e., the programmable vertex, geometry, and pixel shader stages, as well as the

host- and GPU-side memory objects. GPU-sided parts are programmed in a high level

shader language (typically GLSL or HLSL [Kes08, Bly06]) that is similar in style to the

C programming language [KR88]. Gray blocks correspond to stages that operate in a

configured-function mode, i.e., the operation of these stages is guided by so-called state

objects. These state objects contain configuration data such as filtering and mipmap-

ping parameters in case of a sampler state object. Although multiple such state objects

can be stored at the GPU at one time, only one such object can be active per stage. In

total, five different states are maintained: The input-layout state, the rasterizer state, the

7
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blend state, and the sampler state.

Output Data

Input Data

Memory Resources

Buffer

Pixel Shader Stage

Stream Output Stage

Geometry Shader Stage

Output Merger Stage

Vertex Shader Stage

Input Assembly Stage

Rasterizer Stage

Textures

State Objects

Input Layout State, Buffers

Textures, Buffers, Constant Buffers

Textures, Buffers, Constant Buffers

Textures, Buffers, Constant Buffers

Framebuffer

Textures, Buffers, Constant Buffers

Rasterizer State

Depth−Stencil State, Blend State

Constant Buffers

Buffers

Figure 2.1: The Direct3D 10 rendering pipeline. This pipeline is implemented by essentially
all recent GPUs. The parts highlit in blue can be fully managed by the user. Specifically, the
vertex, geometry, and pixel shader stages are fully programmable, and the user has full control
of host- and GPU-side memory objects. Grayed blocks correspond to stages that operate in a
configured-function mode.

The pipeline follows the basic concepts and paradigms of rasterization-based com-

puter graphics [FvDFH95]. For each draw call, an user-defined input buffer containing

vertex data and optionally index data (to render shared vertex formats) is traversed.

From these vertices, primitives are formed in the input assembly stage.

The vertices of these primitives are then passed on to the vertex shader stage. Here,

each vertex can be modified, but no new data can be generated. Vertices can only be

removed in this stage by transforming them to positions outside the viewing frustum.
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In the geometry shader, the programmer can then access the entire primitive. Pos-

sible primitive configurations include simple triangles, triangles with neighborhood in-

formation, etc. The advantage of the geometry shader stage is that all vertices of the

current primitive can be fully accessed, that new primitives can be generated (so-called

geometry amplification), and that primitives can be removed from the pipeline. The

major disadvantage of the geometry shader stage is—as of writing—its inferior perfor-

mance. Although it can be expected that the performance of this stage will improve in

the near future, it is currently worth the effort to emulate certain parts of it by utilizing

multi-pass techniques and render targets. The programmer can choose to either directly

output the primitives processed and/or generated into the rasterization stage, or to store

primitives in a stream output—a specific type of buffer that resides in GPU-memory—

for subsequent rendering passes

In the rasterizer stage, primitives are clipped against the view frustum and frag-

ments—informally speaking pixels or sub-pixels augmented with additional informa-

tion such as 3D position, interpolated texture coordinates etc.—are generated.

In the following stage, the pixel shader, no new fragments can be generated, but

the user can choose to discard selected fragments. As soon as each fragment’s depth

is known, it can be depth and stencil tested, thereby conditionally discarding it. Note

that fragments can be depth-tested even prior to the pixel shader, if depth values are not

modified by the shader (so-called early depth testing).

Finally, all “surviving” fragments are merged in the output merger stage that also

performs the configurable blending of incoming pixels.

Last but not least, the output data, i.e., pixels, can be written to the framebuffer or

to textures and/or buffers. Note that these options are not mutually exclusive, since

multiple render targets can be specified. As can be seen in Figure 2.1, the Direct3D 10

pipeline offers multiple possibilities (marked by red arrows in the figure) for feedback

loops, i.e., loops that re-use data from previous rendering passes. This is an important

concept and has become indispensable for most multi-pass algorithms.

One pecularity in Figure 2.1 still needs to be addressed. Direct3D 10 provides

two fundamentally different operations to retrieve the data stored in textures or buffers.

The first one is called Load and just fetches data without any interpolation or filtering.

The second one is called Sample. This term actually refers to a class of instructions

that are further configured by a smpler state. Sample operations perform filtering and

interpolation and are hence defined for textures only. This additional functionality is

the reason that we strictly differentiate between textures and buffers, although textures

are in fact buffers in Direct3D 10.
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As a final remark, we would like to note that recent GPUs supporting Direct3D 10

are required to support the full pipeline. This includes single-precision floating point

operations adhering to the IEEE 754 standard, with the only exception of functions

that are typically implemented using iterative approximations, namely square-root and

division. These functions may deviate from the IEEE 754 standard by the last few

bits in the result’s mantissa. Furthermore, Direct3D 10 requires support for 32 bit

integers—signed and unsigned—, including full bit arithmetic. Consequently, most

algorithms that can be implemented on a CPU using only these data types can also be

implemented on a GPU, albeit the latter implementation might not be straightforward.

The reason is that concurrent read- and write access to buffers and textures is not yet

possible in either Direct3D 10 or OpenGL 3.0. Direct3D 11 has been announced to

address these issues by the so-called compute shader [Boy08], but hardware support

for this API is not available as of writing.

2.2 Digital Photography and CCDs

A CCD (charge-coupled device) is a semiconductor device first conceived in 1970 by

Willard Boyle and George E. Smith. It consists of a series of Germanium (or of compa-

rable material) electrodes which are separated from a acceptor-impurity doped silicium

(p-Si) layer by a quartz (resistor) layer. A schematic overview is given in Figure 2.2.

+V

SiO2

p−Si

Ge

0V 0V+V +V +V 0V 0V 0V

Figure 2.2: Schematic view of a CCD. Charges (blue) reside in quantum wells (yellow) in
the p-Si layer. The extent of these wells are controlled by the Germanium anodes, which are
separated by a quartz layer from the p-Si layer. By the operations depicted from left to right it
is thus possible to propagate charges in a controlled manner.

The main functionality of such a device is that charges (depicted by a collection

of electrons in Figure 2.2) can be transported in the p-Si layer in a controlled way by

connecting the electrodes to positive current. Charges in the p-Si layer can be initially

generated by a variety of other devices, most notably by photo-diodes. In this manner,

two-dimensional CCD arrays can be constructed, in which charges are generated by

exposing an array of photo-diodes to visible light. Then, light exposure is inhibited,

thereby “freezing” charges in the CCDs. Thus, an image of the exposure can be stored
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in the CCD array. The charges corresponding to that image can then be read and in-

terpreted sequentially by means of digital signal processing (DSP) chips. The result

are so-called CCD sensors (see Figure 2.3 for a picture of an actual sensor) that are

commonly used in commercially available digital cameras.

Figure 2.3: Photograph of a CCD sensor. Image under the Wikimedia Commons licence.

The importance of the CCD lies within the fact that the DSPs do not need to access

each single one of the charge-cells at once, thereby resulting in a feasible design of such

DSPs (see Figure 2.4 for a schematic view of a Full-Frame CCD). Miniaturization has

lead to CCD sensors capable of capturing dozens of Megapixels while covering only a

few square centimeters. The result is that digital cameras are now en route to become an

equivalent replacement for traditional, analog camera systems, ranging from amateur to

professional use. As a result, large images have been become ubiquitous, and mosaick-

ing and registration techniques [KUDC07] have been developed to combine multiple

images into a single, ultra-high resolution image comprising several gigapixels each.

Analog cameras can also be used to acquire such gigapixel resolutions. For instance,

the Gigapxl Project [Fli] uses high-definition analog cameras to obtain high-resolution

images. These images are then scanned afterwards, resulting in single-exposure images

comprising up to 4 Gigapixels.

The advantage of single-exposure photographs is obvious, since visible changes

in the observed scenery do not occur during a single exposure. This is in contrast to

multiple-exposure mosaicked digital images, in which, in case of urban photography,

cars and people change positions and thus lead to undesired artifacts.

Nevertheless, both techniques have been employed to obtain images at very high
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DSP DSP

CCD Sensor

Transfer Registers

DSP DSP

Figure 2.4: Schematic view of a Full-Frame CCD. In this example, the CCD-sensor consists of
six CCD columns plus one six-cell of row of transfer registers. Each row’s charges are advanced
one slot downwards, thereby filling the transfer registers. This step requires multiple cycles in
order to keep the charges separated from each other. The transfer registers are then “emptied”
in a similar manner, first into a signal amplifier (not depicted), and then into the DSP. The DSP
forms the final image in multiple such steps. Note that, although other CCD sensor types exist,
the basic mode of operation is always similar. Also note that photo-CCD cells are typically
monochromatic, i.e., there are usually different kinds which are exclusively sensitive to different
wavelengths.

resolutions; and these images will eventually define a new standard. By now already,

panoramic views comprising several tens to a few hundreds of megapixels can be gen-

erated by ambitioned amateurs. Camera vendors frequently include the necessary soft-

ware with their products for free. This results in an entirely new type of data for which

the classical image processing operations have to be redefined, e.g., viewing, filtering,

etc. However, commercial image processing tools currently available are typically not

yet suited for this amount of data, and their paradigms might proove completely unfit to

deal with these images. Among others, these paradigms include the attempt to store the

entire image in virtual memory, to compute adaptive resolutions on the fly in order to fit

the image onto the view port, and to keep multiple copies in external memory to allow

for “Undo”-functionality. Consequently, this type of large data has recently kindled a

large academic interest, in the course of which we evaluate possibilities to display and

filter such images. Our approaches are documented in Chapter 7 of this thesis.

2.3 Laser Range Scanning of 3D Objects

In Chapter 3 the compression and rendering of large point scans will be discussed.

There are various ways to obtain such point clouds. By far the most prominent of such
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methods is laser range scanning. In this section we will briefly describe the technical

process of acquiring point clouds using a laser scanner. Since the exhaustive discussion

of recent advances in laser range scanning would be beyond the scope of this thesis,

only the fundamental ideas will be presented. For a thorough overview we would like

to refer the reader to the 3D photography course held at SIGGRAPH 2000 [BCD+].

Scanning systems are typically classified by the hierarchy depicted in Figure 2.5.

Laser range scanning is thus a non-contact, reflective, optical shape acquisition method.

Optical acquisition methods can be further separated into active and passive systems,

depending on whether they provide their own illumination (active) or not (passive). We

discuss two basic classes of active systems here, namely those based on measuring the

time-of-flight of a pulsed laser, and the “classical”, triangulation-based methods.

Shape Acquisition

Contact

Destructive Non−destructive

Slicing CMM

Non−contact

TransmissiveReflective

Optical Non−optical Industrial CT

Sonar Microwave (Radar)

Jointed Arms

Figure 2.5: A taxonomy for shape aqcuisition methods. Reproduced from [BCD+]. All data
sets in this thesis stem from optical methods or CT scanners.

LIDAR systems. LIDAR (Light Detection And Ranging) systems are time-of-flight

based. A pulsed laser is deflected using a mirror into the direction in which a positional

sample should be aquired. Then, the pulse is reflected by the environment to be mea-

sured and returns to the detector. The time between emitting and detecting the pulse is

measured. Since the direction of the laser and its time-of-flight is known, the position

of the occluder relative to the measuring device can be computed.

The precision of LIDARs is mainly dependent on three factors. Firstly, the speed

of light has to be known precisely, which implies a specific knowledge of the medium

through which the laser pulse travels. Secondly, time has to be measured with very

high precision, since, for instance, achieving a resolution of less than 1 meter in a
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vacuum is already equivalent to being able to measure time with an error margin of

about 3 picoseconds. Thirdly, since pulses are emitted periodically, errors may occur

if the actual time-of-flight exceeds the time between pulses. The reason is that in this

case the current pulse is emitted before the previous one returns. Consequently, the

time-of-flight measured will be that between the current’s pulse emission and one of

the previous pulses’ returns (see also Figure 2.6).

Laser

Detector

Timer

MirrorRotating Mirror

Field of View

Figure 2.6: Schematic view of a LIDAR system. The laser emits a pulse that is eventually
reflected by the environment and returned. A detector is then used to measure the fime-of-flight.
After each pulse return, the rotating mirror can be advanced in order to sweep the field of view,
similarly to a radar system.

Last but not least, as with all optical acquisition methods, LIDARs require a clean

reflection of the object to be scanned. Also, it is assumed that the object to be scanned

reflects a sufficiently large portion of the pulse back into the incoming direction, since

the detector is typically close to the emitter. Furthermore, beam divergence might re-

quire additional correction computations. LIDAR systems are thus best suited to scan

immobile objects, although a LIDAR system was used to achieve the particular look of

the music video “House of Cards” by Radiohead. The most prominent use of LIDARs,

however, was the MOLA mission (Mars Orbiter Laser Altimeter) [NAS] with its goal to

achieve precise digital elevation maps of Mars. Typically, between 10,000 and 100,000

points samples per second can be taken by LIDAR systems, each at a resolution on the

order of a few decimeters.

Triangulation-based 3D laser scanners. These scanners consist of a laser and a detector

(i.e., a digital camera), whose position relative to the laser is well known. The laser then

highlights a section of the object to be scanned by a planar sweep (see also Figure 2.7).

This results in a curve in the image acquired by the camera. For each pixel row con-
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taining a highlit point, the plane spanned by the camera position and the pixel row can

then be intersected with the laser sweep plane to yield a parametric formulation of the

laser beam. The ray determined by the camera position and the highlit pixel can then

be intersected with the laser beam, which is a 2D problem. The final result is then a

3D coordinate for each highlit pixel. Typically, the object is rotated and/or translated

relative to the measurement device (comprising camera and laser) in order to obtain a

full scan.

Laser

Object to be scanned

Camera

Pixel row

Figure 2.7: Schematic view of a triangulation-based scanner.

Although this epipolar setting is conceptually simple, a series of problems can arise.

The most obvious one is that multiple highlights can occur in one row, in which case

only an intensity maximum can be chosen to determine a 3D coordinate. This defect

will generally occur for materials exhibiting strong subsurface scattering properties,

but the effect is not limited to such materials. Furthermore, parts of the laser sweep

can be obstructed, which might result in incomplete scans. Obviously, the precision of

each point measurement is affected if either the laser or the camera attain a close-to-

oblique angle with the object’s surface. This can be addressed during the reconstruction

process by assigning a confidence value to each point as soon as the object’s surface

normal can be estimated. Last but not least, any calibration error seriously affects the

overall performance of the system.

All problems set aside, the methods to compute 3D positions using laser range scan-
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ners have matured enough to yield very high precision position, colors, and normals.

Such technology was employed in the Digital Michelangelo Project [Sta], of which

some data sets have been used in Chapter 3

2.4 Acquisition of Digital Elevation Maps

Besides airborne LIDAR systems (see also Section 2.3), passive optical systems are

frequently used. Among the more recent, prominent examples is the High Resolu-

tion Stereo Camera (HRSC) developed by the DLR (Deutsches Zentrum für Luft- und

Raumfahrt) and built by EADS (European Aeronautic Defence and Space Company).

It was most prominently used for the Mars Express mission [IfPb]. Among other data

sets, the Paris data set used in Chapter 4 was obtained using a low-altitude HRSC scan.

The basic acquisition principle, as depicted in Figure 2.8, relies on 5 to 9 CCD line

sensors, of which 3 to 5 are typically panchromatic and dedicated to obtaining 3D po-

sitions through stereo photogrammetry. The remaining sensors are monochromatically

filtered and their output can be combined to yield aerial color textures.

Bl

Path of Flight

Gr PF SFPASA NdRdIR

Figure 2.8: Schematic view of the HRSC-AX. The camera operates according to the so-called
pushbroom principle. Nine CCD line sensors are used, each with a resolution of 12,000 pix-
els. Four of the nine channels are filtered in order to obtain monochromatic measurements, i.e.,
to obtain aerial textures. The remaining four channels (namely SA, PA, Nadir, PF, SF) mea-
sure panchromatic light and are used for photogrammetric reconstruction of the height field.
Detailed specifications can be obtained from [IfPa].

The basic concept behind stereo photogrammetry is similar to 3D laser scanning by

triangulation, however, salient points and their matchings are not intrinsically given.
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Instead, for multiple scan lines, a best-possible match has to be performed in order to

obtain the final 3D positions. For a thorough discussion of airborne data acquisition as

well as its physical realization, data processing models, and limitations we would like

to refer to the two-part tutorial of Claus Brenner [Bre06a, Bre06b].

The most recent HRSC-AX has 9 CCD sensors with 12,000 pixels each. Typical

resolutions achieved at 6,000 meter altitude are about 30 cm. The HRSC-A used in the

Mars Express mission has 9 sensors with 5,184 pixels each. At an altitude of 270 km

and more, the distance between pixels on the ground is about 12 m, while the intra-

line spacing is about 2.3 m [IfPb]. Thus, highly detailed data sets can be obtained on

planetary scales, including geometry and textures.

2.5 CT Scanning

The abbreviation CT refers to computed tomography, an imaging method frequently

used in medicine. The basic concept of a CT scanner is to obtain a large series of 2D

X-ray images centered around a single axis of rotation. Each of these images con-

tains for each of its pixels a measurement of the X-ray extinction due to the material.

Mathematically, this measurement constitutes a line integral along the ray

p(s) = p0 + sd, (2.1)

where s is the X-ray’s parameter, p0 is the position of the emitter, and d is the ray’s

direction. The observed intensity is then given by the absorption law

I (x, y) = I0e
− ∫ sexit

senter
μ(s)ds, (2.2)

where I0 is the X-ray intensity at the emitter, senter and sexit are the ray parameters at

the emitter and detector, and μ(s) is the extinction coefficient at position p(s).

A scalar data set on a 3D Cartesian grid can then be obtained by computing the

inverse Radon transformation. The Radon transformation of a function f(x, y) is given

by

R(k, φ) [f(x, y)] =

∫ ∫
f(x, y)δ(x cos φ + y sin φ− k)dxdy, where

δ(b− a) :

∫
f(b)δ(b− a)db = f(a) for any function f. (2.3)

To see the relation to CT scanning, observe that R(r, φ) [f(x, y)] computes line-integrals
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along a set of lines L(φ, k), where L(φ, k) := {(x, y) : x cos φ + y sin φ− k = 0}.
The geometry of these lines is depicted in Figure 2.9.

k

Emitter

X

Y

φ

observed intensity

object to be scanned

Figure 2.9: Relation between Radon transformation and CT scanning. The parallely emitted
X-rays are detected on a discrete grid. Each detector cell thus measures the line integral along
a line that is rotated by φ and offset by a multiple of k.

The observed intensity (see Equation (2.2)) is first transformed into an attenuation

profile,

ρ (x, y) = ln

(
I (x, y)

I0

)
=

∫ sexit

senter

μ(s). (2.4)

Then, the inverse Radon transform of the attenuation profile is computed to reconstruct

μ(s). This can either be done using algebraic reconstruction [MYC95] or filtered back-

projection [SBMW07]. For a detailed discussion of these methods, we would like to

refer the reader to [Sch07].

The result is a grid of so-called voxels, volume elements, of which each stores a

scalar value. This value is typically given as a 12 bit integer ranging from -1024 to 3071

and measured in so-called Hounsfield units (HU). Hounsfield units are normalized such
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that

HU(μ) := 1000
μ− μwater

μwater

. (2.5)

Consequently, a value of 0 HU corresponds to water. Typical values are -1000 HU for

air, about 400 HU for cancellous bone and up to 2000 HU for cranial bone. Titanium

implants are around 1000 HU, while steel implants typically extinct X-rays almost

completely. Since the absorption law also states that

μ ∝ zβ

(hν)3 , 3 ≤ β ≤ 4, (2.6)

where z is the atomic number of the material to be measured and hν is the energy of the

emitted photons, it is under certain circumstances possible (i.e., knowledge of ν and β)

to clearly define the observed material.

There are two dominant types of CT scanners in use by today, namely the helical

(also called spiral ) CT, and its rather novel improvement, the multislice CT (also see

Figure 2.10).

Figure 2.10: Siemens Somatom 16 CT Scanner. The scanner depicted comprises of 16 scanning
rings. Image under the Wikimedia Commons licence.



20 CHAPTER 2. BASIC TECHNIQUES

Helical CT scanners. These scanners consist of a ring, along which a gantry-mounted

emitter can freely move. The patient is placed on a examination couch that is drawn

automatically through the ring. The combination of the circular gantry motion and the

linear transportation of the patient results in a helical movement of the scanner around

the patient. Typical scanning times range from 20 to about 60 seconds, i.e., it is clearly

possible to obtain a scan without respiratory artifacts using this technology.

Multislice CT scanners. These scanners are a refinement of the helical scanners. They

share the same mode of operation, but comprise multiple scanning gantries. For in-

stance, the Siemens Sensation Somatom16 in Figure 2.10 comprises 16 such scanning

devices. The obvious advantage is that rotation speed of the gantries can be increased

without compromising the scanning quality. A less obvious advantage is that it is pos-

sible with some devices to obtain a single scan for two different radiation energies.

This allows to separate, for instance, Titanium implants from bone structures in the fi-

nal image by application of the proportionality given by Equation (2.6). The result of

all multislice scanners is a drastically increased resolution when compared to helical

scanners. Current state-of-the-art scanners offer an isotropic resolution of 0.35 mm and

below while being able to maintain a scanning speed of more than 18 cm/sec.

The consequence are extremely large data sets, often comprising several gigabytes,

at very high resolutions even for moderate radiation doses. For inanimate objects,

where radiation doses are not of concern, even higher resolutions can be obtained. In

Chapter 3 we use a wholebody scan by courtesy of Siemens Corporate Research, Inc.,

Princeton comprising 5122 × 3172 voxels, but the largest-available scans currently

comprise up to 40962 samples for each slice and similar amounts of slices.

2.6 Principal Component Analysis

The process of computing an Eigendecomposition of the (auto-)covariance matrix of

multidimensional stochastic processes is typically referred to as principal component

analyisis (PCA). The result of such an analysis are principal directions. If the under-

lying data is rotated into the space spanned by the principal directions, correlations

between the components of the now-rotated data points are proovably minimized. Con-

sequently, such an analysis is an important building block for data compression algo-

rithms. In this context, it is also referred to as the Karhunen-Loève transformation

[Say00] and can be approximized by a discrete cosine transformation (for highly auto-

correlated data) or a discrete sine transformation (for highly auto-anticorrelated data).
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Furthermore, the PCA can be employed to compute linear orthogonal regressions, i.e.,

line and hyperplane fits. The key observation from a geometric point of view is that

the principal directions associated with large Eigenvalues define the global trend of the

data, while directions associated with small Eigenvalues contribute only negligibly to

the general distribution of data points. Consequently, fitting a hyperplane to a data

set is equivalent to computing the smallest Eigenvalue and its corresponding principal

direction.

Assuming data points of an n-dimensional vector space X := {xi}N
i=1 ⊆ R

n with

N = |X|, the covariance matrixA is typically computed in two steps. First, the average

of X is computed, i.e.,

x̄ :=
1

|X|
∑
x∈X

x. (2.7)

Then A is computed by

A :=
1

|X| − 1

∑
x∈X

(x− x̄) (x− x̄)T . (2.8)

The result is a real, symmetric, positive definite matrix. Thus, A’s Eigenvalues λi are

known to be positive and real. Denoting the set of unit principal directions by {êi}n
i=1,

A′s Eigendecomposition is given by

A :=
n∑

i=1

êiλiêi
T ,

〈êi, êj〉 = δij, ∀i, j ∈ {1, . . . , n} ,

Aêi = λiêi ∀i ∈ {1, . . . , n} . (2.9)

Here, δij denotes the Kronecker delta, i.e., the êi form a normalized orthogonal basis

of the non-kernel subspace of A with rank (A) dimensions. By convention, principal

directions and Eigenvalues are sorted such that λ1 ≥ λ2 ≥ · · · ≥ λn. The best-possible

approximation of A using k ≤ n Eigenvalues can then be computed by

A ≈
k∑

i=1

êiλiêi
T , 1 ≤ k ≤ n. (2.10)

To see that a linear orthogonal regression can in fact solved by PCA, assume an
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n− 1 dimensional hyperplane

ηn−1 =
{
x : xT ν = xT

0ν
}

, (2.11)

where ν denotes the plane’s normal, and x0 is one arbitrary point of ηn−1. Trying

to solve Equation (2.11) for all x ∈ X then results in an overdetermined system of

equations,

(x− x0)
T ν = 0 ∀x ∈ X, (2.12)

which can be approximately solved by minimizing the sum of squared errors

ε2 :=
∑
x∈X

(
(x− x0)

T ν − 0
)2

, ⇒

ε2 =
∑
x∈X

νT (x− x0) (x− x0)
T ν, ⇒

ε2 = νT

(∑
x∈X

(x− x0) (x− x0)
T

)
ν, ⇒

ε2 = νTBν, where

B :=
∑
x∈X

(x− x0) (x− x0)
T (2.13)

Clearly, choosing ν to be the Eigenvector corresponding to the smallest Eigenvalue λn

of B minimizes ε2 to λn. Obviously, x0 should be chosen such as to minimize the

smallest Eigenvalue of B. This is the case if x0 is a best approximation of the set X in

the least-squares sense, i.e.,

x0 = argmin
y∈Rn

∑
x∈X

(x− y)2 . (2.14)

Solving Equation 2.14 yields x0 = x̄ and thus (|X| − 1)A = B. Hence, the plane

ηn−1 that approximates X best in terms of the squared error is determined by x̄ and the

principal direction ên corresponding to the Eigenvalue λmin with the smallest modulus.

The PCAs performed for this thesis are typically small; most of the time only 3 × 3

systems need to be solved. Since

λi (A) = λ−1
i

(A−1
) ∀i = 1, . . . , n, and thus

λmin (A) = λmax

(A−1
)
, (2.15)
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it is fully feasible to compute the smallest Eigenvalue/vector pair by means of a matrix

inversion of A followed by power iteration or Rayleigh quotient iteration [PTVF02a,

GVL96a].

2.7 Vector Quantization

In several places of this thesis, vector quantization will be employed as a back-end to

other, more specific data compression techniques. To keep this thesis self-contained,

parts of this author’s diploma thesis [Sch03] will be reproduced to give a compact

overview on the topic. For a more thorough overview we would like to refer the reader

to Gray and Neuhoff’s excellent quantization survey [GN98] or to the books of Sayood

[Say00] and Gersho and Gray [GG92].

In this section the following symbols will be used.

N: The set of natural numbers, counting from 1.

R: The set of real numbers.

�: An alphabet on which a vector quantizer will operate. Usually � ⊂ R.


: A countable index set. Usually 
 ⊂ N.

I: An ordered input data set to a vector quantizer.

αC: An encoder mapping I → 
.

βC: A decoder mapping 
 → C.

C: A codebook (an ordered, countable set of vectors).

Vi: Vi := {xj ∈ I : αC(xj) = i}, (i.e., a quantization cell).

δ: A distance metric. Usually δ ≡ ‖ · ‖22.

◦: Concatenation of functions. Read a ◦ b as “apply a before b”.

〈, 〉: Standard dot-product.

�: Convolution between functions.
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Basic Vector Quantization

Given input data I ⊆ �n, a vector quantizer finds and optimizes an encoder mapping

αC : �n → 
 and a decoder mapping βC : 
 → �′n. Here, � is the input alphabet

and �′ is the output alphabet of the quantizer. These alphabets need not to be identical,

though it is appropriate for most applications (and this thesis) to assume that they are.


 specifies some index set, usually a subset of N, and C a codebook that may either be

generated during the computation of the encoder or may be known a priori.

Algorithm 1 Linde-Buzo-Gray algorithm
Input:

Initial codebook C =
{

y
(0)
i

}2r

i=1
⊂ �n, where r is the limit bit rate

Set of input vectors I ⊂ �n

Threshold ε
Maximum number of iterations kmax

Output:

Codebook C =
{

y
(k)
i

}2r

i=1

Partition I =
⋃̇ 2r

i=1 V
(k)
i

// Initialization:
k ⇐ 0
d(0) ⇐ 0
repeat

// Update quantization regions:
V

(k)
i ⇐ {x ∈ I : δ(x, yi) < δ(x, yj) ∀i �= j}, where j = 1, ..., 2r.

// Compute distortion:

d(k) ⇐ ∑2r

i=1

∑
x∈V

(k)
i

δ
(
x, y

(k)
i

)
.

k ⇐ k + 1
// Update Codebook:
y

(k)
i ⇐ 1∣∣∣V(k−1)

i

∣∣∣
∑

x∈V
(k−1)
i

x

until d(k−1)−d(k)

d(k) < ε or k > kmax

return Codebook C =
{

y
(k)
i

}2r

i=1
and Partition I =

⋃̇ 2r

i=1 V
(k)
i

The encoder maps an n-dimensional vector to a single index from 
, wheras the de-

coder reverses this process to some extent, since vector quantization is typically lossy.

If no codebook is known a priori, vector quantization can be seen as a non-linear opti-

mization process trying to find the codebook C and the encoder mapping α that mini-

mize the quantization error δ(I, αC ◦ βC(I)). Typically, the hard constraint that C may

contain at most 2r pair-wise different entries from �n is additionally required, where r
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is the limit bitrate of the encoder as |I| approaches infinity. Here, δ : �n × �n → R

computes the reconstruction error of the process.

Once an initial codebook is obtained, it can be further refined using the Linde-Buzo-

Gray (also known as Generalized Lloyd) algorithm [LBG80], see Algorithm 1.

The encoder mapping αC then maps each vector x ∈ I to the index i : x ∈ V
(k)
i

of the associated quantization cell. The decoder mapping βC maps each index i to the

codebook entry y
(k)
i . A random codebook may serve as input to the Linde-Buzo-Gray

algorithm, although this is not free of problems. The reason is that quantization cells

can become deserted during runtime. A better choice is to start with a codebook that

is obtained using some sort of quick pre-clustering, e.g., principal component analysis,

uniform binning, etc. For all the work in this thesis, the vector quantizer described

in the author’s diploma thesis [Sch03] was used. This particular implementation ob-

tains an initial codebook by means of recursive principal component analysis (see also

Section 2.6).

2.8 Gauss- and Laplace-Pyramids

In this work, we will denote discrete filter kernels by κ : Z → R. Unless noted other-

wise, κ will be intrinsically one-dimensional. We define the effective radius from left

ρl and from right ρr of κ to be the maximum distance of any non-zero filter coefficient

from the DC position i = 0, i.e.,

ρl (κ) := min
i
{i : κ(i) �= 0}

ρr (κ) := max
i
{i : κ(i) �= 0} . (2.16)

Here, κ(i) denotes the ith filter coefficient. Given a discrete signal on a regular grid,

Φ : Z→ R
n the discrete convolution κ � Φ in the spatial domain can thus be written as

κ � Φ(i) :=

ρr(κ)∑
i′=ρl(κ)

κ(i′)Φ(i + i′). (2.17)

Clearly, the evaluation of κ � Φ(i) requires ρr(κ) − ρl(κ) + 1 multiplications and

ρr(κ)− ρl(κ) additions for each position i.

Both the Gauss- and the Laplace-pyramids of Φ are based on two discrete filtering
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operations

reducem (κ, Φ) (i) :=

ρr(κ)∑
i′=ρl(κ)

κ(i′)Φ(mi + i′), (2.18)

and

expandm (κ′, Φ′) (i) :=

ρr(κ′)∑
i′=ρl(κ′)

κ′(i′)Φ′
(⌊

i

m

⌋
+ i′
)

. (2.19)

Basically, reducem convolves Φ first with κ and then with a comb-filter with a sam-

pling distance of m. The result is a discrete signal Φ′ that is obtained from Φ by per-

forming an m : 1 subsampling. On the other hand, expandm performs an 1 : m

supersampling by convolving with κ′. The division by m ensures that the position i

of expandm (κ′, reducem (κ, Φ)) will coincide with those of Φ. Typically, κ will be

a lowpass-filter, e.g., a binomial filter, and κ′ will be an interpolation filter. Thus,

expandm may be seen as a pseudo-inverse of reducem.

Repeated application of reducem will yield the Gauss-pyramid

Gm(Φ) :=
{
reducei

m(κ, Φ)
}n−1

i=0
, (2.20)

where n is the amount of levels in the pyramid. For convenience, we will denote the

ith level of Gm by G
(i)
m . Then, the residual of a reduce/expand “roundtrip” can be

computed as Δ
(i)
m := G

(i)
m − expandm

(
κ′, G(i+1)

m

)
. These residuals together with the

coarsest level of the Gauss-pyramid will then form the Laplace-pyramid,

Lm(Φ) :=
{
Δ(i)

m

}n−2

i=0
∪ {G(n−1)

m

}
. (2.21)

The full pyramid of a signal with N samples has �logm N� levels and each level except

the coarsest one contains a factor of m less samples than the next finer one. Conse-

quently, the pyramid can be constructed in O(m · N logm N ). The reconstruction of

data given by a Laplace pyramid then proceeds by evaluating

Φ = expandm

(
κ′, G(n−1)

m

)
+

n−2∑
i=0

expandm

(
κ′, Δ(i)

m

)
. (2.22)

Since Δ is always computed to be the true residual between the original and its down-
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sampled counterpart, the decomposition into a Laplace-pyramid is (up to floating point

precision) lossless and fully invertible. However, similar in style to overcomplete

wavelet bases, an additional storage requirement of a factor of

∞∑
i=0

1

mi
=

m

m− 1
∀ m > 1 (2.23)

for an 1D pyramid is implied.

Figure 2.11: Gauss- and Laplace-pyramids in 2D. The Gauss-pyramid (top) is obtained by
iterative filtering using the reduce2 operator with a box-filter. The Laplace-pyramid (bottom) is
obtained by computing residuals Δ(i)

m using a piecewise constant filter kernel for the expand2

operation. Here, blue encodes positive and red negative values. (from [Sch03])

The concept of Gauss- and Laplace-pyramids can be generalized to higher dimen-

sions straightforwardly by following the tensor-product approach, as demonstrated in

Figure 2.11. In case of a d-dimensional tensor-product pyramid, the storage require-

ments compared to a single image increase by a factor of

∞∑
i=0

(
1

md

)i

=
md

md − 1
. (2.24)

The importance of Laplace-pyramids for image coding stems from the fact that for

most natural images the amplitude decreases with frequency—and thus also the entropy



28 CHAPTER 2. BASIC TECHNIQUES

decreases with frequency. By using a lowpass filter for κ the average energy per pixel

decreases from the coarsest to the finest level. It is thus advantageous to assign lower

bitrates (in terms of bits per pixel) to levels with a higher resolution, thereby achieving

image compression.



Chapter 3

Rendering Of Massive Point Scans

In this chapter, we present a method to compress and render gigantic point scans. These

point scans are typically obtained by laser range scanning (see also Section 2.3), but

the method is not limited to data stemming from this acquisition method. The input

is a 3D point cloud, optionally with normal and/or color information. The method

described here first resamples the point cloud to a hexagonal closest sphere packing

(HCP) grid. The resulting regular grid is then sliced orthogonally to the major axis

of the scanned object. For most sources of data, i.e., data stemming from laser range

scanning or computer tomography (also see Section 2.3 and Section 2.5), such a major

axis is intrinsically given. If it is not known a priori, the user can either specify it

using additional knowledge about the acquisition process, or the axis can be retrieved

automatically using a principal component analysis (see also Section 2.6).

Each such slice then comprises a two-dimensional, regular hexagonal grid. A planar

graph is obtained in which vertices correspond to occupied cells and edges are induced

by the adjacency relation defined on the grid cells. Occupied cells are then encoded

using a coherent traversal of this graph. To find a quasi-optimal traversal, a graph-

theoretical problem is established and solved using a linear-time 2-approximation. We

would like to refer to the excellent book by Hromkovič [Hro01] for a thorough dis-

cussion of approximative algorithms. Once the coherent traversal path is obtained,

occupied cells along this path can be encoded differentially with as few as log2 5 bits

per point position in the limit case. Normals can be quantized at high fidelity using an

additional 5 bits per point. Colors typically require 5 to 8 bits per point.

The resulting compressed representation can be decoded on the fly during rendering,

thereby reducing both video and main memory storage requirements. Furthermore,

bandwidth requirements across the graphics bus are significantly reduced. Especially

the latter property is extremely important, since—although main and video memory

29
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have dramatically increased in size during the last decades—the bandwidth between

CPU and GPU has not scaled at the same pace.

Figure 3.1: Comparison between uncompressed and compressed Atlas point scan. The original
Atlas point scan [LPC+00] including normals (6 GB) was compressed by our method (231
MB). Note how the fine scale detail is preserved. Data set courtesy of the Digital Michelangelo
Project.

Although only about 8 bits are used per point to encode both position and normal of

the Atlas point scan [LPC+00], the method described here is almost lossless in terms

of visual fidelity (see also Figure 3.1). The data set has a convenient size of 231 MB

after compression, fits into video memory on most recent GPUs, and can be rendered

at interactive rates without the need to establish a consistent triangulation first.

3.1 Related Work

In this section we will provide an overview of related work in the field of point-based

rendering as well as point set compression. We begin with a very compact discussion

of closest sphere packings. While a full treatment of these packings is well beyond the
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scope of this thesis, we chose to provide the reader with the basic aspects in an attempt

to make this thesis self-contained.

Closest Sphere Packings. Already Carl Friedrich Gauss proved that the hexagonal

(“honeycomb”) grid is the densest possible regular packing of circles in 2D with a

packing density (ratio of area covered by circles to total area) of

η =
π√
12

. (3.1)

The general proof that this is the densest possible packing among all possible grids—

regular and irregular—was performed only in 1940 by László Fejes Tóth [Weia]. For

three dimensions, Johannes Kepler conjectured in 1611 that the maximum packing den-

sity for both regular and irregular packings were

η =
π√
18

. (3.2)

Following a concept by Tóth developed in 1953, Thomas Callister Hales formulated

an exhaustive proof in 1998 in a series of papers totalling about 250 pages. This proof

involves global optimization, linear programming, and interval arithmetic [Weib]. It

was attested a 99% probability for correctness by its reviewers, since not all parts of the

papers had been possible to verify.

Generally, closest sphere packings are an optimal packing of 3D space, i.e., the

ratio of the volume occupied by the spheres’ interiors and the total volume is maximal.

Once the Kepler conjecture is established, the proof that both the face-centered cubic

(FCC) and the hexagonal close packed (HCP) grids are in fact closest sphere packings

is remarkably easy—it is only necessary to show that their packing density equal the

one established in Equation (3.2).

Since their packing density is maximal, we know from closest sphere packing the-

ory [CSB87] that an optimal sampling in the spatial domain corresponds to the tightest

arrangements of spheres in the frequency domain. This can be derived from the ob-

servation that the spectrum of the sampled signal contains the replicas of the primary

spectrum, centered at the points of the dual (or reciprocal) of the sampling grid. Op-

timal sampling of the signal is achieved if the overlap between these replicae is min-

imized. Thus, closest sphere packings can be used for optimal resampling if a spher-

ically bandwidth-limited reconstruction kernel is to used. Another way to see this is

that among all possible grids closest sphere packings will result in the fewest samples
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needed to achieve any given reconstruction fidelity.

Compared to other grids, closest sphere packings not only lead to an optimal sam-

pling density, but when compared to Cartesian grids they also yield a significantly

smaller maximum sampling error. For the same region of 3D space and the same

amount of cells, in Cartesian grids the maximum distance between the center of each

cell and the farthest point of that cell is
√

3
2

h, where h is the cell spacing. For HCP grids,

on the other hand, this distance is only
√

2
2

h, which is about 22.5% less when compared

with Cartesian grids.

Resampling to such grids usually involves finding the closest grid node for each

query point. A natural solution to this problem is to generate the Voronoi diagram

[Vor08] using the grid nodes as Voronoi sites. This gives rise to the dual grid, which

is comprised of regular cells called the Wigner-Seitz cells in solid state physics [IL02].

Each query point is then associated with the cell of the dual grid in which it is contained.

The HCP grids used in this chapter are composed of Wigner-Seitz cells that are trapezo-

rhombic dodecahedra (TRDs). The TRD is the dual of the Johnson solid 27 [Joh66] and

a space filling twelve (twelve = duodecim (latin)) sided polyhedron, which constitutes a

base element for a closest sphere packing of 3D space. Naturally, TRD cells can touch

each other only in faces or in vertices (see also Figure 3.2). In contrast to the HCP

grid, the FCC grid is composed of Wigner-Seitz cells that are rhombic dodecahedra

[Mat04, NM02].

Figure 3.2: Hexagonal closest sphere packing (HCP) grid. Left: A trapezo-rhombic dodeca-
hedron (TRD). The dual of the HCP grid is a grid composed of TRDs. Right: The HCP grid.
Around the spheres, the TRD cells of the dual grid can be seen.
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The important difference between the FCC and the HCP grid is the order of 2D

“honeycomb” layers, which is an ABC-stacking for FCC and an AB-stacking for HCP

grids. ABC means that each third layer is identical modulo translation along the pack-

ing direction, which we will assume to be the Y-direction (as depicted in Figure 3.2) for

the remainder of this chapter. Other layers will be shifted against each other by a trans-

lation in the XZ-plane. Due to this AB-packing order the HCP grid can be decomposed

into a staggered grid comprised of only four Cartesian grids, while the FCC decompo-

sition requires six grids. This decomposition is explained in detail in Section 3.3.1. As

will be shown, such a decomposition results in a highly efficient resampling algorithm

that is 50% faster for HCP grids than for FCC grids.

Point-based Rendering. Despite the advances in CPU and graphics hardware technol-

ogy, most point-based rendering applications still cannot run at acceptable frame rates

for the largest available point scans. As rendering capabilities continue to increase, so

do data acquisition and display technologies, resulting in a significant increase in reso-

lution of both the available data and the displays being used. Today, laser range scans

comprised of almost a billion of vertices are available [Lev00, LPC+00], even making

CPU processing difficult due to memory constraints. Figure 3.3 shows such gigantic

scans, the largest of which consists of 250 millions of vertices and requires 6 GBytes to

store positional and normal information. Because of the extraordinary amount of detail

Figure 3.3: The three largest scans provided by the Michelangelo project. All three scans,
including per-point normals, have been compressed and now fit into video memory on virtu-
ally all recent graphics cards. Images are generated by rendering the scans directly from the
compressed data stream on the GPU. Up to 50 million points per second can be decoded and
rendered on a ATi X800 XT graphics card. Data sets courtesy of the Digital Michelangelo
Project.

in these scans, the need for techniques that are able to reveal even the finest structures
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is of increasing importantance. In addition to such scans, high resolution displays of 9

Mpixels and more [IBM] are now available. The result is that the bandwidth required to

transmit primitives to the GPU has substantially grown during the last decades. Since

these requirements will increase continuously in the future, there is a dire need for point

rendering techniques that address these issues comprehensively.

In computer graphics, point based rendering has recently gained increasing popu-

larity due to the simple and memory friendly nature of points as rendering primitives.

Such primitives do not require consistent topological information and they can reduce

overdraw considerably if high resolution models are to be rendered. A thorough dis-

cussion of these issues as well as a summary of recent point rendering techniques,

including various applications, can be found in [GPA+, KB04].

Using points as the only rendering primitive was first considered by Levoy and

Whitted [LW85] and later revived by Grossmann and Dally [GD98]. Point-based

rendering systems have been proposed for the hierarchical rendering of large models

[RL00] as well as for the high-quality rendering of point sampled geometry [PZvBG00,

ZPvBG01]. Due to the frequent use of such systems in practical applications, there has

been an ongoing improvement in this field during the last few years, both with respect to

rendering speed and quality. This improvement has been made possible by exploiting

graphics hardware through efficient GPU data structures [RPZ02, DVS03], by using

high-quality point splats [BK03, ZRB+04], and through the use of point hierarchies

[GM04] to allow efficient LOD rendering.

Besides rendering quality and speed, today’s point rendering systems are facing the

problem of continually increasing point sets. To keep up with this process, several is-

sues have to be considered. For large point scans the CPU might not be equipped with

sufficient system memory. If the CPU works on a compressed data set, it might not

be powerful enough to decode point positions and attributes at sufficient rates. On the

other hand, if a streaming representation is available that enables out-of-core rendering,

disk access will potentially limit the overall performance. But even with the recent ad-

vances in hardware technology—i.e., multicore architectures, RAIDs1, and a dramatic

increase in typical host memory sizes—the most severe limitation to all CPU-based ap-

proaches still remains. Even if the CPU provides point rendering primtives at sufficient

rates, they have to transmitted to the GPU across the graphics bus. Despite the PCI

express 16× delivering a theoretical 4GB/sec bandwidth, practical bandwidths differ

significantly, and latencies cannot always be hidden. Consequently, the net bandwidth

between CPU and GPU easily becomes the bottle neck when attempting to transfer

1Redundant Array of Inexpensive Disks
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point positions and attributes while maintaining 30 or more frames per second. Fur-

thermore, since raw data occupies large amounts of video memory and transmitting

data from the CPU to the GPU essentially serializes communication and rendering, the

GPU itself might not be able to render the points within the requested time interval.

Point Set Compression. A natural way to deal with the aforementioned issues is point

set compression. The benefit of such a compression is two-fold. Firstly, storage re-

quirements are significantly reduced. Secondly, bandwidth requirements are alleviated.

However, these benefits can only be maintained up to the point in the pipeline where

the data has to be decompressed in order to be rendered. Consequently, this decoding

process should take place as close as possible to the rendering. Since decoding usu-

ally requires additional bandwidth in excess of the one needed to render uncompressed

data, it is highly fortunate that the GPU’s internal memory bandwidths by now offer

peak performances beyond 100GB/sec and are easily among the highest bandwidths in

the entire system 2. Still, decoding should provide efficient random access to the primi-

tives to be rendered. This is important with respect to both the bandwidths available as

well as the fact that different camera settings may require significantly different parts

of the data to be decoded.

Although the compression of points has been proposed before, most approaches re-

quire significant CPU intervention during the decoding process due to their complexity.

A popular technique is to quantize point positions with respect to a Cartesian grid

hierarchy, either by absolute position or by an offset to a parent node in this hierarchy

[RL00, SK01, BWK02]. Although these approaches can significantly reduce the re-

quired number of bits to encode point positions—less than 2 bits have been achieved per

position—, a similar compression ratio has not been shown for normals and colors yet.

Ochotta and Saupe [OS04] parameterize point sets locally as height fields and resample

the point sampled surface on a regular grid. This method achieves high compression

ratios by using wavelet transforms to encode the resulting height fields, but it introduces

smoothing artifacts and produces a non-uniform sampling of the surface. A progressive

compression scheme for point sets including per-point attributes based on multiresolu-

tion predictive encoding was presented by Waschbüsch et al. [WWL+04]. This scheme

yields effective compression rates, but it suffers from both the O(N2 log N) runtime

complexity of the matching process to detect similarities in the set of N points and

the rather costly decoding process. This decoding requires recursive traversal of binary

trees to calculate initial point positions, an operation that is not overly GPU-friendly

2For instance, NVIDIA specifies the GeForce 280 GTX at 141.7GB/sec.
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due to the high amount of dereferenciations performed.

3.2 Contribution

In this chapter we present a system for the rendering of gigantic point scans that meets

the aforementioned requirements. Namely, the system is based on a lossy compression

scheme for point positions and normals, which reduces both storage and bandwidth re-

quirements. Furthermore, compared to previous compression schemes for point sets,

point coordinates can be decoded on the GPU. This results in the ability to both store

extremely large point sets in video RAM and to render them directly from their com-

pressed representation at interactive rates. Our scheme has the following advantageous

properties.

• Memory efficiency: We present an effective compression scheme for large point

scans based on an optimal sampling of these scans.

• Decoding efficiency: The compressed stream provides random access to encoded

points and attributes, and it can be decoded using a few simple arithmetic and

logical operations.

• Bandwidth efficiency: Due to its simplicity, decoding can be performed on the

GPU. To render the point set, only the compressed data stream has to be transmit-

ted.

• Rendering efficiency: On the GPU, decoded point positions and normals are

used to render the point scan, which results in a significant performance gain

compared to previous approaches.

To achieve these properties, we perform point clustering on HCP grids as detailed

in the next section.

3.3 Algorithmic Overview

For each point x of the input set X, the enclosing TRD cell of the HCP grid is deter-

mined. Each TRD cell is then assigned a binary tag, which can be set either to occupied

or empty. A cell is said to be occupied if at least one of the input points is contained

in this cell. Otherwise, the cell is said to be empty. The grid is then sliced perpendicu-

lar to the Y-axis (the axis along which layer stacking occurs). For each 2D hexagonal
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“honeycomb” grid obtained in this manner, an undirected, planar graph G = (V,E) is

constructed, where V is the set of vertices and E is the set of edges. Each occupied cell

is interpreted as a vertex and edges are induced by the grid’s adjacency, i.e.,

V := {vi : ∃x ∈ X : x ∈ cell i}
E := { {vi,vj} : vi,vj ∈ V ∧ cell i adjacent to cell j} . (3.3)

A path p := (v1,v2, . . . ,vn) is then constructed for each connected component

of G, such that p contains each vertex of V at least once. Note that such a path may

explicitly contain arbitrarily short circles. Since there is an infinite amount of such

paths, we seek to obtain the shortest one. Denoting the set of all possible paths by P and

the length of a path by |p|, i.e., the number of vertices visited including multiplicities,

we thus seek to obtain

p′ ∈ P : |p′| ≤ |q| ∀q ∈ P. (3.4)

Sadly, this problem is assumed to be NP-hard. However, we present a linear-time 2-

approximation to this problem, i.e., an algorithm with linear time and space complexity

that solves the problem of finding

p′ ∈ P : |p′| ≤ 2|q| ∀q ∈ P. (3.5)

Once one p′ is obtained, we “cut” p′ in a set of n shorter paths, S := {si}n
i=1. We say

that a path p contains a path q, q �p, with p =
(
v1, . . . ,v|p|

)
and q =

(
v′

1, . . . ,v
′
|q|

)
if

∃i ∈ N : v′
j = vi+j ∀j = 1, . . . , |q|. (3.6)

Furthermore, we say that a path q can be concatenated to a path p, p ◦ q, if
{
v|p|,v′

1

} ∈
E ∨ v|p| = v′

1. The concatenated path is then

p ◦ q :=

⎧⎨⎩
(
v1, . . . ,v|p|,v′

2, . . . ,v
′
|q|

)
if v|p| = v′

1(
v1, . . . ,v|p|,v′

1, . . . ,v
′
|q|

)
otherwise.

(3.7)

Note that in the first case |p◦q| = |p|+ |q|−1, since the vertex required to be contained

by both p and q is not doubled. Only in the second case |p ◦ q| = |p| + |q|. Albeit the

lengths of paths constructed by concatenation can differ, we prefer this definition over

other possibilities, since it makes the following discussion easier. Formally, cutting p′
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into a set of shorter paths S = {si}n
i=0 can thus be described as

s � p′ ∀ s ∈ S, and

p′ = s0 ◦ s1 · · · ◦ sn. (3.8)

This means that the set of shorter paths S effectively partitions p′. We further require

that |si| = σ ∀i = 1, · · · , n − 1 and that |sn| ≤ σ. This automatically implies that

n = �|p′|/σ�. Such a partition is obtained straightforwardly and serves the purpose

of making the processing of p′ SIMD-tractable. However, these requirements are later

weakened in order to optimize the set S further.

After obtaining the set of short paths S, each such short path s is encoded separately.

We store the first element of each such path in 2× 16 bits to specify the xz-coordinates

of the first occupied cell. The rest of each s is encoded differentially by assigning a

number between 0 and 4 to each vertex, depending on the relative neighborhood with

respect to the prior occupied cell. This results in a total of 32 + σ log2 5 bits per short

path. This encoding is very similar to the process described by Mroz et al. [MHG01]

for the encoding of isosurfaces in volumetric data sets. Unlike Morz et al., however, we

provide a graph-theoretical formulation of the problem to find an optimal coverage of

all occupied cells, i.e., a path that is minimal in terms of the vertices and edges visited.

Normals are encoded in a similar manner. The first normal of each short path is

encoded in 16 bits using vector quantization (see also Section 2.7). Each other normal

is encoded differentially using spherical coordinates. These spherical differences are

again vector quantized. Our experiments have shown that 5 bits per difference are

sufficient to encode normals along each short path. This results in another 16 + 5σ bits

per short path.

Colors can be encoded completely analogously to normals. However, unlike nor-

mals, colors are not necessarily highly coherent along each short path. Consequently,

higher bit rates are sometimes necessary. For the first color of each short path 8 to 10

bits are usually sufficient, resulting in a total of less than 10 + ρσ bits, where ρ is the

amount of bits per color difference.

To support view frustum and back face culling, path-specific attributes such as cones

of normals and bounding boxes are computed.

The compressed point set can be decoded on the CPU, and point primitives can be

sent to the GPU for rendering. Alternatively, the compressed stream can be decoded

on the GPU. To exploit the GPUs parallelism efficiently, short paths of equal length are

stored in 2D texture maps and are decoded incrementally. Decoded point positions are



3.3. ALGORITHMIC OVERVIEW 39

first stored in a temporary buffer in graphics memory before they are used by the GPU

to render point primitives. This is realized using recent functionality like vertex texture

fetches.

3.3.1 Uniform Point Clustering and Resampling

The resampling step requires to find the associated cell for each point x of the input set

X. This can be done by “sorting” x into four staggered Cartesian grids to compute four

potential candidates for the appropriate cell. From these four candidates the correct cell

can be chosen simply by selecting the candidate that results in the minimum distance

between the center of the cell and x.

To perform the resampling, we assign an index (i, j, k) ⊆ Z
3 to each TRD cell.

Considering the cell geometry, the 2D case of which is depicted in Figure 3.4, the

center cijk of each cell can be computed from its index by

cijk =

⎛⎜⎝2i · r + (j mod 2) · r + (k mod 2) · r
2
√

6
3

j · r√
3k · r − 1√

3
(j mod 2) · r

⎞⎟⎠ , (3.9)

where r is the radius of each sphere.
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Figure 3.4: Two layers of an HCP grid. Left: First layer of type A. This layer occurs for cell
indices (i, j, k), where j is even. Here, r denotes the radius of the spheres and r ′ :=

√
3

2 r. As
can be seen, centers of spheres on even rows (k even) give rise to a 2D Cartesian grid, while
centers of spheres on odd rows (k odd) give rise to a second 2D Cartesian grid. Right: Packing
another layer of type B (j odd) atop the first one only introduces a 3D pitch in Euclidean space.
In 3D, four Cartesian grids are obtained by connecting centers of spheres belonging to (j even,k
even), (j even,k odd), (j odd,k even), and (j odd,k odd).



40 CHAPTER 3. RENDERING OF MASSIVE POINT SCANS

We now define four 3D Cartesian grids C0,...,3 such that Cl contains all points for

which l = 2(j mod 2)+(k mod 2). The size of each cell in these grids is 2r×2
√

3r×
4
3

√
6r. The offsets for the grids are c000 for C0, c001 for C1, c010 for C2, and c011 for

C3. The cell containing any given point x can then be determined for each of the four

Cartesian grids simply by subtracting the respective grid’s offset followed by a division

by the grid’s cell size and a floor operation. If x is inside a cell with Cartesian index

i′, j′, k′ for grid Cl, then the corresponding TRD cell candidate with index i, j, k can be

computed by

(i, j, k) =

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
(i′, 2j′, 2k′ + 1) if l = 0

(i′ + 1, 2j′, 2k′ + 2) if l = 1

(i′, 2j′ + 1, 2k′ + 1) if l = 2

(i′ + 1, 2j′ + 1, 2k′ + 2) if l = 3

(3.10)

Thus, a distance δl := ‖x − cijk‖2 between x and the TRD cell’s center cijk can be

computed for each of the four grids Cl. The correct TRD cell containing x is then found

by selecting the cell Cl resulting in the smallest δl. Figure 3.5 illustrates this process,

albeit in 2D for the sake of simplicity.

This resampling strategy is highly efficient, since it only requires the evaluation of

four 3D-subtractions, 3D-divisions and 3D-floors, followed by four 3D-distance com-

putations and one search for the minimum among four scalars for each point x.

However, the optimal radius r is usually not known a priori. Clearly, we aim at

a resampling for which as many of the occupied TRD cells as possible contain only

one original point. On the other hand, by using ever smaller TRD cells, the graphs

we construct will tend to have more connected components since occupied cells are

less likely to be adjacent. This, in turn, makes the differential encoding scheme less

efficient. Due to this reason, resampling is implemented as a two-step procedure that

tries to optimize the resampling with respect to both constraints.

We start with an initial resolution r of the HCP grid. A good starting value for r can

be obtained if the resolution of the acquisition device is known. If this resolution is not

known, an arbitrary initial guess can be specified. This only comes at the potential cost

of a longer optimization procedure—the initial choice of r affects the final result only

marginally. To measure the quality of a certain resampling, we introduce a taxonomy

we call the hit rate γ. This hit rate is defined as the ratio of the number of input points

and the number of occupied TRD cells. The radius of the spheres in the HCP grid, and

thus the size of the TRD cells, is then decreased iteratively until the hit rate drops below
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Figure 3.5: Sampling of points into hexagonal grids. To determine the hexagonal cell contain-
ing a specific query point, the hexagonal grid is decomposed into a staggered grid comprising
two Cartesian grids.

a given threshold.

Since the point sets—and thus the associated grids—we are concerned with are

very large and can usually not be stored in main memory, the entire sampling process

is performed out-of-core. Point subsets are sequentially sampled into the grid, and they

are then sorted on disk with respect to increasing cell index along the X-, Z-, and Y-axis.

The sorted list can then be traversed sequentially both to determine duplicate samples

in one cell and to compute the hit rate γ. At the end, the point set is implicitly given

by the set of all occupied TRDs—or more precisely by the coordinates of their centers

cijk.

3.3.2 Path Generation

The HCP grid provides a structure to generate paths of occupied cells. This step is the

transition from pure clustering to coherence based compression. The goal is to deter-

mine paths that are as long as possible and that contain as few redundancies as possible.

The cells corresponding to vertices in these paths are then encoded differentially.

Path generation proceeds layer by layer, reading all occupied cells in the current
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layer from disk. As discussed in Section 3.3, an undirected graph G is construced to

reflect the occupied cells’ topology. The actual process of finding an optimal path

now operates on this graph, making the algorithm independent of the underlying grid

structure. Ideally, the algorithm determines a set of short paths S, where |s| ≤ σ ∀s ∈ S

such that |S| is minimal. This means that we seek to cover the vertices of path p′ by

shorter paths s such that no vertex is visited more than once. At the same time, these

short paths should have a fixed length σ.

Since this problem is assumed to be NP-hard3, we present a linear-time 2-appro-

ximation. The approximation ratio of 2 is a very conservative bound; in all meshes

we processed so far the approximation ratio was typically less than 1.05 instead of 2.

Note that although the length of the optimal path is not known, it can be conservatively

estimated by the amount of vertices to be traversed.

For each connected component of G, a single path p′ is constructed as follows.

Starting with an arbitrary node v in the graph, we mark v as being visited and store v

in p′. If v has no unvisited neighbors, p′ is terminated. If v has exactly one unvisited

neighbor u, append u to p′, mark u as visited and continue path construction with u.

If v has more than one unvisited neighbor, recursively construct a path p̃ for each one

of these neighbors. For each p̃ constructed in this manner except for the longest one,

generate a round-trip. This requires to obtain the reversed path p−1 for a given path

p =
(
v1, . . . , v|p|

)
. This operation is naturally defined as

p−1 :=
(
v|p|, . . . , v1

)
. (3.11)

A round-trip of p is then defined as p◦p−1 using the concatenation operator ◦. Note that

according to Equation (3.7) |p ◦ p−1| = 2|p| − 1. These round-trips are then appended

to p′. The longest path of the p̃’s is appended last, and the vertex visited last in this

longest path is used to continue the algorithm.

The resulting path p′ visits all vertices of the respective connected component at

least once, and it traverses “branches” at vertices that have a higher valence than 2 forth

and back—except for the longest branch. Figure 3.6 shows an example for such a path

construction.

Once p′ is obtained, it is cut into smaller paths of length σ in a greedy manner.

Reduncancies are removed during this process, i.e., reverse paths occuring at the end

or at the beginning of short paths. It is therefore necessary to keep track of which path

segments are reversed and which are not. This process is demonstrated in Figure 3.7.

3Although we do not provide a proof we would like to refer to the striking similarity to the bin-packing problem
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Figure 3.6: Generation of a path visiting each vertex at least once. A recursive algorithm
generates round-trips at vertices with a valence higher than 2, but the longest “branch” is not
traversed back and forth. In this case, the path p′ that contains each vertex at least once is
p1 ◦ p2 ◦ p3 ◦ p−1

3 ◦ p4 ◦ p−1
4 ◦ p−1

2 ◦ p5 ◦ p6 ◦ p−1
6 ◦ p7

By decreasing the maximum path length σ, the number of paths generated increases,

while at the same time the variation of the actual lengths is reduced. In this manner,

σ is a very useful tuning parameter for GPU-based rendering, since GPUs owe their

speed to lock-step SIMD computations. If multiple such SIMD units, i.e., fragment

units, decode a number of short paths in parallel, it is desirable for each path to have

exactly the same length. However, due to the per-path overheads in encoding the first

vertex of each path, σ should not be chosen too small.

To see that our algorithm is really a 2-approximation, we consider the way paths are

constructed. Since each “branch” returns to the respective forking vertex before any

other branch is processed, and because sub-paths are constructed in a greedy fashion,

it is sufficient to discuss vertices with valences less or equal to three only. All other

cases reduce to this set of cases automatically due to the recursive nature of the algo-

rithm. Figure 3.8 demonstrates that this is unaffected by the particular order in which

neighbors are processed.

Thus, for each long path, a vertex cannot be visited more than three times, and

only three times at T-junctions (vertices that are equivalent to valence-three vertices).

However, for each vertex that is visited three times, there exists at least one vertex that

is visited only once.
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Figure 3.7: Construction of short paths. A length of σ = 4 was used to cut the long path
p′ = (a, b, c, d, e, f, g, h, g, i, j, i, g, f, e, d, k, l, m, n, o, p, o, q) with |p′| = 24 into short paths.
The resulting short paths are (a, b, c, d), (e, f, g, h), (i, j), (k, l, m, n), and (o, p, o, q). Note
that redundant parts are removed, resulting in a total of 18 vertices being visited instead of the
initial 24.

To generate a level-of-detail (LOD) hierarchy of the point set, sampling and path

generation are repeated with decreasing resolution of the HCP grid. Starting with the

optimal resolution, at each hierarchy level the resolution is reduced by a factor of two.

Because the resolution at each coarser level is now fixed, grid size optimization as

described in the next section has only to be performed for the finest level. Note that

since each LOD contains only one eighth of the amount of cells of its predecessor, the

storage requirements only increase by a factor of limn→∞
∑n−1

i=0 8−i = 8
7

< 1.143.

3.4 Grid Optimization

To determine the optimal grid resolution for sampling and path generation, we consider

the average length of short paths in addition to the hit rate. The hit rate measures how

many points are lost due to the sampling process, while the average length is a measure

of the compression efficiency. A perfect sampling would result in a hit rate of 1 and

an average length of short paths equal to the desired length of short paths σ. Making

the grid cells smaller results in a lower hit rate but reduces the average path length.

To find the optimal cell size we first start with an initial radius of 1.5 times the average
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Figure 3.8: A cell with four neighbors. Note that, independently of the choice of the first
neighbor to be traversed, all neighbors are handled before the recursion returns to the initial
node. For more than four neighbors, the method proceeds analogously. In consequence, a
discussion of vertices with valence 3 (T-junctions) is sufficient, as all higher valences can be
reduced to this case.

pairwise closest distance of points in the input set X. Since this task has a naı̈ve runtime

complexity of O(|X|2) (and an optimal complexity of O(|X| log |X|), it is worth noting

that this average distance can be estimated quickly by taking only a compact subset of

X of constant size into account, resulting in a O(1) complexity for this step. Since the

data set is sorted with respect to its major axis before processing begins, this subset

can be obtained simply by taking the first k points into consideration. Note that if

the point density varies strongly in the model, a rather crude guess is obtained for

the initial radius, resulting in more optimization passes. However, for the statues of

the Digital Michelangelo Project, taking a few hundreds of thousands points as subset

never resulted in a significant increase in the amount of optimization steps. If the hit

rate is above a certain limit, usually γ ≥ 1.6, the cell size is reduced according to the

ratio between the maximally tolerated hit rate and the current hit rate.

The sampling process is repeated using the new grid resolution until the hit rate

is below the maximum hit rate. Then, the path generation process is started. If the

average length of short paths is below a given threshold, usually 0.7σ, we first try to

close disconnected paths by inserting new cells. If this does not bring the average path

length above 0.7σ, the grid cell size is increased, sampling is repeated, and new paths

are generated. The process terminates if the average path length is acceptable. The

output is then the last set of paths. Note that the factor 0.7 is empirically chosen based

on our experience with different scans. Even for other starting values the algorithm will

still find an optimal value but it will possibly take longer to converge.

In order to close disconnected paths, we search for filled cells in the 2-ring neigh-
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borhood of those cells that are contained in paths shorter than 50% of the maximum

length σ. We do not try to connect longer paths because this could result in paths that

are so long that they are cut into short paths later. If such a cell is found and both cells

belong to different paths, the cell in between is set to “occupied” in order to connect the

two paths. These additional cells are also rendered. One could argue that this increases

the approximation error and compromises the visual fidelity achieved. However, we

would like to point out that the scanned data is typically noisy and might contain un-

intended holes. Consequently, inserting points at carefully selected cells could also be

seen as a topological clean-up, under the assumption that topological features are orig-

inally larger than a few cells. To our experience, this process adds far less than 10% of

the initial cells.

3.5 Encoding

The previous sections describe how to generate and optimize a large set of paths with

lengths less or equal to a given length σ. In this section, we describe how these paths

are encoded. The basic concept is identical for all point properties. The first vertex

of each path is encoded using a relatively high bitrate, either simply by using uniform

quantization (position), or by specifying an index into a rather large codebook obtained

by vector quantization (normals and colors).

3.5.1 Point Encoding

The first position of each path is encoded using a 2× 16 bits uniform hexagonal encod-

ing, i.e., the 2D index of the starting cell is stored plainly for 2D honeycomb grids of

up to 216 × 216 cells. If larger grids are required, we mandate to use a partitioning or

“bricking” strategy instead of further increasing the number of bits for the first vertex.

Each vertex but the first two are encoded relative to its predecessor using log2 5 bits

in the limit case. The key observation here is that a path typically does not leave a cell

through the same edge as it entered. The only exception to this rule are the “tips” of

round-trips, and the second vertex, for which the entering edge of the predecessor is

not defined. For the second cell, a specific edge is thus chosen as a reference. Potential

successors for each following cell are enumerated clockwise, beginning with the “en-

tering” neighbor (see also Figure 3.9). Thus, for the vast majority of vertices, a number

of 0 to 4 is sufficient to encode them. However, in case that a path enters and leaves a

cell through the same edge, a 5 is stored. While numbers 0, 1, 2, 3, 4 are more or less
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Figure 3.9: Assignment of differential codes to paths. In this example, the path enters the cell
marked with an X from the left. The previous cell from which the path enters the current cell is
assigned the escape symbol “5” (not depicted). The remaining five cells are enumerated clock-
wise, beginning with the cell adjacent to the predecessor of the current cell. This is exemplified
at the end of the depicted path. The edge through which the path entered is marked red, and the
potential successors are colored in green. The path’s code is thus �23141, where � represents a
prefix that encodes the path preceeding and including cell X.

equally likely to be stored in the stream, a 5 is highly unlikely to occur. Consequently,

entropy coding of the stream approaches log2 5 bits per symbol. To see that a value of 5

is unlikely, consider that this only occurs at the tip of round-trips, and that round-trips

are removed if redundancies arise.

However beneficial entropy coding of the code stream might be on the CPU, on

the GPU this adds additional decoding overhead and seriously threatens overall perfor-

mance due to the variable bit rates resulting from such codes. Consequently, we chose

to allocate 3 bits to each differentially encoded vertex in order to improve rendering

performance.

3.5.2 Normal Estimation and Encoding

Normal Estimation Normals are either given for the original point set, or they are

computed prior to the compression stage, e.g., by computing normals on a given trian-

gulation or by moving least squares [ABCO+01]. Moving least squares first computes
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a k-neighborhood for each input point x ∈ X, i.e.,

Nk(x) := {ni}k
i=1 ⊆ X, such that

∀n ∈ Nk(x) : ‖n− x‖2 ≤ ‖y − x‖2 ∀y ∈ X\Nk(x). (3.12)

This k-neighborhood can be computed efficiently using binary space partitioning li-

braries such as the Approximate Nearest Neighborhood (ANN) library [MA06]. Such

libraries compute a binary space partitioning of X during their initialization. Subse-

quent queries are then answered in O(log |X|). Since our typical input point sets can

be by far larger than the main memory, we sort point sets with respect to their Y-

coordinate using an out-of-core sorting algorithm [Sed98]. We can then stream-process

the sorted point set by computing the binary space partition for overlapping chunks

of input points. The requirement that the k-nearest neighbors to each query point x

are within a chunk is met by querying only points in the “middle” (with respect to the

sorting along the Y-coordinate) of each chunk.

Once the k-neighborhood is obtained, a weighted covariance matrixA is computed,

i.e.,

A(x) =
k∑

i=1

g(|ni − x|) (ni − x) (ni − x)T , where ni ∈ Nk(x). (3.13)

Here, g(d) is a function that decreases each neighbor’s influence with increasing dis-

tance d. If A(x) is not singular, the eigenvector emin corresponding to the smallest

eigenvalue λmin is the best possible estimate for the normal at x. Since A(x) is sym-

metric and real, all of its Eigenvalues are real. Furthermore, λmin is typically well

separated from the other two eigenvalues—a fact that stems from the simple geomet-

ric observation that X consists of points on a surface. Consequently, both power and

Rayleigh quotient iteration [GVL96a, PTVF02a] on A−1(x) will converge quickly. If,

however A(x) is singular, Nk(x) is either planar (if rank (A(x)) = 2) or it contains

only a single point at a multiplicity of k (if rank (A(x)) = 1). If Nk(x) is planar, we

compute the normal as a simple cross-product of any three pairwise different points

of X. If rank (A(x)) = 1, k must be increased in order to compute stable normals.

Note that this is just a special case of a principal component analysis as described in

Section 2.6.

The normals computed by this method are ambiguous, since their sign is not de-

termined. Computing a consistent sign of the normals is NP-hard for general surfaces

[HDD+92], but can be solved efficiently for 2-manifolds. However, computing such a
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consistent orientation requires additional topological information—yet one of the main

advantages of point-based rendering is that no triangulation has to be computed. Con-

sequently, we utilize only the modulus of angles occuring in lighting computations.

Normal Encoding. Since adjacent normals in a short path show only slight variations,

they can be encoded incrementally. Each normal but the first one is expressed in spher-

ical coordinates relative to its predecessor. Let θ and φ be the azimuth and the lon-

gitude coordinates of the current normal. To avoid suboptimal compression at poles

we compute both the negative and the positive angles and use the one that leads to a

smaller difference. If the difference to the following normal in spherical coordinates is

(Δθ, Δφ), then the new normal in Euclidean coordinates is given by:

x = cos(θ + Δθ) sin(φ + Δφ),

y = sin(θ + Δθ) sin(φ + Δφ),

x = cos(φ + Δφ). (3.14)

Since this computation requires trigonometric functions to be evaluated, we employ

the trigonometric relations

sin(α + β) = sin(α) cos(β) + cos(α) sin(β), and

cos(α + β) = cos(α) cos(β)− sin(α) sin(β) (3.15)

to express Euclidean space coordinates in terms of pre-computed sine and cosine val-

ues. More precisely, given sin(Δθ), cos(Δθ), sin(Δφ) and cos(Δφ), as well as the

respective values sin(θ), cos(θ), sin(φ), and cos(φ) of the previous normal, Euclidean

coordinates for the current normal can be decoded using a few products and additions.

During path generation, we collect all normal increments in spherical coordinates

that occur in the entire data set. These increments are then clustered using vector quan-

tization [GG92, Sch03] (see also Section 2.7). The two angular increments in the code-

book are stored as four sine and cosine values for each entry. To encode the start nor-

mal, we compute a vector quantization of all start normals using 216 codebook entries.

To avoid accumulation of quantization errors, we perform a rebinning in the following

fashion. For each normal except the first two, we recompute the difference to the previ-

ous normal, which is reconstructed using the start normal and the sequence of previous

differences. Then, the optimum codebook entry for the new difference is found and

stored. In this context it is worth noting that re-quantization of differences, which may
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seem an appealing alternative, is known to not converge in general. For all data sets in

this chapter, we used 5 bits for each normal increment.

Color Encoding. Clearly, colors can be encoded similarly to normals. However, spher-

ical coordinates are not meaningful for colors, and Euclidean distances should be en-

coded instead. Since colors—unlike normals—are not generally coherent across short

paths, significantly more bits are required to encode them at sufficient precision. Tests

show that the starting color requires about 8 to 10 bits to be represented faithfully, while

differences require another 5 to 8 bits. The amount of bits needed strongly depends on

the homogeneity of the colors to be encoded. We also tested various color spaces, i.e.,

YCbCr and HSV, but the gain in visual fidelity was rather small.

3.6 Extension to Isosurface Compression

So far, we discussed the encoding of point scans. In order to achieve significant com-

pression ratios while maintaining high fidelity, the high coherence in these data sets

was exploited. Another type of highly coherent data stems from CT (see also Sec-

tion 2.5) or MRI4 scans, as well as numerical simulations. Such data is typically given

as a scalar function on a discrete Cartesian voxel grid D′, i.e., Φ′ : D′ → R, where

D′ ⊂ N
3, although irregular (tetrahedral or hexahedral) cells are frequently used in

numerical simulation. By means of interpolation with an interpolation kernel κ the do-

main D′ on which Φ′ is defined can be made continuous. Thus, a continuous function

Φ := κ � Φ′ : D → R is obtained, where D ⊂ R
3 is used to denote the continuous

domain of Φ. Note that the interpolation kernel κ should be chosen such to obey a

convexity criterion, i.e., local minima and maxima of the interpolant can only occur at

the control points.

An operation that is frequently performed on such data is the extraction of an isosur-

face, i.e., to determine the loci x ∈ D : Φ(x) = σiso. Here, σiso denotes the so-called

isovalue.

Such an isosurface may either be rendered directly, e.g., by means of volume ray-

casting [KW03a], or a polygonal approximation may be obtained first. The latter ap-

proach has the distinct advantage that obtaining the isosurface is entirely decoupled

from rendering. The polygonal approximation of the isosurface can thus be used for a

wide range of purposes as is, without further specification of the rendering methods to

be used. Since the time Lorensen and Cline proposed the Marching Cubes algorithm

4Magnetic Resonance Imaging
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Figure 3.10: A time step of an interface mixing instability simulation. In this image two isosur-
faces (cyan and white) are rendered simultaneously. A Marching cubes isosurface extraction of
these surfaces results in about 1 billion points consuming 24 GB for the point and normal infor-
mation alone not considering connectivity. Due to the compression framework described in this
chapter, both isosurfaces can be compressed to about 500MB. Data set courtesy of Lawrence
Livermore National Laboratory.

[LC87] for Cartesian voxel grids, many different methods to speed up the process of

obtaining a triangle approximation or to render this polygonal representation have been

proposed. These approaches can be roughly classified as follows.

Acceleration with hierarchical data structures. To speed up the rendering of isosur-

faces, these methods strive to consider relevant parts of the data set only. To determine

such relevant parts efficiently, hierarchical data structures such as the Octree [Lev90]

or span-space trees [LSJ96] have been used.
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View dependent isosurface reconstruction. These algorithms generate isosurfaces on

the fly by using a view dependent error measure. This dramatically reduces the amount

of data to be considered for isosurface extraction and the amount of geometry to be

rendered [LH98].

3D texture based isosurface reconstruction. In texture-based isosurface extraction in-

stead of generating the isosurface’s geometry explicitly a shader program or a special

GPU configuration is used to render only parts of the volume that do belong to the sur-

face [WE98]. The normals required to compute the illumination are precomputed and

stored in an additional gradient volume.

However, even if some of these algorithms can be modified to perform their tasks

in an out-of-core fashion, the resulting tesselations can be overwhelmingly large. For

instance, the marching cube algorithm generates up to four triangles for any cell that

contains the isovalue. Combined with today’s resolutions of up to 40962 samples per

CT slice—not to mention typical resolutions of serious numerical simulations—the

generated data can quickly become larger than available storage capacities. For in-

stance, Figure 3.10 shows two isosurfaces in a interface mixing instability simulation.

The data is originally given on a 20482 × 1920 Cartesian grid. The highly turbulent

structure of the interface between two fluids results in a marching cubes reconstruction

with 1 billion points that require roughly 24 GB to store both position and normal.

In order to be able to compress and render such large isosurfaces using the methods

described in this chapter, only the offline encoding part of the DuoDecim engine (see

also left half Figure 3.11; the rendering module depicted in the right half is discussed

later) has to be modified to accept voxel data. This is achieved by replacing the uniform

point clustering and resampling described in Section 3.3.1 by a pipeline that processes

the voxel data and extracts an isosurface layer by layer. These layers then either have

to be converted to 2D honeycomb grids, or the isosurface can be directly reconstructed

on such a grid. The rest of the encoding pipeline can be kept completely unchanged.

3.6.1 Isosurface Preprocessing

To improve image quality, processing speed, and compression ratio we do not extract

the isosurface in the original data volume but convert the volume into our HCP rep-

resentation first. After the conversion we perform the isosurface extraction in HCP

space and compress this data. This guarantees optimal connectivity of short paths and

requires no further data transformation if the user changes the isovalue.
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Figure 3.11: The Duodecim Engine. There are two modules, the offline encoding part (depicted
left), and the online rendering module. The offline encoding part takes either a volumetric
data set or a point scan and compresses it into the DuoDecim format. The rendering module
produces either fast low quality or high quality images. The performance impact of the high
quality rendering mode is about 50%.

Since optimal resampling to the HCP grid requires a spherical, bandwidth limited

interpolation kernel [NM02], we use a spherical Lanczos kernel of radius ρ,

Lρ(r) =

⎧⎪⎪⎨⎪⎪⎩
sinc(r · π/ρ) if r ≤ ρ, r �= 0

1 if r = 0

0 otherwise

. (3.16)

Note that this kernel still has to be properly normalized. In the case of rectilinear

grids, we keep enough slices in memory to cover the 2ρ + 1 support of Lρ(r) and

perform the convolution with Lρ(r) in the spatial domain. For unstructured grids this

involves a cell search, which is implemented efficiently using standard binary space

partitioning approaches for conforming grids with convex cells. Changing the radius ρ

offers a speed/quality tradeoff.

This resampling results in a HCP grid with a single data value for every grid vertex.

To compress an isosurface defined by the user, the system first classifies each vertex

v. If Φ(v) ≥ σiso the vertex v is assigned a tag ⊕, otherwise it is assigned a tag �.

Now the TRD cells for which a sign change occurs, i.e., there is at least one vertex
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tagged ⊕ and at least one vertex tagged � incident to the cell, are determined. Under

the assumption that Φ is convex in each TRD cell, the isosurface passes these and only

these cells. Consequently, these cells are tagged as occupied and fed into the short-path

generation and encoding modules exactly as is the case for point scans.

Normals of the isosurface can be computed as gradients in Φ. This is typically done

using discrete differentials on the grid, e.g., centered differences in case of Cartesian

grids. Since these normals are not ambiguous with respect to their direction, a standard

Phong illumination [Pho75] can be computed. Figure 3.12 shows two data sets includ-

ing normals. The two isosurfaces of the Wholebody CT scan in the left half of the

figure comprise about 30 million points. Originally requiring about 1 GB to be stored,

they can be compressed to only 21 MB using the DuoDecim framework. The interface

mixing instability depicted in the right half of the figure consists of about 450 million

points. Note the very fine details shown in the zoom. Both images show the compressed

data.

Figure 3.12: Two large isosurfaces. Both data sets, including per-point normals, have been
compressed and now fit into 256 MB video memory. Images are generated by rendering the
scans directly from the compressed data stream on the GPU. Up to 50 million points per second
can be decoded and rendered on an ATi X800 XT graphics card. Left: Two surfaces consisting
of about 30 million points, compressed from about 1 GB to only 21 MB by our method. Data
set courtesy of Siemens Corporate Research, Inc., Princeton. Right: Isosurface of an interface
mixing instability. Data set courtesy of Lawrence Livermore National Laboratory.
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Since the optimum HCP grid size is known a priori for isosurface preprocessing,

the costly grid size optimization step is skipped. Occupied cells are directly fed into the

short-path generation step. Also note that the major axis across which the data set is to

be sliced is either given or it can be computed trivially by considering the bounding box

of the grid. This estimate of the major axis is not guaranteed to result in an optimum

axis, but the result is typically sufficiently close for practical use.

3.7 Rendering

To render the compressed point set, the encoded data is traversed slice by slice. For

each short path, the start position is decoded from the associated grid coordinate, and

start normal and start color are fetched from the quantization codebook. All other point

coordinates can then be decoded incrementally from the relative offsets that are stored

with respect to the underlying grid structure. Only for the incremental decoding of nor-

mals and colors an additional lookup into the delta normal codebook is required. This

process consecutively generates attributed vertices consisting of positition, normal, and

optionally color, which are written either directly to a vertex array or to textures for

future vertex texture fetches. Both functionalities are now available in the DirectX

and OpenGL APIs. The decoded points can then be rendered using simple screen-

aligned quads or other, more elaborate splatting methods (i.e., the one described in

Section 3.7.2).

If decoding is performed on the CPU, the vertex and the normal array have to be sent

to the GPU, making bus bandwidth a major bottleneck. To overcome this limitation,

encoded “runs”5 are sent to the GPU in compressed form. Due to the simplicity of the

decoding process, runs can be directly decoded on the GPU using parallel streaming

computations. Reconstructed point positions are rendered directly without any read

back to application memory. In this scenario, the CPU is only used to control which

runs are sent to the GPU, i.e., to accommodate view frustum and backface culling.

The GPU decoder exploits functionality on recent graphics cards, namely vertex

texture fetches and render targets. The process is rather simple. First, the output gen-

erated by pixel shaders is stored in a floating point precision render target. This render

target is then bound as a texture. In subsequent passes, the vertex shader can then fetch

data from this texture in order to displace “dummy” vertices previously fed into the

pipe. The rationale of this two-pass strategy—decoding data into a temporary buffer in

5It appears more appropriate to refer to the encoded paths as point runs instead of “point short paths”, in analogy
to other run-length encodings.
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a first pass and rendering this buffer in a second pass—is that it is possible to gener-

ate multiple four-dimensional output vectors for each fragment rasterized. This is not

possible for the vertex shader. The recent introduction of the geometry shader solves

this issue, but so far geometry shaders do not offer satisfactory performance for most

applications.

To prepare compressed point runs for GPU processing, they are stored in 2D tex-

ture maps. For each run, its 2D start position and 1D normal indices are stored in a

16 bit RGB texture map. Consecutive points in a run are encoded in 8 bit luminance

textures, using the first 3 bits to store adjacency information and the remaining 5 bits to

store quantized normal differences. These differences are decoded using a quantization

codebook. Note that multiple runs up to the vendor-specific maximum texture resolu-

tion can be stored jointly in one texture. The principal layout of all data structures on

the GPU is illustrated in Figure 3.13. If the data set has per-point colors, they are stored

separately.

To render the model, the GPU decodes per-point properties and positions and ren-

ders them into intermediate buffers. In a second pass, the intermediate object containing

point positions is fetched in the vertex shader to replace “dummy” vertices fed into the

pipeline. Furthermore, the pixel shader of this pass reads per-point properties from

the intermediate buffers in order to compute shading and illumination of the object.

Note that this two-pass process does not require any read-back to the CPU. Also, the

first stage can be implemented in the fragment shader that currently outperforms the

geometry shader by great margins.

3.7.1 Culling and LOD

To render the compressed representation, the CPU determines the runs that need to be

rendered under the current camera parameters. The buffers containing these runs are

sent to the GPU and stored in textures. To keep bus transfer and GPU processing as

low as possible, two different acceleration techniques have been integrated into our

approach. Firstly, runs are clustered and stored in the same texture according to their

cone of normals. Secondly, within one cone, runs are grouped according to their spatial

position, i.e., each texture is split into a set of smaller textures for which axis aligned

bounding boxes are computed. During run time, the CPU determines the partitions to

be displayed based on the current viewing direction and the size and orientation of the

view frustum. Only potentially visible partitions are send to the GPU, where they are

finally decoded and rendered. Note that, since always contiguous blocks of runs are

contained in a texture, a conservative visibility criterion is used to reduce the amount



3.7. RENDERING 57

Figure 3.13: Encoding of runs into texture maps on the GPU.

of transfers to the GPU. Furthermore, for contiguous camera movements, the amount

of uploads to the GPU per frame is very small.

The CPU also determines the most appropriate level of detail (LOD) to be rendered.

We always select the resolution such that grid cells are projected to a screen-space area

smaller than one pixel—with the only exception of the finest LOD of the data set being

reached. An example of such a hierarchical LOD representation including a bounding

box hierarchy is shown in Figure 3.14.

3.7.2 High-Quality Rendering

The default rendering mode uses decoded point positions and normals to compute a

simple Phong illumination [Pho75], with the only change that the modulus of angles is

used for this computation if the normal direction is ambiguous. Although this approach

is very fast, it results in a per-splat constant color shading. Especially in close-ups for

which the splat size can become significantly larger than a pixel this causes disturbing

artifacts (see also Figure 3.15 left column).

To eliminate this problem a per-pixel illumination is required. As elaborated in

Botsch et al. [BHZK05] deferred shading promises the best performance on current

GPUs. To compute this per pixel lighting we accumulate the splat normals of the vis-
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Figure 3.14: David rendered at four different detail levels The upper row shows close ups of
David’s head rendered at 4 different levels of detail. The lower row shows the corresponding
image of the David statue as it would be rendered. The bounding boxes enclose parts of the
mesh that are tested for frustum culling. Data courtesy of the Digital Michelangelo Project.

ible surface in the frame buffer. In the fragment stage, the engine weights the normal

of each fragment with its distance to the splat center. Since this accumulation requires

to blend potentially occluding splats, depth testing cannot be used at the same time.

We hence first perform a depth-only pass to determine the splats visible under the cur-

rent viewing parameters. If the target GPU does not support full 32 bit floating point

blending (although all recent GPUs do), we accumulate normals in a 16 bit floating

point render target. In our experiments, this did not result in any visible artifacts. After

normals have been accumulated, we proceed by computing the illumination for each

pixel. (see also Figure 3.16).

Since we need to render the points twice and do not assume to have enough GPU

space for decoding the entire data set, we have to decode every point twice in the

following multipass algorithm.

Depth-only pass. For each visible section of the data set we decode the point position

and write the depth values into a single component floating point render target. The
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Figure 3.15: Comparison of per splat and per pixel illumination. Left column: Per splat illumi-
nation is fast, but shows artifacts if the splat size exceeds the pixel size. Right column: Deferred
per pixel illumination cures these artifacts. The top row shows a zoom onto David’s eye, while
the bottom row shows a zoom into the interface mixture instability. Data courtesy of the Digital
Michelangelo Project.

depth test is enabled during this phase in order to leave only the front-most depth values

in the render target.

Property pass. For each visible section of the data set we decode the point position

and point properties. In the pixel shader the depth value of every fragment is compared
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Figure 3.16: The three passes needed for our deferred shading approach. Left: The first pass
generates a depth image. Middle: During the second pass the depth of incoming fragments is
compared to the depth image obtained in the first pass. Fragments with a depth further than
ε away from the respective depth of the first pass are discarded. The remaining fragments are
blended in order to accumulate their propertiess. Right: In the third, purely image based pass
the attributes accumulated in the second pass are used to illuminate the final image. Data
courtesy of the Digital Michelangelo Project.

to the depth value in the depth image of the first pass. Incoming fragments whose

depth differs by more than a user-defined distance ε from the respective depth of the

first pass are discarded. For all remaining fragments, their color is set to the property

to be accumulated (i.e., normal, color, etc.). This color is premultiplied by a weight

depending on the distance between fragment and splat center. If non-unit vectors are

to be accumulated in this manner, e.g., colors, the weights are accumulated as well

to allow for later re-normalization. Blending is then used to accumulate the respective

property automatically. If other per splat properties such as colors or texture coordinates

are present, they are stored in multiple render targets in this pass. Note that up to eight

output textures or 32 output scalars can be written at the same time on recent GPUs.

Thus, multiple passes are not generally needed during this step. Throughout this pass,

the standard depth test has to be disabled. The ε depth test is necessary in order to avoid

artifacts arising from the finite precision of the depth buffer and the fact that planar

splats are to be blended. Two such splats with a common intersection, will—if not

co-planar—diverge around their intersection. Thus, the depth of fragments generated

around the intersection can vary significantly for the two splats. Consequently, ε has

to be chosen significantly larger than the depth buffer’s precision in order to guarantee

smooth blending between such splats.
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Illumination pass. In the final pass a single quad covering the entire view port is ren-

dered. This quad generates a fragment for each pixel on the screen. For each fragment

the pixel shader reads the accumulated normals and point properties. The normal as

well as the properties are re-normalized and used to compute the illumination model.

In this pass’ pixel shader, any local illumination model can be evaluated, e.g., Phong

shading, toon shading, edge enhancement shaders, and so forth. During this pass, frag-

ment tests and blending are disabled.

This deferred scheme reduces the rendering performance by about a factor of two

since every point needs to be decoded and data needs to be written to floating point

targets. On the other hand, Figure 3.15 demonstrates that the smoother shading dramat-

ically improves the overall image quality.

3.8 Runtime And Memory Requirements

In this section we provide asymptotic runtime and memory complexities for various

parts of the algorithm. We denote the set of input points before resampling to a HCP

grid as X. We assume this HCP grid to be composed of N TRD cells. Note that

despite the average hit rate γ being constant, this does not imply N ∈ O (|X|) since γ

is computed taking into account occupied cells only. Instead, since the topology of the

vast majority of all models can be safely assumed to be dominated by 2-manifold parts,

we can estimate the amount of occupied TRD cells by O
(
N2/3

)
since the HCP grid

encloses the model tightly. Furthermore, we assume each model to have a distinct major

axis, such that at least O
(
N1/3

)
slices each of which containing less than O

(
N2/3

)
TRD cells are generated.

Isosurface extraction. For volumetric data, we assume that a data set has V voxels, or,

in case of unstructured grids, V cells. The runtime for isosurface extraction depends

heavily on the input grid type. For structured grids, interpolation and resampling is in

O (V ) as long as the filter size is constant. Since we stream the data set, we only need to

store enough slices to cover the 2ρ + 1 support of the Lanczos kernel, where each slice

contains O
(
V 2/3

)
voxels. In the case of unstructured grids we usually have to perform

a logarithmic cell search during interpolation, and hence the runtime is in O(V log V ).

Memory requirements are still in O(V 2/3). After resampling to the HCP grid, we store

the entire grid to amortize the resampling process for multiple isosurfaces. Note that

we do not consider any hierarchical acceleration structure for the isosurface extraction

process.
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Point clustering of laser range scans. First, points are inserted into the HCP grid, which

requires linear runtime. However, range scans are first sorted, which clearly is in run-

time of O (|X| log |X|). Each slice contains O
(
N2/3

)
TRD cells, for which the possi-

bility to be occupied is roughly N2/3 : N . Since we only hash filled voxels of one slice

at a time memory requirements are as low as O
(
N4/9

)
.

It is worth noting that the assumption of a distinct major axis reduces memory re-

quirements considerably. Finding a good guess for the best-possible major axis in case

of point scans can be obtained by means of a principal component analysis. This step

traverses each point in the data set once, without particular order, to compute the covari-

ance matrix. Then, a real, symmetric 3×3 Eigenvalue problem is solved. Consequently,

this step has a runtime complexity of O (|X|) and a memory complexity of O (1). For

volumetric data sets, the bounding box can be examined to determine the major axis in

runtime and memory complexity of O(1).

Normal estimation. In case of laser range scans, if normals are not provided by the

acquisition device, they have to be estimated from the point data. The complexity of

this process is dominated by the computation of the k-neighborhood during the moving

least squares fit [ABCO+01]. Utilizing a binary space partitioning of the input data,

e.g., the ANN library [MA06], this k-neighborhood can be obtained in O (log |X|) for

each point under the assumption that k is constant. Additional memory requirements for

the binary search structure are typically in O (|X|) and the structure is typically built in a

runtime of O (|X| log |X|). For each point a 3×3 real, symmetric Eigensystem has to be

solved, which can be assumed to be in constant time. Thus, the total runtime complexity

for the entire normal estimation procedure is in O (|X| log |X|). For volumetric data,

this step is straightforwardly solved by discrete differentials in a runtime of O (V ) and

a memory complexity of O (1).

Grid optimization for laser range scans. Finding a good initial guess for the grid’s cell

size requires to compute the average pairwise closest distance of all input points. This

operation has a runtime complexity of O (|X| log |X|) if space partitioning strategies

are employed to accelerate the process. To store the binary space partition, a typical

memory complexity of O (|X|) arises. However, since the grid spacing is optimized

in an automated process, it is generally sufficient to estimate a reasonable grid size

using only a small (constant) fraction of the input points. This reduces both space

and memory requirements to O (1). The remainder of the grid optimization requires

only few resampling steps. Each resampling step has a runtime of O (|X|) and memory
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requirements of O
(
N4/9

)
.

Generation of short paths. So far, a single slice of the data sets always fitted into core

memory. Runs are then generated using our linear-time 2-approximation. However, if

in the future data sets should be so large that a single slice will not fit into memory any

more, we mandate to “brick”6 the data and to process each brick independently. Since

there is a total number of |X|
γ

occupied cells, where γ is the average hit rate, the total

runtime of the run generation process is in O (|X|). Since in case of bricking the grid

can be partitioned (i.e., no overlaps arise), the asymptotic runtime complexity remains

unaffected.

Quantization. To quantize the positions of each short path, we can traverse each such

short path linearly. For the normals we first generate a codebook using vector quantiza-

tion, which, if carefully implemented, is in O (p log k), where k is the number of entries

in the codebook and p is the number of vectors. However, since it is sufficient for large

models to pick a small, representative subset p of constant size, obtaining a normal

codebook is negligible in the entire process. To obtain such a subset, we choose up to

16 million start normals randomly from the entire data set. Since the number of start

normals in this subset is not dependent on the size of the data set (that is, if the data

set contains significantly more than 16 million start normals), memory requirements

are in O (k + p). Once the codebook is obtained, we assign the closest entry to each

normal. If k in O (1), this process is in O (|X|), otherwise this is a full closest-entry

search which requires a runtime of O (p log k). Memory requirements throughout the

quantization step are O (k) to store the codebook plus optional acceleration structures

on this codebook. Furthermore, to obtain the quantization of start normals only O (1)

memory is required if only a representative subset of all start normals is to be used.

3.9 Results

We validated the efficiency and effectiveness of the proposed point based rendering

system using the large scans from the Digital Michelangelo Project (see Figure 3.17),

CT scans (see Figure 3.18), and scalar fields resulting from numerical simulations (see

Figure 3.19). Firstly, we would like to point out the rich amount of detail present in the

original data sets. These details can be faithfully reconstructed even after significant

6Bricking refers to a partition into rectangular pieces of the data set. Sometimes it may also refer to a potentially
overlapping cover of the data domain using—typically—rectangular pieces.
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Figure 3.17: The David and Atlas statues of the Digital Michelangelo Project.

compression has been achieved by the methods described here. Table 3.1 shows com-

prehensive results for the three largest of the scans of the Digital Michelangelo archive.

Table 3.2 gives results for a typcial CT scan and the interface mixing instability. All

benchmarks were performend on a single-core P4 2.8 GHz CPU equipped with 1 GB

RAM and an ATi X800 XT graphics card with 256 MB.

In all examples, run optimization resulted in a hit rate below 1.7 and a run efficiency

above 70% of a maximum length of 25. As can be seen, even for the Atlas mesh the

algorithm returns the result in less than 10 hours. Due to the hit rate larger than 1, the

original point sets were reduced by a factor of 1.3 to 1.6.

It is obviously clear that the point clustering approach described introduces sam-

pling errors. For the high-resolution examples presented, these errors are 0.11mm and

0.14mm. The scanners used for the Digital Michelangelo Project have a minimum

sample spacing of 0.25 mm× 0.25 mm× 0.1 mm in a plane perpendicular to the laser

[Cyb99]. In the worst case, two sample points are as much as

√
2× 0.252 + 0.12 mm ≈ 0.367 mm (3.17)

apart, which is the minimum size of features that can be faithfully reconstructed by the

scanning process. Because in all our examples the sampling spacing is significantly

larger than the sampling error introduced by our compression method, features present
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in the original data sets will not be destroyed. If the scanning device has sampled the

data above the Nyquist rate of the original object, our sampling is well above this rate,

too, resulting in equal visual quality of the original and the compressed point set.

Table 3.1 also shows the excellent compression ratio achieved by our method for

real-world data sets exhibiting fine-scale details. When using ZIP compression, the

DuoDecim-encoded VRIP version [CL96] of all of the Digital Michelangelo statues

requires about 380MB and can thus be stored twice on an ordinary CD. Plainly encoded,

it is still small enough to be stored in core for our target architecture. Due to the slice-

based encoding scheme for point sets, which is at the core of our technique, it is also

well suited for stream processing and progressive transmission of the data [IL05].

Although the point scans are considerably compressed, they can still be decoded

very efficiently due to the simplicity of the decoding scheme. In the table we give

timings for GPU decoding and rendering. To measure these timings, all acceleration

techniques were switched off, therefore these timings are considerably slower in com-

parison to practical display times. If decoding is carried out on the CPU, we observe a

loss in performance of about a factor of 13.

Table 3.1: Timing and memory statistics for some of Michelangelo’s statues. The benchmark
was performed on an ATi X800 XT card using DirectX 9.

Model Atlas St. Matthew David

scan resolution 0.25 mm 0.25 mm 1.00 mm

# Points 254904158 186865425 28184522

# Samples 158877859 121718168 17190274

hit rate 1.60 1.53 1.64

run efficiency 72 % 74 % 72 %

max sampling error 0.11 mm 0.14 mm 0.48 mm

ply file size 9.94 GB 7.29 GB 1.1 GB

DD compressed size 231 MB 182 MB 28.5 MB

zip compressed file 172 MB 140 MB 21 MB

DD encoding time 9.5 hrs 6 hrs 57 min

decode & render time 3.91 sec 2.85 sec 0.39 sec

Table 3.2 summarizes the results for volumetric data sets. The Wholebody CT scan

contains one 16 bit scalar per voxel cell, while the interface mixing instability contains

one 8 bit scalar. As can be seen, due to the regular sampling of these data sets the run

efficiency is slightly better than for the point scans. Note that even a binary encoding to
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tag voxels through which the isosurface passes consumes considerably more memory

than our DuoDecim representation for multiple isosurfaces. Memory requirements in

the table are values for a single, typical isosurface.

Table 3.2: Timing and memory statistics for some volumetric data sets. The benchmark was
performed on an ATi X800 XT card using DirectX 9. Note that even compared to a binary
encoding of voxels we achieve a significant compression ratio.

Model Wholebody Interface mixing instability

volume resolution 512 × 512 × 3172 2048 × 2048 × 1920

volume size 1.6 GB (16 bit) 7.5 GB (8 bit)

triangulated mesh size 1.5 GB 24 GB

run efficiency 89% 81%

DD compressed size 20 MB 210 MB

zip compressed file 11 MB 120 MB

DD encoding time 1.7 hrs 8.2 hrs

decode & render time 0.23 sec 3.5 sec

On the GPU, the point rendering system achieves a throughput of about 50 million

points per second. This rate includes the decoding of compressed point runs as well as

the rendering of decoded points and normals. It is worth noting that we maintain this

rate for large amounts of distinct points and normals. Figure 3.20 shows some more

examples that demonstrate the need for a point based rendering system capable of han-

dling such an amount of primitives. In all images, the point splat size is automatically

set according to the screen space projection of the underlying grid cells.

3.10 Summary

In this chapter we presented an effective compression scheme for gigantic points scans

based on close sphere packing grids. Such grids provide a structure for optimal point

clustering, and they establish a spatial relation between points that can be exploited

for compression purposes. Our results show that the compression scheme achieves

an extraordinary compression ratio at very high fidelity. Due to the simplicity of the

decoding scheme, point coordinates and normals can be reconstructed on the GPU.

Since the GPU can also render the decoded primitives without any read-back to the

CPU, bandwidth requirements are substantially reduced.

Furthermore we demonstrated that even though GPU rendering includes decoding



3.10. SUMMARY 67

of point coordinates as well as processing of point geometry, a throughput of 50 million

points per second can be achieved. To our best knowledge, this has not been achieved

before.

Interesting directions for future research include the design of more elaborate LOD

strategies, especially those that lead to an embedded coding [Say00] of the data set.

Embedded codes partition the data set into an interleaved, hierarchical representation

that can effectively avoid the storage overhead that is typically implied by hierarchies.

In case of the compression scheme presented here this overhead is about 14%. Also,

a different space partitioning scheme to allow improved culling seems promising. An-

other interesting direction would be the integration of even higher quality rendering

modes, such as perspectively correct splats or elliptical weighted average (EWA) splats

[GH86, PZvBG00].
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Figure 3.18: An isosurface of the Visible Human male data set. While the volume data requires
about 1 GB, the compressed data stream rendered in this image is only about 5MB in size. Data
courtesy of the US National Library of Medicine.
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Figure 3.19: Another time step of the interface mixing instability. Two isosurfaces (cyan and
white) are rendered simultaneously directly from the compressed data stream. Note the fine
scale detail visible at the bottom, where the mixing interface forms thousands of vortices. Data
courtesy of the Lawrence Livermore National Laboratory.

Figure 3.20: Zoom onto Michelangelo’s St. Mathew Statue. Note the fine scale details even in
the lower rightmost closeup. Data courtesy of the Digital Michelangelo Project.
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Chapter 4

Rendering Of Large-Scale Terrain

Today, satellite range scans comprised of over a billion of samples are available, making

even the handling of such data sets difficult to perform due to memory constraints. In

addition, even single display solutions are surpassing 9 Mpixels [IBM]. The result

is a demand for a substantially increased number of primitives to be transferred to and

processed by the GPU. The requirements imposed by current and future data acquisition

and display technologies make real-time visualizations difficult to perform on even the

most powerful workstations. Therefore, the need for a terrain rendering system that

comprehensively addresses the aforementioned issues is clear.

4.1 Contribution

In this chapter we describe a rendering technique based on a level-of-detail (LOD) ap-

proach for large, textured terrain. The method presented here is well-suited for recent

GPUs and is thus able to tap the full potential of recent graphics hardware both with

respect to their superior processing and memory bandwidth capabilities. To achieve

Figure 4.1: A 360◦ panorama of the Alps. This image has a resolution of 7168× 1024 pixels
and was generated with our method in less than 4 seconds. This time includes rendering,
reading data back from the GPU, and writing the final image to the disk. Data courtesy of
DLR Oberpfaffenhofen (Deusches Zentrum für Luft- und Raumfahrt).

71
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highly interactive frame rates, we combine the advantages of semi-regular, continuous

level of detail meshes with the advantages of discrete, precomputed LOD hierarchies.

Thereby, any retriangulation is avoided during runtime. In contrast to some previous

approaches such as the Batched Dynamic Adaptive Meshes [CGG+03a], we show that

by avoiding expensive irregular triangulations the preprocessing time to compute dis-

crete LODs can be reduced from several hours to a few minutes. Furthermore, our

method guarantees the input terrain to be refined within an user-defined screen- and

world-space error. High-quality renderings such as the one depicted in Figure 4.1 are

achieved by continuous LODs through geomorphing and photo texturing. During ren-

dering, aliasing is avoided by employing optimal geometry filtering at the best possible

geometric resolution. To reduce bandwidth requirements across the graphics bus, dis-

crete sets of decimated mesh structures are transmitted progressively. Rendering is then

performed entirely on the GPU by utilizing recent shader functionality.

4.2 Algorithmic Overview

Given a height field specified on a Cartesian grid, the domain is first decomposed into

a set of equally sized tiles. For each such tile, a discrete set of LODs is computed by

means of a nested mesh hierarchy. The construction of this hierarchy is described in

Section 4.4. This particular choice of a nested hierarchy has several beneficial prop-

erties. Firstly, the terrain is decimated according to world-space errors given for each

level. Similar to other decimation techniques, this reduces the amount of triangles

greatly in planar regions. Secondly, a vertex introduced at a certain level in the hierar-

chy is present at that particular position of the domain in all finer levels (“nestedness”).

This allows vertices of the mesh to be progressively transmitted to the GPU from one

level to the next. Thus, bandwidth requirements between CPU and GPU are signifi-

cantly reduced. Thirdly, geomorphing only requires the specification of multiple height

values per vertex. The vertex shader can then interpolate between these values effi-

ciently. As a result, we can guarantee very low pixel errors at high frame rates during

typical fly-overs. The data structures used to represent and render this nested hierarchy

on the GPU are discussed in detail in Section 4.5. Since per-vertex normals are known

to result in artifacts even for very simple level-of-detail hierarchies (see, for instance,

the recent paper by Han et al. [HSRG07]), we mandate the use of pre-lit photo textures.

These are compressed using the S3TC standard [INH99], which allows high-resolution

mipmaps and anisotropic filter kernels to be used with low performance overhead. All

data is stored in vertex buffers and 2D textures which are handled by a memory manager
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to minimize bus transfer. This component is described in Section 4.6.

4.3 Related Work

From a high-level view, previous approaches for terrain rendering can be classified into

the three following categories.

View-dependent refinement. These methods construct a continuous LOD triangulation

on the CPU with respect to a given world- and screen-space error. Gross et al. [GGS95]

employ a wavelet decomposition to generate adaptive quadtree meshes for terrain data,

combined with a lookup-table to store an irregular triangulation for each of the possible

quadtree leafs. Restricted quadtrees [VHB87] were first introduced by Pajarola [Paj98]

for the purpose of terrain rendering. In their seminal paper Duchaineau et al. [DWS+97]

present the ROAM algorithm that uses triangle bintrees to perform the remeshing.

Peucker et al. [PFL78] propose to use triangulated irregular networks (TINs). The first

automatic process to compute such TINs is described by Fowler et al. [FL79]. Garland

and Heckbert [GH95] employ a greedy insertion strategy to construct a TIN. Progres-

sive meshes are modified with respect to the demands in terrain rendering by Hoppe

[Hop98].

To speed up the remeshing process, frame-to-frame coherence can be exploited.

Duchaineau et al. [DWS+97] use incrementally updated priority queues to guide the

remeshing process. In a different approach, Lindstrom et al. [LKR+96] use a quadtree

data structure with incremental updates of vertex dependencies. Hoppe proposes to

keep track of active cuts to achieve an incremental update [Hop98]. While the ex-

ploitation of frame-to-frame coherence usually results in a reasonable speed up, for

particular camera movements—such as shoulder views in an airplane simulation—a

considerable loss in performance can be observed. Furthermore, frame-to-frame coher-

ent approaches are usually harder to implement due to their additional LOD constraints.

This was recognized by Lindstrom and Pascucci [LP01, LP02], who propose a simple,

yet efficient method to rebuild the mesh from scratch in every frame. In their work,

they improve the error metric proposed by Blow [Blo00].

If the terrain gets excessively large, many algorithms choose to partition the terrain

into square blocks or chunks of data, which can then be processed independently of

each other [KLR+95, SN95]. The advantage is that these chunks can also be paged

from external storage independently. However, care has to be taken in order to avoid

invalid vertices (so-called T-vertices) at chunk boundaries. Röttger et al. [RHSS98]
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describe a particularly elegant approach to avoid these invalid vertices. By restricting

the error metric, they automatically guarantee a valid mesh. However, a generalization

to chunked meshes is not trivial and would also limit the error metric to a Manhattan

distance.

More recently, Ulrich [Ulr00] suggests to use restricted quadtree meshes without

boundary constraints for the chunks, and to fill possible cracks between chunks using

flanges or skirts—fins of geometry along the boundaries pointing downwards from the

terrain. However, ensuring correct anisotropic texture filtering at these boundaries is

not trivial due to the different viewing angle. A more general approach is to stitch

boundaries together using so-called zero-area triangles (also called ribbons in [Ulr00]),

which guarantee correct filtering.

Pomeranz [Pom00] suggests a variant of the ROAM algorithm called RUSTiC that

uses surface triangle clusters. To ensure validity, clusters are enforced to uphold an edge

constraint. On shared edges the clusters must share vertices exactly. This approach is

also one of the first terrain rendering algorithms exploiting graphics hardware. RUSTiC

achieves its improved performance over ROAM by rendering clusters as triangle strips.

Using 4-8 meshes is proposed by Hwa et al. [HDJ04] to induce a diamond-based hier-

archy on both textures and height field. Combined with a memory layout that follows a

space-filling curve this method allows for efficient out-of-core rendering of the terrain

by utilizing GPU memory as a cache. However, since each other texture level is rotated

by 45◦, a costly update of vertex texture coordinates has to be performed. Furthermore,

ensuring correct anisotropic filtering is involved with this approach.

Pre-computed geometry batches. Based on the observation that the time that is saved

by rendering less triangles due to adaptive re-triangulation is entirely amortized on re-

cent GPUs by the time needed to perform the re-triangulation, several authors suggest

to pre-triangulate the input data as much as possible. Cignoni et al. [CGG+03a] suggest

to replace triangles in the remeshing process by a batch, a new primitive that approx-

imates the terrain across a triangular part of the input domain by a precomputed TIN.

Computing a triangle strip for each such batch then results in a highly efficient ren-

dering procedure. Similar to the ROAM algorithm, batches are kept in a bintree, for

which the usual remeshing during run time is performed, hence the name of the method:

Batched Dynamic Adaptive Meshes (BDAM).

In [CGG+03b], the authors improve on their previous work to successfully render

planet-size meshes at interactive rates. Their system does not support geomorphs, but

a screen-space error of one pixel for a 640× 480 view port is typically guaranteed.
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However, the paper does not discuss scalability with respect to the size of the view

port, which can become a severe issue in the near future. The reason is that with higher

screen resolutions significantly more triangles have to be rendered in order to meet a

given screen-space error.

A GPU-based system similar to the approach by Ulrich [Ulr00] that stores pre-

meshed tiles in quadtrees was proposed by Wahl et al. [WMD+04]. This system also

abandons a consistent triangulation across tile boundaries in favour of flanges.

Non-adaptive triangulations. Only very recently, the method proposed by Losasso and

Hoppe [LH04] takes full advantage of the speed of current consumer class GPUs.

This method abandons any view-dependent remeshing in favor of so-called geometry

clipmaps, a triangulation that offers approximately uniform resolution in screen space.

Specifically, concentric, uniformly tessellated, square patches around the camera are

used which drop exponentially in resolution with distance. During run time, geometry

is fetched from a toroidal buffer residing on the GPU. The update of this buffer is done

by the CPU.

Since height fields show a very high spatial coherence on regular, Cartesian grids,

they can be compressed very efficiently. The aforementioned approach exploits this fact

by applying a compression scheme derived from Microsoft’s WMV format [Mal00] and

achieves compression ratios of up to 100:1. However, since decoding the compressed

data puts a considerable amount of work on the CPU, the decoder can eventually fall

behind faster camera motions, resulting in a blurry representation of the terrain. Con-

temporary multi-core architectures may be suited to alleviate this issue, but increasing

display resolutions on the other hand may be able to effectively counter the effects of

increased computing power. Furthermore, although geomorphs are not an issue for

this system, both the screen- and world-space errors are hard to control, resulting in an

world-space rms of about 1.5 meters in the original publication. Two additional prob-

lems of the method are that optimal geometry filtering cannot be performed due to the

screen-space aligned topology, and that height fields compress a lot better than regular

images. Especially the latter issue is likely to result in a major increase in memory

requirements, if photo textures are to be used during rendering. Still, extremely high

frame rates for virtually arbitrarily large data sets can be achieved using this method.
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4.4 Nested Mesh Hierarchy

The most common way to avoid sampling artifacts in terrain rendering is by means

of a LOD representation. Such a hierarchy can either be implicitly represented by

performing an adaptive retriangulation at run time, or it can be explicitly precomputed

for discrete LOD levels.

Figure 4.2: Levels of the nested mesh hierarchy. From [SW06].

A given height field H : D→ R can be approximated by a triangular mesh param-

eterized over its 2D domain D ⊆ Z
2. The surface of this mesh defines a reconstruction

H′ of H. The approximation quality of the mesh is then measured by a point-wise error

metric δ : R×R → R that is extended to the entire domain simply by accumulating

point-wise contributions. We use the canonical extension of the Lmax error metric to

measure the error between H and H′,

δ(H,H′) := max
x,y

δ(H(x, y),H′(x, y)). (4.1)

By generating approximations of the height field with decreasingly lower approxi-

mation errors, a mesh hierarchy that represents the original terrain at ever finer scales is

constructed. The hierarchy employed in this work is nested with respect to the triangu-

lation. For each triangle of level i that covers a part Ωi ⊆ D of the height field’s domain,

there is a triangle on the next coarser level i−1 covering Ωi−1 ⊆ D such that Ωi ⊆ Ωi−1.
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That is, if both triangles are projected onto the domain, for each triangle Ti at level i

there is exactly one triangle at the next-coarser level i− 1 that completely contains Ti.

Such a hierarchy is automatically generated by a restricted quadtree [VHB87, Paj98],

bintree [DWS+97], or red-green refinement [BSW83].

To generate a discrete set of nested hierarchy levels, the terrain is decomposed into

tiles of a fixed size of 2572, with an overlap of one sample in either direction. Then,

an error vector (ε0, . . . , εn−1) of exponentially decreasing thresholds εi := 2n−1−i is

built, where the εi are usually measured in meters or feet. The particular choice of ex-

ponentially decreasing entries is motivated in Section 4.5. Starting with ε0, a hierarchy

{Mi}n−1
i=0 of restricted quadtree meshes is constructed. Each Mi can be associated with

a planar graph, Gi = (Vi,Ei), which is obtained by projecting Mi into the base domain.

Furthermore, the surface of each Mi is a reconstruction H′
i of the original heightfield

H. The hierarchy is constructed such that

Vi ⊆ Vi+1 ∀ i = 0, . . . , n− 1 (nestedness criterion), and

εi+1 ≤ δ(H′
i,H) ≤ εi ∀ i = 0, . . . , n− 1 (error criterion). (4.2)

This is achieved by constructing Mi+1 in a recursive top-down approach from Mi.

Meshes constructed in this way automatically obey the “nestedness” criterion.

To generate the next finer hierarchy level from the current mesh, recursive quadtree

refinement is performed until one of the following two conditions is met.

1. the maximum deviation between the new mesh and the original terrain is less than

the error threshold defined for the level, i.e., the error criterion of Equation (4.2)

is met.

2. the spacing between vertices of the mesh becomes smaller than the error threshold

defined for the level.

The second criterion is enforced by prohibiting the quadtree from being refined below

a certain scale. This weakens εi+1 ≤ δ(H′
i,H) ≤ εi, but δ(H′

i,H) is typically still

less than εi. In this way we can avoid aliasing artifacts due to subsampling along the

domain axes. In a second step geometry changes are propagated from fine to coarse fol-

lowing the push/pull paradigm for data propagation in trees. Subquadtrees are refined

as needed to avoid T-vertices.

The quadtree is then decomposed into recursive triangle fans [RHSS98] or a single

triangle strip [LP02]. Using triangle strips is possible in our framework, but gener-

ating them increases the time spent for preprocessing considerably. Triangle fans, on
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Figure 4.3: Quadtree mesh and Π-order traversal. Note that since each sub-cell of the quadtree
mesh is rendered as a separate triangle fan a consistent orientation can be achieved easily
(black arrows). This is required in order to perform backface culling.

the other hand, are easy to implement, reduce meshing time, and are similarly cache

friendly as strips. However, generating fans results in a lot of separate primitives. In

order to render these primitives efficiently, primitive restarts are employed. Primitive

restarts are available on recent NVIDIA GPUs and are exposed in OpenGL by the

GL primitive restart NV extension. When rendering indexed vertices, the user may

define a special index. Whenever this index is encountered, no vertex is fetched but

instead a new primitive is started. In DirectX 9 and 10 these restarts are directly in-

tegrated into the standard API; the only difference is that the API reserves a specific

index rather than using an user-defined value. This mechanism allows a list of fans to

be rendered efficiently using only a single draw call, thereby reducing state changes and

setup overhead. The quadtree is then traversed recursively in depth-first order to gen-

erate fans. These specific triangle fans are also sometimes referred to as recursive fans.

As a result, we visit each fan along a Π-order space-filling curve (see Figure 4.3)—a

curve that was successfully used in [LP02] to serialize memory layouts. This traversal

has the beneficial property that subsequent fans in this serialization have a very high

probability to be adjacent. If subsequent fans are adjacent, the second one can re-use

two or even three vertices of the previous one. Since each fan has at most 9 vertices,

the last fan will always be cached entirely on current GPUs1. Thus, recursive fans can

re-use between 2/8 and 3/6 of their vertices (see also Figure 4.4).

To obtain a continuous LOD representation, we interpolate between the discrete

LODs Mi. This is known as Geomorphing [FEKR90]. In a nested hierarchy, vertices

retain their position within the domain during morphing; only their height changes from

one level to another. This is due to the property Vi ⊆ Vi+1. It is thus possible to store

1For instance, the GeForce 4 has 24 vertex slots to be used as general vertex caches.
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Figure 4.4: Best and worst cases for vertex cache re-usal of fans. The gray fan can re-use the
red vertices of the white fan, resulting in a cache coherence of at least 25%

one height value per vertex for level i, i.e., the level in which a vertex x ∈ Vi first

“occurs”, and one additional value for each coarser level k < i. Since x’s domain

position is not used for coarser levels, an appropriate height value can be computed

as follows. First the triangle Tk at level k, k < i that contains x’s domain position is

determined. Then, T ’s surface is interpolated using barycentric interpolation to yield a

height value for x’s domain position. To render a LOD ρ, the triangle mesh at the finer

level M�ρ	 is rendered and vertices are morphed between the heights corresponding to

levels �ρ� and �ρ� accordingly. Although higher order interpolation is possible, only

linear interpolation is considered here for efficiency reasons. The details are described

in Section 4.5.3 and Section 4.5.4.

4.5 Rendering Framework

As a benefit of the nested mesh hierarchy, tiles can be uploaded progressively to the

GPU. On the GPU, an appropriate data structure accommodates real-time rendering at

high quality, including photo texturing. Optionally, if high-resolution view ports require

the screen-space error to be increased, geomorphing is performed on the GPU. At the

same time, the CPU performs view frustum culling and level-of-detail computations for

each tile. Since all GPU tasks are programmed in a high-level shading language, the

entire framework is extensible and can easily be tailored to fit custom needs.

4.5.1 GPU Data Structures

As soon as a particular tile has to be rendered, a vertex buffer large enough to store all

shared vertices of that tile is created. In this buffer, vertices are organized in blocks ac-

cording to their respective hierarchy levels. (see also Figure 4.5). The associated topol-

ogy is stored in one separate index array for each level. The ith index array contains

only indices into the first i+1 blocks of the vertices. Such a shared vertex representation

has two major advantages. Firstly, it reduces storage requirements compared to non-
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shared representations. This is of special importance when additional vertex attributes,

such as geomorphs have to be stored. Secondly, it enables progressive transmission by

re-using vertices of coarser levels.

Primitive
Restart

R

LOD 0 LOD 1 LOD n−1

Vertex List

LOD 0
LOD 1

LOD n−1

Index Lists

R

R

R

R

Figure 4.5: The GPU data structures used in our terrain renderer. Index lists are always
completely independent of each other and can be transmitted to the GPU one by one. For the
shared vertex list, this is typically not the case. In contrast to other methods, vertices can be
trivially partitioned to allow progressive transmission to the GPU due to the nestedness of our
hierarchical LOD representation.

Since all tiles used have a resolution of 2572, relative domain coordinates are en-

coded in 9 bits. The height value can be considerably larger. It is therefore encoded

using 14 bits. All three values are stored in two 16 bit vertex attribute components.

These 32 bits are decoded in the vertex shader during rendering.

If geomorphs are enabled, additional storage requirements arise. The method is

still memory efficient, since only one additional height value per coarser level needs to

be stored. Since usually only small offsets to the original height are needed, 8 bits per

value are sufficient. This allows us to morph vertices within a range of [+127, . . . ,−128]

units. Larger values are clamped to this interval.
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4.5.2 Run-Time Processing

For each tile we store an axis-aligned bounding box to perform view frustum culling on

the CPU. For each frame, visible tiles are depth-sorted to exploit the early-depth test, if

available, thereby reducing overdraw. A memory manager, which is described below,

ensures that all visible tiles can be rendered by paging in data that is not yet resident on

the GPU.

Then, the appropriate LOD for each visible tile is computed. The index buffer as

well as the vertices required to render the respective level are sent to the GPU, if not

already resident. If a tile has been previously rendered, at least a subset of vertices

has already been sent to the GPU. In this case, only the remaining vertices required to

render the current level are transmitted and written to the respective vertex buffer on

the GPU. In this way, even though an array large enough to keep all vertices has to be

allocated on the GPU, bandwidth requirements at run time are substantially reduced.

To avoid mesh cracks at tile boundaries, neighboring tiles are stitched together us-

ing zero-area triangles. For each tile and each level in the hierarchy, the set of border

vertices including all attributes is duplicated in system memory. Whenever two neigh-

boring tiles are visible, the necessary triangles to fill out T-junctions are generated on

the CPU and are then rendered. This can be done very efficiently by observing that

these borders are always sorted with respect to a common axis. Generating zero-area

triangles thus proceeds by “zippering” these borders, as depicted in Figure 4.6. Since

this process uses the exact same data on the GPU and on the CPU, and since to all ver-

tices the same GPU programs are employed, cracks are resolved without any numerical

precision issues.

4.5.3 Level of detail

Determining the appropriate LOD for each tile and vertex requires the projection of

the user-defined pixel error to object space. Previous approaches rely on conservative

estimates of this error and often over-estimate the error. The result is that aliasing

might still occur even for screen-space errors larger than one pixel. We compute a

more precise error metric by using the current projection matrix directly, which maps

homogeneous object coordinates v = (v1, v2, v3, 1) to screen-space coordinates s =

(s1, s2, s3). Here, s3 corresponds to the depth value. The appropriate scale of details ρ

can then be computed in a similar way as the appropriate mipmap scale for texturing
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Left Right Right Right Right RightLeft Left Left Left

1 2 3 4 N

Figure 4.6: Closing gaps at tile boundaries. We traverse the boundary of a left and a right tile.
Two pointers (red arrows) are kept to indicate the next possible vertex on each side. Triangles
are always inserted such that the “higher” vertex is connected using a triangle. To determine
which vertex is higher, a common reference axis (dashed in step 1) is used. Note that ambiguities
can arise (marked by the two cyan ellipses) depending on the implementation if two vertices
share the same “height” with respect to reference axis. However, a consistent triangulation will
always be generated.

[Wil83].

ρ := max

⎧⎨⎩
√√√√ 3∑

i=1

(
∂vi

∂s1

)2

,

√√√√ 3∑
i=1

(
∂vi

∂s2

)2

⎫⎬⎭ (4.3)

To compute ρ, s is expressed in parametric form s(v), which already includes perspec-

tive division and scaling of the canonic frustum to pixel coordinates. The Jacobi matrix

of s(v) at v consists of the partial derivatives

Jij(v) :=
∂si

∂vj

. (4.4)

The inverse transpose of J(v) contains exactly the partial derivatives required to com-

pute ρ as row vectors. Computing ρ yields the optimum scale corresponding to a

screen-space error τ equal to 1 pixel. If the user selects a different screen-space er-

ror, the frustum is scaled to pixel coordinates divided by τ instead of using the entire

resolution. Then, ρ is the object space distance that projects onto τ pixels. Note that
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inverting the 3× 3 matrix J(v) can be performed highly efficient. Also note that the

estimate obtained for ρ will be linear in s3 (i.e., the depth), which can be proven by

means of the theorem of intersecting lines, or by full expansion and differentiation of

the perspective matrix.

On the CPU, a scale-of-detail ρk is computed per tile for each corner k of its bound-

ing box. Because entries of the error vector are given by εi = 2n−1−i units, the optimum

LOD value is computed by

λk := λmax − �log2(ρk)�, (4.5)

where λmax = n − 1 is the number of available levels. The mesh Mmink{λk} is then

selected for rendering the tile.

4.5.4 Geomorphing

As mentioned before, high-resolution displays coupled with a low screen-space error

can require most of the terrain to be rendered at the highest-possible resolution. It can

thus become necessary to increase the tolerable screen-space error in order to maintain

stable and interactive frame rates. Geomorphs [FEKR90] are typically applied to pre-

vent popping artifacts. For each vertex x in a tile, the LOD values λk at box corners are

either tri-linearly interpolated in the vertex shader to get an approximate vertex LOD

λ(x), or the LOD calculations can be performed for each vertex2. Geomorphing now

linearly interpolates values between successive levels in the hierarchy (assuming that

the domain D of the heightfield is the x0, x1 plane):

Hλ(x)(x0, x1) = lerp
(
H
λ(x)�(x0, x1),H
λ(x)�+1(x0, x1), λ(x)− �λ(x)�) , where

lerp (a, b, α) := a + α (b− a) . (4.6)

Finding the correct height values Hi to evaluate Equation (4.6) on the GPU could

be implemented in a straightforward manner by using conditionals. However, since

conditionals are costly on current GPUs3, we avoid them by implementing a differ-

ent approach based on clamped forward differences. In this approach, we treat height

values {Hi}n−1
i=0 as the control points of a piecewise linear interpolant in λ. To obtain

H(λ), we compute shifted basis-functions that can be reduced using simple dot-product

2The latter one is more accurate, but was not an option due to performance considerations in [SW06].
3Each conditional costs on the order of 5 cycles on an NVIDIA GeForce 6800 GT
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Figure 4.7: Basis-functions η′i(λ) for geomorphs.

arithmetic. Firstly, we compute a vector-valued function

η(λ) := clamp
(
(λ, λ, λ, λ, . . . )T − (0, 1, 2, 3, . . . )T , 0, 1

)
, where

clamp (u, α0, α1) :=

⎛⎜⎝ max(min(u0, α1), α0)

. . .

max(min(un−1, α1), α0)

⎞⎟⎠ ∧ u ∈ R
n. (4.7)

Each component ηi of η contains a linear ramp between λ = i and λ = i + 1. For

λ ≤ i it is 0, and for λ ≥ i + 1 it is 1. The desired basis function is then obtained by

computing forward differences on η:

η′
i(λ) :=

⎧⎨⎩1− η0(λ), if i = 0

ηi−1(λ)− ηi(λ), otherwise
(4.8)

Finally, η′ contains the well-known basis functions for linear interpolation (see also

Figure 4.7). Interpolation can now be written as the dot product H(λ) =
∑n−1

i=0 η′
i(λ)Hi.

This method is highly efficient on the GPU and in our case (n = 9) outperformed the

straight-forward implementation using conditionals by a factor of 2.5.

4.5.5 Texturing

By default, a pre-lit 2D texture is mapped onto the terrain. This can be a photo texture

or, as for the Puget Sound, a synthesized 2D texture. During preprocessing, the texture
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Figure 4.8: Several data sets to test our terrain rendering algorithm. Top Left: Puget Sound,
16 K× 16 K samples (texture and geometry). Top Right: Paris, 9.7 K× 5.8 K geometry samples,
19.5 K× 11.7 K texture samples. Bottom Left: Grand Canyon, 4 K× 2 K geometry samples,
8 K× 4 K texture samples. Bottom Right: Alps, 8.9 K× 8.5 K samples (texture and geometry).
Observe the high degree of geometric details present even in regions further away from the
viewer. Puget Sound and Grand Canyon data courtesy of GA Tech. Paris and Alps data courtesy
of DLR Oberpfaffenhofen (Deutsches Zentrum für Luft- und Raumfahrt) and ISTAR.

is dyadically downsampled using a tensor product Lanczos filter

Lr(x) :=

⎧⎪⎪⎨⎪⎪⎩
sinc(r · π/ρ) if r ≤ ρ, r �= 0

1 if r = 0

0 otherwise

,

Lr(x, y) := Lr(x)Lr(y) (4.9)

with radius r = 2 to obtain a single, large mipmap. Tiles are then cut out of the

mipmap to precisely match the tiles of our mesh hierarchy. To save GPU memory

and bandwidth, each texture tile is then compressed using the S3 compression scheme
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[INH99]. More specific, tiles are encoded using the RGB-based DXT1 format, which

yields good fidelity for most photographic or synthetic textures at a compression rate

of 6:1. We store the 16 K× 16 K Puget Sound texture including mipmap levels for the

16 K× 16 K and 4 K× 4 K geometries in about 170 MB.

If a pre-lit texture is not available, it is computed from the original terrain in a pre-

process. Alternatively, normals can be stored as additional vertex attributes. However,

besides the additional memory overhead that is introduced (at least two 8 bit values

to cover the upper hemisphere), lighting artifacts due to non-continuous changes of

normals during LOD transitions can only be resolved by storing one normal per vertex

and level. Even then, artifacts cannot be fully avoided. For a further overview of the

intricate problems that arise when using normals for even the simplest LOD hierarchies,

we would like to refer to the recent paper by Han et al. [HSRG07]. On the other hand,

a DXT1 pre-lit texture with an average of 4 texels per vertex has the same storage

requirements as a single per-vertex normal (namely 16 bits), but it avoids any lighting

artifacts because texture filtering is performed after lighting. Naturally, this comes at

the cost that relighting cannot be trivially achieved while trying to maintain interactive

frame rates.

4.6 Memory Management

After building the discrete LOD hierarchy, for high-resolution terrains including morph

values and textures, the data is far too large to be stored in local video memory of

recent GPUs. To avoid frequent paging of textures and vertex buffers, and to optimize

progressive updates we have implemented a memory manager. At initialization time,

the memory manager allocates chunks of exponentially growing sizes in GPU memory,

to prevent external fragmentation. Sizes range from 32KB to a maximum size that

allows the largest vertex buffer to be stored in such a chunk. Additionally, a number of

textures with a fixed resolution is allocated. The memory manager stores meta-data for

each memory block, i.e., its size, a time stamp, and the number of levels already sent to

the GPU. Paging is now implemented as a mixture between a least recently used (LRU)

and a tightest fit (TF) strategy.

Whenever a tile A is to be rendered, the system determines if there is already a

chunk associated with A. If not, and also no appropriate chunk is available, the tile

B with the earliest time stamp large enough to completely store A is determined. B

is then marked as non-resident, and the chunk is overwritten with the data of A. To

efficiently determine B, we keep a priority list for each available size. This allows us
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to weight the LRU strategy against a TF criterion. Once a chunk has been associated

with A, all data required to render the current level is sent to the GPU. If there already

was a chunk associated with A, the memory manager determines whether the chunk

contains all necessary data. If not, the CPU sends all missing vertices and the required

index buffer to the GPU. Since vertices are shared across levels, this update is usually

very cheap compared to the upload of all vertices. Whenever a tile is rendered, its time

stamp is updated.

The memory manager supports uniform load on the bus connecting the CPU and

the GPU, thus avoiding “paging hiccups”. When a non-resident tile enters the view

frustum, there is usually another one that has to be released, the texture tile has to be

uploaded, and an initial LOD has to be sent to the GPU. However, with high probability

this initial LOD requires only a few vertices. On the other hand, if a tile was already

resident, performing an update only requires a fraction of the entire data to be sent.

Speculative prefetches are also supported, if there are unused memory chunks. If

the number of chunks needed to render the current view falls below a certain fraction

of all allocated chunks, the user’s view is predicted. Whenever the user moves, a list

containing the last viewing parameters is updated. By fitting a spline through these

parameters, a set of few, discrete viewing parameters can be extrapolated and tiles

that are predicted to become visible in the near future can be prefetched, as long as

a maximum time budget is not expired. In this way, very smooth fly-overs at high

frame rates can be achieved.

4.7 Results

Our results and timings are summarized in Table 4.1. All benchmarks were performed

on an Intel P4 3.0 GHz with 2 GB RAM and an NVIDIA GeForce 6800 GT with

256 MB video RAM. The machine was equipped with a single, standard 120 GB IDE

hard disk. All data sets were rendered to a 1024× 768 view port. Enabling 8× full-

screen anti-aliasing and 4× anisotropic texture supersampling resulted in a performance

drop of about 30%. The timings should be fairly comparable to previous publications.

Although we utilized a graphics card that is newer compared to the hardware used in

previous publications, we also render a considerably larger view port.

Preprocessing of the geometry to a 9 level hierarchy achieves a throughput of ap-

proximately 15 million vertices per minute and is linear in the amount of vertices.

Memory consumption is constant, as tiles are processed independently of each other.

Generating a 16 K× 16 K texture hierarchy including filtering takes about 5 minutes.
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Table 4.1: Timings and results of our terrain renderer. Original size only includes height field
and texture, without taking mipmaps into account. τ refers to the pixel error. For τ = 1
geomorphs were disabled, for τ = 5 they were enabled.

Data Set Resolution Texture original Size Storage fps τ = 1 MΔ/sec τ = 1 fps τ = 5

Puget4K 4 K× 4 K 16 K× 16 K 800 MB 412 MB 202 78.85 199

Puget16K 16 K× 16 K 16 K× 16 K 1.25 GB 1.25 GB 60 25.69 57

Grand Canyon 4 K× 2 K 8 K× 4 K 112 MB 80 MB 289 74.60 292

Paris 9.7 K× 5.8 K 19.5 K× 11.7 K 763 MB 267 MB 36 100.87 65

Alps 8.9 K× 8.5 K 8.9 K× 8.5 K 361 MB 546 MB 145 65.43 155

The Puget Sound (4 K× 4 K geometry) and the Grand Canyon data sets are only

medium sized, and consequently our system is neither triangle nor memory limited. For

the Paris data set our method becomes triangle limited. The reason is that our meshing

strategy faithfully reconstruct all the steep sides of buildings (“curtains”). This results

in up to 2.8 million triangles that have to be rendered per frame. A lot of these triangles

are backfaces that are culled by OpenGL (but they are still counted since they pass the

geometry stage). On the other hand, the Paris dataset is an excellent benchmark for the

raw triangle throughput that our system can achieve.

The Puget Sound (16 K× 16 K geometry) data set on the other hand is large enough

to demonstrate the effects of the memory system. The lower triangle throughput reflects

that our paging strategy does not come for free, but it still allows for highly interactive

fly-overs.

The Alps data set is a good mixture between these extremes. It contains lots of

flat terrain around Munich and a considerable amount of very rough terrain around the

Alps.

As our results show, frame rates for highly triangulated data sets, such as Paris, can

also be improved by increasing the pixel error and enabling geomorphing. For these

highly triangulated datasets we also hope to benefit from continuously increasing vertex

processor throughput on future graphics chips.

4.8 Summary

We have presented an efficient rendering system for large, textured terrain data that

provides excellent quality and highly detailed views. In particular, at equal frame rates

our system guarantees a smaller pixel error than previous approaches. We achieve

these properties by exploiting a special discrete LOD hierarchy, as well as processing

and rendering functionality on recent GPUs.
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Among interesting continuative research directions was—as of writing of the orig-

inal paper—the question wether efficient, GPU-based compression schemes for large-

scale geometry could be devised. As of writing of this thesis, a very recent publication

discussing this issue is the paper by Dick et al. [DSW08]. Challenges that remain to be

solved include to find efficient texture compression schemes, and to remove backfaces

even before they enter the visualization pipe.

Another interesting direction is to synthesize textures on the fly. This would—

at least for some scenarios—solve the issue of memory-heavy textures, as well as the

purely geometry-based lighting problems in the presence of LOD hierarchies. One such

approach will be outlined in the next chapter, although in a slightly different context.
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Chapter 5

Fractal Terrain

In the previous chapter we showed that recent advances in algorithms and graphics

hardware have opened the possibility to render large digital elevation models at inter-

active rates on commodity PCs. Due to these advances it is also possible to synthesize

artificial terrains interactively by using procedural descriptions. This chapter describes

a GPU method for real-time editing, synthesis, and rendering of infinite landscapes.

These landscapes exhibit a wide range of geological structures that are remarkably

close to granite formations found in reality. To render such infinite landscapes, we

build upon the concept of projected grids [HNC02, Joh04] to achieve a near-optimal

sampling of the landscape. The landscape is described as a procedural multifractal that

permits efficient, point-wise evaluation. This description is realized using shaders in

the OpenGL API.

Furthermore, we propose intuitive editing metaphors to change the shape of the re-

sulting terrain interactively. The method is multi-scale and adaptive in nature, resulting

in a very natural level-of-detail formulation. We extend the concept of projected grids

to spherical domains in order to achieve the impression of a whole, fractal planet. Es-

pecially in combination with the synthesis of geo-typical textures that automatically

adapt themselves to the shape being synthesized, a powerful method for the creation

and rendering of realistic landscapes is presented.

An additional beneficial side effect is that the parameters required to synthesize

each landscape occupy only very small amounts of memory, which makes the method

feasible for scenarios that need to transmit such landscapes across narrow communica-

tion channels. Examples for this include terrain-based multiplayer games in which a

server needs to provide hundreds or thousands of clients with a consistent description

of the game level. If such a game is to be realized purely internet-based, it is highly

advantageous to keep the amount of data to be transmitted before each game starts as

91
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small as possible. Even worse, if players are allowed to modify the landscape during

gameplay, the transmission of a full vertex-based description is not feasible at all.

5.1 Related Work

Based on the ideas of the organizing principles of natural phenomena [Man83], there

exists at least empirical evidence on fractals in geological structures such as landscapes,

rivers, and coastlines. Such structures obey the typical fractional Brownian or 1/fβ

“motion”, and they can thus be modelled as a random walk exhibiting certain stochas-

tic properties. Based on this observation a number of different approaches for fractal

terrain synthesis have been suggested over the last decades. For a thorough overview

we refer to [EMP+03]. Today, fractal models are usually generated using Fourier fil-

tering [Sak93], midpoint displacement [Mil86], or noise synthesis [Per85]. Since the

approach described here is closely related to noise synthesis, we will briefly describe

the underlying concept.

Perlin [Per85, PH89] introduced a synthetic, functional fractal model as a summa-

tion of several, appropriately scaled-down copies of a stochastic noise function with a

limited frequency bandwidth. Much effort has been spent in order to make the noise

function stationary, which includes invariance under translation and rotation [Per02]. If

the noise function is not stationary, undesired artifacts might arise if the non-stationary

properties of the noise cannot be controlled properly. The Rescale-and-Add method by

Saupe [Sau88, Sau89] extends the heuristic formulas of Perlin to a full fractal model.

It allows a multi-dimensional fractal noise with locally varying fractal dimension (a

measure of the surface roughness) to be created by summing Perlin noise functions at

different scales and frequencies. As a special case, fractal heightfields can be generated

by displacing a two-dimensional basis domain. At the same time as Perlin, Musgrave

[MKM89] introduced noise synthesis to control the fractal dimension and other param-

eters of the synthesis process. Fractals obtained by this type of synthesis are generally

referred to as multifractals because they use multiple scalings to control the statistic

properties of the underlying random process locally.
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The advantages of the functional approach are:

• The function can be locally evaluated at only those locations required for render-

ing.

• The level of detail of the terrain to be generated can be adapted to match the local

image resolution, thereby anti-aliasing the fractal [Pea].

• All parameters of the fractal may vary locally over the object domain.

• The basis functions of the fractal synthesis can be modulated to adapt locally to

particular design features.

• The procedural evaluation of the terrain can be performed efficiently on pro-

grammable graphics hardware [Har01, Gre05].

Due to the high degree of sophistication to which functional approaches for fractal

modelling have matured, it is by now possible to create landscapes with impressive

realism, including many different geological formations as well as terrain-specific tex-

tures [Cor01, Pan]. Although fractal terrain synthesis is recognized as a fine technique,

the most demanding part is to deal with the “parametric nightmare” of the synthesizer’s

high-dimensional feature space. So far, fractal landscape editors either restrict the de-

signer’s flexibility or overwhelm the user with a plethora of parameters. An embedding

of these parameters into a tight visual feedback loop such that users can directly mon-

itor all effects of their editing actions is not yet available. Such an embedding allows

to simulate many kinds of different landscapes in an intuitive way, and it helps the

designer to model the scenery after her or his expectations. At the same time both

the design process and the time to market can considerably be shortened, which is of

particular interest in applications like computer games or computer-animated films.

Techniques open to this kind of interaction can be directly integrated into virtual en-

vironments to continuously modify outdoor scenarios based on context. By modifying

landscapes depending on external parameters like game status, player’s expertise, or

difficulty, the immersiveness of such scenarios can be increased significantly. Similarly

to the Populous series of games [Mol89], such techniques furthermore allow users to

create their own synthetic worlds and to alter them directly at run-time by individual

and context-specific guidelines. Since it is impossible to pre-compute the per se infinite

variety of different structures, parameterized methods for description and evaluation of

fractal landscapes that permit continuous transitions between different formings (pa-

rameter sets) have to be considered.
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There are at least two reasons why the aforementioned scenario has not yet be-

come reality. Firstly, terrain generation methods that feature arbitrary local control of

surface properties are generally too expensive to be used for interactive synthesis of

high-resolution terrains. Secondly, the creation of synthetic images of dynamic ter-

rain models consumes a lot of memory and computation time. Hence, it is not suited

for use in interactive environments without further effort. For instance, ray-tracing of

procedural fractal height values [Mus03, Pan] is far from being interactive. But even

for non-procedural terrains, ray-tracing and scanline algorithms [CGG+03a, DWS+97,

SW06, DSW08] require static height fields to harness their full potential (see also Chap-

ter 4). In the context of fractal synthesis, the requirement of static height fields means

that the landscape has to be synthesized up to the highest resolution required locally,

severely limiting the use of high-resolution models due to memory constraints. Even

worse, for large models residing in host memory, the performance of naı̈ve hardware-

accelerated scanline algorithms quickly becomes compromised by the limited band-

width of the graphics bus, since such algorithms involve streaming renderable primi-

tives to the GPU.

5.2 Contribution

In this chapter, we present a real-time fractal terrain synthesizer. The algorithms de-

scribed here are designed with respect to the aforementioned requirements. They are

combined into a WYSIWYG (“What-You-See-Is-What-You-Get”) interface to allow

the intuitive design of highly detailed terrain models. Our approach involves two dis-

tinct procedures: editing and rendering. The synthesis of the landscape is integrated

directly into the rendering procedure. This avoids any intermediate data structures for

storing height values—especially on the CPU side—other than the ones needed to form

the final image. Editing and rendering involve a number of novel techniques and they

provide many features not available in previous methods.

Editing. Because the user interacts directly with the same representation used to form

the final image, the fractal’s parameter space can be managed conveniently. We use

painting and brushing on gray-scale images as editing operations, where the gray-scale

images represent the fractal’s auxiliary functions, sometimes also referred to as fractal

basis functions. Against common knowledge, editing auxiliary functions can be highly

intuitive, but only if coupled with immediate visual feedback. This approach turns out
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Figure 5.1: A fractal landscape generated by our method. Note the striking geological features
and geo-typical textures. On recent GPUs, synthesis and rendering on a 1280× 1024 viewport
runs at 70 frames per second.

to be an amazingly powerful paradigm enabling multi-resolution terrain editing via the

multiple frequency bands of auxiliary functions.

Rendering. We exploit the functional nature of the terrain, which allows for point-

wise synthesis at arbitrary positions. Rather than performing the synthesis as a distinct

and decoupled procedure, it is tightly integrated into the rendering process. The advan-

tage is that both steps can be implemented on the GPU, thereby exploiting parallelism

and memory bandwith while at the same time limiting any bus transfers to compact and

local editing updates. We utilize a projected grid approach to minimize both the number

of point evaluations and to achieve near-optimal sampling. In a nutshell, a screen-space

aligned grid is first projected into the fractal’s base domain. Then, points of the base-

domain grid are displaced onto the fractal’s surface. Anti-aliasing is performed for each
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point by computing the appropriate level-of-detail. To further increase the landscape’s

realism, geo-typical materials are synthesized by example (see also Figure 5.1). For

each point of the projected grid, so-called proto-textures [Cor01] are combined, either

by using a slope/height parameterized weighting function [Dac05], or by using editable

weights.

The remainder of this chapter is organized as follows. In Section 5.3 we describe

the theory behind noise synthesis including the domain warping employed to improve

the visual appeal of the generated terrains. We then present the WYSIWYG interface

used for fractal editing in Section 5.4. In Section 5.5 we discuss synthesis and rendering

of the terrain on the GPU. Finally, we point out directions for future work.

5.3 Multifractal Terrain Synthesis

In the following we will briefly review the theoretical basis behind noise synthesis and

stochastic fractals. The functional approach described here is suited well for evalua-

tion on recent GPUs, since it only requires simple arithmetic operations and locally

contiguous texture access.

5.3.1 The Rescale-and-Add Method

1) 2) 3)

Figure 5.2: Noise synthesis using varying parameters. The three image pairs illustrate the
meaning of 1) varying lacunarity, 2) Hurst exponent, and 3) the number of octaves in Equa-
tion (5.1). The respective values are larger in the right half of each image.

A 2D grid of N(0, 1) Gauss-distributed random numbers with an average of zero

and variance equal to one, called the noise lattice, is generated and stored in a 2D texture

map. This discrete lattice is then extended to a C1 continuous, periodic function over

an infinite domain by means of bilinear interpolation and texture repetition on the GPU.

This function is either called noise [Per85] or, more accurately, auxiliary function S(x)

[Sau88]. A 2D fractal is generated by superposition of several appropriately scaled
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copies of the auxiliary function.

H(x) =

k1∑
k=k0

1

rkH
S(rkx) (5.1)

Equation (5.1) can be evaluated for any arbitrary position x of the domain indepen-

dently of its neighbors. Consequently, it can be computed efficiently in a pixel shader

that is parameterized by the domain coordinates x, the lacunarity r, and the Hurst expo-

nent H = 3−D, where D is the fractal dimension of the surface. Equipped with these

parameters, the shader computes fractal height values using multiple evaluations (tex-

ture fetches) of the noise lattice. The meaning of the different parameters is illustrated

in Figure 5.2.

The summation limits are calculated in accordance with the smallest and largest

structures (frequencies) desired at a certain position of the terrain. k0 determines the

global fractal structure and is typically computed only once. k1, however, defines the

smallest visible level of detail, which corresponds to the amount of high-frequency

information in the final image. Consequently, it is usually changed from point to point

depending on the perspective distortion. In Section 5.5 we will explicitly discuss how

to select k1 in order to avoid aliasing artifacts.

5.3.2 Domain Warping

The Rescale-and-Add method creates convincing terrain fields on medium scales. On

larger scales, however, the result is too homogeneous to pass as realistic. The reason

is that the auxiliary function S(x) is designed to be stochastically invariant under ro-

tation and translation. This results in very regular and artificially looking geological

structures.

A more natural appearance can be achieved by using domain warping. Instead of

synthesizing the terrain across the domain D ⊆ R
2, a continuous re-parametrization Φ :

D �→ D is utilized, on which the synthesis is then performed. In [EMP+03] a similar

mapping was described to simulate breaking waves on a 2D-only domain embedded in

3D. To overcome the homogeneous structure of the terrain we suggest roughness- and

height-dependent rotations and translations of the domain. These operations break up

the stochastic invariances of the auxiliary functions in a controlled and restricted way.

We assume that each domain coordinate x = (x1, x2)
T is transformed by a general

rotation/translation matrix, where φ is the angle of rotation and t = (t1, t2)
T is the
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translation vector.

(
x′

1

x′
2

)
=

(
cos φ − sin φ t1

sin φ cos φ t2

)
·

⎛⎜⎝x1

x2

1

⎞⎟⎠ (5.2)

Figure 5.3: The effect of domain warping. A simple noise function was used for the auxiliary
function. Left: Without domain warping the terrain looks rather homogeneous and uniform.
Right: By using domain warping, curved features like weathered lava are generated.

Figure 5.4: Real world granite structures. These photographs were taken in the Masthugget
district of Gothenburg, Sweden. The rock formations depicted can be found throughout the
granite cliffs of southern Sweden. The results that can be achieved with the domain warping
presented in this chapter can be remarkably similar (also see Figure 5.1).

To avoid evaluations of trigonometric functions, we represent the rotation by a unit

vector ρ = (cos φ, sin φ), resulting in

(
x′

1

x′
2

)
=

(
ρ1 −ρ2 t1

ρ2 ρ1 t2

)
·

⎛⎜⎝x1

x2

1

⎞⎟⎠ . (5.3)
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Thus, any arbitrary selection of ρ results in a proper rotation, as long as ‖ρ‖2 = 1. Ob-

serving that geological structures and formations in nature vary depending on surface

height [MKM89], we introduce a height-dependent roughness

Ri = R0Hi, with

R0 :=
1

rH
, and

Hi =

k0+i−1∑
k=k0

1

rkH
S(rkx). (5.4)

Here, Hi denotes the height of a surface point after evaluation of the first i terms of

Equation (5.1), i.e., the height after accumulating i octaves.To add domain warping to

the synthesis process we apply a different mapping depending on Ri for every octave i:

ρ(i+1) = c1 · Ri + c2 + ρ(i)

ti+1 = c3 · Hi

Ri

(5.5)

The rotation vector ρ(i+1) is re-normalized after each iteration. To perform the above

updates, three additional constant 2D vectors c1, c2, and c3 are introduced. c1 con-

trols the amount of rotation determined by the current roughness, while c2 performs

a constant update. The third vector c3 controls the influence of the current height and

roughness on the translation. The basic idea is that the amount of rotation increases with

roughness, resulting in turbulent structures, similar to cooled-down lava, while stretch-

ing regions that are either smoother or at higher altitudes significantly more in order

to make them appear washed out. Two examples that show the effects of the domain

warping described here are depicted in Figure 5.3. These examples were generated

using the following selection of parameters.

c1 := (0.35, 0.16)T ,

c2 := (−0.07, 0.13)T ,

c3 := (0.11, 0.17)T ,

ρ(0) := (1, 0)T , and

t0 := (0, 0)T . (5.6)

Different formations can be achieved by modifying the control vectors ci using the

fractal editor described in the next chapter.
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Even though this procedure comes at the expense of evaluating more parameters

in the innermost loop of the synthesizer, it effectively breaks up the homogeneity of

the terrain, since it adds organic shapes that resemble natural geo-evolution, such as

depicted in Figure 5.4.

5.4 Interactive Fractal Editing

An important feature of the proposed system is the fractal editor. In the spirit of the

WYSIWYG paradigm, the editor provides the user with immediate visual feedback for

each action. The user can literally paint auxiliary functions represented by gray-scale

images. Several of these gray-scale images Ii : Z × Z → R are used to replace

the aforementioned noise lattice. These images are then composed into the auxiliary

function S(x) (see Equation (5.1)) by assigning individual weight functions wi : Z×
Z → R to them. The auxiliary function can then be reconstructed on a discrete lattice

simply by computing a weighted sum

S(x) =
∑

i

wi(x)Ii(x). (5.7)

It is important to note that the weighting functions wi are re-normalized such that they

sum up to 1 at each lattice point. This can be done conveniently on the GPU after each

editing command. Thus S(x) is a convex combination of auxiliary functions which

allows to achieve a particular look of the terrain, e.g., 30% desert and 70% craters,

straightforwardly. To offer maximum flexibility, the user can also choose to load im-

ages from disk to serve as auxiliary functions and/or weights. This keeps the interface

intuitive and simple, while at the same time offering the possibility to utilize any paint-

ing or imaging program. In addition to standard painting tools, a series of image filters

such as low-pass, high-pass, normalization, and equalization is implemented.

Internally, all auxiliary functions and weights are stored in 2D textures. Exploiting

the fact that textures may comprise up to four channels, and that auxiliary functions

and weights will always be fetched at the same position in order to compute Equa-

tions (5.1) and (5.7), weights and auxiliary functions are packed together in groups of

four to minimize fetches from different textures. This allows the efficient GPU-based

implementation of the various editing features and filters. Also, bus transfer between

CPU and GPU is largely avoided, thereby allowing the rapid visual feedback needed to

design new virtual worlds quickly.

Subsequently we will refer to this part of the editor as the fine-scale synthesizer
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Figure 5.5: The WYSIWYG interface of the fractal landscape editor. A a fine-scale input texture
(top-left), a low-frequency sketch-pad (bottom-left), and the final editing result using proto-
textures (right) is shown.

because it controls the fine-grain look of the fractal terrain. Note that this leads to a

particular look that is encountered across the entire terrain. Infinite terrains can theo-

retically be achieved simply by repeating the texture over the entire 2D base domain.

However, the texture must be periodic (also known as tile-able) in order to avoid ar-

tifacts at the boundaries. In our system, periodicity is guaranteed by offering only

painting operations that wrap around the image in two dimensions, i.e., the user essen-

tially paints on a toroidal domain. Should the user choose to load an image which is

not tiling, the lacunarity r and the domain warping can be adjusted easily in order to

hide the otherwise apparent artifacts.

To decouple the fine-scale appearance from the macroscopic base shape, i.e., the

general appearance of structures from their positions, a low-frequency fractal height

field is added to the structures being generated by the fine-scale synthesizer. Since base-

level and detail are largely uncorrelated, the designer can quickly develop a prototype
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of the landscape by roughly sketching mountains, valleys, seas, and oceans on a coarse-

resolution base domain. The final look-and-feel of the landscape is then modelled by

means of the fine-scale synthesizer.

The benefits of this approach based on the manipulation of auxiliary functions are

obvious: Interacting with gray-scale images representing weights or heights is highly

intuitive and permits various external tools to be used seamlessly in order to rapidly

achieve the desired look. Furthermore, all images needed to describe a fractal planet

can be compressed using standard image compression schemes. This could become

interesting in the near future, since 3D gaming becomes ubiquitous [Pul05], yet tradi-

tionally handheld devices feature only narrow communication channels.

The editing system also provides control over fractal parameters such as roughness,

lacunarity, and water level, as well as over the vectors ci that steer domain warping. Due

to the intuitive use of all editing options and the direct visual feedback, user experiments

have shown that persons not familiar with the editor achieve very convincing results

within only a few minutes. In Figure 5.5 a snapshot of a typical editing session is shown,

including a fine-scale input texture (top-left), a low-frequency sketch-pad (bottom-left),

and the final editing result (right).

5.5 Rendering

The renderer evaluates the fractal height field procedurally for the visible fraction of

the terrain only. For each vertex in the view port, Equation (5.1) and Equation (5.7) are

evaluated with respect to the input textures and fractal parameters specified by the user.

The entire rendering procedure is performed by means of GPU shader programs. To

determine the vertices within the view port, a projected grid [HNC02, Joh04] is utilized

and extended to allow rendering of spherical domains.

5.5.1 Projected Grid and LOD

The basic idea of the projected grid is as follows.

1. Start with an uniform grid in screen space.

2. Project this grid onto the landscape’s base domain.

3. Evaluate the height at the respective domain coordinate and displace the grid,

optionally evaluating domain warping.

4. Render the displaced grid.
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view plane

base domain

Figure 5.6: Projected Grid concept. The basic idea behind the projected grid is to start with
a regular grid in screen space, to project this grid onto the landscape’s base domain, and to
displace the vertices of this grid out of the base domain according to the height values.

This method has some beneficial properties. Firstly, the projected grid tries to optimize

object space triangles such that they project to approximately the same area in screen

space. Secondly, since the topology of the grid is static, the grid projected to the base

domain can be cached on the GPU as long as camera parameters are not altered. Since

no topologic restrictions apply on a per-vertex basis, vertices can be processed indepen-

dently of each other. Thirdly, the amount of triangles and thus the amount of workload

on both the CPU and GPU is known a priori, and can be easily adapted to the available

processing power. However, there are also some drawbacks. The computation of nor-

mals on the projected grid is more involved than on a regular grid. The grid also has to

be extended slightly beyond visible vertices to avoid holes at the view port’s boundaries.

In order to circumvent the latter problem, the maximum height of the terrain needs to

be known a priori (see Figure 5.7). Then a second, so-called projector frustum is used,

obeying a soft constraint to match the camera frustum as close as possible. However,

it may diverge from the camera frustum for aesthetic reasons, i.e., to prevent artifacts

that would otherwise occur at grazing camera angles. For more details we refer to the

work of Johanson [Joh04]. Last but not least, it should be noted that animations require

a rather high-resolution projected grid, since a point-wise evaluation of the underlying

terrain might otherwise lead to artifacts. Especially if domain warping is activated, the

user can introduce additional high-frequency content in a rather unpredictable manner.
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view frustum

horizon

projector frustum

maximum height

base domain

Figure 5.7: Caveats of the projected grid. If using a projected grid for rendering, the maximum
height of the terrain has to be known a priori. Otherwise, features might be missed. The projec-
tor frustum is then required to include each point in the base domain potentially contributing to
the final image.

In this case, either the resolution of the projected grid has to be increased up to the

point where pixel-sized triangles are generated, or the user has to specify a LOD-bias

in order to avoid such undesired effects.

For each vertex of the projected grid, a level-of-detail can be computed by projecting

neighboring vertices into the base domain. Since the grid is regular in screen space,

only the grid spacing is necessary to obtain an estimate of the local object-space grid

spacing δ. It is worth noting that we do not perform anisotropic anti-aliasing due to the

costs implied by methods such as texture footprint assembly [SKS96, OMD01]. Also

note that certain standard algorithms such as summed area tables [Cro84] or RIP maps

[LS93] are not an option since the landscape is never known a priori but synthesized on

the fly. The number of octaves λ required to evaluate Equation (5.1) is then obtained by

λ =
log δ

H · log r
. (5.8)

Here, λ is just the logarithm to the base rH , i.e., the constant quotient between two con-

secutive amplitudes in the Rescale-and-Add method. Since λ is generally not an integer

value, we interpolate linearly between �λ� and �λ� octaves. To do so, �λ� octaves are
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Figure 5.8: Extending the projected grid to spherical domains. Left: A simple mapping of the
planar base domain to a sphere results in anisotropic sampling patterns. Right: Samples are
moved closer to each other such that they cover equal angular distances with respect to the
sphere’s center.

summed up during synthesis and the next octave weighted by the fractional part λ−�λ�
is added. Thus, geomorphing [FEKR90, RHSS98] is virtually for free.

To perform fractal terrain synthesis over a spherical domain, the planar basis domain

is warped around a sphere after the vertices have been projected. This is illustrated in

Figure 5.8. To avoid anisotropic sampling around the sphere two concepts are used.

The first is to introduce an artificial horizon behind which no landscape will be synthe-

sized. The rationale is that atmospheric or fogging effects typically limit the viewing

distance behind a certain point. This approach offers an intuitive quality versus perfor-

mance tradeoff and is traditionally used in games and interactive environments. The

second idea is to move samples closer together towards the viewer, with the goal that

neighboring grid cells cover the same angular distance with respect to the sphere’s cen-

ter (see Figure 5.8). Since each vertex already stores its relative, pre-projective grid

position, no further information is needed. If the viewer moves close to the surface, we

switch back to the conventional projected grid.

The respective variant is evaluated in the fragment shader, just before the synthesis

of the terrain takes place. After the vertices have been generated in the base domain,

the fractal’s height is computed for each position and the displaced vertex is stored in

an intermediate vertex texture for future rendering.

Once the vertex texture describing the height field has been computed, additional

properties for the rendering process are derived in a second pass. This includes normals

for lighting as well as the slope (i.e., normal magnitude) and the water depth. These
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properties are necessary for the proto-texturing described in the next section. The water

depth is defined by a global water level specified by the user. All properties are then

stored in textures with floating point precision.

5.5.2 Proto-Texturing

Proto-texturing is a common method to generate geo-typical textures [Cor01]. The idea

is to use a set of textures that serve as prototypes for the simulation of real materials,

e.g., grass, sand, rock, snow, etc. A height- and slope-dependent weighting function

is typically utilized to blend the textures together. In this way, many of the textural

variations found in nature can be reproduced. On the other hand, if proto-textures are

used and the user moves further away from the height field, artifacts emerge due to the

use of periodically repeated textures.

Figure 5.9: Reducing the variance of the texture through adapting mipmap levels. Left: Normal
mipmap using a Lanczos filter for downsampling. Right: mipmap with reduced variances.

To avoid this effect, Dachsbacher et al. [Dac05] proposed to use color informa-

tion only and to synthesize the texture procedurally at each fragment of the landscape

during rendering. The intrinsically complex shader is amortized by caching parts of

the results on the GPU. We suggest a different strategy based on the observation that

the periodic structures are essentially caused by the variance of the color values in the

proto-textures. Consequently we build a custom mipmap such that the variance is con-

tinuously decreased with each level. This can be accomplished by first applying the

smoothing filter as usually in order to compute mipmaps. Then, we take a weighted

average between the smoothed image and the global mean of the texture’s colors. The

user can control the process by selecting suitable filters and by providing a weighting

parameter to affect the variance distribution across the levels. By exploiting log-step
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Figure 5.10: Proto-textured Terrain. Proto-textures are combined using a height/slope-
parameterized blending function. Note the absence of grass on steep rock formations.

texture reduce operations [KW03b] this step can be fully implemented on the GPU.

The effect is demonstrated in Figure 5.9.

Figure 5.10 shows an example to demonstrate the potential of proto-textures. As

can be seen, at steep rock formations (where ‖∇H‖2) is large) the grass texture is

suppressed due to a low weight, while the rock texture is assigned a relatively high

weight and is hence clearly visible.

5.5.3 Water

Water depths are computed per vertex according to an user-selected water level. As pro-

posed by Schneider and Westermann [SW01], the water surface can then be rendered

without major performance impact. While in the original paper the water surface was

synthesized, we use a time-dependent normal map to obtain the appearance of moving

waves. To achieve a different visual look for shallow and deep water, the strength of the
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Figure 5.11: Water surfaces in fractal landscapes. Animated water surfaces are integrated into
the fractal synthesizer without sacrificing performance.

bump effect, the reflectivity, and the color of the surface are modulated with the water

depth. This gives shallow water a more transparent, less reflective look, while deep

oceans get the green-ish hue observed in nature. Since the geometry of the ground is

considerably more complex than the simple pool scene in the original paper, determin-

ing the length of the transmitted ray can no longer be done using a simple ray/hemicube

intersection. Instead, we approximate the length by assuming a locally flat ground and

computing a ray/plane intersection taking the interpolated per-pixel water depth into

account. The resulting length can then be used to approximate caustics and extinction

as proposed by Hall and Greenberg [HG83]. The results are shown in Figure 5.11 and

Figure 5.12.
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Figure 5.12: Lake in a fractal landscape.

5.5.4 Results

We used the proposed fractal synthesizer to generate a number of different scenes in-

cluding auxiliary functions composed of several grayscale images, proto-textures, and

a texture-based water surface. All of our tests were run on a single processor Pentium

4 equipped with an NVIDIA GeForce 7800 GTX. The described system was imple-

mented using OpenGL. In all of our tests the landscape was evaluated at the vertices

of a 512 × 512 projected grid. Finally, the grid was rendered to a 1280 × 1024 view

port. Up to ten octaves were added to procedurally evaluate the fractal landscape. Some

results can be seen in Figure 5.13.

Besides the appealing quality of the synthesized landscapes, the synthesizer still

runs at highly interactive rates even at these high resolutions. All scenes are synthesized

and rendered at about 70 frames per second on our target architecture. Of this time,

roughly 30% is spent for projecting the grid vertices and evaluating the fractal at the

projected grid points. The remaining time is spent for level of detail computations
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(approximately 5%) and texturing (about 65%).

Figure 5.13: Terrain types made possible by domain warping. Sand dunes (left) and rock
formations (right) synthesized using our fractal model. Up to ten octaves were used in the
evaluation of the landscape. Synthesis on a 512 2 grid and rendering to a 1280 × 1024 view
port can be performed at about 70 frames per second on an NVIDIA GeForce 7800 GTX.

5.6 Summary

This chapter describes an interactive fractal landscape synthesizer on programmable

graphics hardware, which exploits the intrinsic strengths of GPUs to generate and ren-

der high-quality, high-resolution, textured and shaded terrains. Since the user interacts

with the same data used to form the image, the parameter space can be intuitively man-

aged. The interactive WYSIWIG interface for the synthesis of high-quality fractals has

proven itself to be highly beneficial, especially for untrained users, in order to gener-

ate the desired results rapidly. Since the synthesis step is directly integrated into the

rendering procedure, our method neither requires any polygonal representation nor a

pre-processing stage. The suggested method is well suited for applications where the

shape of the landscape is permanently being modified by the user.

Among other interesting directions for future research, one that seems particularly

rewarding is to combine the synthesizer with local displacement overlays, for instance

by using the techniques described in Chapter 6. Such a fusion of fractal synthesis and

displacements could enable the realistic simulation of global and local erosion features.

Also, due to the precise knowledge of the basis domain of the fractal landscape, param-

eterization computations as described in Chapter 6 can be entirely avoided. In return,

simple erosion models could be evaluated in the time previously needed for parameter-

ization computations. In this context it is important to notice that the fractal synthesizer
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and editor run significantly faster on newer GPUs, e.g., the NVIDIA GeForce 280 GTX,

effectively leaving enough computing power to pursue such a fusion of the two meth-

ods.

Another highly interesting direction is the extension towards the simulation of en-

tire, virtual planets, including atmospheric effects and plant life. Especially the au-

tomatic creation of plants influenced by terrain characteristics, thereby automatically

spawning geo-typical vegetation zones, seems to be a challenging but very promising

route.

The projected grid, albeit a charming concept, is not free of problems. In this chap-

ter we addressed certain problems arising in animations. Should high-quality rendering

be desired, we propose to explicitly evaluate the terrain on the desired domain including

proto-textures, and to feed it into a terrain rendering engine, e.g., the one presented in

Chapter 4, or the more recently published system by Dick, Schneider, and Westermann

[DSW08]. Another option would be to investigate whether the geometry clipmaps ap-

proach [LH04] is suited to replace the projected grid as a pre-viewing method for our

fractal landscapes.
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Chapter 6

Interactive Displacement Editing

Adding geometric details to a 3D polygonal object is typically used to apply a particular

surface structure, thereby enhancing the object’s visual appearance. Traditionally, this

process is separate from object modeling and it is performed in a purely non-interactive

way. On the other hand, there is a growing demand for integrating this process into

the modeling phase. This requires techniques to add geometric details interactively that

cannot be modeled directly on the object due to resolution limitations. Applications

of such techniques are virtual prototyping and the creation of artistic content. Fur-

thermore, these techniques also become important in real-time scenarios like computer

games to instantly visualize shape changes caused by virtual characters. Examples for

this include effects of contact between the user’s avatar and parts of the scene, like

footprints in snow, bullet holes, or objects sliding along each other. To support such

operations, methods are required to “paste” geometric details over arbitrary surfaces in

real time.

One such technique is displacement mapping, which manipulates the surface ge-

ometry by displacing surface points along the local surface normal [Coo84, CCC87].

The amount of displacement from the surface is usually determined via a surface pa-

rameterization that maps a displacement texture onto the surface. A continuous global

parameterization that produces minimum distortion—and thus uniform resolution—of

the texture map is required to assign geometric features at the same resolution every-

where on the surface. The computation of such a parameterization can be difficult—if

not impossible—to achieve and is not suitable in applications where the surface under-

goes frequent shape changes.

When used to augment polygonal surfaces, displacement mapping requires fine

mesh subdivision such that the surface can accurately reflect selected geometric de-

tails. If geometric details are added to surface regions which are known a priori, they

113
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Figure 6.1: Artifacts resulting from non-aligned base and displacement meshes. Left: A sphere
is displaced by low (dent) and high (wedge) frequency geometric details using uniform subdi-
vision. While low-frequency displacements are unproblematic, at sharp features artifacts are
clearly visible since the base mesh is not aligned with the displacement. Right: Aligning base
and detail geometry cures this problem.

can be locally refined in a pre-process. However, in scenarios where the detail geometry

is dynamically moved or re-positioned, this requirement limits the use of displacement

mapping. In this case, the surface has either to be subdivided uniformly up to the max-

imum resolution required, or the affected surface regions have to be refined adaptively.

Both approaches are problematic because they require either to store a huge amount

of primitives or to evaluate a local refinement kernel in every frame. Furthermore, be-

cause vertex positions in the refined mesh do generally not coincide with the positions

of samples in the displacement field, severe reconstruction artifacts such as shown in

Figure 6.1 can occur.

6.1 Contribution

The primary focus of this chapter is the description of a fast and flexible method for

displacement mapping. The method can render fine-detail geometric displacements on

2-manifold triangle base meshes. In contrast to previous methods, we do not displace

the base mesh by a given displacement field. Instead a separate displacement geometry

is used to replace parts of the base mesh. This makes the method independent of the

resolution of the base mesh.

We present a novel approach to compute a local surface parameterization in real

time to align the displacement mesh with the base surface. Firstly, we use particle-

tracing to trace a regular 2D grid—the displacement grid—on the base surface. A par-
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Figure 6.2: Examples for our displacement method. These high-resolution displacement maps
were rendered on triangle meshes in realtime. Both the rendering performance and the visual
quality are almost entirely independent of the resolution of the base mesh. Image pairs show
displacement effects on textured models, using displacement maps of size 512×512. Placement
and rendering of displacement maps runs at interactive frame rates on a 1600×1200 viewport.

ticular layout strategy is used to avoid folds in this grid. To improve its geometric qual-

ity towards isometry, we introduce a special 6-connected mass-spring system which

relaxes the grid iteratively. Due to this approach, an explicit parameterization of the

base surface is not required, and the method works even if a continuous 2D parameter-

ization of the surface does not exist. Due to the special topology of the spring network,

the relaxation process can be accelerated significantly by a GPU-based Gauss-Seidel

solver. This allows us to position and animate high-resolution displacement geometries

at very high speed.

By performing carving and extrusion operations in screen space on the GPU, we

achieve a visually smooth transition between the base and the displacement mesh. Ex-

trusion operations can be performed simply by using the z-buffer hardware. For carv-

ing, we introduce a novel approach to efficiently exclude an arbitrary part of the base

surface from rendering. The displacement mesh can then be blended with the base

mesh. To enable a seamless embedding of the displacement into the base mesh, ap-

pearance properties of the base mesh such as texture coordinates or tangent frames are

propagated to the displacement mesh during rendering.

The benefits of our approach are (also see Figure 6.2):

• Arbitrarily fine geometric details on 2-manifold surfaces in real time.

• Dynamic displacement fields that can move on a surface.

• Immediate visual feedback of geometry “painting” on surfaces.

Our method is currently limited to displacement meshes that can be constructed

from height fields. We also do not provide the possibility to cover the entire base surface
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with a displacement map, i.e., we are restricted to local surface displacements. Finally,

we assume that the geometric features to be added are small compared to features of

the base surface, otherwise our method can produce folds.

The remainder of this chapter is organized as follows: In Section 6.2 we provide

a detailed overview of related work. Next, our novel approach for computing a local

parameterization is described, and the efficient realization of this approach on the GPU

is outlined. Section 6.4 is dedicated to rendering aspects, including the transfer of

appearance properties. We then present a number of examples produced by our method,

and analyze the method’s quality and speed. Finally we conclude the chapter with a

discussion of the main contributions as well as potential limitations of our work.

6.2 Related Work

Due to recent advances in graphics hardware geometric surface refinements can effi-

ciently be generated, displaced, and rendered using GPU-based subdivision techniques

[DH00, VPBM01, SJP05, HLW07a, HLW07b, BS08]. Such approaches require a spe-

cial base mesh, on which a refinement kernel is evaluated, as well as a surface param-

eterization, e.g., the natural parameterization of subdivision meshes, in order to map

displacements to the vertices generated by the refinement kernel.

Displacement mapping via subdivision has additional problems in real-time appli-

cations if fine geometric details are dynamically moved on the base geometry. While

uniform subdivision results in a tremendous amount of triangles to be generated, ren-

dered, and stored, adaptivity cannot be achieved easily on recent GPUs due to the prob-

lem of dynamic memory allocation. Although future graphics APIs will allow adaptive

evaluation of subdivision kernels [Gee08], the performance implications imposed by

such an approach are not yet clear.

An alternative to geometric displacement mapping is image-based displacement

mapping, which simulates the appearance of geometric displacements as viewed from

a particular perspective by displacing texture coordinates on the initial surface accord-

ingly. Prominent examples include bump mapping [Bli78], parallax [KTI+01] and re-

lief mapping [OBM00, POC05]. Image-based techniques can exploit the GPUs tex-

ture mapping and fragment processing capabilities efficiently, and they allow real-time

rendering at reasonable image quality. On the other hand, these techniques require a

surface parameterization to map the displacement texture onto the surface.

View-independent and generalized displacement maps [WWT+03, WTL+04] store

a five-dimensional map of the displacements, in which the distance between the orig-
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inal surface and the displaced geometry is encoded for each potential view. The ma-

jor differences to view-independent displacement maps are that generalized displace-

ment maps can simulate silhouettes correctly and that they do not require a surface

parameterization. Both approaches require exhaustive pre-processing and compres-

sion, and therefore cannot handle deforming or moving displacement fields. Shell-

based methods, which encode displacements into image layers or volumetric textures

[Ney98, KS01, Elb05], model the displacement as a spatial structure. They also require

extensive processing to rebuild this representation if these structures change.

6.3 Displacement Mapping

Most displacement techniques require a surface parameterization to map the given dis-

placement field onto the surface. Generating a low-distortion parameterization on an

arbitrary 2-manifold is numerically involved and often based on solving large systems

of equations (see the surveys by Floater and Hormann [FH04, HSL+] and Sheffer et al.

[SPR06] for a thorough overview). A particular class of methods seek to compute sur-

face parameterizations based on solving linear systems [DMA02, LPRM02, ZPKG02,

SG03, ZRS05, SLMB05] or graph searches [SGW06], thus these approaches are suit-

able for interactive applications, since there exists a vast amount of highly efficient

solvers for such systems. Specifically, local parameterization techniques using spring

networks [Flo97] perform an energy-based relaxation of mesh vertices towards low

distortion parameterizations.

The basic idea behind these methods is to interpret a connected part of a mesh as

a mass-spring network. The boundary of this network is fixed in a 2D domain, and

an energy functional is minimized that penalizes interior distortion. The network then

deforms into a steady configuration, which yields a local parameterization. The qual-

ity of this parameterization, however, is strongly dependent on the shape of the initial

boundary. Even though our technique is similar in spirit to these approaches, method-

ologically it is very different because the user only specifies a single boundary point,

i.e., the position on the 3D surface where the patch should be centered. In particular,

this allows moving the patch along the surface simply by re-positioning the patch cen-

ter point. Furthermore, we solve the mass-spring system directly on the 3D surface,

thereby enforcing all mass points to stay on this surface. To achieve fast convergence

and stability, we propose a novel network topology which can be implemented effi-

ciently on the GPU.

Our method starts with an arbitrary surface point pc, a height field, the height field’s
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1) 2) 3) 4)

Figure 6.3: Displacement mapping overview. From left to right: 1) A coarse grid is traced on
the surface. The center point is marked in red, and the reference direction in blue. 2) A higher
resolution grid. 3) The displaced grid. 4) The surface that is finally rendered.

orientation dc at pc in the surface’s local tangent plane, and its extent in object space.

All these properties can be conveniently specified by the user, i.e., by a mouse click

on the surface to determine pc. The direction dc is then obtained automatically by

projecting the current view’s up direction onto the surface. As illustrated in Figure 6.3

the mapping of the displacement field onto the surface is then performed in two phases

without any further user intervention. In the initial grid layout phase, vertices are traced

on the base surface as described in Section 6.3.2. This phase is entirely performed on

the CPU due to the inherently sequential nature of the algorithm utilized. Then, in the

grid relaxation phase, the grid is optimized by a constrained mass-spring system. This

phase is implemented to exploit the GPU’s parallelism efficiently. Constraining the

grid’s vertices to the base mesh during this phase is again done by vertex tracing.

6.3.1 Initial Grid Layout

In the first phase of computing a local ad-hoc parameterization, a quadrangular grid

around pc is traced. The resulting grid then serves as a discrete mapping from the

surface to the displacement field’s domain. It is clear that the layout of a 2D grid on a

surface can cause edges to compress or stretch. To avoid the folds resulting from such

effects, we present two strategies.

Firstly, by tracing the grid in an advancing front manner, distortions around pc can

be distributed more homogeneously than with alternative tracing orders. Starting at pc,

adjacent vertices are positioned by tracing along dc, a direction orthogonal to it, and

the half way direction. Step sizes are chosen according to the grid spacing. As de-

picted in Figure 6.4, a total of four advancing fronts are generated—top, bottom, left,

right—which are spanned by pc and the newly generated points. Each new point stores

the direction it was reached from. Before each advancing step, these directions are

smoothed along each front by using a 3-tap binomial smoothing kernel, i.e., [1
4
, 1

2
, 1

4
].

This is done to keep the front smooth in cases of sporadic small features of the base
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Figure 6.4: Tracing of a quadrangular grid. The user picks a position (1) and the patch is
automatically grown around this position (2-6) using an advancing front algorithm (new points
are colored green).

mesh. Afterwards, directions are re-projected into local tangent space. After smooth-

ing, new directions are computed for corner points where two fronts meet. This is done

by rotating vertices in the current fronts by ±45◦ in the tangent plane, followed by

averaging and re-projection into tangent space.

Secondly, we exploit our knowledge about the relative position of vertices to each

other in the 2D grid. If a position qi is “left” of a position qi+1, then, after advancing

the front to obtain pi+1 from qi and pi+2 from qi+1 (the index shift stems from corner

points), the ordering between qi and qi+1 is propagated, i.e., pi+1 should be “left” of

pi+2. Although the notion of “left” seems intuitive enough in flatland, it can become

amazingly complex on curved surfaces. Hence we rely on a criterion that first computes

a plane η spanned by the base surface normal at qi and the edge from qi to pi+1. If

the positions qi+1 and pi+2 are on the same side of η, we connect them by an edge

and proceed. If not, positions pi+1 and pi+2 have to be swapped in the current front,
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Figure 6.5: Avoiding folds in patches. Since naı̈ve connectivity of propagating fronts (1) results
in folds (2), re-ordering the positions (3) is used to avoid these problems (4).



120 CHAPTER 6. INTERACTIVE DISPLACEMENT EDITING

and we proceed by checking the ordering between pi and pi+1 by backtracking one

position. This process is illustrated in Figure 6.5. To prevent trace trajectories from

crossing again with other neighbors in an upcoming step, the tracing directions of two

vertices are made parallel if these vertices have been swapped. This is achieved by

replacing both participating directions by their halfway vector.

This method resolves all folds where only direct neighbors are involved (see also

Figure 6.6). However, there is a possibility for folds to also affect positions that are

not direct neighbors in any front. To resolve these cases, k-tuples of positions have to

be examined. This extension is straightforward although we would like to point out

that the runtime is in O(k2). Also, for large k the underlying base mesh cannot safely

be assumed to be locally planar, resulting in a plethora of pathological cases that seem

to be very hard—if not impossible—to resolve. For these reasons we typically use a

small neighborhood of k = 3, . . . , 5 at the risk that folds affecting larger neighborhoods

cannot be resolved effectively by this approach.

Figure 6.6: Demonstrating Fold-Avoidance. Left: When a grid is traced in a region of relatively
high curvature, folds can occur. Right: With our method we can avoid certain types of folds.
The result is that particle trajectories that would otherwise cross now appear “bundled”.

These two steps are iterated for all fronts until an initial grid is obtained. This

initial grid, however, typically shows distortions of grid cells. Before we discuss the

relaxation process to improve the parameterization towards isometry, we first describe

how to trace the grid positions on the triangle mesh.

6.3.2 Vertex Tracing on Triangle Meshes

Given the barycentric coordinates pb and db of a position inside a triangle and a di-

rection in the plane spanned by this triangle, tracing a particle from pb in direction

db leaves the triangle at q = pb + sexit · db. Denoting components of pb,db by
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pb,i, db,i, i ∈ [0 . . . 2], the parameter sexit is obtained by observing that on each edge

at least one of the barycentric coordinates vanishes. Hence,

sexit = min
s
{s ≥ 0 : ∃i : pb,i + s · db,i = 0} . (6.1)

Vertex tracing now proceeds by successively jumping from edge to edge until the

accumulated path length exceeds a given step size. If this is the case, the new vertex

position inside the triangle is determined by barycentric interpolation. The direction

db is propagated to the next triangle at each new point along the trace. This is detailed

later in this section.

Given either a position or a direction in Euclidean coordinates, denoted x, barycen-

tric coordinates α0, α1, α2 with respect to a triangle T with Euclidean vertex positions

v0,v1,v2 can be computed as follows. First, a space for a plane containing T is com-

puted, i.e.,

t := v1 − v0

b := v2 − v0. (6.2)

Next, obtaining barycentric coordinates is equivalent to solving the system

2∑
i=0

viαi = x, constrained to (6.3)

2∑
i=0

αi = 0|1, (6.4)

where the right-hand side of Equation (6.4) is set to 0 if x is a direction and to 1 if

x is a position. The problem with this formulation is its dimension of 3 × 4. This

makes sense from a geometric point of view, since the system is uniquely solvable only

if x lies in the plane η spanned by v0,v1,v2, in which case the rank of the above

system of equations is 3. However, even if x lies in η numerical instabilities are still

likely to arise. A common solution is to first compute four-dimensional barycentric

coordinates inside a tetrahedron v0,v1,v2,v3, where v3 may be any vertex that lies

not in η. The barycentric coordinate associated with v3 is then discarded afterwards,

thereby projecting x to η. Two problems arise with this method. Firstly, the projection

of x is not necessarily orthogonal to η. Instead, the projected x is determined by the

intersection between η and the line spanned by x and v3. This could be a problem for

some applications. Secondly, a 4× 4 system has to be inverted, which is unnecessarily
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expensive. Another option would be so solve the system using the Moore-Penrose

pseudo-inverse1 [GVL96b], which cures the first issue, since the solution obtained in

this manner is optimal in the least-squares sense. This, however, requires a 4×4 matrix-

matrix product. The method we use is—to our knowledge—the most efficient method

to compute triangular barycentric coordinates in arbitrary dimensions. We observe that

by multiplying Equation (6.3) once by each t and b we obtain the following 3 × 3

system ⎛⎜⎝〈t,v0〉 〈t,v1〉 〈t,v2〉
〈b,v0〉 〈b,v1〉 〈b,v2〉

1 1 1

⎞⎟⎠ ·
⎛⎜⎝α0

α1

α2

⎞⎟⎠ =

⎛⎜⎝〈t,x〉〈b,x〉
0 | 1

⎞⎟⎠ . (6.5)

This system can be solved highly efficiently. To speed up run-time computations even

more, the matrix of Equation (6.5) is pre-computed in our method. Barycentric coordi-

nates can be transformed back to Euclidean coordinates by x =
∑

i αivi. Note that t

and b do not necessarily need to be orthogonal. Also note that using this method, x is

projected orthogonally to both t and b, and thus orthogonally to η.
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Figure 6.7: Tracing a particle from p0 to p2. Left: Two triangles are shown with their global
(vi) and local 0, 1, 2 enumeration of vertices. Right: The same triangles viewed along their
common edge. At the intermediate position p1 the neighboring face is determined, barycentric
coordinates are permuted, and the tracing direction is propagated by rotation.

Furthermore, we exploit the fact that if a vertex is traced from one triangle to the

next, all three barycentric coordinates can be recycled when the vertex passes the com-

mon edge. The only operation necessary is to re-assign barycentric coordinates to the

vertices of the next triangle. As depicted in Figure 6.7, the reason is that the same

vertex may be assigned different local indices by each of the adjacent triangles. The re-

1Given a real-valued system Ax = b with rank(A) ≥ dim(x), the Moore-Penrose pseudo-inverse Ã is defined

as
(
AT A

)−1
AT . A least-square solution can then be obtained by x = Ãb.
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assignment is pre-computed in form of a permutation (also called swizzle) and stored

for each edge. For instance, in Figure 6.7 the swizzle (α0, α1, α2) �→ (α2, α0, α1) has

to be performed at p1. If two adjacent triangles A and B with normals NA,NB meet

at acute angles, simple re-projection of the Euclidean direction from A into the plane

of B is generally not correct. To always yield correct results, the direction is instead

rotated around the common edge by an angle of arccos 〈NA,NB〉.

6.3.3 Grid Relaxation

To improve the quality of the grid that has been traced on the base surface, we utilize

a relaxation technique based on a mass-spring system. A center of mass is placed at

each vertex, and each edge is interpreted as a spring. Note that this notion does not

exclude additional springs that do not coincide with edges. If edges in the initial grid

are compressed or stretched, the associated springs induce forces to restitute their rest

lengths. Thus the system deforms into a configuration in which internal forces are

compensated by opposing external forces. This process is demonstrated in Figure 6.8.

6.3.4 Mass-Spring Topology

In the development of a mass-spring systems for grid relaxation, two aspects have to

be considered. Firstly, the system’s topology should be chosen such as to automatically

resolve folds in the grid. Secondly, the topology’s effect on the numerical solver used to

predict the dynamic behavior of the system has to be analyzed in terms of performance

and stability.

1) 2) 3)

Figure 6.8: A 2D grid placed on the nose of the Mannequin mesh. 1) The initial grid. 2) The
relaxed grid after 16 iterations. 3) The final grid after 36 iterations.
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With respect to the first issue, we decided to use an entangled topology for the

spring-mass system. The topology of this grid is shown in Figure 6.9.
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Figure 6.9: The entangled topology of the mass-spring system used for grid relaxation is shown
together with its connectivity rules.

This particular topology has the following beneficial properties. Firstly, it is regu-

larly 6-connected. Thus, only six forces have to be collected per mass point, as opposed

to other common topologies that have higher valences. Secondly, regular topologies can

be stored implicitly without requiring memory. Thirdly, regular topologies are highly

advantageous for GPU-based implementations since they allow the parallel processing

units to run in lock-step. Last but not least, the red and blue springs in Figure 6.9 effec-

tively resolve folds because the existence of folds implies that some springs are not at

rest length.

For the red, green, and blue springs in Figure 6.9, special connectivity rules are

specified. At grid positions (i, j), we compute

γ := (i mod 2) xor (j mod 2). (6.6)

For positions (i, j) for which γ = 1, the upper rule of Figure 6.9 is used, while for

γ = 0 the lower rule is used. Denoting edges of the mass-spring system as a tuple

( {(i, j), (i′, j′)} , ω ) (6.7)



6.3. DISPLACEMENT MAPPING 125

Table 6.1: Connectivity rules for the entangled grid topology. The entangled grid topology has
a single free weighting parameter α.

γ = 1, “upper” rule γ = 0, “lower” rule

( {(i, j), (i + 1, j)} , 1 + 3α ) ( {(i, j), (i− 1, j)} , 1 + 3α )

( {(i, j), (i, j + 1)} , 1 ) ( {(i, j), (i, j − 1)} , 1 )

( {(i, j), (i− 1, j)} , 1 ) ( {(i, j), (i + 1, j)} , 1 )

( {(i, j), (i, j − 1)} , 1 + α ) ( {(i, j), (i, j + 1)} , 1 + α )

( {(i, j), (i− 1, j + 2)} , α ) ( {(i, j), (i + 1, j − 2)} , α )

( {(i, j), (i− 2, j − 1)} , α ) ( {(i, j), (i + 2, j + 1)} , α )

where (i, j) and (i′, j′) are grid locations and ω denotes a stiffness parameter, these

rules imply the insertion of the edges listed in Table 6.1.

Note that the upper and lower rules are antisymmetric in both i and j, i.e., if the rule

for γ = 1 describes an edge ( {(i, j), (i + i′, j + j′)} , ω ) then the rule for γ = 0 de-

scribes an edge ( {(i, j), (i− i′, j − j′)} , ω ) and vice versa. The weights in Figure 6.9

and Table 6.1 are chosen such that the products of spring directions and weighting fac-

tors sum up to 0 at each vertex in order to keep the system isotropic. The system has a

single free parameter α to weight the red and blue springs against the regular, black and

green ones. The springs’ rest lengths are in a ratio of
√

5 : 1 (red and blue vs. green

and black).

6.3.5 Mass-Spring Solver

We utilize a variation of the method proposed by Baraff and Witkin [BW98] to solve the

mass-spring system. Positions of mass points are updated with respect to their velocity

and acceleration using the Lagrangian law of motion:

ẍ = M−1f(x, ẋ) (6.8)

In this formulation, M is the diagonal mass matrix and f(x, ẋ) is the net force vector

accounting for all internal and external forces. The differential equation is first trans-

formed into a system of first order differential equations

d

dt

(
x

ẋ

)
=

(
v

M−1f(x,v)

)
(6.9)
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in which f(x,v) is approximated by the first two terms in its Taylor series expansion.

The system can then be solved using an implicit Euler backward scheme, resulting in

the following compact form (for details the reader is referred to [BW98]).(
M− dt

∂f

∂v
− dt2

∂f

∂x

)
Δv = dt

(
f + dt

∂f

∂x
v

)
. (6.10)

Solving Equation (6.10) for Δv allows integrating velocity and position to the next

time step as v(t + dt) = v(t) + Δv and x(t + dt) = x(t) + dt · v(t + dt). In the

two following sections we describe two possible ways to solve Equation (6.10). First,

Section 6.3.6 discusses the Euler backward solver first proposed by Baraff and Witkin

[BW98] to make this thesis self-contained. After that, Section 6.3.7 presents a full

derivation of our Gauss-Seidel formulation. The particular choice of using a Gauss-

Seidel-based solver is detailed in Section 6.3.8.

6.3.6 Euler Backward Formulation

As originally proposed in [BW98], Equation (6.10) can be solved directly, effectively

resulting in an implicit Euler backward scheme. Since the system matrix is sparse

and usually well-conditioned, pre-conditioned conjugate gradient [She94, PTVF02b]

methods—the method of choice to solve such systems—typically converge quickly.

However, the system of equations can become very large—a 5122 patch already results

in a 218 × 218 system matrix. As a consequence, frequent restarts of the conjugate

gradient solver are necessary in order to avoid the accumulation of round-off errors.

Clearly, this is even aggravated if the target architecture, i.e., the GPU, does not support

full IEEE 754 double precision arithmetic. As a highly undesired side-effect, frequent

restarts slow down the process of solving the system in terms of computing time. One

possible way to avoid frequent restarts is to utilize a multigrid solver [Geo08] which

uses a conjugate gradient method as smoothing backend.

We initially tried to solve the mass-spring system using the multigrid solver of

Georgii [Geo08]. However, in terms of computing time, the Gauss-Seidel solver de-

scribed in the next section outperformed the multigrid solver on the CPU. Still it should

be noted that multigrid methods proovably converge quicker than “simple” conjugate

gradient methods such as proposed in [BW98]. However, since a full multigrid solver

is rather intricate to implement on the GPU, and for reasons that are discussed in Sec-

tion 6.3.8, we consequently chose to not pursue the direction of a GPU-based multigrid

conjugate gradient solver. Instead, we focussed on a Gauss-Seidel-based solver that

can be implemented on the GPU efficiently.
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6.3.7 Gauss-Seidel Formulation

To solve Equation (6.10) using Gauss-Seidel style updates, we first introduce indices

denoting to which vertex the respective entity is associated, i.e., vi denotes the velocity

at the ith vertex and so forth. It should be noted that indices do not follow Einstein

notation, i.e., unless explicitly stated, the automatic summation to reduce occurences

of like indices does not take place. We define the neighborhood N(i) to contain all

indices j, such that vertex i is adjacent to vertex j. j ∈ N(i) thus implies the exis-

tence of a spring connecting masses i and j. Since springs are not directed, j ∈ N(i)

also implies i ∈ N(j). To make the formulation more compact, we further define

N(i) ∪̇ {i} =: Ñ(i). The notion of the neighborhood of vertex i allows for a com-

pact and concise description of the ith row of the system matrix of Equation (6.10).

We can thus reformulate the four sparse matrix vector products that arise if both sides

are expanded as a gathering operation on Δv that requires a traversal of N(i). We

denote the force exerted on vertex i by the spring between i and j by fij and define

fi :=
∑

j∈N(i) fij. Equation (6.10) is thus rewritten as[
M− dt

∂f

∂v
− dt2

∂f

∂x

]
ij

Δvj =

[
dtf + dt2

∂f

∂x
v

]
i

, (6.11)

where i and j denote the respective vector and matrix entries. Expanding this equation

and denoting sums explicitly, we obtain

∑
j∈Ñ(i)

(
M− dt

∂fij

∂vj

− dt2
∂fij

∂xj

)
Δvj =

∑
j∈Ñ(i)

(
dtfij + dt2

∂fij

∂xj

vj

)
, (6.12)

In this approach, forces fij comprise both external and internal forces. Baraff and

Witkin [BW98] observe that choosing an energy functional of the form E(C,x) =
1
2
κsC(x)T C(x) minimizes |C(x)| for a condition C(x). Here, x is the position at which

to evaluate C, and κs is an arbitrary stiffness constant. Note that by construction, E :

(R3 → R
3)×R

3 → R
+
0 , i.e., E is positive or zero on its entire domain. From a physical

point of view, the potential E gives rise to a force field, denoted f , of the form

fi = − ∂E

∂xi

= −κs ∂C(x)

∂xi

C(x) (6.13)
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Computing the partial derivatives of fi occuring in Equation (6.11) yields

∂fi

∂xj

=
∂2E

∂xi∂xj

=

(
∂C(x)∂C(x)T

∂xi∂xj

+
∂2C(x)

∂xi∂xj

C(x)

)
(6.14)

Baraff and Witkin [BW98] note that “since C(x) does not depend on v, the matrix

∂f/∂v is zero”. This makes sense from a physical point of view, since the correspond-

ing potential field E is independent of v and thus excludes the existence of damping

forces. However, Desbrun et al. [DMB00] propose to use a Rayleigh damping force of

the following form instead.

∂f d
ij

∂vj

= κdI ∀i �= j, and

f d
ij = −κdvij (6.15)

where κd is a damping constant, and I denotes a 3 × 3 identity matrix. We define vij

and xij, the difference in velocity and position of two vertices i and j, in the following

manner.

xij =

⎧⎨⎩(xi − xj) if j ∈ N(i)

0 otherwise
(6.16)

vij =

⎧⎨⎩(vi − vj) if j ∈ N(i)

0 otherwise
(6.17)

Here, xi,xj denote the ith and jth vertex’ position, while vi,vj denote the respective

velocities. In the presence of damping forces of the above form, a modified Hooke’s

Law with a potential field E subject to a Rayleigh dissipation function D is obeyed

instead of the classical model that just takes E into account. In this case, the dissipation

function is defined as

Dij :=
1

2
κdvT

ijvij

D :=
∑
ij

Dij, (6.18)

and the forces arising due to D are computed as

f d
ij = −∂Dij

∂v
= −κdvij (6.19)
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The classical Hooke’s Law still provides the potential field E, i.e.,

Eij :=
1

2
κs (Δxij)

T (Δxij)

E :=
∑
ij

Eij, (6.20)

where Δxij denotes the current vectorial elongation of the spring connecting vertices

i and j with respect to the spring’s (scalar) rest length Lij .

Δxij :=

⎧⎨⎩(|xij| − Lij)
xij

|xij | if j ∈ N(i)

0 otherwise
(6.21)

The potential field E gives rise to forces which can be computed as

f s
ij = −∂Eij

∂xj

= −κsΔxij. (6.22)

The total force due to a spring connecting vertices i and j is then fij = f s
ij + f d

ij.

Setting C(x) = Δxij in Equation (6.14) results in the following formulation [TE05]

of the derivatives

∂fij

∂xj

= − ∂2Eij

∂xi∂xj

= −κs
xijx

T
ij

xT
ijxij

− κs

(
1− L

|xij|
)(

I − xijx
T
ij

xT
ijxij

)
, ∀i �= j

(6.23)

Since the matrix of forces fij is anti-symmetric, i.e., fij = −fji, the computation

of ∂fi

∂xi
is feasible. This is important because Equation (6.23) is undefined for i = j

(since for xii = 0 singularities arise), preventing a naı̈ve evaluation.

∂fij

∂xi

= −∂fji

∂xi

= −∂fij

∂xj

, thus

∂fi

∂xi

= −
∑

j∈N(i)

∂fij

∂xj

, and analogously

∂fi

∂vi

= −
∑

j∈N(i)

∂fij

∂vj

(6.24)

Note that since each Eij and Dij are C2-continuous in x and v respectively, Clairot’s

theorem [Cla43] guarantees all matrices ∂fij

∂xj
and ∂fij

∂vj
to be symmetric. Consequently,

the system matrix of (6.11) is a sum of symmetric matrices which is itself symmetric.
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The goal of this section is a reformulation of Equation (6.11) that allows solving for

the unknowns Δv using a Gauss-Seidel solver. To achieve this, the summation over

j ∈ Ñ(i) has to be split into a sum over j ∈ N(i) and a single term depending on Δvi.

After reordering and by denoting the ith diagonal entry of M by Mi (the mass of vertex

xi), the following system is to be solved.

AiΔvi = bi, where (6.25)

Ai :=

(
Mi − dt

∂fi

∂vi

− dt2
∂fi

∂xi

)

bi :=

⎛⎝fi +
∑

j∈N(i)

∂fij

∂vj

Δvj

⎞⎠ dt +

⎛⎝ ∑
j∈Ñ(i)

∂fij

∂xj

vj +
∑

j∈N(i)

∂fij

∂xj

Δvj

⎞⎠ dt2

This can be further condensed using Equation (6.24) to replace the two diagonal entries

of the partial derivative matrices by a sum over N(i). Furthermore, Equation (6.15) is

used to replace ∂fij

∂vj
by κdI.

Ai = Mi +
∑

j∈N(i)

(
−κdIdt +

∂fij

∂xj

dt2
)

bi =
∑

j∈N(i)

((
fij + κdΔvj

)
dt +

∂fij

∂xj

(vj + Δvj − vi) dt2
)

(6.26)

Each Gauss-Seidel iteration to solve this equation then traverses each vertex i, gathers

Ai and bi using the information currently available (i.e., updated information for j < i

and non-updated information otherwise). Then, a 3×3 system of equations of the form

AiΔvi = bi is solved in order to compute velocity updates. If after solving each such

system an immediate update of the form

vi ⇐ vi + Δvi

xi ⇐ xi + dt · vi (6.27)

is performed, the term vj + Δvj can be further condensed to just vj since vj already

contains any possible update by Δvj. It is worth noting that unlike using the fully

implicit backward Euler solver by Baraff and Witkin [BW98] Δvj might stem from a

prior Gauss-Seidel step. Finally, using vij = −vji reduces the right-hand side to

bi =
∑

j∈N(i)

((
fij + κdΔvj

)
dt− ∂fij

∂xj

vijdt2
)

(6.28)
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Convergence Criterion

Normally, the residual error ρ of an approximate solution Δv to the system AΔv = b

would be computed as ρ = ‖AΔv − b‖ using an appropriate vector metric ‖ · ‖.
However, with Gauss-Seidel updates this is not always feasible. The reason is that

Ai, bi have never to be stored explicitly at each vertex; so in order to achieve a min-

imum memory footprint one would typically recycle the memory occupied by Ai and

bi for the system of equations at the next vertex. Since a single Gauss-Seidel opera-

tion eliminates the residual at the respective row, the residual also cannot be computed

incrementally in this manner. However, a way to obtain a quick guess about ρ that

“behaves right” in this application is to use a metric that depends on both Δv and v.

The rationale is that 1
dt
Δvi is the approximation of the acceleration at vertex i. Should,

at any point in time, all velocities and accelerations vanish for every vertex in the sys-

tem, no further progress will be made by additional iterations. On the other hand it

might not be sufficient to rely on either acceleration or velocity alone, as accelerations

typically give rise to velocities and velocities might give rise to forces (for instance

by compressing springs), implying accelerations. The only care that has to be taken

using a velocity/aceleration-based convergence criterion is that external velocities and

accelerations have to be carefully separated from their internal counterparts. In this

application, however, the mass-spring system is fixed in space and is free from exter-

nal forces and velocities. From Equation (6.27) an equivalent metric can be obtained

by accumulating the squared position updates dt2vT
i vi on xi. However, the residuum

should not depend on dt and we consequently mandate the use of vT
i vi. It is also worth

noting that this convergence criterion is not monotonically decreasing; it first increases

over a few iterations before it starts decreasing. The reason is that the first few position

updates tend to be very small due to the damping forces.

If one is interested in a quantitative and formal residuum, for instance because the

system’s residuum cannot vanish due to hard constraints, one option is to gather all

matrices and right-hand sides Ai, bi after the previously described criterion attests con-

vergence of the system to compute ρ. When immediate updates in the form of Equa-

tion (6.27) are used, this requires to traverse each vertex one more time. During traver-

sal, the 3× 3 system described above is gathered and solved to obtain the current Δv,

but the update of Equation (6.27) is not performed. Instead, the ith residual is com-

puted as ρi = ‖AiΔvi − bi‖ and accumulated. Since this is rather straight-forward

but would require a lot of space, we did not include it in Algorithm 2. Note that this

algorithm does not provides means to add external forces of any kind. Furthermore, it

is assumed that stiffness and damping constants are fed to the algorithm on a per-spring
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basis instead of the global constants used for simplicity’s sake in the derivation.

Algorithm 2 Gauss-Seidel Mass-Spring Solver
Input:

Mass positions (vertices) xi and masses Mi

A list of fixed positions F
Topological information N(i)
Rest-lengths of springs Lij ∀i, j : j ∈ N(i)
Stiffness and damping konstants κd

ij , κ
s
ij ∀i, j : j ∈ N(i)

Maximum number iterations kmax and threshold ε > 0
Integration step size dt

Output:
Relaxed mass positions xi

// Initialization:
vi ⇐ 0, ∀i
Δvi ⇐ 0, ∀i
k ⇐ 0
repeat

r ⇐ 0
for each vertex i /∈ F do

// Gather matrix Ai and right-hand side bi acc. to Equations (6.26) and (6.28).
Ai ⇐ Mi

bi ⇐ 0
for each j ∈ N(i) do

∂fij

∂xj
⇐ −κs

ij

xijxT
ij

xT
ijxij

− κs
ij

(
1− Lij

|xij |
)(

I− xijxT
ij

xT
ijxij

)
// Equation (6.23)

Ai ⇐ Ai − κd
ijIdt + ∂fij

∂xj
dt2

fij ⇐ −κs
ijΔxij − κd

ijvij

bi ⇐ bi +
(
fij + κd

ijΔvj

)
dt− ∂fij

∂xj
vijdt2

end for
// Solve 3× 3 system
Δvi ⇐ A−1

i bi

// Immediate update of velocity and position.
vi ⇐ vi + Δvi

xi ⇐ xi + dtvi

r ⇐ r + vT
i vi // Accumulate convergence criterion

end for
increment k

until k > kmax or r < ε
return xi
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6.3.8 Constrained Updates, Quality Metric, and Stepsize Control

Under the constraint of keeping x on the base surface, the position can be updated

once Δx = dt · v(t + dt) is known by tracing x in the direction Δx—projected

onto the base surface—by a distance of ‖Δx‖2. Thus, x never leaves the base mesh,

and ‖Δx‖2 is measured on the base surface. Afterwards, v(t + dt) and Δv have to

be adjusted accordingly to ensure consistency. We picked three grids positioned in

different places on the Mannequin as depicted in Figure 6.10. Then, we varied the

Figure 6.10: The three initial grids used for the mass-spring tests. In these images, folds have
not been resolved in order to give a better understanding for the complexity of the grids.

amount of solving steps—while accumulating Δx—in between position re-traces. Our

results (as depicted in Figure 6.11) clearly indicate that updating constrains as soon as

possible is advantageous. We consequently prefer to use a Gauss-Seidel solver instead

of the conjugate gradient solver proposed in [BW98]. This allows us to perform an

immediate update as soon as Δx is known for a specific position, as opposed to being

able to performing updates only when Δx is known for all positions. Since a Gauss-

Seidel solver processes one vertex at a time, a 3×3 system derived from Equation (6.10)

needs to be solved per vertex. Note that analytical hard constraints using Lagrange

multipliers are not feasible, since this would require to solve for an additional number

of variables on the order of the number of faces of the underlying mesh.

The convergence criterion vT
i vi described in Section 6.3.7 prooved problematic for

various reasons. Firstly, it does not decrease monotonically. As a natural consequence

this requires the use of heuristics to diagnose convergence. Secondly, it does not vanish

due to the hard constraints present in our application. And thirdly, it does not measure

quality very intuitively. In this section we describe a more intuitive, albeit computa-

tionally more involved metric that also can also be used to control the solver’s stepsize

adaptively.

The metric we use to assess the quality of the grids obtained during and after relax-
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Figure 6.11: Benefits of immediate position constraints. For the entangled topology, this bar
chart demonstrates the quality gain (see Equation (6.29)) in spring relaxation when using the
same number of Gauss-Seidel steps (60) and constraining spring vertices to the surface after
every nth step. From left to right, n goes from 6 to 1. Three initial patches (colored red, green,
and blue) were used in this test (also see Figure 6.10).

ation is of the form

g = 50 ·
(

1− σ(Ai)

μ(Ai)
− 1

360◦
∑
i,j

|αij − 90◦|
)
− 40, (6.29)

where μ(Ai) is the average area of all quadrangular grid cells with a standard deviation

of σ(Ai), and αij refers to jth interior angle of cell i. The metric thus measures isometry

by placing a penalty on non-right angles and area deviations. Positive values (up to a

maximum of 10) typically correspond to acceptable visual quality.

This metric, when computed on the GPU after each iteration, can be used to steer

the parameters of the Gauss-Seidel solver effectively as follows. We require that the

value of g is strictly monotonically decreasing with each iteration—a requirement that

cannot be imposed on the residuum. If this is not the case, we perform a partial restart

of our mass-spring system. Denoting the state before the last iteration by xold etc. , we
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set

x ⇐ xold,

v ⇐ −1

2
vold,

dt ⇐ 1

2
dtold,

κd ⇐ 1.05κd
old, and

Δv ⇐ −Δvold. (6.30)

This restores the last positions and sets v and Δv such as to go back in the simulation

even further. Then, the solver is resumed with a smaller time step and higher damping

weights. If, on the other hand, from one step to the next step progress was made, but this

progress was below a certain threshold, we increase dt by 10% and decrease damping

factors by 2%. These values have been validated empirically and prevent the system

from diverging. Furthermore, a gain of about 2 points in g is typically achieved—

independently of the grid resolution—when compared to the best possible set of static

Gauss-Seidel parameters.

6.3.9 GPU Implementation

To achieve interactivity, we have implemented the proposed relaxation process on the

GPU. Among the first authors to recognize the GPU’s potential to speed up the simula-

tion of mass-spring systems were Georgii and Westermann [GW05] and Tejada and Ertl

[TE05]. Specifically for triangle meshes, interactive performance for mid- to large-size

networks due to the GPU’s high degree of parallelism and superior memory bandwidth

can be achieved. The main challenge in GPU-based approaches is to overcome the mu-

Figure 6.12: Vertex colorings of various mass-spring networks. The chromatic number reflects
the amount of rendering passes per Gauss-Seidel iteration.
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tual exclusion of read/write accesses to the same buffer in current graphics APIs. We

use a regular-grid gathering approach. This has the advantage that topological informa-

tion does not have to be stored explicitly [DCN06].

Algorithm 3 GPU-based Mass-Spring Step
Input:

Initial positions x
Vertex coloring c

Output:
Updated positions x

// Initialization:
vx ⇐ 0 ∀x
Δvx ⇐ 0 ∀Δvx

repeat
for each vertex color c (rendering pass) do

for each mass point x of color c do
Generate a fragment

end for
for each fragment (pixel shader) do

Read positions of mass points in x’s 1-ring neighborhood.
Calculate force fx acting on x (Hooke’s Law & Rayleigh damping).
Calculate derivatives ∂f/∂x and ∂f/∂v.
Perform block Gauss-Seidel step to compute Δvx.
Trace distance dt (vx + Δvx) on the base surface to update position x.
Re-compute v and Δv based on updated x.
Write updates x, v, and Δv to an output buffer.

end for
Swap old input and output buffers.

end for
until converged or maximum number of steps reached
return x.

In contrast to previous work, we use an implicit Gauss-Seidel solver. This requires

read access to the k−1 previously updated elements in order to update the kth element.

Consequently, a naı̈ve implementation requires one separate rendering pass for every

vertex. If, however, the topology graph of the spring network can be vertex-colored

using N colors, a GPU-implementation can perform a full Gauss-Seidel iteration in N

rendering passes. This is because vertices of the same color depend only on vertices

of other colors. Consequently, all vertices sharing a color can be processed in parallel.

As demonstrated by Figure 6.12, our entangled topology has a chromatic number of 2,

while a naı̈ve topology already has a chromatic number of 4. This shows that an efficient
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GPU-implementation generally benefits from the proposed entangled topology.

To implement the constrained mass-spring system on the GPU, vertices with differ-

ent colors are stored in separate buffers. Due to the regular topology, the system matrix

of Equation 6.10 does not have to be stored explicitly. Algorithm 3 requires N buffers

to store the vertices’ position x, velocity v, and change of velocity Δv, grouped by

color, and another output buffer to store the result (due to mutual R/W exclusion).

The implementation can benefit from computational and memory bandwidth capac-

ities on recent GPUs. Thus, the relaxation process is greatly accelerated, particularly

because several iterations of the Gauss-Seidel solver are typically required for conver-

gence. Section 6.5 provides a detailed analysis of the speed-up achieved, including

convergence plots. Note that due to the non-optimal order of Gauss-Seidel updates

slightly more iterations are needed on the GPU than on the CPU to achieve the same

accuracy. In our tests, however, these additional iterations proved to be negligible in

terms of performance.

6.4 Rendering

Rendering the base surface with displacements is performed on the GPU by displacing

the vertices of the displacement grid along the respective normal of the base surface in

a vertex shader. These normals are obtained for each vertex of the displacement grid

via barycentric interpolation from the base mesh. In addition, a local tangent frame is

interpolated from tangent frames stored at the base mesh’s vertices. The interpolated

frames are then re-orthogonalized by using the interpolated normal as reference. Since

the displacement field also stores a local tangent frame per sample, we can transform the

interpolated normal twice using these two frames in order to obtain a properly aligned

normal on the displacement mesh for shading. Note that this allows to propagate bump

maps from the base mesh to the displacement, which results in a very smooth and

natural appearance. The reason is that geometric displacements can be treated as meso-

structures that are literally placed between the macro-structure of the base mesh and the

micro-structure of bump maps. Less formally speaking, this allows effects like placing

a lump “under” the skin of a virtual character.

Positive displacements—i.e., displacement along the outward-pointing normal of

the base mesh—can be rendered using standard depth testing. In contrast, negative

displacements can remove parts of the base mesh. Rendering such displacements can

be performed using depth peeling [Eve01]. Since depth peeling significantly reduces

performance in case of high depth complexity, we present a new method to render
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Figure 6.13: Demonstrating the cutout mask. From left to right: Adding a bump to a mesh, the
cutout mask in texture space, and final image, in which the bump is colored red. In the middle,
the patch area (red) can be distinguished from the padding necessary to avoid artifacts (blue).
Devil Head mesh courtesy of Thomas Heinrich.

negative displacements by using a cutout mask. This mask allows to exclude parts of

the base mesh from rendering on a per-fragment basis. It is similar to the trim texture

used by Guthe et al. in [GBK05], but does not require any re-tesselation.

Assuming that the base mesh is equipped with texture coordinates, generating the

cutout mask is performed by rendering the displacement grid into the texture space of

the base mesh. If the texture parameterization contains discontinuities, patch polygons

have to be clipped against these seams to avoid interpolation artifacts. The patch is

rendered into a 2D render target by replacing each vertex coordinate by (s, t, 0), where

(s, t) is the texture coordinate carried over from the base mesh. This operation leaves an

“imprint” of the triangles in the texture domain. The render target can then be mapped

to the base mesh and used to mask out fragments overlapped by the displacement grid.

To avoid undesirable artifacts due to the finite resolution of the cutout mask, we slightly

increase the size of the patch by padding it with zero. As can be seen in Figure 6.13,

although the texel aspect ratio is about 1:2, no artifacts at patch boundaries (red in

the middle image) are apparent due to this padding (blue in the middle image). By

choosing a sufficiently high resolution for the cutout mask, sub-pixel precision of the

cutout region can be achieved easily.

If no global parameterization of the mesh is known, we can still achieve the same

result, albeit at a lower rendering speed. In this case, the local parameterization of the

decal is used as a domain for the cutout mask. In order to discards all fragments covered
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by decals it is thus necessary to access one cutout mask per decal when rendering the

base mesh instead of a global cutout mask. Note that all local cutout masks store the

same information. It is therefore not necessary to generate them explicitly and a single,

static cutout mask can be used.

In a final pass, the displacement grid is rendered and geometry displacements are

performed by the vertex shader. Animations of the displacement field can be realized

simply by using a sequence of displacements in the final rendering pass.

6.5 Results

To validate the effectiveness and efficiency of our approach, we have conducted several

experiments, all of which were performed on an Intel Core2Duo 6600 CPU at 2.4 GHz,

with 2 GB RAM and an NVIDIA GeForce 280 GTX. Rendering was performed to a

fully anti-aliased 1600× 1200 view port using 8 samples per pixel at a quality of 4.

To measure the time needed for the various steps of our algorithm, two models

were used. The first one is a chess board that is tesselated using only 12 triangles. The

second model is the Mannequin available from Aim @ Shape [AaS], which has been

reduced to 32,000 triangles (16,406 vertices). Both models are textured with a decal, a

bump map, and an environment map. Figure 6.14 shows both models with interactively

placed displacements. We measured the times needed to trace, relax, and render a

single displacement grid with resolutions varying from 322 to 5122. Furthermore, we

measured the time required to generate a 40962 cutout mask. Note that the cutout mask

has to be re-generated only if displacements are being moved—not animated—on the

base surface. Last but not least, Table 6.2 also provides the time required by a single

Figure 6.14: The textured models used to measure performance and quality. Left: Mannequin,
32K triangles. Right: Chess board, 12 triangles. Mannequin mesh courtesy of Aim @ Shape.
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Table 6.2: Performance evaluation of our displacement method. We provide timings for the
Mannequin data set and the chess board data set (the latter ones in parentheses).

Grid Layout Rendering Cutout Mask Mass-Spring / step # steps #Triangles

- - (-) 2.0 ms (1.7 ms) - (-) - (-) 0 (0) 32 K (12)

322 3.2 ms (1.5 ms) 2.2 ms (1.8 ms) 0.3 ms (0.3 ms) 0.05 ms (0.05 ms) 24 (1) 34 K (2 K)

642 5.8 ms (4.0 ms) 2.4 ms (2.0 ms) 0.4 ms (0.4 ms) 0.25 ms (0.23 ms) 37 (1) 40 K (8 K)

1282 18.0 ms (15.2 ms) 3.2 ms (2.8 ms) 0.7 ms (0.7 ms) 0.95 ms (0.89 ms) 53 (1) 64 K (32 K)

2562 63.8 ms (61.2 ms) 7.0 ms (6.9 ms) 2.2 ms (2.2 ms) 3.08 ms (2.94 ms) 74 (1) 160 K (128 K)

5122 272.7 ms (234.0 ms) 22.2 ms (20.0 ms) 7.8 ms (7.8 ms) 10.27 ms (9.97 ms) 112 (1) 544 K (512 K)

mass-spring relaxation step as well as the number of iterations needed for convergence.

In our experiments, the GPU-based spring-mass system was consistently a factor of

about 17 times faster than a carefully tuned CPU version. CPU timings are thus omitted

from the table.

It can be seen from the first column in Table 6.2 that computing the layout of the dis-

placement grid—which includes tracing the grid, fold avoidance, and the propagation

of appearance properties from the base mesh—strongly affects the overall performance.

Specifically, the initial tracing takes significantly longer than several iterations of the

GPU spring-mass system. On the chess board, the initial grid can be traced slightly

faster, since less crossings of vertices over mesh edges have to be computed. Relax-

ation of the grid on the chess board converges in a single iteration—which is needed

only to compute the residuum. The reason is that the chess board is planar, and conse-

quently all updates in this first iteration are 0.

The second column in Table 6.2 shows that rendering the base mesh with displace-

ments is extremely fast even for high-resolution displacement meshes. The benchmarks

include the time required to upload the displacement mesh to the GPU, which means

that rendering is even faster as long as the displacements do not move. It is particularly

interesting to note that our method is fast enough to handle multiple medium sized dis-

placements at fully interactive rates. For resolutions up to 1282 even a displacement that

moves on the surface can be simulated at fully interactive rates. Compared to previous

GPU-based displacement approaches using subdivision [HLW07b], we thus achieve a

significant speed-up and we entirely avoid the need for a parameterization and dynamic

memory allocation on the GPU.

The convergence analysis of the relaxation process used to improve the local pa-

rameterization indicates good behavior and stability of our method. Initially we set all

masses to 3.9, damping and stiffness constants to κd = 15 and κs = 59, and the step-
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size to dt = 0.002. These values have been obtained empirically, and generally show

good convergence. It should be noted that κd as well as dt are adapted dynamically by

our approach.
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Figure 6.15: Quality evaluation of grid relaxation using three different grids. For all grids,
36 iterations were sufficient for convergence. The blue curve corresponds to a patch that was
placed in a region of high curvature, such that not all folds could be resolved. This results in a
lower quality.

In Figure 6.15, we show convergence plots for mesh relaxation using the mass-

spring system. Three 642 grids with the entangled topology were placed at different

positions on the Mannequin model (also see Figure 6.10). As can be seen, the relax-

ation process can improve the quality of all three meshes considerably, but on the other

hand, the relaxation of the grid that was placed around the nose—indicated by the blue

curve—stagnates after a number of iterations. This is due to the high curvature in this

area, which prevents folds from being completely resolved.

Using the entangled topology, we observe a performance increase of about 25%

for the solver when compared to the commonly used spring network depicted in the

right half of Figure 6.12. This stems from the fact that this topology requires less

forces to be gathered at each vertex, and that updates can be performed using less

rendering passes. Although this specific topology results in a quality that is typically

one point less when compared to the other topology—a fact which we mostly attribute

to numerical precision—the resulting grid is visually indiscernible.

6.6 Summary

In this chapter, we presented a novel real-time method to simulate geometric dis-

placements on triangle meshes which are independent of the mesh resolution. This

is achieved by computing a local ad-hoc surface parameterization in order to map a

given displacement field onto the surface.

Novel contributions include the use of a two step approach consisting of an initial
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layout phase to obtain a displacement grid while at the same time avoiding folds, and a

mass-spring-based relaxation step to optimize this grid towards isometry. We proposed

an entangled topology for our spring network which results in an efficient GPU-based

implementation using a constrained Gauss-Seidel solver with dynamic step control.

By performing a detailed analysis of this solver we showed that it quickly converges

and is thus well suited for real time applications. Furthermore, we have presented a

pixel-based technique to cut out an arbitrary patch of the base surface to render neg-

ative displacements that place dents into the base mesh in order to avoid costly depth

peeling. Our timings indicate that the method is fast enough to allow interactive place-

ment, editing, animation, and re-positioning of highly detailed displacement maps on

the surface.

Our method works best if the geometric features to be added are small in compar-

ison to geometric features of the base surface. However, if the surface has features on

a similar scale as the displacements, displacement mapping as such is ill-posed. In the

presence of such small features, our method fails to resolve all folds in the initial dis-

placement grid in the worst case. In this context it should also be noted that the local

curvature radius naturally limits the maximum height of displacements, but this is a

shortcoming shared by essentially all displacement mapping techniques.

In order to render carvings without resorting to depth peeling we intrinsically as-

sumed the existence of a 2D parameterization of the base mesh. If such a parameter-

ization is not possible or not provided, we can still either resort to an ad-hoc texture

atlas, or we can utilize local cutout masks as described before. The major drawback of

a texture atlas is that in the worst-case each triangle of the base mesh is mapped to a dif-

ferent location in texture space. This, however, requires to clip each displacement grid

against each such parameter discontinuity. It is clear, that such a discontinuity mesh-

ing severely affects the overall performance if patches are being positioned or moved

on the base surface. On the other hand, local cutout masks require to store a dynamic

amount of local texture coordinates and imply a texture fetch per displacement for each

fragment. As a third alternative it is possible to pre-compute a depth peel of static base

surfaces, assuming that such a pre-computed peeling has less discontinuities than a tex-

ture atlas. However, this direction was not further pursued; if no 2D parameterization is

present the default is a fallback to standard depth-peeling techniques to render negative

displacements.

In the future, the following areas still offer potential for additional research. Firstly,

GPU-friendly methods to obtain the initial displacement grid, including a method to re-

solve folds, would be beneficial in order to further reduce CPU workload. This direction
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will most likely be supported by the so-called Compute Shaders [Boy08] introduced by

DirectX 11. Secondly, alternative numerical solvers always have the potential to speed

up the process of relaxing the initial grid. So far, we tried a multigrid/CG solver, and the

contrained Gauss-Seidel solver discussed in Section 6.3.7. Specifically, the solver used

by Bridson et al. [BMF03] for cloth simulation might allow larger step sizes and result

in better numerical stability. Again, the implementational burden of more sophisticated

solvers could be alleviated by Direct3D’s novel Compute Shaders.

Figure 6.16: Results of the proposed displacement method (I). Left: Demonstrating that using
rotations to propagate directions does not fail at acute angles. Right: Augmenting a game
character to obtain a highly detailed and naturally looking appearance. The displacement was
given a light red hue in order to make it discernible. Devil Head mesh courtesy of Thomas
Heinrich.

Figure 6.17: Results of the proposed displacement method (II). Left: About 20 instances of a
flower height field are used to displace a sphere. Each displacement has a resolution of 128 2.
Right: A sphere is displaced by one starfish (512 2) and ten footsteps (each 160 × 378). Due
to our cutout approach to render carvings, we achieve a rendering performance of about 15
frames per second on a 1600× 1200 view port for each of these scenes.
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Figure 6.18: Results of the proposed displacement method (III). A water simulation on a cir-
cular domain is used to animate the displacement field. The simulation was pre-computed on a
2562 grid and has 319 time steps. We achieve a rendering performance of over 140 frames per
second on a 1600× 1200 view port. Base mesh courtesy of Aim @ Shape.

Figure 6.19: Results of the proposed displacement method (IV). Left: Our method is capable
of smooth transitions between base surface and displaced geometry. This is achieved simply
by providing height fields with a smooth fall-off to their zero-level. Furthermore, appearance
properties such as tangent frames, colors, and texture coordinates can be propagated from the
base mesh. Right: Positive and negative displacements at the same time can be handled by our
method.



Chapter 7

Gigapixel Images

Due to recent advances of CCDs (charge-coupled devices, see also Section 2.2) it is

by now possible to obtain single-exposure digital images with resolutions in excess of

22 megapixels. Furthermore, these images can be combined to form larger, panoramic

views by registration tools frequently bundled by camera vendors with their products.

Combined with a broad acceptance of digital photography, especially in the consumer

market, this fact has led to image resolutions of tens to a few hundreds of megapixels

being available even to ambitioned hobbyists.

While gigapixel images are not yet widespread enough to form a significant market

segment, they will eventually replace images of hundreds of megapixels in the same

way as megapixel images replaced early resolutions of a few hundred kilopixels. In or-

der to handle images at gigapixel resolutions and beyond, the traditional paradigms for

viewing and manipulating digital images have to be redesigned. Although established

techniques offer a large catalogue of useful techniques, they might prove completely

unfit to deal with the immense amount of data associated with tomorrow’s default res-

olutions.

Consequently, the first gigapixel images have sparked an academic interest, and the

great public interest in applications such as Google Earth [Gooa], Google Maps [Goob],

and their various commercial counterparts served as an additional catalysator.

7.1 Contribution

In this chapter we describe a framework to view and filter large, highly detailed images

without changing their binary representation—except for an offline pre-processing step.

The benefit of such a system is that multiple copies of the image are avoided. This is

in contrast to many traditional, commercially available image manipulation softwares,

145
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that try to keep the image in virtual memory, compute adaptive resolutions on the fly in

order to match the user’s display resolution, and that typically keep multiple copies to

allow Undo-functionality.

The major advantage of an approach that does not alter the binary representation

of the image can be plainly described by reduced storage requirements, which is of

paramount importance for any application handling large data sets. We show that by

a GPU-based implementation of filter operations that are evaluated only in a certain

region of interest (ROI) such as, e.g., the current view port, even complex filters can

be realized without sacrificing interactivity. The result is a gigapixel viewer that also

supports rapid prototyping of filters in a WYSIWIG environment.

In order to achieve these benefits, similar concepts as described in previous chapters

are employed. To name just a few, we store the image in a tile-quadtree, where each tile

is encoded using a custom compression scheme. This reduces bandwidth and storage

requirements, albeit at the cost of a pre-processing step. We show that by using a hierar-

chical vector quantization scheme based on Laplace-pyramids (see also Section 2.7 and

Section 2.8) a significant compression at high image fidelities can be achieved without

sacrificing rendering speed.

The viewer described here offers the standard viewing operations, i.e., pan, zoom,

and rotation. To make the interaction user-friendly, we describe an user interface that

uses the innovative and intuitive Nintendo WiiMote [Nin] as input device. The main

rationale behind choosing the WiiMote over standard input devices such as mouse and

keyboard is that we anticipate the future image viewer of choice to be high-definition

TV sets powered by so-called set-top boxes1. For this setting, a remote control like a

WiiMote seems to be the most reasonable and intuitive choice.

Our system addresses all key issues of a gigapixel viewer / manipulator, namely

1. Space Requirements. We describe how to compress and page gigapixel images

efficiently.

2. Bandwidth Requirements. Whenever changes to the working set, i.e., the part

of the image currently viewed are made, data has to be paged into core memory,

uploaded to the GPU, decoded, and rendered. By performing the decoding step

directly on the GPU, bandwidth requirements from the external storage device up

to the GPU’s video memory are efficiently reduced.

3. Interactivity. By utilizing a caching and pre-fetching mechanism, we hide laten-

cies of external storage devices. By tapping the GPU’s superior processing and
1A set-top box usually refers to a multimedia capable, ultra-compact PC that is directly attached to the TV set.
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bandwidth capacities we achieve interactivity even for complex image filtering

operations.

4. Usability. Using the Nintendo WiiMote as the input device of choice for our

gigapixel viewer, an intuitive and flexible user interface is designed. Only the

development of new filter operations is sufficiently complex to require the use of

mouse and keyboard. A tight visual feedback loop allows the user to design filters

interactively using a modularized filter graph.

7.2 Related Work

Acquiring gigapixel images is comparably new, even though the aforementioned reg-

istration tools have been around for a while. So far, the largest available images are

aerial photographs obtained by airborne cameras (see also Section 2.4). For instance,

Figure 7.1: An aerial photograph of the State of Utah, USA. Zoom onto the Kennecott Copper
Mine south-east of Salt Lake City. The complete image comprises 228 gigapixels and covers an
area of about 565 km× 435 km. At a bit rate of slightly under 2 bits (including LOD-hierarchy)
this image occupies about 75 GB. Data courtesy of US Geological Survey and The State of
Utah.

Figure 7.1 shows a part of an aerial photograph of the entire State of Utah, USA. The

image covers an area of about 565 km× 435 km at a resolution of 1 pixel per meter. The

image comprises around 228 gigapixels and occupies close to 685 GB in uncompressed

form. As demonstrated by Google Earth, such resolutions are becoming available for

many regions on Earth; for some regions resolutions may even be significantly better.
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Another source of high-resolution aerial photographs is the Blue Marble Next Gen-

eration project of the NASA [ASA] that covers the entire Earth at a resolution of 1 pixel

per 500 m× 500 m.

But also cameras mounted on the ground have recently been used to acquire gi-

gapixel images. Most notably, Graham Flint’s Gigapxl Project [Fli] uses an analog

camera equipped with high-definition, large photographic plates to acquire landscape

photographs of up to 4 gigapixels in a single exposure. The image is scanned after-

wards to yield a digital representation. The result is an unprecedented amount of detail

that cannot be explored on screen without zooming into different regions interactively.

Even when viewed on a full HD screen at a resolution of 1920 × 1080 pixels the finest

details can only be observed after zooming in by a factor of 45.

Since single-exposure photographs naturally will hit physical limits, Kopf et al. de-

scribe a system to capture gigapixel images by registering several hundres of smaller

images [KUDC07]. However, different exposure parameters result in different dy-

namic ranges for each of the subimages, and—potentially—different tones. The au-

thors therefore describe a system that not only joins these subimages into a single,

high-dynamic range image automatically, it also performs color equalization to yield a

color-continuous image. Furthermore, they describe a sophisticated viewer that takes

multiple viewing projections into account in order to result in a “natural” aspect ratio

of the image during viewing.

In contrast, we do not describe any specific data acquisition procedure, and we

do not address multiple projections. On the other hand, we address a compression

scheme that can be decoded directly by the GPU, and we describe a filtering system that

operates directly on the data to be viewed. This system is fundamentally different from

the streaming multigrid approach described by Kazhdan and Hoppe [KH08]. While

the latter system describes gradient-domain image operations that are employed as a

pre-process, i.e., to alter to data prior to viewing in order to perform color adjustments

etc., our system is targeted at rapid prototyping of digital image filters.

7.3 Algorithmic Overview

The framework presented here is based on the terrain viewer by Dick, Schneider, and

Westermann [DSW08]. The terrain viewer starts with an digital elevation map and an

orthographic texture. Then, a Laplace-pyramid is built as described in Section 2.8. This

pyramid is cut into tiles, thereby inducing a quadtree on the original data. Each tile is

encoded separately. During runtime, tiles are streamed to and decoded by the GPU as
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needed.

The major change between the work by Dick et al. and the framework described in

this chapter is that geometry has been completely removed from the terrain renderer.

Only a single, textured quad is rendered for each tile. In turn, since anisotropic texture

filtering is not necessary for an image viewer, a more sophisticated compression scheme

is devised in order to achieve bitrates of about 2 bits per pixel at high visual fidelity.

The user can then select a rectangular portion of the view port to define the region of

interest (ROI) in which filter operations are performed. Each filter is designed using a

module-based, interactive filter graph. An immediate visual feedback of changes made

to the filter is achieved by a GPU-based evaluation of the filter graph in the ROI. To

provide sufficient support for the filtering operations, the ROI is automatically extruded

by a filter-dependent amount of pixels. Furthermore, the ROI is always fixed in screen

space. For each pixel inside this region, the filter is evaluated and the filtered image is

presented. Outside this region, the original image is displayed.

Filter modules are written in HLSL augmented by a range of registers corresponding

to external parameters, input textures, etc. The modular concept lifts the design of new

filters to a higher layer of abstraction, since modules can be stored and re-used for later

designs.

The system provides several filter templates that classify the type of operation as

well as the amount of input and output data streams. These filter templates support

log-reduce, propagation, linear, and point operators. Once the filter graph is estab-

lished the system automatically determines the amount of temporary textures required

to store intermediate results by computing the girth of the filter graph. To visualize the

filter graph, an automatic layout is computed. The user can then modify the filter by

interactively connecting modules with each other.

7.4 Preprocessing

The purpose of the preprocessing step is to transform the image into a compressed

LOD-hierarchy, i.e., a quadtree. This tree contains image tiles of equal resolutions N2.

In our implementation, we chose N = 513. In an effort to balance disk seek times

versus disk transfer rate, we group 8 × 8 such tiles into a page, which constitutes the

smallest block that can be read from disk. Since tiles overlap in one pixel with their

respective neighbors to the right and the bottom, each page has an effective resolution

of 40962 pixels. By interpolating between two levels of this pyramid, the correct level

of detail can then be chosen and displayed.
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To compress the input image we first compute a Laplace-Pyramid using m = 2 and

a box kernel, i.e., we recursively compute averages of non-overlapping 2 × 2 pixel

blocks. Unlike the general algorithm described in Section 2.8, we stop this process as

soon as the coarsest level (which stores averages of regions in the original image) is

smaller or equal to N − 1 pixels. This level is then re-quantized to 24 bits per pixel2.

Additional mipmap levels are computed only for this coarsest level, for reasons that

will become clear later. The quantization error of the coarsest image is then propagated

to the next level in order to avoid error accumulation.

Since each level has four children which cover a quarter of their parent’s extent in

object space, each level i but the coarsest one interpolates one fourth of its coarser par-

ent level i + 1 bilinearly to obtain a prediction of the data in this image. That is, we

use a bilinear interpolation kernel in the expandm step of Section 2.8. The difference

to level i is then encoded by treating non-overlapping blocks of 2 × 2 RGB-pixels as

twelve-dimensional vectors. For these vectors, we start by computing a vector quan-

tization with 2 codevectors. If the residual error between the reconstructed image and

the original is above an user-defined threshold, we double the amount of codevectors.

This process is repeated until the user-defined error threshold is met. We finally store

the number of bits required to represent each index, the codebook, and the index set on

disk. This is repeated for all levels and tiles, until the entire image has been encoded.

As an alternative, the image can also be encoded using the S3TC DXT1 format

[INH99], but our custom compression scheme typically results in less than 2 bits per

pixel while DXT1 uses 4 bits per pixel. It is worth noting that the visual fidelity

achieved at this rate rivals JPEG compression at similar rates.

7.5 Rendering

To render the image, the CPU first computes the set of visible tiles as well as the LOD

λ for these tiles. We use an orthographic projection in our framework, for which the

view direction is always perpendicular to the image plane. Consequently, all visible

tiles share the same LOD, which can be trivially computed as the logarithmic ratio

of the width of the view port and its projection—measured in pixels—into the object

space of the image. By convention, λ = 0 corresponds to the finest level available, and

λ = n−1 corresponds to the coarsest level. We observe that at any time we need at most

two different of the discrete LODs, namely �λ� and �λ�. We therefore reconstruct two

mipmap levels for each but the coarsest tile and store them on the GPU for further use.

2Note that if the input image has a higher dynamic range, the bitrate can be increased.
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For the coarsest level, a full mipmap pyramid has been computed in the preprocessing

step.

For each visible tile its associated data is fetched from disk and uploaded to a single

GPU buffer. Buffers can be accessed in the pixel shader stage at a granularity of 32

bit words. We chose to use this type of memory object instead of multiple textures

[SW03] for two reasons. Firstly, each tile can have a different bitrate. If this rate is

not a multiple of 8 bits (and it rarely is) storing the compressed data in textures has the

undesirable side-effect of wasting lots of bits for padding. This also implies that if tiles

are stored densely on disk they have to be traversed on the CPU in order to insert these

padding bits. Secondly, using buffers reduces the amount of uploads to the GPU, since

codebook and index set can be stored together.

We proceed by sending the bit rate for the current tile to the GPU as a shader con-

stant, as well as an offset (in bits) describing where the index set begins. Refer to

Figure 7.2 for the layout of an exemplary buffer. The pixel shader can then reconstruct

each 2 × 2 pixel block by first computing the address of its index using bit arithmetic.

Then, up to two 32 bit fetches have to be performed in order to fetch the respective

index. After that, another up to two 32 bit fetches yield the codebook entry. Note that

we clamp codebook entries to a single signed 8 bit value per channel. Thus, each code-

entry comprises 12 bytes, of which only 3 bytes are needed per pixel. It is therefore

that two fetches are sufficient to obtain the correct codebook entry.

entries

r Codebook Indices

2x2 RGB Codevectors, 12 Bytes each

r bits per Index

Padding to next 32 bit wordBitrate stored in 1 byte

257
22

r
entries

Figure 7.2: Layout of GPU-buffers containing encoded tiles. Each buffer begins with 1 byte
specifying the bit rate r of the indices. Then, 2 r × 12 bytes codebook are stored. After that,
the 2572 indices, one per 2 × 2 pixel block (rounded up) are stored at r bits each. Finally, the
buffer is padded to the next 32 bit word.

To decode a tile at level i, we also need full access to its coarser parent at level

i + 1. Thus, if the parent is not yet resident on the GPU, we load the parent tile (and

its parents) recursively. To do so, each newly-loaded tile first checks whether its parent
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is resident. If not, it explicitly loads it, thereby resulting in a recursive pulling of

parents—in the worst case up to the root of the tree. Note that this worst case has only

linear complexity in the amount of levels, which is logarithmic in the image resolution.

Once a tile at level i and its parent are resident in GPU memory, the GPU can decode

the tile. Parents are decoded first and stored in a 24 bits per pixel RGB format. In a

first pass, the quarter of the parent that covers the same extent of the image domain as

the tile at level i is then copied to the current tile’s second mip-level. In a second pass,

the tile’s second mip-level is bound as a shader resource, the first, finer mip-level is

bound as a render target, and a quad covering all texels of this render target is rendered.

For each fragment generated in this manner, a bilinear fetch into the coarser, second

mip-level is performed and the difference that was encoded using vector quantization

is decoded. These two values are added and written into the render target. Figure 7.3

demonstrates this decoding step.

Final MipMap

Copy

Decode Differences

Interpolate

Add

Figure 7.3: Decoding of image tiles First, the quarter of the parent tile (pink) covering the same
portion of the domain as the current tile (green) is copied into the final mipmap’s second level.
Then, the second level is upscaled bilinearly and the decoded differences of the current tile are
added to result in the final mipmap’s first level.

The resulting tiles contain two mip-levels each. Unlike in terrain rendering, an

image viewer does not generate overdraw and tiles are not perspectively projected. As

a result, on a k megapixel view port, only 5
4
k texels are required to form the final image.

It is easy to see that even for large resolutions such as full HD (1920 × 1080 pixels)

only a small working set of about 7.5 MB is required. This leaves lots of GPU memory

to cache decoded parents and to perform pre-fetching of tiles.

The pre-fetching works as follows. We determine those tiles that are covered by a

circular pre-fetching region around the current center of view. As long as a time slice
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Figure 7.4: Gigapixel landscape rendered using our system. These images demonstrate the
large amount of detail available in this 4.5 gigapixel image. The image is compressed at about
2 bits per pixel (including LOD-hierarchy), resulting in a total size of 1.2 GB. The same image
encoded using JPEG tiles at a comparable fidelty occupies 1.93 GB. This is partly due to the
fact that the JPEG tiles were not encoded hierarchically. Data courtesy of Johannes Kopf and
Prof. Dr. Oliver Deussen, University of Konstanz, Germany.

is not expired, we load and decode tiles of this region, including their parents. Due to

the grouping of tiles into larger pages, disk seek times are reduced. The result is that

the renderer successfully hides occasional rapid pans.

Each tile within the viewing frustum is then rendered by rasterizing a single, tex-

tured quad. Correct filtering is performed automatically, because texels cannot be mini-

fied by more than a factor of two due to the dyadic layout of the quadtree.

A final issue that requires discussion in tile-based image rendering are possible arti-

facts occuring at tile boundaries. To avoid such artifacts, we always store 1 pixel overlap

to the right and bottom neighbors of each tile. Since mip resolutions are computed as

R(λ) =

⌊(
1

2

)λ−λmin

R(λmin)

⌋
(7.1)

by the Direct3D 10 API, each texture residing on the GPU has a nominal resolution of

5142 instead of 5132 to ensure a 1-pixel overlap for λ = 1. Texture coordinates are

now chosen in the range [0, 1− 512
514

], thereby interpolating up to the overlapping pixels

but not beyond. In theory, this results in a perfect removal of all discontinuities at

tile boundaries. However, since the compression scheme used for the tiles may assign

different colors to pixels adjacent to a boundary “from right” and “from left”, in some

cases minor artifacts may still be visible under close inspection. However, they are not

significant enough to be cognitively noticed by the user (see also the zoom sequence in

Figure 7.4 which is virtually free of such defects.)
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7.6 User Interaction

Figure 7.5: Photograph of a WiiMote with Nunchuk. The WiiMote (left) is used in for user
interaction. It is a low-cost device that is tracked by means of IR-based triangulation and
accelerometers. The Nunchuk (right) can be disconnected from the WiiMote and is not used in
this work. The image is under the Wikimedia Commons licence.

To provide the user with an intuitive interface, we use a Nintendo WiiMote [Nin] as

input device. Figure 7.5 shows a photograph of such a device. The WiiMote is tracked

by means of IR triangulation and accelerometric sensors. It communicates with the

Nintendo Wii console using a standard bluetooth protocol. Since it announces itself as

a standard Human Interface Device, it can be paired straightforwardly with any desktop

PC. The sensoric data can then be read by the PC at a rate of 100 Hz. Specifically, the

WiiMote contains an IR camera with a resolution of 1024 × 768 pixels and a field of

view of about 45◦. This camera is connected to a DSP that tracks up to 4 IR sources.

In addition to relative IR positions, button and accelerometric state is sent to the PC. In

the opposite direction, the PC can send commands to trigger the vibration function of

the WiiMote, to switch the four LEDs on the front on or off, and to play sounds.

To ensure correct tracking, Nintendo uses a so-called WiiBar, a device containing

4 IR LEDs that is connected to the Wii by a power-supplying cable. Luckily, third

party suppliers offer wireless WiiBars that basically consist of batteries and 4 IR LEDs.

Consequently, they can be placed anywhere without the need to be connected to the Wii

console. For a 30 inch display, we used two of these wireless WiiBars—one on top of

the display and one at the bottom—to compensate for the rather narrow field of view.

In our experiments, this setting worked sufficiently well.
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To access the WiiMote, we used the publicly available WiiYourself! library [gl.] in

combination with the commercial BlueSoleil bluetooth stack [IVT]. The entire setting

including WiiMote, wireless WiiBar, and BlueSoleil software costs less than 90 EUR

and works flawlessly. We used a point-and-click mechanism as navigation paradigm,

i.e., the user points at a specific location in the image and presses the trigger-like button

that is conveniently located on the bottom of the device. While the button is pressed, any

motion performed with the WiiMote is translated into pans or rotations. Furthermore,

by tilting the WiiMote up and down, the user can zoom in or out.

It should be noted that the WiiMote’s intended use is not the high-precision tracking

desirable for our purposes. Especially the accelerometric data is rather noisy. It is

thus necessary to implement a dead zone, i.e., a threshold angle to prevent unintended

zooming. Furthermore, it is extremely helpful to render a virtual cursor atop the image

since in this way the positional imprecision is compensated by the user automatically.

This avoids resorting to complex filters to smooth the input data, and results in a very

good usability of the system.

The only problem that still needs to be addressed are extremely large displays, for

which the distance between IR LEDs is too narrow to offer reasonable precision. In

case of such displays, we mandate to build a custom WiiBar replacement—which is a

trivial task, given that the only functional parts are batteries and IR LEDs.

In addition to the described interaction mode, we still offer the traditional mouse

and keyboard input combination. These devices are indispensable for the design of

filters, which is described in the next section.

7.7 Filtering Gigapixel Images

Image filters are an essential building block in many scientific areas. For instance, im-

age understanding seeks to computationally extract features such as edges and salient

points and to classify them. Such methods are employed in medicine, robotics, au-

tomatic surveillance systems and so forth. But the use of digital image filters is not

limited to scientific use. It is an integral part of digital photography, ranging from the

built-in DSPs of consumer-class digital cameras used to enhance the quality of the final

image to the filters implemented in photo retouching programs.

We define an image as a vector-valued (RGB) function I : D → [0, 1]3 on a finite

domain D ⊂ N
2. Although RGB values are typically represented by discrete values,

we will assume them to be continuous and normalized, since this makes the following

discussion easier. Digital image filters are then traditionally classified into the following
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groups, which are not exhaustive. For a thorough discussion of digital image filters we

would like to refer to the book by Jähne [Jäh05].

Figure 7.6: Different homogeneous point operators. Upper row from left to right: Original
grayscale image, thresholded image with a = 0.3 and b = 0.7, negative image. Bottom row
from left to right: gamma transformation with γ = 0.5, and gamma transformation with γ =
2.0. Data courtesy of Johannes Kopf and Prof. Dr. Oliver Deussen, University of Konstanz,
Germany.

Point operators. Such operators define a mapping Φ : [0, 1]3 → [0, 1]3 which may be

further parameterized. The important feature of all point operators is that they can be

evaluated for each pixel separately. Examples include color transformations, gray-scale

conversion etc. Point operators can be further classified as either being homogeneous or

inhomogeneous. Homogeneous point operators are independent of the actual position

of the pixel in the image. Examples include thresholding,

Φ1(I(x, y), a, b) :=

⎧⎪⎪⎨⎪⎪⎩
0, I(x, y) ≤ a

1, I(x, y) ≥ b

I(x, y) otherwise

, (7.2)

negation,

Φ2(I(x, y)) := 1− I(x, y), (7.3)
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gamma transformation,

Φ3(I(x, y), γ) := Iγ(x, y), (7.4)

and many more. Figure 7.6 shows the result of applying Φ1 through Φ3 to an image.

In contrast, inhomogeneous point operators depend on the position of the pixel in

the image. Typical examples include windowing functions, such as the sine-window

Φ4(I(x, y)) := sin
( xπ

width

)
sin

(
yπ

height

)
I(x, y) ∀x, y ∈ [1, width]× [1, height].

(7.5)

This mapping “fades” pixels to black towards the border of the image, as depicted

in Figure 7.7. Such filters are frequently employed before convolving signals in the

frequency domain (not discussed in this thesis) in order to avoid aliasing or frequency

leaking artifacts.

Figure 7.7: Sine-windowing function on an RGB image. Data courtesy of Johannes Kopf and
Prof. Dr. Oliver Deussen, University of Konstanz, Germany.

Linear filters. This group comprises all filters that can be realized using convolution.

Discrete convolution is defined as

[g � h](x, y) :=
∑
x′

∑
y′

g(x, y)h(x− x′, y − y′). (7.6)
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Typically such filters convolve an image with a significantly smaller filter kernel κ.

For each non-zero entry in κ a product between the respective filter coefficient and an

image pixel has to be performed. These products are then summed in order to yield the

final pixel value. For instance, a 3 × 3 averaging kernel can be denoted by

κ =
1

9

⎛⎜⎝1 1 1

1 1 1

1 1 1

⎞⎟⎠ (7.7)

Edge detection can be performed by computing partial derivatives of pixel intensities

with respect to the image’s x- and y-axes. The basic idea is to approximate and thresh-

old the modulus of the intensity gradient, ‖∇I(x, y)‖2. The intensity gradient can be

computed computed by centered differences, i.e.,

∂I(x, y)

∂x
=

I(x + Δx, y)− I(x−Δx, y)

2Δx
+ O

(
(Δx)3) . (7.8)

This equation can be derived by computing a linear Taylor expansion around (x, y).

The corresponding one-dimensional filter to compute the derivative is thus given as

κx =
1

2Δx

(
−1 0 1

)
, (7.9)

where Δx is the distance between two pixels. To achieve an estimate of the gradient that

is less sensitive to noise, κx can be convolved by a smoothing operation along the y-axis

before computing the gradient estimate. This results in the so-called Sobel-operator,

κSobel,x =
1

8

⎛⎜⎝1 0 −1

2 0 −2

1 0 −1

⎞⎟⎠ . (7.10)

Edge detection along the y-axis works analogously by using κSobel,y := κT
Sobel,x. Fig-

ure 7.8 shows a Sobel-filtered image.

Log-Reduce filters. Two-dimensional Log-Reduce filters work in a similar fashion as

the tensor-product reducem filters described in Section 2.8 in the context of Laplace

pyramids. The basic concept stems from the field of parallel computing, where results

that are distributed across several machines have to be reduced to a single result in an

“as parallel as possible” way. The operation of choice is to first reduce pairs of results,

then pairs of pairs of results, and so forth. This requires a logarithmic amount of re-
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Figure 7.8: A Sobel-filtered image. Data courtesy of Johannes Kopf and Prof. Dr. Oliver
Deussen, University of Konstanz, Germany.

duce steps. Since GPUs are also highly pixel-parallel, Log-Reduce filters are of great

importance in the context of efficient GPU-based filtering systems. If intermediate re-

sults are stored, this method can also be used to compute mipmaps. Among the many

uses of such filters is the efficient computation of minima and maxima of rectangular

texture regions. In GPU lingo, such filters require a logarithmic amount of rendering

passes, each of which requires a ping-pong swap due to the mutual read / write exclu-

sion. In each such pass, potentially overlapping blocks of pixels are fetched, reduced to

a single value, and written to a smaller output texture. Typically the resolutions of the

textures generated in this manner decreases dyadically. Figure 7.9 shows a maximum

filter implemented in this way.

Propagation filters. These filters are actually a sub-category of the more commonly

known infinite impulse response filters [PTVF02c]. The basic concept is to propagate

information in sweeps across the image. The propagation concept allows very powerful

filtering operations, such as the Euclidean distance transform described in Section 7.8.

7.7.1 Filter Graph

Our framework provides the user with a visual filter graph. Filter graphs have been

employed in a range of multimedia applications by using, for instance, Microsoft’s

DirectShow API. The basic idea is to compose complex filters from relatively simple,

re-usable modules. Figure 7.10 shows a schematic view of a detail-enhancement filter.

Using a filter graph results in an intuitive testbed for new filters, since it allows a higher
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Figure 7.9: A Log-Reduce filter to compute the maximum. The maximum of 128 2 pixel blocks
is obtained in 7 dyadic steps. Data courtesy of Johannes Kopf and Prof. Dr. Oliver Deussen,
University of Konstanz, Germany.

level of abstraction than specifying filters in a single function.

Parameter ’x’

Smooth

Difference

Input

A+xB

Output

A B

Figure 7.10: Schematic view of a filter graph. This filter computes details by subtracting the
input texture from a smoothed version. These details can then be enhanced (x > 0) or reduced
(x < 0).

An important aspect of the framework is that we provide an editor (depicted in Fig-

ure 7.11) in which new modules can be written. Each module is written using an aug-

mented version of Direct3D’s High-Level Shading Language (HLSL). To allow access
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to filter inputs, user-defined parameters, etc., special registers are introduced. They fol-

low the naming convention “$(name)”, where name is an unique identifier to determine

the respective register. Currently, two types of registers are supported. $(FilterInputi )

denotes the input texture to the current filter module, where i counts from 1. $(i ) de-

notes the ith user-defined parameter, counting from 1 as well. User-defined parameters

are declared in the editor by specifying a name and a floating point range. The system

then instantiates a slider for each parameter annotated by the respective name. The

slider can then be manipulated within the specified range. The scalar values currently

set by these sliders are sent to the GPU as a shader constant and they are used for each

subsequent update of the view port.

Figure 7.11: The editor used to write new filter modules. Filter modules are written in DirectX’s
High Level Shading Language augmented with additional registers. Furthermore, the user can
add filter parameters for which sliders are instantiated automatically in the user interface.

Shader modules are first parsed by our application, replacing all occurences of $(·)
by the respective entities which are managed by the application. After that, they are

combined into a technique3 by pre- and appending a header and a footer ASCII file.

The technique is then compiled by Direct3D’s HLSL compiler and sent to the GPU.

In addition to these registers, certain constants and variables are pre-defined, which

are summarized in Table 7.1. Each module has free access to both pre-defined variables

and its registers. The return value of each module must always be a single RGBα value.

3A technique is a Direct3D concept to group and maintain multiple shaders in one file.
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Table 7.1: Veriables pre-defined by our filtering framework.

Name Type Description

Pos float4 maps to the HLSL register SV POSITION

rel pos int2 current pixel coordinates relative to the upper left corner of the ROI

pixelsAround float4 amount of padding around the ROI

filterArea float2 contains the width and height of the selected ROI

backBufferSize float2 contains the width and height of the current view port

filterScaling float2 ratio of filterArea and backBufferSize

Pass int current rendering pass (not for point template)

numPasses int total number of rendering passes (not for point template)

Each module is stored in a human-readable and -editable ASCII format that speci-

fies further information about the module such as a name, an unique ID, its type, etc.

The entire filter graph is also stored in a human-readable ASCII format. This file spec-

ifies the header and footer to be used, as well as the amount of pixels about which the

user-selected ROI has to be extended in order to provide sufficient support for all filter

operations. The source code of the filter modules used is inlined in the file describing

the graph, and the connectivity between modules is also stored there. Thus, a complex

filter is completely determined by only this file, although modules can still be added or

removed.

7.7.2 Filter Templates

Since different filter modules may require different rendering operations, we classify

modules by their required rendering operations and provide the following three filter

templates. Each module must choose exactly one of these templates.

Point Template. This template is the easiest in terms of the rendering operations per-

formed. A single quad covering all texels of the output texture is rasterized and the

shader fragment specified in the module is executed. Since multiple texture fetches can

be performed, arbitrary convolutions in the spatial domain can be performed, of which

both kinds of point operators, homegeneous and inhomogeneous, can be seen as special

cases that have a support of 1 pixel only.
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Log-Reduce Template This template recursively fills a mipmap, i.e., a dyadic down-

sampling is intrinsically performed. Since the number of the current pass as well as the

total number of passes that will be performed is important for modules following this

template, both numbers are provided by pre-defined shader variables. Beginning with

i = 0, mip-level i is bound as shader resource and mip-level i + 1 as render target. A

quad covering all texels of mip-level i + 1 is rendered and for each fragment generated

in this manner the shader fragment is executed. Then, i is incremented. The shader

stops either after a user-defined maximum number of passes, or if the coarsest mip-

level has been written. Subsequent modules can then access the entire mip pyramid

generated in this way.

Propagation Template This template is further parameterized by one of four direc-

tions, thereby allowing propagation along the positive and negative x-direction as well

as the positive and negative y-direction. Propagation along the x-direction requires

w − 1 passes, where w is the width of the image. Analogously, propagation along the

y-direction requires h − 1 passes, where h is the height of the image. The rendering

of modules of this template begin by copying the input texture to a temporary texture.

This is necessary due to the mutual exclusive read / write access to textures on current

GPUs. One of these two identical textures is bound as a shader resource and the other

one as a render target. In each pass a single line covering an entire row (y-direction) or

column (x-direction) is rasterized into the render target. The shader fragment can then

fetch values of the previously updated line or row, combine them into a new value, and

write it to the current render target. After this sweep, results of odd passes will reside in

one texture while results of even passes will reside in the other one. It is thus necessary

to merge both textures such that one texture contains both odd and even results in a

final pass. Section 7.8 describes how an Euclidean distance transform can be computed

using this template.

7.7.3 Filter Graph Ordering and Resource Management

To layout the filter graph, we compute an ordering that allows us to place each module

below any of its predecessors. If a module m2’s input depends in any way on another

module m1’s output, then m1 is a predecessor of m2, denoted m1 � m2. Note that this

does not necessarily imply that m2 is directly connected to m1, it just implies that there

is a path beginning at an output slot of m1 that ends at an input slot of m2. Consequently

we seek to obtain an ordering where m1 �m2 � . . .�mn. The modules in this ordering

can then be traversed linearly and visualized from top to bottom without unnecessary
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cluttering of edges. Since � is not a binary sorting predicate, this ordering is best

computed by a method similar to selection sort. We first traverse all modules and select

the module m that has no predecessors. m is then removed from the list of modules,

and we proceed with the remaining modules until the ordering has been established.

Note that this method is not optimal with respect to its runtime, but since the amount of

modules in typical filter graphs is rather small and due to its implementational ease we

chose this particular algorithm.

This ordering can be directly re-used for automated resource management, since

the graph obtained by this ordering is the serialized dependency graph of the filter. A

texture storing temporary results from a module m1 is only needed for as long as there

exist at least one other module m2 that has not yet been evaluated such that m1 � m2.

Thus, the serialized filter graph can be traversed linearly for each output texture, and

textures can be recycled by a simple greedy strategy. Consequently, the amount of

temporary textures used corresponds to the girth of the serialized dependency graph.

7.8 Euclidean Distance Transforms Using Propagation Filters

In this section we discuss the implementation of an approximate discrete Euclidean

distance transform that is based on propagation filters. The resulting distance fields

have a very low error probability, and for each error a precise upper bound exists. The

section will closely follow our recent publication [SKW09], but whereas the original

paper discusses a stand-alone algorithm we also discuss its integration into the more

general gigapixel filtering pipeline.

The demand for such Euclidean distance transforms should be clear, since algo-

rithms that depend on distance transforms [RP66] or Voronoi diagrams [Vor08] seem

to be ubiquitous. For instance, the automatic analyzation of real-time video images at

ever increasing resolutions, medical data processing, and artistic applications are just

a few examples of a widely established technique. In nearly all cases that require dis-

tance transforms, algorithms capable of achieving throughputs of several million pix-

els per second are highly advantageous. We show that these high throughputs can be

achieved by exploting the GPU’s superior memory bandwidth and computing power.

The algorithm presented here is based on the vector propagation paradigm proposed by

Danielsson [Dan80], however, in order to tap the GPUs full potential, certain SIMD-

programming paradigms have to be used and the original algorithm has to be reformu-

lated in a data-parallel way.
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7.8.1 Related Work

Since Euclidean distance problems have been well studies, especially during the last

two decades, we provide a short overview of work specifically related to this field in

this section. For an exhaustive review of prior art we would like to refer the reader to

[JBS06, Cui99]. Furthermore, a broad overview of the construction and applications of

Voronoi diagrams is provided in [Aur91, OBSC99].

Considerable effort has been spent in order to accelerate the computation of distance

transforms as much as possible. The most promising algorithms approximate or solve

the aforementioned problems by using a sweeping strategy in O(N) [Dan80, Mul92,

SJ01], where N is the amount of pixels in the image. In contrast, algorithms following

the wavefront propagation principle such as the fast marching method [Tsi95, Set96,

HPCD96] typically result in a complexity of O (max(N, k · log2 k)), where k is the

amount of features, or Voronoi-sites.

Among the first approaches to approximate the distance transform were those that

replace the Euclidean distance metric by more tractable ones such as the Manhattan dis-

tance [TvW02], chamfer metrics [RP66, BM98, SB02], or octagonal metrics [KK79].

Especially chamfer metrics allow for a trade-off between performance and error, but

the distance fields computed with these metrics may not be acceptable in some cases

due to the inherent approximation errors.

Another class of methods tries to generate a distance transform that is accurate for

virtually all pixels with only spurious errors. The most prominent example is called

vector propagation [Dan80]. Although being conceptionally simple, highly accurate

results can be achieved with good performance [JBS06]. These methods store a vector-

valued pointer to a feature candidate for each pixel. These pointers are then propa-

gated using a structuring element called vector template. Multiple such templates are

sweeped in a simple fashion across the image. Danielsson describes two methods,

4SED and 8SED (SED being an acronym for sequential Euclidean distance), that ef-

fectively operate on a von Neumann- and a Moore-neighborhood. 4SED is obviously

faster and results in larger approximation errors.

Recently a practical algorithm to compute a precise discrete distance transform in

O(N) was proposed [MQR03]. However, this algorithm relies on frequent concurrent

read/write accesses—a very limited feature on GPUs that is not yet exposed in stan-

dard graphics APIs. It should be mentioned, however, that the compute shader in the

upcoming DirectX 11 API will offer such memory access [Boy08].

On a different avenue the use of GPUs has been mandated by several authors. The

potential of GPUs for various computational geometry tasks is discussed in [Den03].
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Closely in style to the continuous sweepline algorithm [For86], the use of triangle

meshes to model a local distance field around each feature is proposed in [HTCLM99].

Hardware depth-testing is exploited during rendering these meshes to generate a gen-

eralized Voronoi diagram. The distance transform can then be obtained from the depth

buffer. For applications that only need a distance transform in a shell around features,

variations of wavefront propagation methods have been shown to be highly efficient.

Using graphics hardware, such methods extrude features to prisms and wedges which

can be scan-converted efficiently [Mau03, SPG03]. Although these approaches gen-

erate precise results, they rely on generating triangle meshes and/or volumetric prim-

itives, and their complexity is not independent of the number of features. To avoid

excessive rasterization of distance meshes, a GPU-based framework to compute 3D

distance transforms using slice-based culling and clamping was proposed in [SOM04].

Splatting the distance functions for each feature point [ST04] avoids the generation of

meshes, but although even skeletons can be constructed this way, these approaches tend

to be severely fill-rate-bound due to overdraws.

In [RT06] the jump flooding paradigm was presented, a communication pattern to

quickly propagate information in highly SIMD-parallel computing environments such

as GPUs. This method is among the most promising ways to compute distance trans-

forms and generalized Voronoi diagrams since it offers a flexible trade-off between

precision and speed.

7.8.2 Problem Description

Throughout the description the notion of a feature will be used to describe the geo-

metric entities that will eventually become Voronoi sites. Features are distinguished by

pairwise different IDs. In case of the classical Voronoi diagram, features are points.

Among the generalizations commonly made, one allows lines and curve-segments as

features. To be able to construct such generalized Voronoi diagrams (see also Fig-

ure 7.12, leftmost image), we extend the notion of a feature to refer to any non-empty

set of (potentially disconnected) points that share an ID.

Given a set of points

P := {pi}N
i=1 ⊂ R

n (7.11)

and a set of features

S := {Fj}k
j=1 , Fj ⊆ P, (7.12)
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Figure 7.12: Different Voronoi diagrams. From left to right: A generalized Voronoi diagram
using points and curves as sites, an artistic Voronoi-based mosaicking filter using Gaussian-
distributed sites, and a Voronoi diagram consisting of first- (red lines) and second-order (green
lines) neighbor regions (please refer to the electronic version). Each image has a resolution
of 1600 × 1200 and was generated completely on a GPU. The two left images took less than
22 ms, the rightmost image took less than 31 ms.

an algorithm that computes a scalar field

Φ(pi) := min
j∈{1,...,k}

min
f∈Fj

‖pi − f‖2 (7.13)

is said to compute a discrete Euclidean distance transform of (P, S). Note that accord-

ing to the definition of S, all points used as a feature are contained in P , which is a

convention that does not affect generality. An algorithm that computes a labeling

L(pi) := argminj∈{1,...,k} min
f∈Fj

‖pi − f‖2 (7.14)

is said to compute a (generalized) discrete Voronoi diagram of (P, S). These two prob-

lems are closely related; in fact Equation (7.13) and Equation (7.14) can be turned

directly into a naı̈ve algorithm with a runtime complexity of O
(
N · | ∪j∈{1,...,k} Fj|

)
to

compute both. Note that in the continuous case a practical algorithm with a runtime

complexity of O (k · log2k) is only known for the classical Voronoi diagram. Since the

bounding curves and surfaces of the regions of continuous generalized Voronoi dia-

grams can be algebraic surfaces of arbitrary degree, a practical algorithm is not known.

7.8.3 Basic Algorithm

We first review the original vector propagation algorithm by Danielsson [Dan80] be-

fore adressing the changes necessary in order to execute the algorithm on the GPU

efficiently. These changes then give rise to a more general propagation filter paradigm

that can be seamlessly integrated into the gigapixel filtering pipe. For simplicity’s sake,

we will first assume all features to be single points and extend this restriction later to
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the generalized case.

0,0−1,0 0,0

0,−1−1,−1 1,−1

0,0 1,0 −1,0 0,0

1,10,1−1,1

1,0

Figure 7.13: 8SED vector templates. These templates were first proposed by Danielsson
[Dan80].

Given an N×M image of quadratic pixels P := {(i, j)} ≡ {1, . . . , N}×{1, . . . , M},
a set of features S ⊆ P , and a set of vector templates T := {{(k, l)} ⊂ Z

2}, where

{(k, l)} specifies pixel offsets belonging to one template, vector propagation works as

described in Algorithm 4.

Algorithm 4 Vector Propagation algorithm
Input:

Image P := {(i, j)} ≡ {1, . . . , N} × {1, . . . , M}
Set of features S ⊆ P
Set of vector templates T := {{(k, l)} ⊂ Z

2}
Output:

Euclidean distance transform of P

// Initialization:
for each (i, j) ∈ P do

if (i, j) ∈ S then
v(i, j) ⇐ (i, j)

else
v(i, j) ⇐ (∞,∞)

end if
end for
// Propagation
for each t ∈ T do

// Sweep all pixels
for each (i, j) ∈ P do

// Propagation update

v(i, j)← v
(
argmin(l,m)∈tdl,m + (i, j)

)
,

where dl,m := ‖v(i + l, j + m)− (i, j)‖2.
end for

end for
return ‖v(i, j)− (i, j)‖2 for each (i, j) ∈ P .

Note that the sweeping passes depend on the current template’s shape. Each of the
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propagation updates computes a new best candidate for the feature closest to (i, j) by

scanning the neighborhood defined by the template t around (i, j) for possible candi-

dates. The templates originally used for 8SED are depicted in Figure 7.13. The vectors

in each cell denote the offset to the current pixel (i, j), since this is the distance that

has to be added to the current candidate of the respective cell to compute its distance

to (i, j) (hence (i, j) corresponds to the cell marked 0, 0). The arrows on the templates

indicate the sweep direction, i.e., the leftmost template can be advanced from left to

right and top to bottom in either a row-major or column-major sweep.

7.8.4 GPU-based Implementation

The problem with the original vector templates is that two row-major or column-major

sweeps are required. Such sweeps cannot be parallelized efficiently. A simple modifi-

cation however will result in a sweepline algorithm that can be efficiently implemented

on a SIMD-parallel GPU, albeit at the cost of a slightly higher (by about 11%) memory

bandwidth usage. This modification is shown in Figure 7.14.

1,1

−1,−1

−1,0

−1,1

0,0 0,0 1,0

1,−1

1,1

−1,−1 0,−1 1,−1

0,0 0,0

−1,1 0,1

Figure 7.14: Modified vector templates. These templaces can be swept in four simple line-
sweeps.

We begin by storing the original image in an ID-texture using a 32 bit integer per

pixel. Each pixel stores an ID>0 if it is a feature and 0 otherwise. Furthermore, we need

two textures for the vector propagation—since using standard graphics APIs read and

write accesses are mutually exclusive—to store a 2D vector. We chose a format of 2×16

bit unsigned integers per pixel. Initialization proceeds as described by Algorithm 4.

More precisely, we bind both textures as render targets and render a quad covering all

texels. For each texel we then perform a texture lookup into the ID-texture.

If the ID for the respective pixel is 0, we store (216−1, 216−1), which is the largest

possible number in the chosen format. Otherwise, we store the fragment’s 2D position

in pixel coordinates (i.e., in the range [0 . . . N−1]× [0 . . . M−1]). Prior to performing

the actual vector propagation we generate all necessary sweeplines in a single vertex

buffer. This buffer can be recycled for all input images of the same resolution. In this

way, frequent costly allocation of vertex buffers is avoided.
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opposite sweep (analogously)

line copy

RR
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Figure 7.15: Ping-pong buffering for propagation filtering. Mutual read/write exclusion on
GPUs leads to the so-called ping-pong buffering. The first sweep reads from two lines of a
shader resource texture and writes to a single line of a render target texture. Updated lines are
indicated by ticks. Before the opposite sweep commences, a single line must be copied in order
to ensure that updated information is properly propagated.

We then start by binding one of the now-initialized textures as a (read-only) shader

resource, and the other one as a (write-only) render target. A single line is then raster-

ized to cover a single row (vertical sweeps) or column (horizontal sweeps) of texels of

the render target, thereby allowing SIMD-parallel processing. For each fragment gen-

erated in this way, four texels corresponding to the current template are fetched from

the source texture in a pixel shader. From these texels a new best candidate is computed

according to the propagation algorithm. The result is written to the render target. After

each line a ping-pong swap is performed to exchange shader resource and render target.

The sweepline is then advanced by one texel, and the sweep proceeds until the end of

the texture is reached.

After each sweep one of the two textures will contain all updated even lines while

the other will contain all odd updates (see Figure 7.15). Normally this requires a merge

operation prior to the next sweep. However, by grouping sweeps with opposite direc-

tions into pairs the merge operation is reduced to a single line copy.

In this way, textures have to be merged only after each pair of sweeps by rendering

a quad that covers the entire destination texture. For each fragment thus generated, a

pixel shader discards every second fragment in order not to overwrite the updates rows

or columns in the render target. All surviving fragments just copy their value from the

source texture. After this merge operation is completed, it is repeated analogously to
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Figure 7.16: Example computation of a Voronoi diagram. From left to right: Original image
with three features, results after sweep to the right and left, and results after sweep down and
up. In the final image, a precise continuous Voronoi diagram has been overlaid. Pixels that are
colored using green/blue can be associated with green or blue, since they have exactly the same
distance to the respective features.

update the other texture.

Once the propagation is finished, each fragment’s ID is obtained by a simple lookup

into the ID-texture. Boundaries of Voronoi regions fall between pixels where IDs

change. The distance transform is obtained by re-computing the distance between the

closest feature and the fragment’s position for each fragment. By assigning the same

ID to multiple pixels in the ID-texture, generalized Voronoi diagrams are obtained.

Furthemore, by propagating k best candidates and sorting them in each propagation

update, k−NN Voronoi diagrams [Cui99] can be generated that have been employed in

procedural texturing and modeling [Ols04]. The rightmost image in Figure 7.12 shows

such a diagram for k = 2, where brightness corresponds to the difference in distance

between the second nearest and the nearest feature. As a result, the brightness is strictly

positive everywhere except at first-order Voronoi boundaries where it vanishes.

The result of a complete run of this algorithm is illustrated in Figure 7.16. Each dia-

gram shows the classification of pixels after each sweep, including immediate merging

of the two partial ping-pong results. After the first sweep features “fan out” at a 90◦ an-

gle to the right. The sweep in the opposite direction is not able to correctly classify the

two green cells to the right, since they do not have any candidates to choose from except

for themselves. Note that such cases will always be removed with the next sweep and

that such “islands” cannot occur at the line at which the last sweep begins, since one of

the three prior sweeps would have removed them. In this example two pixels have the

same distance to the blue and the green features. Their final classification is dependent

on the sweep- and the computation-order.
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7.8.5 Integration into the Gigapixel Filter Pipeline

From the discussion of the rendering operations involved for computing the distance

transform it is immediately clear that the Propagation template is custom-tailored for

this problem. Consequently this method is integrated into the gigapixel filtering pipeline

straightforwardly. However, the merge operation that was described as a necessary step

for the Propagation template can significantly slow down the computation of distance

transforms. We thus check for all occurences where all modules succeeding a sweep

perform a sweep into the opposite direction. If this is the case, the merging step can

safely be skipped. Otherwise it must be performed. This simple change to the way the

ropagation template works ensures that no unneccessary merging of data is performed.

7.8.6 Errors in 2D Vector Propagation

r

Figure 7.17: Worst-case error analysis for 2D vector propagation. In both images, the gray
point should be associated with the green feature. However the gray pixel’s sight to the green
feature is obstructed by direct neighbors that are closer or equally close to other features.

Errors in vector propagation only occur if a pixel cannot be “reached” by its closest

feature during propagation. This means there is a pixel whose entire Moore-neighborhood

points to other features. Such a situation is depicted in the left part of Figure 7.17. The

gray pixel in the upper right is closest to the green feature, but cannot be reached be-

cause all its neighbors are closer to other features. In terms of Voronoi regions (bold

black lines in the figure) this means the existence of a Voronoi region that contains

the center of a pixel but no center of any of its neighbors. Consequently, circles

around each of the “obstructing” points through their associated feature must not con-
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tain the feature that would be correct for the mis-classified pixel. As a conclusion,

the closer the actual feature of the mis-classified pixel is to these circles, the higher

the worst-case relative error. The relative error can be shown to be less or equal to(√
170−√169

)
/
√

169 < 0.3% [Cui99]. This case is depicted in the left half of Fig-

ure 7.17: the correct distance between the green feature and the gray pixel would be√
169, while it is falsely asigned a value of

√
170.

In [Dan80] the maximum absolute error was computed as

εmax(r) = r + γ −
√

r2 − γ, where

γ ≈ 1− cos 24.4698◦. (7.15)

Here, r is the distance between the correct feature of a mis-classified pixel and an

obstructing pixel. Thus, the error can be bound by

lim
r→∞

εmax(r) = γ ≈ 0.08982 pixels. (7.16)

However, in our tests we found a larger absolute error for our algorithm. Running an

exhaustive search on all configurations of three features on a 32× 32 image, we found

the error to be bounded by

εmax ≤
√

485−
√

481 ≈ 0.091033 pixels. (7.17)

The corresponding case is shown in the right half of Figure 7.17. It is a very patho-

logical case, though, since two of the obstructing pixels are equally far from the green

feature and either the blue or the red one. Nevertheless, depending on the propagation

order this can lead to the observed error. Note also that in this case Danielsson’s as-

sumption that the mis-classified pixel is assigned the value r + 1 is no longer valid.

Since the absolute error decreases with increasing r, this case results in the largest

maximum error possible.

7.8.7 Performance of the Euclidean Distance Transform

In this section we provide results and perform a thorough comparison to the jump flood-

ing algorithm (JFA) [RT06]. Although other GPU-based methods have been proposed

recently, e.g., the fast hierarchical algorithm (FHA) [CK07], in our opinion JFA of-

fers the best trade-off between speed and approximation error among all previous ap-

proaches.
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Bandwidth & Runtime Complexity. First we will compute the memory traffic caused

by our method for an image of resolution N2, since this is a major limiting factor. It

is assumed that all references to features will be stored as 2 × 16 bit integer values.

Each read and write access will be counted separately.

During line-sweeps, for each rasterized pixel four vectors are read and one is writ-

ten. There are (N − 1) · N ≈ N2 intermediate output pixels per sweep. Furthermore,

after each pair of sweeps, a merge-operation is necessary. This operation reads a total

of N2/2 pixels from one texture and copies them to another buffer. Since this has to be

performed in both directions, it results in a total of 2 · N2 accesses. For two pairs of

sweeps less than (2 · 2 · 5 + 2)N2 = 22N2 32 bit accesses are made, thus resulting in

less than 88 bytes of memory traffic per pixel.

In comparison, JFA requires log2 N passes, each writing N2 intermediate output

pixels. Per pixel, a total of 9 values (modulo boundary cases) is read. Hence, JFA

results in about log2 N ·N2 · (9+1) memory accesses, or less than 40 · log2 N bytes per

pixel. Consequently, our method is less likely to become bandwidth-limited than JFA

for large images, since its traffic per pixel is independent of the image resolution.

Our method compares four distances per intermediate output pixel multiplied by

four sweeps, while JFA requires nine comparisons per intermediate output pixel. Thus,

the theoretical complexity of our method is O (16×N2) and O (9×N2 · log2 N) for

JFA, where N2 is the image resolution.

However, it should be noted that the 2D JFA can achieve competitive results, since

it generally exploits GPU parallelism better than 2D vector propagation.

Empirical Validation. All tests presented here were run on an Intel Core2Duo 6600

processor clocked at 2.4 GHz running Windows Vista. The machine was equipped with

2 GB DDR2 RAM and an NVIDIA GeForce 8800 GTX with 768 MB of video RAM.

The CPU version of our algorithm is carefully hand-tuned and runs on a single core

to maximize caching benefits. We were able to run the jump flooding algorithm (JFA)

[RT06] on the very same machine achieving about 185 fps for a resolution of 5122. This

corresponds to roughly 46.25 Mpixels/sec. JFA is likely to perform differently in other

resolutions, but sadly the original OpenGL-based application is locked at 5122 pixels.

Since the timings for JFA are incomplete, they are omitted from Table 7.2.

Most notable in the results displayed in Table 7.2 is the sudden decrease in CPU

performance at resolutions of 20482 and beyond which is due to cache limitations.

Since we store images on the CPU in x-major order, at a resolution of 20482 sweeps

in the x-direction are about five times as expensive as sweeps in the y-direction. The
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Table 7.2: Performance of the Eucliden distance transform. We specify both the time per frame
in milliseconds and the achieved pixel rate in pixels per second (1 Mpixel = 2 20 pixels).

Resolution CPU time CPU pixel rate GPU time GPU pixel rate GPU Speedup

1282 1.04 ms 14.96 Mpixel/sec 2.50 ms 6.23 Mpixel/sec 0.42×
2562 4.60 ms 13.60 Mpixel/sec 4.21 ms 14.84 Mpixel/sec 1.09×
5122 20.02 ms 12.49 Mpixel/sec 7.42 ms 33.68 Mpixel/sec 2.70×
10242 91.83 ms 10.89 Mpixel/sec 15.14 ms 66.02 Mpixel/sec 6.06×
20482 696.6 ms 5.74 Mpixel/sec 41.68 ms 95.96 Mpixel/sec 16.72×
40962 2751 ms 5.82 Mpixel/sec 186.5 ms 85.79 Mpixel/sec 14.74×
81922 11366 ms 5.63 Mpixel/sec 1262 ms 50.70 Mpixel/sec 9.00×

reason is that sweeps in the y-direction are perfectly cache-coherent since in this case

x-rows can be processed sequentially. Different storage layouts (i.e., block-major or

Z-order) could alleviate this problem to a certain extent, but were not investigated.

On the GPU, caching issues only occur at 40962 and beyond, and they are by far

less severe than on the CPU. On the other hand, for small resolutions the GPU’s perfor-

mance is comparable to the CPU implementation or even less. The reason is that in this

case the GPU suffers from draw-call overheads and the relatively small amount of par-

allelism due to the short lines being rasterized. For our purpose, we can run full-screen

filtering on a 2560×1600 Apple Cinema display at about 23 fps, which is sufficient for

interactive exploration most of the time. If the user desires higher frame rates, a smaller

area can still be selected for filtering.

To validate the likelihood of errors to occur and to measure the magnitude of errors,

we reproduced the experiment of [RT06]. Our method was run on images of a resolu-

tion of 5122 that were randomly filled with varying amounts of Laplacian-distributed

features. Over 10,000 runs were generated for amounts of features between 100 and

10,000. From 100 to 5,000, the amount of features was varied in steps by 100, and be-

tween 5,000 and 10,000 in steps of 250. As can be seen in Figure 7.18, one of the most

interesting properties of this algorithm is that the pathological cases leading to errors

require a lot of empty area and a very specific configuration of spurious features. Con-

sequently, with increasing amounts of features, the number of errors decreases. This is

especially useful for applications seeking to compute distance transforms of contours,

since errors are extremely unlikely to occur in this setting. For random distributions of

features the error rate was less than 0.56 per Mpixel. The maximum absolute error that

occured was exactly
√

485 − √481 pixels, as discussed in Section 7.8.6. The corre-
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Figure 7.18: Empirical error analysis. Top: Likelihood of an error to occur for different
amounts of features. Middle: Maximum absolute and relative errors. Bottom: Average ab-
solute and relative errors.

sponding relative error is about 0.3%. Also, the average error that occured was about

one order of magnitude smaller, as can be seen in the bottom diagram. This further

indicates that the maximum error is highly unlikely. Furthermore, the average error

decreases with increasing distance, which is a feature specific to vector propagation

[JBS06].

7.9 Summary

We presented a framework to render and filter gigapixel images at interactive rates. This

interactivity allows the immediate visual feedback of filter results. The framework can

thus be used as a rapid prototyping testbed for digital filter design. Furthermore, the

binary representation of the input data is never altered during visualization, resulting in

significantly reduced storage and memory requirements when compared to previous im-

age manipulation tools. The hierarchical vector quantization employed to compress the

imput images results in bit rates around 2 bits per pixel while offering a visual fidelity

that rivals the JPEG standard at similar resolutions. Compressing the 4.5 gigapixel im-
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age of Figure 7.12 took about 40 minutes on an Intel Core2Quad Q6600 using four

encoder threads. Frame rates naturally depend on the filter complexity. If no filtering is

performed frame rates of several hundred frames per second can be maintained.

Furthermore, we integrated propagation filters into the gigapixel filter pipeline. We

demonstrated the benefits of this particular filter types by a framework to compute dis-

crete distance transforms, Voronoi diagrams, and generalized Voronoi diagrams. This

particular filter type runs at high-speed and is precise in the sense that the absolute error

can be strictly bounded from above by
√

485 −√481 < 0.091034 pixels. Also, errors

are highly unlikely to occur. This filter can be used either for image-analysis purposes,

or as a building block for artistic filters that operate on gigapixel images. Some of such

artistic filters are shown in Figure 7.19.

Figure 7.19: An example for artistic filters using Voronoi diagrams. From left to right: Original
768 × 1024 picture of a Red Magic Daylily (Hemerocallis fulva longituba), Voronoi diagram
with 1 K Gaussian distributed features and region boundaries, Voronoi diagram with 10 K
Gaussian distributed features. Voronoi regions are colored by the color of the original image at
the respective Voronoi site. Each image was generated in less than 13 ms.
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Chapter 8

Conclusions

This thesis presented methods to synthesize, augment, and render highly detailed digital

models. Although the data used in the various chapters of this thesis differs significantly

in size and type, we showed that certain paradigms are highly beneficial in order to tap

the GPUs full potential. These include hierarchical data compression for large-scale

data sets such as point clouds, digital elevation maps, and gigapixel images. Only by

using an offline preprocessing stage to organize the data into a hierarchical LOD repre-

sentation can interactive frame rates be achieved. The reason for this is two-fold. First

of all, hierarchical methods are best suited to reflect and organize the overwhelming

amount of details present in these data sets at multiple scales. Secondly, as data sets

continue to grow, methods that seek to compute such hierarchical organizations during

rendering will not be able to scale favourably.

But even if hierarchical preprocessing has been widely accepted in the computer

graphics community, it is not the only key to achieve interactive frame rates for even the

largest models available. The von Neumann architecture of today’s computers implies

relatively narrow busses that tend to limit the overall performance drastically. In order

to overcome these limitations, GPU-friendly data compression is not only beneficial

but mandatory. Only if the models to be displayed are decoded directly on the GPU

can all bandwidths up to the GPU be virtually increased. The concept of decoding data

as late as possible in the rendering pipeline is further fostered by the GPU’s extremely

high internal bandwidths.

Once interactivity is achieved, the user can successfully explore the rich amount of

details present in the data, and highly intuitive and effective data manipulation environ-

ments can be devised. On the other hand, if applications cannot maintain interactivity,

their usability value quickly deteriorates, up to the point where they actually become

inferior to print media, since the latter offer vastly superior resolutions when compared

179
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to today’s display technologies.

A similar argumentation holds for models that are either fully synthesized or com-

posed on the fly. Only with interactive environments can complex editing operations

be performed effectively. In case of the fractal terrain editor discussed in this thesis we

have also shown that editing operations that have been deemed infeasible before can

suddenly become highly intuitive if only the user is provided with rapid visual feed-

back. The reason is that the creativity of humans cannot be over-estimated, especially

if their capability to quickly correct actions that did not show the desired result is in

question.

Finally, we would like to note that the tremendous success of systems like Google

Earth has foremost demonstrated that people are tired of looking at still-images. They

want intuitive, highly interactive and immersive environments that allow them to ex-

plore highly detailed models and to interact with them instead of just looking at them.
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[Man83] Benôit Mandelbrot, The fractal geometry of nature, third ed., W.H. Freeman, 1983.

[Mat04] Oliver Mattausch, Practical reconstruction and hardware-accelerated direct volume ren-

dering on body-centered cubic grids, Master’s thesis, Technische Universität Wien, Aus-

tria, 2004, http://www.cg.tuwien.ac.at.

[Mau03] S. Mauch, Efficient algorithms for solving static hamilton-jacobi equations, Ph.D. thesis,

California Institute of Technology, Pasadena, CA, Mar. 2003.

[MHG01] Lukas Mroz, Helwig Hauser, and Eduard Gröller, Space-efficient boundary representation
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[RHSS98] Stefan Röttger, Wolfgang Heidrich, Philipp Slussalek, and Hans-Peter Seidel, Real-time

generation of continuous levels of detail for height fields, Proceedings of WSCG, 1998,

pp. 315–322.

[RL00] Szymon Rusinkiewicz and Marc Levoy, QSplat: a multiresolution point rendering system

for large meshes, ACM Computer Graphics (Proceedings of ACM SIGGRAPH), vol. 27,

2000, pp. 343–352.

[RP66] A. Rosenfeld and J.L. Pfalz, Sequential operations in digital picture processing, Journal

of the ACM 13 (1966), no. 4, 471–494.

[RPZ02] Liu Ren, Hanspeter Pfister, and Matthias Zwicker, Object space ewa splatting: A hard-

ware accelerated approach to high quality point rendering, Computer Graphics Forum

(Proceedings of Eurographics) 21 (2002), no. 3, 461–470.

[RT06] G. Rong and T.-S. Tan, Jump flooding in gpu with applications to Voronoi diagram and dis-

tance transform, ACM Symposium on Interactive 3D Graphics and Games, 2006, pp. 109–

116.

[SA08] Mark Segal and Kurt Akeley, The OpenGL® graphics system: A specification, version 3.0,

August 2008, http://www.opengl.org.

[Sak93] Georgios Sakas, Modeling and animating turbulent gaseous phenomena using spectral

synthesis, The Visual Computer 9 (1993), no. 4, 200–212.

[Sau88] Dietmar Saupe, Point evaluation of multi-variable random fractals, Visualisierung in

Mathematik und Naturwissenschaft, Bremer Computergraphik Tage, 1988.

[Sau89] , Simulation und Animation von Wolken mit Fraktalen, Informatik Fachberichte

Vol. 222, Proceedings of GI Jahrestagung, I, Computergestützter Arbeitsplatz, 1989,
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[ZRS05] Rhaleb Zayer, Christian Rössl, and Hans-Peter Seidel, Setting the boundary free:

a composite approach to surface parameterization, Proceedings of the ACM SIG-

GRAPH/Eurographics Symposium on Geometry Processing, vol. 3, 2005, Article No. 91,

p. 91.


