
Mining sequence data in R with the TraMineR package:

A user’s guide1

(for version 1.8)

Alexis Gabadinho, Gilbert Ritschard, Matthias Studer
and Nicolas S. Müller

Department of Econometrics and Laboratory of Demography
University of Geneva, Switzerland

http://mephisto.unige.ch/traminer/

March 18, 2011

1This work is part of the research project “Mining event histories: Towards new insights on personal
Swiss life courses” supported by the Swiss National Science Foundation under grants FN-100012-113998
and FN-100015-122230.

http://mephisto.unige.ch/traminer/

2

Acknowledgments: TraMineR was mainly developed on a Ubuntu/Linux system with several
open-source free tools and programs, including of course R and the LATEX language used to write
this manual. We would like to thank all the contributors to those free softwares. We also would like
to thank Cees Elzinga for providing us the code of his CHESA software for sequence analysis, which
was helpful to program some of the metrics he introduced to compute distances between sequences.
Thanks also to the participants of the Research Seminar in Statistics for the Social Sciences and
Demography in Geneva as well as to the participants of the Workshop on Sequential Data Analysis
held in Lund, Sweden, May 8-9 2008, for their useful remarks and for β-testing earlier versions of
the package. Thanks also to the Swiss Household Panel who authorized us to use a sample of their
data, and to D. McVicar and M. Anyadike-Danes for the permission regarding the mvad data set
they used in an article of the Journal of the Royal Statistical Society. Those data sets are included
in the TraMineR package and are used for illustrating this user’s guide.

Reporting bugs: We have indeed carefully tested the package. Nevertheless, we cannot exclude
that there remain programming errors and encourage you to report any bugs you may encounter to
the package maintainer who is presently alexis.gabadinho@unige.ch. You will thus contribute
to improve the package.

Referencing TraMineR: Thank you for citing this User’s guide, i.e.

Gabadinho, A., G. Ritschard, M. Studer and N. S. Müller
Mining sequence data in R with the TraMineR package: A user’s guide
University of Geneva, 2010. (http://mephisto.unige.ch/traminer)

when presenting analyses realized with the help of TraMineR.

Contents

1 Introduction 9
1.1 Aims and features of the TraMineR package . 9

2 A short example to begin with 11
2.1 State sequence analysis . 11
2.2 Event sequence analysis . 16

3 The TraMineR package 18
3.1 Loading, using and getting help . 18
3.2 Data sets included in the TraMineR package . 20

3.2.1 The actcal data set . 20
3.2.2 The biofam data set . 20
3.2.3 The mvad data set . 21
3.2.4 Other data sets borrowed from the literature 23

3.3 Performance and memory usage . 23

4 Definition and representation of longitudinal data formats 25
4.1 Ontology . 25

4.1.1 States and events . 25
4.1.2 Single or multichannel . 26
4.1.3 Time reference: Internal and external clocks 27
4.1.4 One or several rows per individual . 27
4.1.5 Ontology . 27

4.2 Longitudinal data representations . 28
4.2.1 The ‘states-sequence’ (STS) format . 28
4.2.2 The ‘state-permanence-sequence’ (SPS) format 30
4.2.3 The vertical ‘time-stamped-event’ (TSE) format 30
4.2.4 The spell (SPELL) format . 31
4.2.5 The ‘person-period’ format . 31
4.2.6 The ‘shifted-replicated-sequence’ format (SRS) 32

4.3 Definition and properties of categorical sequences 32
4.3.1 Categorical sequences . 32
4.3.2 Time axis . 33
4.3.3 Subsequences . 33

5 Importing and handling longitudinal data with TraMineR 34
5.1 Importing data sets into R . 34

5.1.1 Reading data from other statistical packages 35
5.1.2 Reading data from text files . 36
5.1.3 Data storage in R . 37
5.1.4 Compressed and extended format . 37

3

4 CONTENTS

5.2 Converting between formats . 38
5.2.1 Converting between compressed and extended formats 38
5.2.2 The seqformat function . 39

6 Creating state sequence objects 46
6.1 Creating a state sequence object . 46

6.1.1 Creating a sequence object from SPS-formatted data 47
6.1.2 Creating a sequence object from SPELL-formatted data 48

6.2 Attributes of sequence objects . 50
6.2.1 State codes . 51
6.2.2 Alphabet . 52
6.2.3 Color palette . 53
6.2.4 State labels . 53
6.2.5 Starting time . 53

6.3 Summarizing sequence objects . 53
6.4 Indexing and printing sequence objects . 54
6.5 Truncations, gaps and missing values . 55

6.5.1 Introduction . 55
6.5.2 Handling the different kinds of missing values 57

7 Describing and visualizing state sequences 62
7.1 General principle of TraMineR sequence plots . 62

7.1.1 Color palette representing the states . 62
7.1.2 Plotting the legend separately . 62

7.2 Describing and visualizing sequence data sets . 63
7.2.1 List of states present in sequence data . 64
7.2.2 State distribution . 64
7.2.3 Sequence frequencies . 67
7.2.4 Transition rates . 70
7.2.5 Mean time spent in each state . 70

7.3 Describing and visualizing individual sequences . 71
7.3.1 Visualizing individual sequences . 71
7.3.2 Finding sequences with a given subsequence 72

8 Sequence characteristics and associated measures 74
8.1 Basic sequence characteristics . 74

8.1.1 Sequence length . 74
8.2 Distinct states and durations . 75
8.3 Summarizing the DSS . 76

8.3.1 Number of subsequences . 76
8.3.2 Number of transitions . 76

8.4 Summarizing state durations . 77
8.4.1 Variance of the state durations . 77
8.4.2 Cumulated state durations . 77
8.4.3 Within sequence entropy . 77

8.5 Composite measures of sequences complexity . 85
8.5.1 Sequence turbulence . 85

CONTENTS 5

9 Measuring similarities and distances between sequences 91
9.1 Number of matching positions . 91
9.2 Longest Common Prefix (LCP) distances . 92

9.2.1 LCP based metric . 92
9.2.2 Computing LCP distances . 93

9.3 Longest Common Subsequence (LCS) distances . 94
9.3.1 LCS based metric . 94
9.3.2 Computing LCS distances . 95
9.3.3 LCS distances with internal gaps . 95

9.4 Optimal matching (OM) distances . 96
9.4.1 The insertion/deletion cost . 96
9.4.2 The substitution-cost matrix . 96
9.4.3 Generating optimal matching distances . 97
9.4.4 LCS distance as a special case of OM distance 99
9.4.5 Optimal matching with internal gaps . 99

9.5 Clustering distance matrices . 101

10 Analysing event sequences 104
10.1 Creating event sequences . 105
10.2 Searching for frequent event subsequences . 106

10.2.1 Plotting the results . 106
10.3 Time constraints . 107
10.4 Identifying discriminant event subsequences . 109

10.4.1 Plotting the results . 109
10.5 More advanced topics and utilities . 110

10.5.1 Looking after specific subsequences . 110
10.5.2 Counting the number of occurrence in each event sequence 111
10.5.3 Selecting event subsequences . 111
10.5.4 Duration of event sequences . 112

A Installing and using R 113
A.1 Obtaining and installing R . 113
A.2 R basics . 113
A.3 Data manipulation in R . 114

A.3.1 Creating and printing objects . 114
A.3.2 Vectors . 114
A.3.3 Data frames, matrices and lists . 115
A.3.4 Accessing and extracting data . 117

A.4 R libraries . 118
A.5 Some other useful functions . 119

A.5.1 The apply function . 119
A.5.2 The table function . 119

A.6 Creating and saving graphics . 119
A.7 Performance and memory usage . 120

B Information about TraMineR content 121

Bibliography 125

List of Tables

3.1 State definition for the activity calendar (actcal data set) 21
3.2 Covariates and state variables of the activity calendar (actcal data set) 21
3.3 State definition for the biofam data set . 22
3.4 List of Variables in the biofam data set . 22
3.5 List of Variables in the MVAD data set . 23
3.6 Performance and memory usage . 24

4.1 Sequence data representations . 29
4.2 Sequence data representations: Examples . 29
4.3 Living arrangements - SHP . 31

5.1 Considered events of the activity calendar (actcal data set) data set 41
5.2 Events associated to each state transition . 41
5.3 Structure for the spell format . 43

6.1 Start and end of the sequences in the ex1 data set 57
6.2 Indexes of missing values in the three parts of the sequences 58

6

List of Figures

2.1 A short example - Plot of 10 first sequences (top-left), plot of 10 most frequent
sequences (top-right) and state distribution plot (bottom-left) - mvad data set . . 12

2.2 A short example - Entropy of the state distribution (left) and and histogram of
sequence turbulence (right) - mvad data set . 13

2.3 A short example - State distribution within each cluster (mvad data) 14
2.4 A short example - Sequence frequencies whithin each cluster (mvad data) 15
2.5 A short example - Frequencies of most frequent transitions (mvad data) 16
2.6 A short example - Most discriminating transitions between clusters (mvad data) . 17

4.1 First 10 sequences of the actcal data (first at bottom) 26
4.2 Ontology of types of longitudinal data . 28

7.1 Legend plotted as an additional graphic . 63
7.2 Distribution of the statuses by age in the mvad data set 65
7.3 Distribution of the work statuses by month in the actcal data set (data from the

Swiss Household Panel) . 66
7.4 Entropy of state distribution by age - biofam data set 68
7.5 Plot of the 10 most frequent sequences in the actcal data set 68
7.6 Plot of the 10 most frequent sequences in the biofam data set (bar widths propor-

tional to the sequence frequencies) . 69
7.7 Mean time spent in each state, actcal data. 71
7.8 Plot of the 10 first sequences of the actcal data set 72
7.9 Plot of all sequences of the mvad data set, grouped according to the gcse5eq variable 73

8.1 Within sequence entropies - actcal data set . 80
8.2 Within sequence entropies - biofam data set . 81
8.3 Low, median and high sequence entropies - biofam data set 83
8.4 Boxplot of the within sequence entropies by birth cohort - biofam data set 84
8.5 Boxplot of the within sequence entropies by sex - biofam data set 84
8.6 Histogram of the sequence turbulences - biofam data set 87
8.7 Correlation between within sequence turbulence and entropy - biofam data set . . 88
8.8 Low, median and high sequence turbulences - biofam data set 90

9.1 Hierarchical sequence clustering from the OM distances, Ward method 101
9.2 Sequence frequencies, by cluster - biofam data set 102
9.3 Mean time in each state, by cluster - biofam data set 103

10.1 Frequencies of 15 most frequent event subsequences 107
10.2 Five most discriminating event subsequences between those born before and after

1945. 110

7

8 LIST OF FIGURES

A.1 R starting welcome message and command prompt 114

Chapter 1

Introduction

TraMineR is a R-package for mining and visualizing sequences of categorical data. Its primary aim
is the knowledge discovery from event or state sequences describing life courses, although most
of its features apply also to non temporal data such as text or DNA sequences for instance. The
name TraMineR is a contraction of Life Trajectory Miner for R. Indeed, as some may suspect, it was
also inspired by the authors’ taste for Gewurztraminer wine. This guide is essentially a tutorial
that describes the features and usage of the TraMineR package. It may also serve, however, as
an introduction to sequential data analysis. The presentation is illustrated with data from the
social sciences. Illustrative data sets and R scripts (sequence of R-commands) 1 are included in
the TraMineR distribution package.

The functions and options used in the guide as well as their displayed output correspond to
the version indicated on the title page. Though the guide discusses the major functionalities
of the package, it is not exhaustive. For a full list and description of available functions, see
the Reference Manual of the current version that can be found on the CRAN (http://cran.
r-project.org/web/packages/TraMineR/). Check also the ‘History’ tab on the package web
page (http://mephisto.unige.ch/traminer) for the latest added features.

For newcomers to R, a short introduction to the R-environment is given in Appendix A in
which the reader will learn where R can be obtained as well as its basic commands and principles.
Chapter 3 shortly explains how to use the package and describes the illustrative data sets provided
with it.

1.1 Aims and features of the TraMineR package

Some of the features of TraMineR can be found in other statistical programs handling sequential
data. For instance, TDA (Rohwer and Pötter, 2002), which is freely available at http://www.
stat.ruhr-uni-bochum.de/tda.html, the t-coffee/saltt program by Notredame et al. (2006),
the dedicated CHESA program by Elzinga (2007) freely downloadable at http://home.fsw.vu.
nl/ch.elzinga/ and the add-on Stata package by Brzinsky-Fay et al. (2006) freely available for
licensed Stata users all compute the optimal-matching edit distance between sequences and each of
them offers specific useful facilities for describing sets of sequences. TraMineR is to our knowledge
the first such toolbox for the free R statistical and graphical environment. Our objective with
TraMineR is to put together most of the features proposed separately by other softwares as well as
offering original tools for extracting useful knowledge from sequence data. Its salient characteristics
are

� R and TraMineR are free.
1R demo scripts named Rendering, Seqdist and Events are in the demo directory of the package tree and can be

run by means of the demo(), for instance demo("Describing_visualizing",package="TraMineR") for the first one.

9

http://cran.r-project.org/web/packages/TraMineR/
http://cran.r-project.org/web/packages/TraMineR/
http://mephisto.unige.ch/traminer
http://www.stat.ruhr-uni-bochum.de/tda.html
http://www.stat.ruhr-uni-bochum.de/tda.html
http://home.fsw.vu.nl/ch.elzinga/
http://home.fsw.vu.nl/ch.elzinga/

10 Ch. 1 Introduction

� Since TraMineR is developed in R, it takes advantage of many already optimized procedures
of R as well as of its powerful graphics capabilities.

� R runs under several OS including Linux, MacOS X, Unix and Windows. A same R program
runs unmodified under all operating systems2. The same is indeed true for R-packages and
hence for TraMineR.

� TraMineR features a unique set of procedures for analysing and visualizing sequence data,
such as

– handling a large number of state and time stamped event sequence representations,
simple functions for transforming to and from different formats;

– individual sequence summaries and summaries of sequence sets;

– selecting and displaying the most frequent sequences or subsequences;

– various metrics for evaluating distances between sequences;

– aggregated and index plots of sets of sequences.

� Specific TraMineR functions can be combined in a same script with any of the numerous basic
statistical procedures of R as well as with those of any other R-package.

Before describing the usage of the TraMineR package for R, a few remarks are worth on the nature
of sequence data considered in the particular field of social sciences. In the social sciences, sequence
data represent typically longitudinal biographical data such as employment histories or family life
courses. Following for instance Brzinsky-Fay et al. (2006) we may simply define a sequence as an
ordered list of states (employed/unemployed) or events (leaving parental home, marriage, having
a child). For now let us just retain that there are multiple other ways of representing longitudinal
data that will be discussed in more details in Chapter 4 and that TraMineR will prove useful for
converting from one form to the other.

2Minor changes may be needed in case of references to file names and paths or other interactions with the OS.

Chapter 2

A short example to begin with

Nothing is better than an example to present the features of TraMineR. We will use for this purpose
an example data set from McVicar and Anyadike-Danes (2002) which has been included with the
package (see Section 3.2). The data stems from a survey on transition from school to work and
contains 72 monthly activity state variables from July 1993 to June 1999 for 712 individuals.

All the following commands show the process of analysing a sequence data set and can be issued
by a user who has R and TraMineR installed 1 on his computer.

2.1 State sequence analysis

1. Loading the TraMineR library and the mvad example data set

R> library(TraMineR)

R> data(mvad)

2. Defining a vector containing the legends for the states to appear in the graphics and creating
a sequence object which will be used as argument to the next functions (see Chapter 6)

R> mvad.labels <- c("employment", "further education", "higher education",

+ "joblessness", "school", "training")

R> mvad.scode <- c("EM", "FE", "HE", "JL", "SC", "TR")

R> mvad.seq <- seqdef(mvad, 17:86, states = mvad.scode,

+ labels = mvad.labels, xtstep = 6)

3. Drawing in a single figure 2 (Fig. 2.1)

� the index plot of the first 10 sequences (see Section 7.3)

R> seqiplot(mvad.seq, withlegend = F, title = "Index plot (10 first sequences)",

+ border = NA)

� the sequence frequency plot of the 10 most frequent sequences with bar width propor-
tional to the frequencies (see Section 7.2)

R> seqfplot(mvad.seq, withlegend = F, border = NA, title = "Sequence frequency plot")

� the state distribution by time points (see Section 7.2.2)

R> seqdplot(mvad.seq, withlegend = F, border = NA, title = "State distribution plot")

1To download R, go to http://www.r-project.org/. Installing TraMineR is as straightforward as typing in-

stall.packages("TraMineR") within a R console
2The following command is issued first to set the graphical display par(mfrow=c(2,2))

11

http://www.r-project.org/

12 Ch. 2 A short example to begin with

� the legend as a separate graphic since several plots use the same color codes for the
states

R> seqlegend(mvad.seq, fontsize = 1.3)

4. Plot the entropy of the state distribution at each time point (Fig. 2.2)

R> seqHtplot(mvad.seq, title = "Entropy index")

5. Compute, summarize and plot the histogram (Fig. 2.2) of the sequence turbulences (see
Section 7.3).

R> Turbulence <- seqST(mvad.seq)

R> summary(Turbulence)

R> hist(Turbulence, col = "cyan", main = "Sequence turbulence")

Index plot (10 first sequences)

10
 s

eq
. (

n=
71

2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

1
2

3
4

5
6

7
8

9
10

Sequence frequency plot

C
um

. %
 fr

eq
. (

n=
71

2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0%

20.8%

State distribution plot

F
re

q.
 (

n=
71

2)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

employment
further education
higher education
joblessness
school
training

Figure 2.1: A short example - Plot of 10 first sequences (top-left), plot of 10 most frequent sequences
(top-right) and state distribution plot (bottom-left) - mvad data set

6. Compute the optimal matching distances using substitution costs based on transition rates
observed in the data and a 1 indel cost (see Section 9.4). The resulting distance matrix is
stored in the dist.om1 object.

R> submat <- seqsubm(mvad.seq, method = "TRATE")

R> dist.om1 <- seqdist(mvad.seq, method = "OM", indel = 1,

+ sm = submat)

2.1 State sequence analysis 13

Entropy index

E
nt

ro
py

 in
de

x
(n

=
71

2)

Sep.93 Mar.95 Sep.96 Mar.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sequence turbulence

Turbulence

F
re

qu
en

cy

2 4 6 8 10 12

0
20

40
60

80
10

0
14

0

Figure 2.2: A short example - Entropy of the state distribution (left) and and histogram of sequence
turbulence (right) - mvad data set

14 Ch. 2 A short example to begin with

7. Make a typology of the trajectories: load the cluster library, build a Ward hierarchical clus-
tering of the sequences from the optimal matching distances and retrieve for each individual
sequence the cluster membership of the 4 class solution (see Section 9.5). We do not show
here the dendrogram produced by plot(clusterward1) which, indeed, is not a TraMineR
feature.

R> library(cluster)

R> clusterward1 <- agnes(dist.om1, diss = TRUE, method = "ward")

R> plot(clusterward1)

R> cl1.4 <- cutree(clusterward1, k = 4)

R> cl1.4fac <- factor(cl1.4, labels = paste("Type", 1:4))

8. Plot the state distribution at each time point within each cluster (Fig. 2.3, see Section 9.5)

R> seqdplot(mvad.seq, group = cl1.4fac, border = NA)

9. Plot the sequence frequencies within each cluster (Fig. 2.4, see Section 9.5)

R> seqfplot(mvad.seq, group = cl1.4fac, border = NA)

Type 1

F
re

q.
 (

n=
26

5)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type 2

F
re

q.
 (

n=
15

3)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type 3

F
re

q.
 (

n=
19

4)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Type 4

F
re

q.
 (

n=
10

0)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

employment
further education

higher education
joblessness

school
training

Figure 2.3: A short example - State distribution within each cluster (mvad data)

2.2 Event sequence analysis 15

Type 1

C
um

. %
 fr

eq
. (

n=
26

5)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0%

37.7%

Type 2

C
um

. %
 fr

eq
. (

n=
15

3)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0%

41.2%

Type 3

C
um

. %
 fr

eq
. (

n=
19

4)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0%

26.8%

Type 4

C
um

. %
 fr

eq
. (

n=
10

0)

Sep.93 Sep.94 Sep.95 Sep.96 Sep.97 Sep.98

0%

21%

employment
further education

higher education
joblessness

school
training

Figure 2.4: A short example - Sequence frequencies whithin each cluster (mvad data)

16 Ch. 2 A short example to begin with

2.2 Event sequence analysis

Instead of focusing on sequences of states, we can look at sequences of transitions or events .
TraMineR offers specific tools to deal with such kind of data. For dealing with such event sequences,
we can:

1. Define the sequences of transitions (see Section 10.5.4)

R> mvad.seqe <- seqecreate(mvad.seq)

2. Look for frequent event subsequences and plot the 15 most frequent ones (Fig. 2.5, see Section
10.2)

R> fsubseq <- seqefsub(mvad.seqe, pMinSupport = 0.05)

R> plot(fsubseq[1:15], col = "cyan")

3. Determine the most discriminating transitions between clusters and plot the frequencies by
cluster of the 6 first ones (Fig. 2.6, see Section 10.4)

R> discr <- seqecmpgroup(fsubseq, group = cl1.4fac)

R> plot(discr[1:6])

0.
0

0.
1

0.
2

0.
3

(f
ur

th
er

 e
du

ca
tio

n)

(f
ur

th
er

 e
du

ca
tio

n>
em

pl
oy

m
en

t)

(t
ra

in
in

g>
em

pl
oy

m
en

t)

(s
ch

oo
l)

(f
ur

th
er

 e
du

ca
tio

n)
−

(f
ur

th
er

 e
du

ca
tio

n>
em

pl
oy

m
en

t)

(t
ra

in
in

g)

(jo
bl

es
sn

es
s>

em
pl

oy
m

en
t)

(e
m

pl
oy

m
en

t>
jo

bl
es

sn
es

s)

(t
ra

in
in

g)
−

(t
ra

in
in

g>
em

pl
oy

m
en

t)

(e
m

pl
oy

m
en

t)

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(e
m

pl
oy

m
en

t>
jo

bl
es

sn
es

s)
−

(jo
bl

es
sn

es
s>

em
pl

oy
m

en
t)

(s
ch

oo
l)−

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(f
ur

th
er

 e
du

ca
tio

n>
jo

bl
es

sn
es

s)

(h
ig

he
r

ed
uc

at
io

n>
em

pl
oy

m
en

t)

Figure 2.5: A short example - Frequencies of most frequent transitions (mvad data)

2.2 Event sequence analysis 17

Type 1

0.
0

0.
2

0.
4

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(s
ch

oo
l)−

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(t
ra

in
in

g>
em

pl
oy

m
en

t)

(t
ra

in
in

g)

(s
ch

oo
l)

(h
ig

he
r

ed
uc

at
io

n>
em

pl
oy

m
en

t) Type 2

0.
0

0.
2

0.
4

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(s
ch

oo
l)−

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(t
ra

in
in

g>
em

pl
oy

m
en

t)

(t
ra

in
in

g)

(s
ch

oo
l)

(h
ig

he
r

ed
uc

at
io

n>
em

pl
oy

m
en

t)

Type 3

0.
0

0.
2

0.
4

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(s
ch

oo
l)−

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(t
ra

in
in

g>
em

pl
oy

m
en

t)

(t
ra

in
in

g)

(s
ch

oo
l)

(h
ig

he
r

ed
uc

at
io

n>
em

pl
oy

m
en

t) Type 4

0.
0

0.
2

0.
4

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(s
ch

oo
l)−

(s
ch

oo
l>

hi
gh

er
 e

du
ca

tio
n)

(t
ra

in
in

g>
em

pl
oy

m
en

t)

(t
ra

in
in

g)

(s
ch

oo
l)

(h
ig

he
r

ed
uc

at
io

n>
em

pl
oy

m
en

t)

Pearson residuals

Negative 0.01 Negative 0.05 neutral Positive 0.05 Positive 0.01

Figure 2.6: A short example - Most discriminating transitions between clusters (mvad data)

Chapter 3

The TraMineR package

TraMineR is an add-on package to R, providing a set of functions for describing, visualizing and
analysing sequence data, together with example data sets. The latter are used in this manual to
demonstrate the multiple powerful features offered by the package.

Depending on your system, TraMineR can be installed either from a precompiled binary package
(Windows and Mac OS/X) or from source files (Linux and other UNIXes). The installation of the
latest version of the package can be done within an R console by typing:

R> install.packages("TraMineR", repos="http://mephisto.unige.ch/traminer/R")

The required files are automatically downloaded from our local repository. If you are running
the latest R version, you can also install from the Comprehensive R Archive Network (CRAN)
http://cran.r-project.org/ by typing:

R> install.packages("TraMineR")

For more detail on how to install or update TraMineR, see the instructions here: http://mephisto.
unige.ch/traminer/download.shtml.

This chapter describes the basic use of TraMineR and presents the included data sets that will
be used in this manual to demonstrate the package capabilities.

3.1 Loading, using and getting help

Loading Once you have installed TraMineR on your system you have to load it to access its
functionalities. This is done by means of the library() command. Typing

R> library(TraMineR)

gives you access to the functions and data sets provided by the library. This command has to be
issued each time you start a new R session, but needs to be issued only once by session. All the
examples in the remaining of this manual assume that the TraMineR library is already loaded.

You get information about the installed package such as the version number and the list of
functions and data sets provided by issuing the command

R> library(help = TraMineR)

The above command opens a help window. The content of the obtained help window is shown in
Appendix B.

18

http://cran.r-project.org/
http://mephisto.unige.ch/traminer/download.shtml
http://mephisto.unige.ch/traminer/download.shtml

3.1 Loading, using and getting help 19

Using the functions TraMineR functions are just like other R functions. To call them, you
just type in the function name and the requested arguments surrounded with parentheses. Most
TraMineR functions require at least the name of a sequence object created with the seqdef() or
the seqecreate() functions (see Chapters 5 and 10) and (optionally) the values for some specific
arguments.

If the arguments are given in the order expected by the function, you can omit the argument
names before their values. Arguments with assigned default values can be omitted, unless you
want to specify a different value. However, always specifying the names of the arguments is more
secure since:

� Adding a new optional argument to a function in a new version of TraMineR may change
the order of the arguments, in which case your programs would fail when the names of the
arguments are not specified.

� Scripts are easier to understand (by you and by others) when the name of each used argument
is explicitly specified.

The seqdef() function is used to illustrate how to specify arguments. This command is one of
the first you will issue since it defines the sequence object requested by most of the other functions
provided by the TraMineR package. The main arguments of seqdef() are1:

� data, the name of a data frame;

� var, which specifies the variables (names or index numbers of columns) containing the se-
quence information (default value is ’NULL’, meaning all the variables in the data set);

� informat, which specifies the format of the sequences (default value is ‘STS’, the most
common sequence format).

The function seqdef() accepts additional arguments (stsep, alphabet, states, start, missing,
cnames) that are described later in this manual (see Chapter 5). The name of the data frame is
mandatory, but the other arguments have default values and can be omitted if their values are
suitable to you. The options can be given in any order if you specify the argument names before
their values:

R> data(actcal)

R> actcal.seq <- seqdef(var = 13:24, data = actcal)

In this example, not specifying the argument names var= and data= generates an error message

Getting help To get help about a specific function, seqdef for instance, type

R> `?`(seqdef)

or

R> help(seqtab)

Updating and new features The update.packages() function can be used to automatically
compare the version numbers of installed packages with the newest available version on the repos-
itories and update outdated packages on the fly.

Informations on new features added to updated versions of the package are described in the
NEWS file (see http://cran.r-project.org/web/packages/TraMineR/index.html).

1you can use ?seqdef or help(seqdef) or the reference manual to see what the expected arguments are

http://cran.r-project.org/web/packages/TraMineR/index.html

20 Ch. 3 The TraMineR package

3.2 Data sets included in the TraMineR package

Several sequence data sets used in this manual are included in the TraMineR package and can be
loaded in memory using the data() function. The actcal and biofam data sets were created from
the Swiss Household Panel2, SHP, data (http://www.swisspanel.ch/.)

3.2.1 The actcal data set

The next example shows how to load the actcal data set, list the names of its columns and display
the content of the first row. You may get an overview and summary statistics of the whole actcal
data set by issuing the summary(actcal) command (output not shown).

R> data(actcal)

R> names(actcal)

[1] "idhous00" "age00" "educat00" "civsta00" "nbadul00" "nbkid00"

[7] "aoldki00" "ayouki00" "region00" "com2.00" "sex" "birthy"

[13] "jan00" "feb00" "mar00" "apr00" "may00" "jun00"

[19] "jul00" "aug00" "sep00" "oct00" "nov00" "dec00"

R> actcal[1,]

idhous00 age00 educat00 civsta00 nbadul00 nbkid00 aoldki00 ayouki00

2848 60671 47 maturity married 3 2 17 14

region00 com2.00

2848 Middleland (BE, FR, SO, NE, JU) Industrial and tertiary sector communes

sex birthy jan00 feb00 mar00 apr00 may00 jun00 jul00 aug00 sep00 oct00

2848 woman 1953 B B B B B B B B B B

nov00 dec00

2848 B B

This data set contains a sample of 2000 records of individual monthly activity statuses from January
to December 2000, with the activity statuses coded as described in Table 3.1. In addition, it
contains also (first 12 columns) some covariates gathered at the individual and household level.
The variables in the data set are listed in Table 3.2. Sequences are in the columns named ‘jan00’,
‘feb00’, etc... The row labels are just id numbers. Notice that the numbering is not consecutive.
This is because cases were randomly selected.

Each row contains a sequence of states, i.e. activity statuses, reported by a respondent to the
wave of year 2000 of the SHP survey. The respondent whose activity calendar is in row 1 stayed
in a part-time (19-36 hours per week) payed job during the whole period. The respondent in
row 2 (labeled 1230) had no job between January and April 2000, then worked full-time between
May and November 2000, and had no remunerated job in December 2000. Note that row names
are arbitrary character strings that can be easily modified (we explain how in the appendix; see
paragraph A.3.4, p. 117).

3.2.2 The biofam data set

The biofam data set was constructed by Müller et al. (2007) from the data of the retrospective
biographical survey carried out by the Swiss Household Panel in 2002. In includes only individuals
who were at least 30 years old at the time of the survey for whom we consider sequences of their

2Those example data sets are random samples drawn from the original files and are only used for documenting
the package. Persons interested in using the data from the Swiss Household Panel for their research must sign a
data protection contract to get access to the complete and original files.

http://www.swisspanel.ch/

3.2 Data sets included in the TraMineR package 21

family life states between ages 15 and 30. The biofam data set is a random sample of size 2000
of the original data set. It describes the family life courses of individuals born between 1909 and
1972. The possible states are numbered from 0 to 7 and were derived from time stamped event
sequences using the coding of Table 3.3. The list of variables is shortly described in Table 3.4.

3.2.3 The mvad data set

This data set used and described by McVicar and Anyadike-Danes (2002) is now included in the
TraMineR package with permission of the authors and the Journal of the Royal Statistical Society.
The data covers 712 individuals. Each individual is characterized by 14 variables, including a
unique identifier (id), and 72 monthly activity state variables from July 1993 to June 1999. The
complete list of variables is given in Table 3.5. Here we show the first row of the mvad data frame

R> data(mvad)

R> mvad[1,]

id weight male catholic Belfast N.Eastern Southern S.Eastern Western Grammar

1 1 0.33 no no no no no no yes no

funemp gcse5eq fmpr livboth Jul.93 Aug.93 Sep.93 Oct.93

1 no no yes yes training training employment employment

Nov.93 Dec.93 Jan.94 Feb.94 Mar.94 Apr.94 May.94

1 employment employment training training employment employment employment

Table 3.1: State definition for the activity calendar (actcal data set)

Code Status
A full-time paid job (37 hours or more per week)
B part-time paid job (19-36 hours per week)
C part-time paid job (1-18 hours per week)
D no work / unemployment / other

Table 3.2: Covariates and state variables of the activity calendar (actcal data set)

Variable Label
age00 age in 2000
educat00 education level in 2000
civsta00 civil status of the respondent in 2000
nbadul00 number of adults in the household
nbkid00 number of children under 15 in the household
aoldkid00 age of the oldest kid in the household
ayoukid00 age of the youngest kid in the household
region00 region the household is living in
com2.00 type of community the household is living in
sex sex of the respondent
birthy birth year of the respondent
jan00 activity status for January 2000
: :
dec00 activity status for December 2000

22 Ch. 3 The TraMineR package

Table 3.3: State definition for the biofam data set

State Leaved parental home Married Children Divorce

0 no no no no

1 yes no no no

2 no yes yes/no no

3 yes yes no no

4 no no yes no

5 yes no yes no

6 yes yes yes no

7 yes/no yes/no yes/no yes

Table 3.4: List of Variables in the biofam data set

Variable Label

idhous household number

sex sex of the respondent

birthy birth year of the respondent

nat 1 02 first nationality of the respondent

plingu02 interview language

p02r01 Confession or religion

p02r04 Participation in religious services: Frequency

cspfaj Swiss socio-professional category: Fathers job

cspmoj Swiss socio-professional category: Mothers job

a15 family formation status at age 15

: :

a30 family formation status at age 30

Jun.94 Jul.94 Aug.94 Sep.94 Oct.94 Nov.94 Dec.94

1 employment employment employment employment employment employment employment

Jan.95 Feb.95 Mar.95 Apr.95 May.95 Jun.95 Jul.95

1 employment employment employment employment employment employment employment

Aug.95 Sep.95 Oct.95 Nov.95 Dec.95 Jan.96 Feb.96

1 employment employment employment employment employment employment employment

Mar.96 Apr.96 May.96 Jun.96 Jul.96 Aug.96 Sep.96

1 employment employment employment employment employment employment employment

Oct.96 Nov.96 Dec.96 Jan.97 Feb.97 Mar.97 Apr.97

1 employment employment employment employment employment employment employment

May.97 Jun.97 Jul.97 Aug.97 Sep.97 Oct.97 Nov.97

1 employment employment employment employment employment employment employment

Dec.97 Jan.98 Feb.98 Mar.98 Apr.98 May.98 Jun.98

1 employment employment employment employment employment employment employment

Jul.98 Aug.98 Sep.98 Oct.98 Nov.98 Dec.98 Jan.99

1 employment employment employment employment employment employment employment

Feb.99 Mar.99 Apr.99 May.99 Jun.99

1 employment employment employment employment employment

3.3 Performance and memory usage 23

Table 3.5: List of Variables in the MVAD data set

id unique individual identifier

weight sample weights

male binary dummy for gender, 1=male

catholic binary dummy for community, 1=Catholic

Belfast binary dummies for location of school, one of five Education and Library Board areas in

Northern Ireland

N.Eastern ”

Southern ”

S.Eastern ”

Western ”

Grammar binary dummy indicating type of secondary education, 1=grammar school

funemp binary dummy indicating father’s employment status at time of survey, 1=father unem-

ployed

gcse5eq binary dummy indicating qualifications gained by the end of compulsory education, 1=5+

GCSEs at grades A-C, or equivalent

fmpr binary dummy indicating SOC code of father?s current or most recent job,1=SOC1 (pro-

fessional, managerial or related)

livboth binary dummy indicating living arrangements at time of first sweep of survey (June 1995),

1=living with both parents

jul93 Monthly Activity Variables are coded 1-6, 1=school, 2=FE, 3=employment, 4=training,

5=joblessness, 6=HE

: ”

jun99 ”

3.2.4 Other data sets borrowed from the literature

The famform data set is a small illustrative data set of family forms used by Elzinga (2008).
It consists in 5 sequences of length 5, some having missing values (NA). The states are: single
(‘S’), with unmarried partner (‘U’), married (‘M’), married with a child (‘MC’), single with a child
(‘SC’). The five sequences in the data are

v "S" "U"
w "S" "U" "M"
x "S" "U" "M" "MC"
y "S" "U" "M" "MC" "SC"
z "U" "M" "MC"

where the first column contains case labels.

3.3 Performance and memory usage

Depending on your system and the size of your data, some functions for sequence data analysis
may have a consequent time and memory consumption, especially the computation of distances
between sequences. However, as the critical functions are written in C, the speed performance
of the functions in TraMineR compares quite advantageously with other packages that deal with
sequence analysis. For instance, it is almost as efficient as TDA and outperforms Brzinsky-Fay
et al. (2006)’s package for Stata. Nonetheless, the number of distances to compute increases rapidly

24 Ch. 3 The TraMineR package

with the size of the dataset. For a 4000 sequences dataset, the number of distances to compute is
(4000 ∗ 3999)/2 = 7′998′000 whereas it is (10000 ∗ 9999)/2 = 49′995′000 for 10000 sequences 3.

With R, the size of the data you can handle is limited by the available memory size on your
system (at least on Linux systems). Remember that from the moment that you compute a dis-
tance matrix, the requested memory size increases dramatically. TraMineR has been succesfull in
computing the distance matrix for as much as 30’328 sequences, but the size of the (half) distance
matrix was 6.85GB. To give a more common example, computing optimal matching distances for
the 4’318 sequences of length 16 (841 distinct sequences) of the original data set from which biofam
was extracted takes less than 15 seconds on a dual core processor. The resulting 4318× 4318 dis-
tance matrix has a size of 142Mb. Table 3.6 gives computation time and memory usage for some
typical examples. The reported computation times concern version 1.0 of TraMineR. Improvements
in version 1.1 permitted to reduce the indicated times by a factor of at least 10 for large data sets.

If you get some message claiming about a lack of memory, you should try gc() to free memory
from ‘garbages’ that may be produced by some memory consuming functions. The computation of
distances between sequences was faster with version 2.6 and 2.7 of R compared with version 2.5.

Table 3.6: Performance and memory usage

Number
of seq.

Seq.
length

System Time Matrix size

712 72 Intel Core 2 @ 2.13GHz / 2Gb RAM 21 s 3.9Mb
4’318 16 Intel Core 2 @ 2.13GHz / 2Gb RAM 15 s 142Mb
30’328 77 4x Quad Core 64-bit Xeon CPUs @ 2.4

GHz / 64GB RAM
54 mn 6.85Gb

3To reduce the number of distances to compute, TraMineR first selects the set of unique sequences

Chapter 4

Definition and representation of
longitudinal data formats

In Section 1.1, we defined sequences as ordered lists of states or events. However, sequence rep-
resentation in data files can vary a lot, depending on the way data were collected and the way
information is organized. In numerous cases, sequences are even not present “as such” in the data
but can be reconstructed from data originally collected as spells, time stamped events or other
forms.

Hence, a crucial preliminary step in sequential data analysis is preparing the data to organize
it in the form expected by the functions we want to use. This is often a cumbersome discouraging
task and the literature does not offer much to help identifying the main types of sequential data
organization and formats, Giele and Elder (1998) being one of the rare exception. Conscious of the
importance of the issue, we devoted a lot of effort on these aspects when developing the package.

TraMineR provides thus a unique set of features for handling and converting data to and from
several different formats. This Chapter describes these formats and Chapter 5 details the data
management tools available in TraMineR.

4.1 Ontology

Before defining and describing the main formats and representations of sequence data, we begin
with an ontology of longitudinal data. This ontology describes the main attributes we can use to
identify the various formats and characterize the nature of the sequences the user will have to deal
with.

4.1.1 States and events

One first distinction between the several data types is whether the basic information they contain
are states or events. Broadly, in a longitudinal framework, each change of state is an event and each
event implies a change of state. However, the state that results from an event may also depend on
the previous state, and hence of which other events already occurred. The states of the biofam data
set were for instance derived from the combination of 4 events as described in Table 3.3 page 22.
Conversion between state sequences and event sequences is thus not always straightforward.

Figure 4.1 shows a graphical representation for 10 sequences. Here the sequences are ordered
list of states, with the states being the work status of the corresponding respondent at each time
unit, i.e. months from January to December 2000. Though the sequences are ordered lists of
states, they provide also some information about events, especially if we consider events as simple
changes of states. In sequence number 1 (first one from the bottom), no event occurred during

25

26 Ch. 4 Definition and representation of longitudinal data formats

the observation period since the respondent stays in the same state during the whole sequence. In
sequence 2 (second from bottom), two events occurred:

10
 s

eq
. (

n=
20

00
)

jan00 mar00 may00 jul00 sep00 nov00

1
2

3
4

5
6

7
8

9
10

> 37 hours
19−36 hours

1−18 hours
no work

Figure 4.1: First 10 sequences of the actcal data (first at bottom)

� The respondent changed his work status between time unit 4 (April 2000) and time unit 5
(May 2000), from ‘no work’ to ‘full time paid work’.

� Then, the respondent changed again his work status between time unit 11 (November 2000)
and time unit 12 (December 2000), from ‘full time paid work’ to ‘no work’.

States or events can be coded with letters, character strings or digits. The alphabet is the list
of all possible states or events appearing in the data. In the following example taken from Aassve
et al. (2007), states are coded with character strings of length 3 and separated by the ‘-’ character.
We will see other formats to represent such sequences in the following sections.

R> seq.ex1[, 10:25]

Sequence

[1] 000-000-000-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0WU-0WU-0WU-0WU

[2] 000-000-000-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0

For each state in the sequence, the first character stands for the number of children (0=no children,
1=1 children, etc...), the second character for the work status (0=not working, W=working) and
the third character for the union status (0=not in union, U=in union). The alphabet contains 16
distinct states (see Table 1, page 376 in Aassve et al., 2007).

4.1.2 Single or multichannel

In the previous example, each distinct state is actually a combination of states pertaining to
different domains: work status, number of children and union status. The combination of all

4.1 Ontology 27

possible states in each domain yields an alphabet of 16 distinct states. As mentioned by Aassve
et al., 2007, “the number of possible states available in different time periods implies that the
frequency of any specific sequence will be very low”.

An alternative is to handle sequences of each domain separately. This is called multichannel
sequences.

4.1.3 Time reference: Internal and external clocks

Unlike biological sequences for instance, trajectories in social sciences are usually defined on a
time axis. The information about time is an important part of sequence data when timing and/or
duration is a concern as in life course analysis.

In the case of sequences of states, it is important to know whether the alignment of states is
done according to

� an internal time reference (e.g. age of the individual, such as in the biofam dataset)

� or to an external time reference (e.g. January to December 2000, such as in the actcal dataset).

One typology of the discrete time axis on which the sequences of states are defined has been
proposed by Rohwer and Pötter (2002, Sec. 3.4.1). The authors distinguish between

� a calendar time axis which does not have a natural origin. Fixing an origin is simply a
convention for providing time points.

� a process time axis where the origin represents the date of a starting event.

4.1.4 One or several rows per individual

The most natural way of presenting sequence data is to use one row per case. However, using
several rows for data belonging to a same individual may also have its advantages. A first example
is provided by the multichannel context in which it may be worth to explicitly distinguish between
sequences belonging to different domains or aspects (living arrangement, civil status, education,
professional, ...).

In longitudinal analysis it is also sometimes more convenient to use a distinct row

� by time unit lived by each individual: States of the different channels will be in columns;
such data presentation is commonly called person-period data.

� by spell lived by each individual: Each rows defines the states in which the individual is
during the spell; this presentation is called spell data and requires indeed to specify the spell
start and end time, or equivalently start time and duration.

� by episode lived by each individual, i.e. a row for each date at which one or more events
occur. In this case, the row contains the time stamp and the list of events that occur; this
kind of presentation is for instance useful for mining frequent event sub-sequences.

4.1.5 Ontology

An ontology of sequence data formats can be defined by a nested suite of ‘yes/no’ questions about
properties of the format. Figure 4.2 shows an ontology of types of longitudinal data, i.e. data
organized according to time.

28 Ch. 4 Definition and representation of longitudinal data formats

4.2 Longitudinal data representations

Using some elements of the ontology, Table 4.1 defines several data formats. The basic information
used to identify them is whether the elements are states or events, and whether the format uses
a single row or more than one for each case. Table 4.2 gives examples of the listed formats. The
latter as well as some other formats are described in details below in the present Section with
indication of whether they are supported by TraMineR.

4.2.1 The ‘states-sequence’ (STS) format

The ‘STates-Sequence’ (STS) format is the internal format used by TraMineR (in TraMineR, se-
quences are stored in sequence objects, see next section). It is one of the most intuitive and common
way of representing a sequence. In this format, the successive states (statuses) of an individual are
given in consecutive columns. Each column is supposed to correspond to a predetermined time
unit, but sequences of states with no time reference can be handled as well using the same format.
In the actcal data set previously described (see Sec. 3.2.1), sequences are in columns 13 to 24
representing the monthly activity statuses from January to December 2000.

R> actcal[1:6, 13:24]

jan00 feb00 mar00 apr00 may00 jun00 jul00 aug00 sep00 oct00 nov00 dec00

2848 B B B B B B B B B B B B

Longitudinal data

States

one state per time unit t

not

several states at each t

not

not

Events

time stamped events

not

event sequence

not

not

spell duration

not

Figure 4.2: Ontology of types of longitudinal data

4.2 Longitudinal data representations 29

Table 4.1: Sequence data representations

Code Data type
(S)tates or
(E)vents

One (1) or
several (M)

rows for each
individual

Import into a sequence
object

STS State-sequence S 1 Yes

SPS State-permanence (1) S 1 Yes

DSS
Distinct-State-
Sequence

S 1 Yes (use STS)

TSE Time-stamped event E M Yes (event sequence)

SPELL Spell S M Yes

Person-period M

Table 4.2: Sequence data representations: Examples

Code Example

STS
Id 18 19 20 21 22 23 24 25 26 27

101 S S S M M MC MC MC MC D
102 S S S MC MC MC MC MC MC MC

SPS (1)
Id State 1 State 2 State 3 State 4 State 5

101 (S,3) (M,2) (MC,4) (D,1)
102 (S,3) (MC,7)

SPS (2)
Id State 1 State 2 State 3 State 4 State 5

101 S/3 M/2 MC/4 D/1
102 S/3 MC/7

DSS
Id State 1 State 2 State 3 State 4 State 5

101 S M MC D
102 S MC

TSE

id time event
101 21 Marriage
101 23 Child
101 27 Divorce
102 21 Marriage
102 21 Child

SPELL

id index from to status
101 1 18 20 Single
101 2 21 22 Married
101 3 23 26 Married w Children
101 4 27 .. Divorced
102 1 18 20 Single
102 2 21 27 Married w Children

30 Ch. 4 Definition and representation of longitudinal data formats

1230 D D D D A A A A A A A D

2468 B B B B B B B B B B B B

654 C C C C C C C C C B B B

6946 A A A A A A A A A A A A

1872 D B B B B B B B B B B B

4.2.2 The ‘state-permanence-sequence’ (SPS) format

The ‘SPS’ format, whose name ‘State-Permanence-Sequence’ is due to Aassve et al., 2007, is for
instance used by Elzinga (2008). In this format, each successive distinct state in the sequence
is given together with its duration. In one variant, each state/duration couple is enclosed into
parentheses. The example below is taken from Aassve et al., 2007.

R> print(seq.ex1, format = "SPS")

Sequence

[1] (000,12)-(0W0,9)-(0WU,5)-(1WU,2)

[2] (000,12)-(0W0,14)-(1WU,2)

This format is an alternative way of representing ‘STS’ sequences. Here are the same sequences as
they are internaly stored in a sequence object by TraMineR

R> print(seq.ex1, ext = TRUE)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]

[1] 000 000 000 000 000 000 000 000 000 000 000 000 0W0 0W0 0W0 0W0 0W0

[2] 000 000 000 000 000 000 000 000 000 000 000 000 0W0 0W0 0W0 0W0 0W0

[18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]

[1] 0W0 0W0 0W0 0W0 0WU 0WU 0WU 0WU 0WU 1WU 1WU

[2] 0W0 0W0 0W0 0W0 0W0 0W0 0W0 0W0 0W0 1WU 1WU

4.2.3 The vertical ‘time-stamped-event’ (TSE) format

A time-stamped-event representation consists in listing the events experienced by each individual
together with the time at which the events occurred. Sequences of events can easily be constructed
from this representation. It is also possible in TraMineR to translate sequence data into such time-
stamped event (TSE) representation at the cost, however, of providing event definition information
(see Section 5.2.2 page 40). Each record of the TSE representation usually contains a case identifier,
a time stamp and codes identifying the event occurring. In the following example, 3 events, coded
5, 7 and 9, are observed at age (time) 25 for the individual 70102. Individual 215102 experiences
one event (1) at age 6, two events (5, 17) at age 21, two events (7, 18) at age 22 and two events
(8, 13) at age 25.

R> TSE.ex1

id time event

1 70102 25 5

2 70102 25 7

3 70102 25 9

4 215102 6 1

5 215102 21 5

6 215102 21 17

7 215102 22 7

8 215102 22 18

9 215102 25 8

10 215102 25 13

4.2 Longitudinal data representations 31

Table 4.3: Living arrangements - SHP

State Description
1 with both natural parents
2 with one parent and his/her new partner
3 with one parent alone
4 with relatives or in a foster family
5 with partner (married or not)
6 with friends or in a flat share
7 alone
8 other situation
9 with both natural parents and the partner (married / married
10 with both natural parents and (friends or flat share)
11 with partner (married or not) and (friends or flat share)

4.2.4 The spell (SPELL) format

In the spell format there is one line for each spell. Each spell is characterized by the states (supposed
constant during the spell) and the spell start and end times. Hence ‘STS’ sequences can easily be
constructed from this representation. The following example is an extract of data drawn from the
retrospective questionnaire of the Swiss Household Panel1 about living arrangements. Statuses are
described in Table 4.3. The first respondent (id 2713) lived with both natural parents from 1965
to 1989, then with a partner from 1989 to 1990 and again with a partner from 1990 to 1991 and
from 1991 to 2002 (here we have multiple consecutive spells for the same status; this is because
statuses are aggregated from more detailed ones).

R> SPELL.ex1

idpers index from until status

1 2713 1 1965 1989 1

2 2713 2 1989 1990 5

3 2713 3 1990 1991 5

4 2713 4 1991 2002 5

5 2714 1 1968 1985 1

6 2714 2 1985 1988 7

7 2714 3 1989 1990 5

8 2714 4 1990 1991 5

9 2714 5 1991 2002 5

10 3713 1 1961 1978 1

11 3713 2 1978 1983 3

12 3713 3 1983 1984 4

13 3713 4 1984 1985 3

14 3713 5 1985 1999 4

15 3713 6 1999 2001 7

16 11714 1 1973 1993 1

17 11714 2 1993 2002 5

4.2.5 The ‘person-period’ format

This format is for instance used for discrete-time logistic regressions. Each line contains information
about an individual at a different time unit. There is one line for each time unit where the individual

1Original personal identification numbers have been modified.

32 Ch. 4 Definition and representation of longitudinal data formats

is under observation. Such data presentation is mainly used for discrete survival models where the
focus is on a specific event (leaving home, childbirth, death, end of job, etc.) and the time-periods
considered are those where the cases are under risk of experimenting the event. In that case, each
record contains at least the time stamp and a status variable indicating if the event under study
occurred in this time interval, and may possibly be completed with the values of some covariates.

4.2.6 The ‘shifted-replicated-sequence’ format (SRS)

This data presentation is intended for mobility analysis where the concern is the transition from
the states observed at previous time points, t−1, t−2, . . ., to the one observed at time t. Consider
for example the sequence A,A,C,D,D where the first element in the sequence corresponds to year
2000 and the last one to year 2004. The shifted-replicated-sequence representation of this sequence
is obtained as follows:

R> seqs <- data.frame(y2000 = "A", y2001 = "A", y2002 = "C", y2003 = "D",

+ y2004 = "D")

R> seqs

y2000 y2001 y2002 y2003 y2004

1 A A C D D

R> seqformat(seqs, from = "STS", to = "SRS")

id idx T-4 T-3 T-2 T-1 T

1 1 1 <NA> <NA> <NA> <NA> A

2 1 2 <NA> <NA> <NA> A A

3 1 3 <NA> <NA> A A C

4 1 4 <NA> A A C D

5 1 5 A A C D D

In this presentation we collect in the columns named ‘T-1’ and ‘T’ all subsequences between t− 1
and t, and hence all observed transitions between t − 1 and t, . This is useful when we want t to
be a relative time point rather than an absolute date.

4.3 Definition and properties of categorical sequences

The next parts of this manual are dedicated to the analysis of categorical sequences. We define
here more precisely as well as some important concepts such as subsequences.

4.3.1 Categorical sequences

For formal definition, we may follow for example Elzinga and Liefbroer (2007). First, define an
alphabet A as the list of possible states or events. A sequence x of length k is then an ordered list of
k successively chosen elements of A. It is often represented by the concatenation of the k elements.
A sequence can thus be written as x = x1x2 . . . xk with xi ∈ A. We use commas when necessary
for distinguishing successive elements in a sequence. For instance, x = S,U,M,MC stands for the
sequence single, with unmarried partner, married, married with a child.

4.3 Definition and properties of categorical sequences 33

4.3.2 Time axis

In addition to the sequencing of states or events that the above definitions account for, the infor-
mation about sequences, especially those describing life courses, includes often a time dimension.
When necessary we should then also account either for the time stamp of the states or events, or
for the duration of either the states or the time between events. For state sequences over time
it is often assumed that each state corresponds to periodic dates (years, months, ...). For event
sequences over time, a specific time stamp is most often assigned to each event.

4.3.3 Subsequences

A sequence u is a subsequence of x if all successive elements ui of u appear in x in the same
order, which we simply denote by u ⊂ x. According to this definition, unshared states can appear
between those common to both sequences u and x. For example, u = S,M is a subsequence of
x = S,U,M,MC.

Chapter 5

Importing and handling
longitudinal data with TraMineR

Results shown in this chapter are obtained with:
TraMineR version 1.6-2
R version 2.9.2 (2009-08-24)-platform: i486-pc-linux-gnu.

Two main preliminary steps are needed for the user to visualize and analyse sequence data with
the functions provided by the TraMineR package:

� Import the data into R.

� Create a sequence object (either a state sequence object as described in Chapter 6, or an
event sequence object as explained in Section 10.5.4).

In this chapter we first describe shortly how to import data coming from other statistical packages
or text files and the way (imported) data is stored in R objects. If your data is already in one of
the formats supported by the function that creates sequence objects, you may want to skip the
remainder of the chapter and proceed directly to Chapter 6. However, in the second part of the
chapter you will learn more about the functions offered by TraMineR for converting to and from
several longitudinal data formats. Such transformations may prove useful not only for TraMineR
but also for applying other statistical methods to your data such as for instance survival analysis
or classification trees.

5.1 Importing data sets into R

Data files generated by statistical programs such as SPSS, SAS and Stata can be directly imported
into R by using the foreign1 library and assigned to R objects. We briefly explain hereafter the
read.spss() command for importing SPSS files and the read.dta() command for importing Stata
files. Additional details can be found in the R-data manual http://cran.r-project.org/doc/
manuals/R-data.pdf which provides also explanations regarding other file formats. Data in the
form of text files or spreadsheets can also be easily imported.

1On Ubuntu Linux (and maybe on other Linux distributions), the foreign library is not installed with the basic
R installation. You have to install it explicitly on your system with the package manager.

34

http://cran.r-project.org/doc/manuals/R-data.pdf
http://cran.r-project.org/doc/manuals/R-data.pdf

5.1 Importing data sets into R 35

5.1.1 Reading data from other statistical packages

Preliminary remarks. When importing SPSS or Stata files, variables having attached values
labels are converted into R factors2 with levels set to the value labels in the original files. For
example, a variable containing states 1, 2, 3, 4 with value labels “single”, “living with a partner”,
“married”, “divorced” will be converted into a factor with the four levels “single”, “living with a
partner”, “married”, “divorced”. Hence the original numerical coding is lost. If you prefer preserving
the numerical coding and losing the labels, use the convert.factors = FALSE option.

Stata (‘.dta’) format Here is an example of how to import the living arrangement history data
from the biographic questionnaire of the Swiss Household Panel (SHP). We use for that a truncated
version of the original shp0 bvla user.dta file that can be found on the SHP CD. This CD can be
obtained on request from the SHP, www.swisspanel.ch. The R function to import data sets saved
in the Stata (’.dta’) format is provided by the foreign library and reads read.dta(). It returns a
data frame obect. The head() function shows the first 6 rows of the imported data set.

R> library(foreign)

R> LA <- read.dta("data/shp0_bvla_user.dta")

R> head(LA)

idpers q_source bvla_idx bvla013 bvla014 bvla100

1 4101 2002 1 1965 1989 with both natural parents

2 4101 2002 2 1989 1990 with partner (married or not)

3 4101 2002 3 1990 1991 with partner (married or not)

4 4101 2002 4 1991 2002 with partner (married or not)

5 4102 2002 1 1968 1985 with both natural parents

6 4102 2002 2 1985 1988 alone

The summary of the LA data frame shows that some variables, such as the begin (bvla013) and
end of the spell (bvla014) were imported as numeric variables (distribution summarized by quan-
tiles) while the type of living arrangement (bvla100) has been imported as a factor (distribution
summarized by a frequency table).

R> summary(LA)

idpers q_source bvla_idx bvla013

Min. : 4101 2001 (pretest): 2627 Min. : 0.000 Min. : -2

1st Qu.: 3515102 2002 :18484 1st Qu.: 1.000 1st Qu.:1962

Median : 7344101 Median : 3.000 Median :1977

Mean : 7286883 Mean : 2.885 Mean :1963

3rd Qu.:10820101 3rd Qu.: 4.000 3rd Qu.:1989

Max. :14676102 Max. :13.000 Max. :2002

bvla014 bvla100

Min. : -2 with partner (married or not) :7438

1st Qu.:1974 with both natural parents :6240

Median :1989 alone :2738

Mean :1974 other situation :1731

3rd Qu.:2001 with one parent alone : 961

Max. :2002 with friends or in a flat share: 948

(Other) :1055

2see Appendix A or an introduction to R manual to see what a factor is.

www.swisspanel.ch

36 Ch. 5 Importing and handling longitudinal data with TraMineR

SPSS (‘.sav’) format Here we read the same data file as in the previous example but from the
SPSS version, which is also provided on the SHP CD. The to.data.frame=TRUE is specified so
that the read.spss() function returns a data frame, otherwise it would return a list.

R> library(foreign)

R> LA <- read.spss("data/shp0_bvla_user.sav", to.data.frame = TRUE)

5.1.2 Reading data from text files

Several functions are available for reading data in various text format: read.table, read.csv,
read.delim, read.fwf. See http://cran.r-project.org/doc/manuals/R-data.pdf for details.
An example on how to read a comma separated (CSV) text file is given below with the mvad
data set described in Section 3.2.4, p. 23. The file can be freely downloaded from http://www.
blackwellpublishing.com/rss/Volumes/Av165p2.htm. Though the data set is provided with
TraMineR as an R data frame, we show below how it was converted and prepared. The steps are
the following:

1. Convert the downloaded ‘.xls’ file into a ‘.csv’ (Comma Separated Values) file, using for
example Excel or OpenOffice.

2. Run R, and type

R> mvad <- read.csv(file = "data/McVicar.csv", header = TRUE)

where you should indeed adapt the path “data” to the ‘.csv’ file.

The text file contains only variables with numeric values but most of them are indeed binary
indicator variables (see Table 3.5). Let us take an example with the male indicator variable.
For the moment, this variable is stored as numeric and summarizing it yields quantiles of its
distribution.

R> summary(mvad$male)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.0000 1.0000 0.5197 1.0000 1.0000

Hence we convert all indicator variables into factors.

R> yn <- c("no", "yes")

R> mvad$male <- factor(mvad$male, labels = yn)

R> mvad$catholic <- factor(mvad$catholic, labels = yn)

R> mvad$Belfast <- factor(mvad$Belfast, labels = yn)

R> mvad$N.Eastern <- factor(mvad$N.Eastern, labels = yn)

R> mvad$Southern <- factor(mvad$Southern, labels = yn)

R> mvad$S.Eastern <- factor(mvad$S.Eastern, labels = yn)

R> mvad$Western <- factor(mvad$Western, labels = yn)

R> mvad$Grammar <- factor(mvad$Grammar, labels = yn)

R> mvad$funemp <- factor(mvad$funemp, labels = yn)

R> mvad$gcse5eq <- factor(mvad$gcse5eq, labels = yn)

R> mvad$fmpr <- factor(mvad$fmpr, labels = yn)

R> mvad$livboth <- factor(mvad$livboth, labels = yn)

Now we summarize the data frame

R> summary(mvad[, 1:17])

http://cran.r-project.org/doc/manuals/R-data.pdf
http://www.blackwellpublishing.com/rss/Volumes/Av165p2.htm
http://www.blackwellpublishing.com/rss/Volumes/Av165p2.htm

5.1 Importing data sets into R 37

id weight male catholic Belfast N.Eastern

Min. : 1.0 Min. :0.1300 no :342 no :368 no :624 no :503

1st Qu.:178.8 1st Qu.:0.4500 yes:370 yes:344 yes: 88 yes:209

Median :356.5 Median :0.6900

Mean :356.5 Mean :0.9994

3rd Qu.:534.2 3rd Qu.:1.0700

Max. :712.0 Max. :4.4600

Southern S.Eastern Western Grammar funemp gcse5eq fmpr

no :497 no :629 no :595 no :583 no :595 no :452 no :537

yes:215 yes: 83 yes:117 yes:129 yes:117 yes:260 yes:175

livboth Jul.93 Aug.93 Sep.93

no :261 Min. :1.000 Min. :1.00 Min. :1.000

yes:451 1st Qu.:2.000 1st Qu.:2.00 1st Qu.:1.000

Median :3.000 Median :3.00 Median :2.000

Mean :3.176 Mean :3.15 Mean :2.381

3rd Qu.:5.000 3rd Qu.:4.00 3rd Qu.:3.000

Max. :5.000 Max. :5.00 Max. :5.000

5.1.3 Data storage in R

A set of sequences, i.e. vectors or strings of states or events, can be stored in several kinds of R
objects, namely vectors, matrices, or data frames.

1. A vector is a one dimensional object (its size is just its length). Sequences stored in vectors
are typically defined as character strings, each sequence being an element of the vector.

2. A matrix is a two dimensional object (the two dimensions are rows and columns) containing
elements of the same type. Sequences are typically defined as the rows of the matrix, each
column giving the state or event at a given time point.

3. Data frame is the most common object for storing sequences. It is like a matrix, but can
contain objects from different types, for example one or more variables representing sequences
(as character strings or vectors of states or events) and covariates. Data sets imported from
other statistical packages (See Section 5.1.1) are stored as data frames. The actcal, biofam
and mvad data sets are each a data frame object.

5.1.4 Compressed and extended format

In data files, sequences may appear as character strings (what we call the compressed format) or
as vectors (what we call the extended format). TraMineR can handle both formats and provides a
function to convert between them. For instance, the seqdef() and seqformat() functions check
first whether the data you send them as argument are in the compressed or extended format.3

The extended format In the extended format, sequences are given as vectors of states or
events, where each state or event is stored in a separate column (variable). Each variable usually
corresponds to a time unit as in the example below. The actcal data set accompanying the TraMineR
package is in the extended format. Each column (variable) contains one state and represents a
month of the activity calendar.

3This is done by means of the seqfcheck() function that searches for the presence of any separator in the data.

38 Ch. 5 Importing and handling longitudinal data with TraMineR

R> head(actcal[, 13:24])

jan00 feb00 mar00 apr00 may00 jun00 jul00 aug00 sep00 oct00 nov00 dec00

2848 B B B B B B B B B B B B

1230 D D D D A A A A A A A D

2468 B B B B B B B B B B B B

654 C C C C C C C C C B B B

6946 A A A A A A A A A A A A

1872 D B B B B B B B B B B B

The compressed format In the compressed format, a sequence is represented as a character
string. A single string variable is used for storing the sequence. States or events are represented by
words or numerical codes separated by a specific separator character4. The handling of sequences
as character strings without separator is also possible. However, in that case states or events
should be represented by single characters or digits. Below the six above sequences from actcal are
displayed in the compressed format. They were compressed with the seqconc() function that is
explained below.

Sequence

[1] "B-B-B-B-B-B-B-B-B-B-B-B"

[2] "D-D-D-D-A-A-A-A-A-A-A-D"

[3] "B-B-B-B-B-B-B-B-B-B-B-B"

[4] "C-C-C-C-C-C-C-C-C-B-B-B"

[5] "A-A-A-A-A-A-A-A-A-A-A-A"

[6] "D-B-B-B-B-B-B-B-B-B-B-B"

5.2 Converting between formats

Data conversion is done with the seqformat(), seqconc() and seqdecomp() functions described
in this section. If you just want to analyse your data with the functions provided by TraMineR, you
can directly use the seqdef() function described in Chapter 6 and specify the input format. The
function seqdef() will then automatically call seqformat() if necessary. If you want to create
event sequences from state sequences for analyzing them with the TraMineR functions dedicated
to event sequences, see Chapter 10 for details on how to make such state to event conversions.

5.2.1 Converting between compressed and extended formats

The seqconc() and seqdecomp() functions convert between compressed and extended representa-
tions of sequence data. The following command was used for creating the compressed string vector
actcal.comp shown above

R> actcal.comp <- seqconc(actcal, 13:24)

The seqdecomp() function makes the reverse transformation to the original uncompressed
format. Notice that we do not need to specify the names or column indexes of the variables
containing the sequence in the previously created actcal.comp data set. Indeed, actcal.comp
contains a single string variable, namely the one that stores the compressed sequences.5

R> actcal.ext <- seqdecomp(actcal.comp)

R> head(actcal.ext)

4In TraMineR, the default separator is ‘-’, but other user specified separators can be specified.
5By default, when no var option is specified, the function assumes that the data set contains only sequence data

and hence retains all columns, i.e. here the single column of the actcal.comp object.

5.2 Converting between formats 39

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

[1] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"

[2] "D" "D" "D" "D" "A" "A" "A" "A" "A" "A" "A" "D"

[3] "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"

[4] "C" "C" "C" "C" "C" "C" "C" "C" "C" "B" "B" "B"

[5] "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A" "A"

[6] "D" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B" "B"

In the next example taken from Aassve et al. (2007) and introduced in Section 4.1.1, states are
coded with character strings of length 3 and separated with the ‘-’ symbol. Each sequence is
transformed into a (row) vector, where each element is a state associated with its duration

R> seqdecomp(seq.ex1)

[1] [2] [3] [4]

[1] "(000,12)" "(0W0,9)" "(0WU,5)" "(1WU,2)"

[2] "(000,12)" "(0W0,14)" "(1WU,2)" NA

To translate compressed sequences with no separator, the sep option can be set to an empty string
as in the following example. In that case, every character in the string is assumed to represent a
state or event.

R> seqdecomp("aaaaaa", sep = "")

[1] [2] [3] [4] [5] [6]

[1] "a" "a" "a" "a" "a" "a"

5.2.2 The seqformat function

The seqformat function takes as main arguments the name of the sequence data, the names or
column indexes of the variables containing the sequences, the input and the output formats. We
describe below the various formats that seqformat() can handle. By default, the output returned
by the function is in the so called STS compressed format, in which the sequences are stored as
character strings. Note that for translating the seqformat() uses the STS format as internal
intermediate format. Hence some information can be lost depending on the input and output
formats.

Converting to and from the SPS format The seqformat() function allows to convert from
and to the state-permanence-sequence SPS format (see Section 4.2.1). In the next example, we
translate the sequences contained in the actcal data frame to SPS format and store the result in
the actcal.SPS object.

R> actcal.SPS <- seqformat(actcal, 13:24, from = "STS", to = "SPS")

R> head(actcal.SPS)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12]

[1] "(B,12)" NA NA NA NA NA NA NA NA NA NA NA

[2] "(D,4)" "(A,7)" "(D,1)" NA NA NA NA NA NA NA NA NA

[3] "(B,12)" NA NA NA NA NA NA NA NA NA NA NA

[4] "(C,9)" "(B,3)" NA NA NA NA NA NA NA NA NA NA

[5] "(A,12)" NA NA NA NA NA NA NA NA NA NA NA

[6] "(D,1)" "(B,11)" NA NA NA NA NA NA NA NA NA NA

Here are the same sequences, but in the compressed form

40 Ch. 5 Importing and handling longitudinal data with TraMineR

R> actcal.SPS.comp <- seqformat(actcal, 13:24, from = "STS", to = "SPS",

+ compressed = TRUE)

R> head(actcal.SPS.comp)

Sequence

[1] "(B,12)"

[2] "(D,4)-(A,7)-(D,1)"

[3] "(B,12)"

[4] "(C,9)-(B,3)"

[5] "(A,12)"

[6] "(D,1)-(B,11)"

Converting to TSE format In order to extract time stamped events from a sequence of statuses
(which is the internal format used by TraMineR), a matrix of size ns×ns must be given, where ns
is the number of distinct states appearing in the sequences. In this matrix, the cell (a, b), where a
is the row index and b the column index contains a comma separated list of all events associated
with a transition from state a to state b. The diagonal of this matrix has a special meaning. It
defines the initial event of the sequence. For example, the position (a, a) gives the event generated
when the sequence starts with state a.

The exact design of this matrix can be tricky since a transition may imply several events and
the same event may appear in several transitions. However, TraMineR implements several basic
generic methods to build this matrix with the function seqetm(). You can then adapt the generated
matrix to your need by editing the appropriate cells. However, if you create your own matrix from
scratch, you should be aware that row and column names of the matrix MUST BE (in a one to one
mapping) the states appearing in the data set since they are used to retrieve the events associated
with transitions from one state to the other.

The first generic method to generate this matrix is named “transition”. In this case, we simply
generate a distinct event for each possible transitions. The diagonal is set to the different possible
states.

R> data(actcal)

R> actcal.seq <- seqdef(actcal, 13:24, labels = c("FullTime", "PartTime",

+ "LowPartTime", "NoWork"))

R> transition <- seqetm(actcal.seq, method = "transition")

R> transition

A B C

A "FullTime" "FullTime>PartTime" "FullTime>LowPartTime"

B "PartTime>FullTime" "PartTime" "PartTime>LowPartTime"

C "LowPartTime>FullTime" "LowPartTime>PartTime" "LowPartTime"

D "NoWork>FullTime" "NoWork>PartTime" "NoWork>LowPartTime"

D

A "FullTime>NoWork"

B "PartTime>NoWork"

C "LowPartTime>NoWork"

D "NoWork"

The second generic method called “period” generates a “begin” event and an “end” event for
each spell. The diagonal gives the “sequence initiating” event that we represent by the first state of
the state sequence. By setting bp=begin, each initiating event (diagonal element) will be different
from the “begin” event that starts other spells in the same state. Here we do not use this option
and the same event is used for say starting a full time job at position 1 and at position 4.

5.2 Converting between formats 41

R> transition <- seqetm(actcal.seq, method = "period")

R> transition

A B C

A "FullTime" "endFullTime,PartTime" "endFullTime,LowPartTime"

B "endPartTime,FullTime" "PartTime" "endPartTime,LowPartTime"

C "endLowPartTime,FullTime" "endLowPartTime,PartTime" "LowPartTime"

D "endNoWork,FullTime" "endNoWork,PartTime" "endNoWork,LowPartTime"

D

A "endFullTime,NoWork"

B "endPartTime,NoWork"

C "endLowPartTime,NoWork"

D "NoWork"

However, most of the time, we are interested in specific events. For instance, we may be
interested in the following events in the in the activity calendar (actcal data set).

Table 5.1: Considered events of the activity calendar (actcal data set) data set

Code Status

Increase Increasing activity rate

Decrease Decreasing activity rate

Start Starting an activity

Stop Stopping an activity

FullTime Starting a full-time paid job (37 hours or more per week)

PartTime Starting a part-time paid job (19-36 hours per week)

LowPartTime Starting a part-time paid job (1-18 hours per week)

NoActivity Starting a period without activity

We may thus define the following matrix: Remember that the events given on the diagonal of

Table 5.2: Events associated to each state transition

To state
From Full time Part time Low part time No work
state A B C D

A FullTime Decrease Decrease Stop
PartTime LowPartTime

B Increase PartTime Decrease Stop
FullTime LowPartTime

C Increase Increase LowPartTime Stop
FullTime PartTime

D Start Start Start NoActivity
FullTime PartTime LowPartTime

this matrix are not associated to the transition from a state to each self, but are just the starting
event of the sequence. If we omit this step, information about the beginning of the event sequence
will be omitted. In our case, we insert for example the event “FullTime” to each event sequence
that begins with the state ”A”.

To generate our own matrix, we first use seqetm() to assign correct column and rows names,
and then enter the content of our own matrix.

42 Ch. 5 Importing and handling longitudinal data with TraMineR

R> transition <- seqetm(actcal.seq, method = "transition")

R> transition[1, 1:4] <- c("FullTime", "Decrease,PartTime", "Decrease,LowPartTime",

+ "Stop")

R> transition[2, 1:4] <- c("Increase,FullTime", "PartTime", "Decrease,LowPartTime",

+ "Stop")

R> transition[3, 1:4] <- c("Increase,FullTime", "Increase,PartTime",

+ "LowPartTime", "Stop")

R> transition[4, 1:4] <- c("Start,FullTime", "Start,PartTime", "Start,LowPartTime",

+ "NoActivity")

R> transition

A B C D

A "FullTime" "Decrease,PartTime" "Decrease,LowPartTime" "Stop"

B "Increase,FullTime" "PartTime" "Decrease,LowPartTime" "Stop"

C "Increase,FullTime" "Increase,PartTime" "LowPartTime" "Stop"

D "Start,FullTime" "Start,PartTime" "Start,LowPartTime" "NoActivity"

Once we have our event matrix, we can convert our state sequence data set into the time stamped
event (TSE) form by means of seqformat().

R> actcal.tse <- seqformat(actcal[1:100,], var = 13:24, from = "STS",

+ to = "TSE", tevent = transition)

R> head(actcal.tse)

id time event

1 1 0 PartTime

2 2 0 NoActivity

3 2 4 Start

4 2 4 FullTime

5 2 11 Stop

6 3 0 PartTime

Looking at the first record for individual 2 (id number have been created from the sequences order),
we see that the events“Start”and“FullTime”occur at time 4, and therefore that individual number
2 started a full time job at time 4. This individual then stops working (“Stop”) at time 11.

Note that the times at which the events occur are computed as the number of positions in the
sequences before the new resulting state.

Converting from SPELL format The following command translates the LA data set described
above (page 48) to the STS state-sequence format. The from option of the seqformat() function
is set to ‘SPELL’. However, since the variable containing the states is here a factor with very
long labels, we first create a new variable containing numeric codes only. This is done with the
as.integer() function, which returns the numeric codes associated with each factor level. We
then add this new variable to the LA data frame. We also recode missing start times (stored in the
bvla013 variable) that are originally coded as -2 into NA’s.

R> levels(LA$bvla100)

[1] "other error"

[2] "filter error"

[3] "inapplicable"

[4] "no answer"

[5] "does not know"

[6] "with both natural parents"

5.2 Converting between formats 43

[7] "with one parent and his/her new partner"

[8] "with one parent alone"

[9] "with relatives or in a foster family"

[10] "with partner (married or not)"

[11] "with friends or in a flat share"

[12] "alone"

[13] "other situation"

[14] "with both natural parents and the partner (married / married"

[15] "with both natural parents and (friends or flat share)"

[16] "with partner (married or not) and (friends or flat share)"

[17] "missing values"

R> bvla100_rec <- as.integer(LA$bvla100)

R> table(bvla100_rec)

bvla100_rec

4 6 7 8 9 10 11 12 13 14 15 16

110 875 49 148 14 1066 96 393 226 12 2 7

R> LA <- data.frame(LA, bvla100_rec)

R> LA$bvla013[LA$bvla013 == -2] <- NA

We now convert the SPELL data into state sequences. The minimal informations needed for
importing data in SPELL format are described in table 5.3. If no options is specified, the input
data is supposed to comply this structure. The user can alternatively specify which columns in
the input data set contain the mandatory variables using the id, begin, end and status option,
or select the variables in the required order using the var option.

Table 5.3: Structure for the spell format

Position Variable Option name
1 Personal identification number id
2 Start time begin
3 End time end
4 Status status

Other options pertaining to the time axis definition and the handling of overlaps in the beginning
and ending times of the successive spells are also available. In the first example below, we import
the data with the default options, that is, the time axis is a calendar time axis defined taking the
minimum and maximum years at which an episode begins and ends.

R> LA.sts <- seqformat(LA, id = "idpers", begin = "bvla013", end = "bvla014",

+ status = "bvla100_rec", from = "SPELL", to = "STS", process = FALSE)

The resulting STS data contains the living arrangements from the birth of the respondents to the
year of the survey (2002). Hence the time at which the first spell begins is the birth year of the
respondent. Since the oldest respondent in our sample was born in 1914, our time axis is defined
from 1914 to 2002. The first case was born in 1965, hence the first valid state appears in the
column named y1965

R> LA.sts[1,]

44 Ch. 5 Importing and handling longitudinal data with TraMineR

y1914 y1915 y1916 y1917 y1918 y1919 y1920 y1921 y1922 y1923 y1924 y1925

4101 NA NA NA NA NA NA NA NA NA NA NA NA

y1926 y1927 y1928 y1929 y1930 y1931 y1932 y1933 y1934 y1935 y1936 y1937

4101 NA NA NA NA NA NA NA NA NA NA NA NA

y1938 y1939 y1940 y1941 y1942 y1943 y1944 y1945 y1946 y1947 y1948 y1949

4101 NA NA NA NA NA NA NA NA NA NA NA NA

y1950 y1951 y1952 y1953 y1954 y1955 y1956 y1957 y1958 y1959 y1960 y1961

4101 NA NA NA NA NA NA NA NA NA NA NA NA

y1962 y1963 y1964 y1965 y1966 y1967 y1968 y1969 y1970 y1971 y1972 y1973

4101 NA NA NA 6 6 6 6 6 6 6 6 6

y1974 y1975 y1976 y1977 y1978 y1979 y1980 y1981 y1982 y1983 y1984 y1985

4101 6 6 6 6 6 6 6 6 6 6 6 6

y1986 y1987 y1988 y1989 y1990 y1991 y1992 y1993 y1994 y1995 y1996 y1997

4101 6 6 6 10 10 10 10 10 10 10 10 10

y1998 y1999 y2000 y2001 y2002

4101 10 10 10 10 10

It is also possible to convert directly into the more concise ‘state-permanence’ format by setting the
to option to ‘SPS’. Using the compressed=TRUE option produces compressed sequences (character
strings). We can see that the first sequence begins with 51 (1965-1914) missing states (coded as
’*’)

R> LA.sps <- seqformat(LA, var = c("idpers", "bvla013", "bvla014",

+ "bvla100_rec"), from = "SPELL", to = "SPS", compressed = TRUE,

+ process = FALSE)

R> head(LA.sps)

Sequence

[1] "(*,51)-(6,24)-(10,14)"

[2] "(*,54)-(6,17)-(12,4)-(10,14)"

[3] "(*,47)-(6,17)-(8,5)-(9,1)-(8,1)-(9,14)-(12,3)"

[4] "(*,59)-(6,20)-(10,10)"

[5] "(*,89)"

[6] "(*,11)-(14,28)-(4,50)"

Now we convert our data using a process time axis. We need therefore some additional infor-
mations, namely the respondents’ birth years, in order to compute the ages at which the spells
begin and end. Those informations are provided as a separate data set, containing only one row
for each individual. The data contains the respondents’ id as well so as to match the information
on birth year with the spell data. In addition to the birth year, it contains the birth month and
the sex of each respondent. Here is an extract of this data set

R> head(shp.birthyr)

idpers birthm birthy sex

1 4101 7 1965 1

2 4102 11 1968 2

3 4103 -3 1991 1

4 4104 -3 1993 1

5 4105 -3 1996 2

6 5101 6 1961 1

The pdata option is used to specify the name of the data frame, the pvar option is used to specifiy
the names of the columns containing the respondents’ id and birth year.

5.2 Converting between formats 45

R> LA.sts.process <- seqformat(LA, id = "idpers", begin = "bvla013",

+ end = "bvla014", status = "bvla100_rec", from = "SPELL",

+ to = "STS", process = TRUE, pdata = shp.birthyr, pvar = c("idpers",

+ "birthy"))

In the output data, each sequence now begins at age 1. The first sequence shows the living
arrangement history of the first respondent. He was in the state 6 (with both natural parents)
from his birth to age 23 (the 24th year of life), and then in state 10 (with partner, married or not)
from ages 24 to 37 6

R> LA.sts.process[1,]

a1 a2 a3 a4 a5 a6 a7 a8 a9 a10 a11 a12 a13 a14 a15 a16 a17 a18 a19 a20 a21

4101 6

a22 a23 a24 a25 a26 a27 a28 a29 a30 a31 a32 a33 a34 a35 a36 a37 a38 a39

4101 6 6 6 10 10 10 10 10 10 10 10 10 10 10 10 10 10 NA

a40 a41 a42 a43 a44 a45 a46 a47 a48 a49 a50 a51 a52 a53 a54 a55 a56 a57

4101 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

a58 a59 a60 a61 a62 a63 a64 a65 a66 a67 a68 a69 a70 a71 a72 a73 a74 a75

4101 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

a76 a77 a78 a79 a80 a81 a82 a83 a84 a85 a86 a87 a88 a89 a90 a91 a92 a93

4101 NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA NA

a94 a95 a96 a97 a98 a99 a100

4101 NA NA NA NA NA NA NA

Here are the same sequences converted in the compressed SPS format

R> LA.sps.process <- seqformat(LA, from = "SPELL", to = "SPS", compressed = TRUE,

+ id = "idpers", begin = "bvla013", end = "bvla014", status = "bvla100_rec",

+ process = TRUE, pdata = shp.birthyr, pvar = c("idpers", "birthy"))

R> head(LA.sps.process)

Sequence

[1] "(6,24)-(10,14)"

[2] "(6,17)-(12,4)-(10,14)"

[3] "(6,17)-(8,5)-(9,1)-(8,1)-(9,14)-(12,3)"

[4] "(6,20)-(10,10)"

[5] "(*,100)"

[6] "(14,28)-(4,50)"

6In our example many successive episodes are overlapping since only the start and end years were collected. In
this case, with the default overwrite=TRUE option, the most recent episode overwrites the older one if they overlap
each other.

Chapter 6

Creating state sequence objects

Once your data is imported into R, the next step to work with most of the functions provided
by TraMineR is to create an object containing the sequence data. Such objects are created with
the seqdef() function. This function stores the sequences in the TraMineR internal object type1

together with some of their attributes.
The seqdef() function accepts input data stored in several of the formats described in Chap-

ter 4. The ontology and formats presented in the previous chapter should help the user in identifying
the original format of the data he wants to analyse with TraMineR. Some examples showing how
to create a sequence object from sequence data in several input formats are provided below.

6.1 Creating a state sequence object

In the example below, we load the actcal data set and create a sequence object named ‘actcal.seq’
with the sequences contained in columns 13 to 24.

R> data(actcal)

R> actcal.seq <- seqdef(actcal, var = 13:24)

The var argument specifying the variables that define the sequences can be a single variable or
column index number, a set of variables, or a set of column index numbers. In the next example,
the seqdef() command is used with the variable names as var argument. The names() function
returns the names of the variables in the data frame and can be used to locate the corresponding
column numbers. In the actcal data set, the sequences are in the variables “jan00” to “dec00”
corresponding to columns 13 to 24.

R> names(actcal)

[1] "idhous00" "age00" "educat00" "civsta00" "nbadul00" "nbkid00"

[7] "aoldki00" "ayouki00" "region00" "com2.00" "sex" "birthy"

[13] "jan00" "feb00" "mar00" "apr00" "may00" "jun00"

[19] "jul00" "aug00" "sep00" "oct00" "nov00" "dec00"

Notice that the column names are grouped into a vector with the c() function.

R> actcal.seq <- seqdef(actcal, var = c("jan00", "feb00", "mar00",

+ "apr00", "may00", "jun00", "jul00", "aug00", "sep00", "oct00",

+ "nov00", "dec00"))

1The class of this object is ‘stslist’.

46

6.1 Creating a state sequence object 47

Using variable names instead of the column index numbers is more secure, because if you delete
a variable from the data frame the index numbers can change, while names remain unchanged.
One of the attributes stored in the sequence object is the alphabet, i.e. the list of distinct states
an individual may be in. In the previous example, the alphabet is taken from the data, that is,
we suppose that all possible states appear in the imported sequences. Some options to specify
manually the alphabet and other attributes will be described later.

In the actcal data set, sequences are in the STS format (see Section 4.2.1), the beloved format
used by TraMineR to store data in sequence objects. If your data is already in this format, you can
omit the informat option because STS is its default value. You just issue the seqdef() function
and specify the columns containing the sequence data with the var option (if your data contain
only sequences and no covariate, you can also omit this option).

As discussed in the previous chapter, state sequences may be presented in some non STS format
such as SPS for example. Even more, in some cases, sequences are not directly defined as such
but can be derived from data originally collected as spells or time stamped events. We describe
hereafter the formats that TraMineR can read and convert into a sequence object, using some
‘real-life’ example data sets. The informat option of the seqdef() function is used to specify the
original format of the input data. Refer to Section 4.2 for identifying the actual format of your
data.

6.1.1 Creating a sequence object from SPS-formatted data

In the SPS format (Section 4.2.2), sequences are defined with state-duration couples. The next
example shows the content of a text file with such data and some covariates

***06 0.896 20 2 0 4 4 M/44 MC/9 SC/91

***07 0.967 20 1 0 4 1 S/66 U/10 M/12 MC/56

***08 0.967 20 1 0 4 4 S/72 U/5 M/67

***10 0.896 20 2 0 4 1 S/10 U/1 UC/133

***27 0.967 20 1 0 4 4 S/54 U/18 S/15 U/11 M/29 MC/17

***30 0.896 20 2 0 4 2 S/10 U/14 M/8 MC/112

The first step is to import the text file into an R data frame. We specify that there are no variable
names in the first row with the header=FALSE option, that the rows may have unequal length with
the fill option and that empty strings should be treated as missing values with the na.strings=""
option.

R> sweden <- read.table(file = "data/sweden.txt", header = FALSE,

+ sep = " ", na.strings = "", fill = TRUE)

The sequence data is contained in columns 8 to 13. Note that sequences are stored in an uneven
number of variables, depending on the number of distinct states the individuals passed through.

R> head(sweden)

V1 V2 V3 V4 V5 V6 V7 V8 V9 V10 V11 V12 V13

1 ***06 0.896 20 2 0 4 4 M/44 MC/9 SC/91 <NA> <NA> <NA>

2 ***07 0.967 20 1 0 4 1 S/66 U/10 M/12 MC/56 <NA> <NA>

3 ***08 0.967 20 1 0 4 4 S/72 U/5 M/67 <NA> <NA> <NA>

4 ***10 0.896 20 2 0 4 1 S/10 U/1 UC/133 <NA> <NA> <NA>

5 ***27 0.967 20 1 0 4 4 S/54 U/18 S/15 U/11 M/29 MC/17

6 ***30 0.896 20 2 0 4 2 S/10 U/14 M/8 MC/112 <NA> <NA>

Now importing this data into a sequence object is very straightforward. We set the informat="SPS"
option since the data is in the SPS format. The additional SPS.in option, which is passed to the
seqformat function, is used to specify which characters are surrounding each state/duration couple

48 Ch. 6 Creating state sequence objects

(here there are no characters) and which character is used as separator between each state and its
associated duration (here ’/’). The length of the sequences is 144 but here we display the first 30
statuses only in the STS representation.

R> sweden.seq <- seqdef(data = sweden, var = 8:13, informat = "SPS",

+ SPS.in = list(xfix = "", sdsep = "/"))

R> sweden.seq[1:6, 1:30]

Sequence

[1] M-M

[2] S-S

[3] S-S

[4] S-S-S-S-S-S-S-S-S-S-U-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC-UC

[5] S-S

[6] S-S-S-S-S-S-S-S-S-S-U-U-U-U-U-U-U-U-U-U-U-U-U-U-M-M-M-M-M-M

Here is another example with SPS formatted sequences taken from Aassve et al. (2007). We
first create the sequences as character strings and assemble them with the rbind function

R> seq1 <- "(000,12)-(0W0,9)-(0WU,5)-(1WU,2)"

R> seq2 <- "(000,12)-(0W0,14)-(1WU,2)"

R> seq.ex1 <- rbind(seq1, seq2)

The seq.ex1 is just a vector with 2 character strings. Now we turn it into a sequence object using
the seqdef function

R> seq.ex1 <- seqdef(seq.ex1, informat = "SPS")

R> seq.ex1[, 10:25]

Sequence

[1] 000-000-000-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0WU-0WU-0WU-0WU

[2] 000-000-000-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0-0W0

By default, sequence objects are displayed in STS format when typing their name (the print
method is called with default parameters). At first glance, the two sequences do not seem to be
very different. However, the difference shows up clearly when displaying them in the SPS format

R> print(seq.ex1, format = "SPS")

Sequence

[1] (000,12)-(0W0,9)-(0WU,5)-(1WU,2)

[2] (000,12)-(0W0,14)-(1WU,2)

6.1.2 Creating a sequence object from SPELL-formatted data

Data in the SPELL format can be directly converted into a sequence object with the infor-
mat="SPELL" option. The required data structure and options for importing spell data are de-
scribed in more detail in section 5.2.2. The same SPELL data extracted from the Swiss Household
Panel retrospective survey will be used here as an example. The original data containing living
arrangement history (see Table 4.3 on page 31 for the state description) has been imported into R
(see Section 5.1.1). The living arrangement histories for the first two individuals (id = 2713 and
2714) are displayed below

R> LA[1:9,]

6.1 Creating a state sequence object 49

idpers bvla_idx bvla013 bvla014 bvla100

1 2713 1 1965 1989 with both natural parents

2 2713 2 1989 1990 with partner (married or not)

3 2713 3 1990 1991 with partner (married or not)

4 2713 4 1991 2002 with partner (married or not)

5 2714 1 1968 1985 with both natural parents

6 2714 2 1985 1988 alone

7 2714 3 1989 1990 with partner (married or not)

8 2714 4 1990 1991 with partner (married or not)

9 2714 5 1991 2002 with partner (married or not)

The variables needed to create the sequence object are an identification number to group all rows
pertaining to the same individual (idpers), a starting and ending time for the spells (bvla013 and
bvla014), and a status variable (bvla100). Note that the statuses in variable ’bvla100’ appear as
labels since this variable was imported as a factor from the SPSS data file.

R> seqstatl(LA$bvla100)

[1] "alone"

[2] "other situation"

[3] "with both natural parents"

[4] "with both natural parents and (friends or flat share)"

[5] "with both natural parents and the partner (married / married"

[6] "with friends or in a flat share"

[7] "with one parent alone"

[8] "with one parent and his/her new partner"

[9] "with partner (married or not)"

[10] "with partner (married or not) and (friends or flat share)"

[11] "with relatives or in a foster family"

But for more convenience we want shorter codes for the statuses when displaying the sequences.
Hence we attribute numeric codes instead of the labels with the states option. The original labels
are preserved and used as legends for the states which will appear in the graphics (labels option).
The process option, which is passed to the seqformat function, is set to FALSE, that is, the time
axis for the sequences is defined as a calendar time axis whose start and end are the minimum and
maximum values found in the begin (bvla013) and end (bvla013) columns of the input data set

R> LA.labels <- seqstatl(LA$bvla100)

R> LA.states <- 1:length(LA.labels)

R> LA.seq <- seqdef(LA, var = c("idpers", "bvla013", "bvla014",

+ "bvla100"), informat = "SPELL", states = LA.states, labels = LA.labels,

+ process = FALSE)

Now we can display (in SPS format) the resulting sequences. By setting the process option to
FALSE the sequences have been created using a calendar time axis (see 4.1.3 and 5.2.2), ranging
from 1914 to 2002. Hence most of the sequences begin with missing states

R> print(LA.seq[1:15,], format = "SPS")

Sequence

[1] (*,51)-(3,24)-(9,14)

[2] (*,54)-(3,17)-(1,4)-(9,14)

[3] (*,47)-(3,17)-(7,5)-(11,1)-(7,1)-(11,14)-(1,3)

[4] (*,59)-(3,20)-(9,10)

[5] (*,89)

[6] (*,11)-(5,28)

50 Ch. 6 Creating state sequence objects

[7] (*,57)-(3,18)-(1,4)-(9,5)-(1,2)-(9,3)

[8] (*,67)-(3,5)-(8,11)-(7,3)-(9,3)

[9] (*,51)-(3,22)-(1,4)-(9,5)-(1,7)

[10] (*,5)-(3,20)-(9,59)-(6,5)

[11] (*,59)-(3,24)-(9,6)

[12] (*,61)-(3,22)-(9,6)

[13] (*,53)-(3,24)-(9,12)

[14] (*,43)-(3,21)-(9,25)

[15] (*,45)-(3,17)-(1,9)-(9,18)

If we want the sequences to be defined on a process time axis, we need to provide an additional
data file containing the birth years of the respondents, as described before (see 5.2.2).

R> head(shp.birthyr)

idpers birthm birthy sex

1 2713 7 1965 1

2 2714 11 1968 2

3 2715 -3 1991 1

4 2716 -3 1993 1

5 2717 -3 1996 2

6 3713 6 1961 1

The sequences are created by using the pdata and pvar options

R> LA.seq <- seqdef(LA, var = c("idpers", "bvla013", "bvla014",

+ "bvla100"), informat = "SPELL", states = LA.states, labels = LA.labels,

+ process = TRUE, pdata = shp.birthyr, pvar = c("idpers", "birthy"))

Now the sequence for the first individual in the data begins at age 1 (he was born in 1965 and his
living arrangement history begins in 1965). He has been in state 3 (with both natural parents)
during 24 years and then in state 9 (with a partner) during 13 years.

R> LA.seq[1:2,]

Sequence

2713 3-9-9-9-9-9-9-9-9-9-9-9-9-9-9

2714 3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-3-1-1-1-1-9-9-9-9-9-9-9-9-9-9-9-9-9-9

6.2 Attributes of sequence objects

When creating a sequence object with the seqdef() function, several attributes are stored together
with the sequence data, namely:

� the alphabet

� the color palette used for representing states in plots

� optional state labels

� the code used for missing values

� the starting time of the sequences

Those attributes are retrieved by other TraMineR functions, for instance the alphabet, color palette
and state labels associated to the object are used by the TraMineR sequence plotting functions2.
If no values for the attributes are provided by the user, those are set automatically. The default
values and the user-available options to override them are described below.

2The color palette and state labels can be overridden by options to the plotting functions

6.2 Attributes of sequence objects 51

6.2.1 State codes

In a sequence object, the variables (columns) where the states composing the sequences are stored
are R factors. A R factor has an internal numeric code and a label. It resembles the numerically
coded variables with value labels we found in SPSS or Stata. When importing data from statistical
softwares such as SPSS or Stata all variables with value labels are converted into R factors unless
you specify it otherwise. When creating a sequence object, if you do not specify yourself the list
of possible states, TraMineR uses the factor levels (i.e. the value labels) to create the alphabet. To
illustrate we go back to our SPELL data set described in Section 6.1.2. If we create a sequence
object using the state labels present in the data, it would look like this

R> print(LA.B.seq[1,], format = "SPS")

Sequence

[1] (with both natural parents,24)-(with partner (married or not),14)

The alphabet would be made of the factor levels

R> alphabet(LA.B.seq)

[1] "alone"

[2] "other situation"

[3] "with both natural parents"

[4] "with both natural parents and (friends or flat share)"

[5] "with both natural parents and the partner (married / married"

[6] "with friends or in a flat share"

[7] "with one parent alone"

[8] "with one parent and his/her new partner"

[9] "with partner (married or not)"

[10] "with partner (married or not) and (friends or flat share)"

[11] "with relatives or in a foster family"

Hence, if states in the original data set are represented by labels, it may be useful to change
the state labels to shorter symbols (in the plots, one can still optionally specify a more descriptive
legend of the represented states). This can be done when creating the sequence object with the
states option. When creating the La.seq sequence object, we specified the states=1:12 option
to code the states as numbers ranging from 1 to 12. The sequence object is much more readable
when it is displayed

R> print(LA.seq[1,], format = "SPS")

Sequence

[1] (3,24)-(9,14)

R> alphabet(LA.seq)

[1] 1 2 3 4 5 6 7 8 9 10 11

52 Ch. 6 Creating state sequence objects

6.2.2 Alphabet

If you create a sequence object without specifying the alphabet option, all possible states are
supposed to be present in the data set and the alphabet is set by listing the distinct states en-
countered. However, in some cases, we may have to consider states that are not present in the
data set used to create the sequence object. Suppose for instance that you want to compare two
sequence data sets and that there are some states in one data set that are not present in the other
one. Without explicitly specifying the list of the possible states with the alphabet option when
creating the sequence objects from these data sets, the missing states will not be accounted for,
which may produce misleading results when comparing tabulation of the state frequency of the
two data sets. The colors attributed to the states will also be different for each data set which may
also be source of confusion. Let us take a short example to illustrate this point. We create two
sequence objects, one with the first three sequences of the actcal data set

R> actcal.s1 <- seqdef(actcal[1:3, 13:24])

R> alphabet(actcal.s1)

[1] "A" "B" "D"

and one with sequences 7 to 9.

R> actcal.s2 <- seqdef(actcal[7:9, 13:24])

R> alphabet(actcal.s2)

[1] "A" "D"

In the first example, the alphabet is set to (A,B,D) while in the second object it is set to (A,D).
Since we know that the possible states are (A,B,C,D), we specify manually the alphabet for the
first ...

R> actcal.s1 <- seqdef(actcal[1:3, 13:24], alphabet = c("A", "B",

+ "C", "D"))

R> alphabet(actcal.s1)

[1] "A" "B" "C" "D"

... and the second object

R> actcal.s2 <- seqdef(actcal[7:9, 13:24], alphabet = c("A", "B",

+ "C", "D"))

R> alphabet(actcal.s2)

[1] "A" "B" "C" "D"

which permits to directly compare plots and tabulations of each sequence object. However, if we
had selected the two objects as subsets of the actcal.seq sequence object they would have inherited
the same alphabet

R> actcal.seq <- seqdef(actcal, 13:24)

R> actcal.s1 <- actcal.seq[1:3,]

R> actcal.s2 <- actcal.seq[7:9,]

R> alphabet(actcal.s1)

[1] "A" "B" "C" "D"

R> alphabet(actcal.s2)

[1] "A" "B" "C" "D"

6.3 Summarizing sequence objects 53

6.2.3 Color palette

The color palette attached to a sequence object is used by default in the graphical functions
provided by TraMineR. If no optional argument is provided, a color palette is created with the
dedicated RColorBrewer R package, which is loaded at start-up by TraMineR. The default color
palette is Accent. It can be overridden by the user with the cpal option. The awaited argument
is a character vector containing a color for each state in the alphabet. The colors() function
provides the list of color names available in R.

R> actcal.seq <- seqdef(actcal, 13:24, cpal = c("red", "blue", "green",

+ "yellow"))

The color palette for an existing sequence object may be modified by providing a vector with color
names ...

R> attr(actcal.seq, "cpal") <- c("pink", "purple", "cyan", "yellow")

... or by retrieving the colors from a color palette. In the example below, we retrieve 4 colors from
the “Dark2” color palette provided by the RColorBrewer package.

R> attr(actcal.seq, "cpal") <- brewer.pal(4, "Dark2")

6.2.4 State labels

State labels are used as legends by the TraMineR plot functions. If not specified, labels are set with
the state codes. Use the labels option to define state labels. The labels option expects a vector
containing a character string for each state in the alphabet. The order of the labels in the vector
must match the order of the states as returned by the seqstatl function 3 .

R> actcal.seq <- seqdef(actcal, 13:24, labels = c("> 37 hours",

+ "19-36 hours", "1-18 hours", "no work"))

6.2.5 Starting time

The start option specifies the starting time of the sequences. Since the value yields for all the
sequences in the data, this information makes sense only when states are dated and when all
sequences have the same starting time (are left aligned). Otherwise, you can safely ignore this
option and the value will be set to 1. This attribute is used for instance for creating column
names of the sequence object when there are no column names in the input data and no names
are provided by the user. This attribute is also updated when selecting subscripts of a sequence
object (see Section 6.4).

6.3 Summarizing sequence objects

The generic R summary() function will display some information when the name of a sequence
object is given as its argument.

R> summary(actcal.seq)

3IMPORTANT: the order of the states returned by the seqstatl() function may not be the same on Mac OS-X
systems as on Linux and Windows systems.

54 Ch. 6 Creating state sequence objects

[>] sequence object created with TraMineR version 1.8

[>] 2000 sequences in the data set, 186 unique

[>] min/max sequence length: 12/12

[>] alphabet (state labels):

1=A (> 37 hours)

2=B (19-36 hours)

3=C (1-18 hours)

4=D (no work)

[>] dimensionality of the sequence space: 36

[>] colors: 1=#7FC97F 2=#BEAED4 3=#FDC086 4=#FFFF99

The dimensionality is the number of dimensions necessary for constructing the sequence space
Haubold and Wiehe (2006), i.e.,

d = (|A| − 1)`

where |A| is the size of the alphabet and ` the (maximal) length of the sequences.

6.4 Indexing and printing sequence objects

Displaying a sequence object is as simple as typing its name. However, displaying a sequence object
containing 2000 rows such as actcal.seq for instance is not very interesting. Subscripts can be
used to display only selected rows and/or columns of the data. Subscripts and indexes work the
same way as for matrices and data frames.

In the next example, we display only the first 5 sequences and columns 3 to 8 (March to
August) of the previously created actcal.seq sequence object. Typing a sequence object name,
with or without subscripts, is equivalent to issuing the print() command with the object name
as argument

R> actcal.seq[1:5, 3:8]

Sequence

2848 B-B-B-B-B-B

1230 D-D-A-A-A-A

2468 B-B-B-B-B-B

654 C-C-C-C-C-C

6946 A-A-A-A-A-A

Note that the sequences are displayed in a compressed format, i.e. as character strings where the
states are separated with the ‘-’ symbol. But internally, each state is still stored in a single variable,
as shown with the print command with the ‘extended=TRUE’ option

R> print(actcal.seq[1:5, 3:8], ext = TRUE)

mar00 apr00 may00 jun00 jul00 aug00

2848 B B B B B B

1230 D D A A A A

2468 B B B B B B

654 C C C C C C

6946 A A A A A A

We get a more concise view of sequences with the SPS state-permanence representation. Obviously,
the SPS format yields shorter and more readable sequences. We obtain the SPS representation
with the format="SPS" option

R> print(actcal.seq[1:5, 3:8], format = "SPS")

6.5 Truncations, gaps and missing values 55

Sequence

[1] (B,6)

[2] (D,2)-(A,4)

[3] (B,6)

[4] (C,6)

[5] (A,6)

When using subscripts to select only parts of sequence objects, the result is still a sequence object
and all attributes of the parent object are preserved (inherited). As an example, the sequences for
the summer months only are selected from the previously created actcal.seq sequence object. We
see that the color palette (cpal attribute) and state labels (label attribute) have been preserved,
while the start attribute originally set to 1 (default value) has been updated to 6.

R> actcal.summer <- actcal.seq[, 6:9]

R> attr(actcal.summer, "cpal")

[1] "#7FC97F" "#BEAED4" "#FDC086" "#FFFF99"

R> attr(actcal.summer, "labels")

[1] "> 37 hours" "19-36 hours" "1-18 hours" "no work"

R> attr(actcal.summer, "start")

[1] 6

The column names are retrieved with the names function

R> names(actcal.summer)

[1] "jun00" "jul00" "aug00" "sep00"

6.5 Truncations, gaps and missing values

The handling of truncations, gaps and missing values in sequence data received only little attention
the literature. In this section we present the effort made to consider this topic and the available
features in TraMineR.

6.5.1 Introduction

To outline how we can handle missing values, truncations and gaps in sequences with TraMineR,
we focus on sequences stored in the extended STS format (see Chapter 4). This is one of the
most common way of storing sequences that TraMineR users may encounter and also the internal
storage format for sequence objects in TraMineR. Each sequence is stored in a row of a rectangular
matrix, and each row has the same number of elements. However, for several reasons, sequences
in a data set may have different lengths or may not begin and end at the same column positions
in the matrix. For example:

� Sequences defined as the list of successive states without duration information are typically
of varying length.

56 Ch. 6 Creating state sequence objects

� In event sequences, the number of events experienced by each individual differs from one
individual to the other.

� The length of the follow up is not the same for all individuals or sequences may be right or
left censored.

� Sequences may not be left aligned depending on the time axis on which they are defined.

� Data may not be available for all measuring points yielding internal gaps in the sequences.

We consider the famform data set coming with TraMineR that contains sequences with unequal
lengths. Indeed, the sequences contain only the distinct states that the individuals passed through.
The sequences are recorded in the compressed format, i.e. as character strings.

R> data(famform)

R> famform

Sequence

[1,] "S-U"

[2,] "S-U-M"

[3,] "S-U-M-MC"

[4,] "S-U-M-MC-SC"

[5,] "U-M-MC"

When translating the famform data set into the extended STS format (where sequences are stored
in a matrix), missing values are generated to fill the empty rows

R> seqdecomp(famform)

[1] [2] [3] [4] [5]

[1] "S" "U" NA NA NA

[2] "S" "U" "M" NA NA

[3] "S" "U" "M" "MC" NA

[4] "S" "U" "M" "MC" "SC"

[5] "U" "M" "MC" NA NA

Varying lengths of follow up. Censored data.

Time axis The discrete time axis on which the sequences are defined can be a calendar time
axis or a process time axis (see 4.1.3). A calendar time axis does not have a natural origin and
fixing an origin is simply a convention for providing time points. On a process time axis, the
origin represents the date of a starting event. Suppose that we follow up respondents after they
experienced some event (an accident, ending education, ...) and information is collected during 10
years. If the respondents entered the study at different points in time and we represent the data
on a calendar time axis, the data could look like this

R> ex2.cal

1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001

s1 1 1 1 1 1 1 1 3 3 3 NA NA

s2 NA 2 2 2 2 2 2 2 3 3 3 NA

s3 NA NA 1 1 1 2 2 2 2 2 2 2

6.5 Truncations, gaps and missing values 57

Table 6.1: Start and end of the sequences in the ex1 data set

Sequence Start position End position Gap positions
s1 4 13
s2 1 10
s3 2 11
s4 1 10 (3,4)
s5 1 10 (2,7)
s6 1 10 (1,2,3)

The meaning of the states does not matter here. Respondent 1 entered the study in 1990 and was
followed up until 1999, while respondent 3 entered in 1992 and was followed up until 2001. In this
case it may be more appropriate to represent the data on a process time axis where all sequences
would be left aligned, meaning that their common origin is not a specific year but the beginning
of the observed 10 year spell.

R> ex2.proc

T1 T2 T3 T4 T5 T6 T7 T8 T9 T10

s1 1 1 1 1 1 1 1 3 3 3

s2 2 2 2 2 2 2 2 3 3 3

s3 1 1 1 2 2 2 2 2 2 2

Internal gaps. Sequences may also contain “gaps”, i.e. some unknown statuses inside the se-
quence due to non-response or other reasons.

6.5.2 Handling the different kinds of missing values

From the above discussion, we may distinguish three types of elements in the matricial represen-
tation of sequence data: 1) statuses composing the sequence, 2) missing values and 3) empty cells
used for adjustment when the sequence is shorter than the row length. To illustrate we load the
example data frame ex1. In this example all elements that are not valid statuses are coded as NA’s,
the usual way of representing missing values in R. Hence we do not distinguish between missing
values and empty cells.

R> ex1

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

s1 <NA> <NA> <NA> A A A A A A A A A A

s2 D D D B B B B B B B <NA> <NA> <NA>

s3 <NA> D D D D D D D D D D <NA> <NA>

s4 A A <NA> <NA> B B B B D D <NA> <NA> <NA>

s5 A <NA> A A A A <NA> A A A <NA> <NA> <NA>

s6 <NA> <NA> <NA> C C C C C C C <NA> <NA> <NA>

The sequences are stored in a 13 columns matrix but we state that the real length of each of
them is in actually 10. The positions at which each sequence starts and ends are summarized in
Table 6.1. Some sequences also contain gaps corresponding to unknown states. Now the question
is how are those sequences handled by TraMineR when we create a sequence object and later on
when computing distances between sequences. And which control do we have on this process. To
describe this we divide the sequence in three distinct parts and define three associated vectors with
the indexes of the missing values in each of the three parts.

58 Ch. 6 Creating state sequence objects

Table 6.2: Indexes of missing values in the three parts of the sequences

Sequence vl vg vr

s1 (1, 2, 3) (∅) (∅)
s2 (∅) (∅) (11, 12, 13)
s3 (1) (∅) (12, 13)
s4 (∅) (3, 4) (11, 12, 13)
s5 (∅) (2, 7) (11, 12, 13)
s6 (1, 2, 3) (∅) (11, 12, 13)

� The first part of the sequence is made of the missing values appearing before the first (left-
most) valid state element. This part can be void if the sequence begins with a valid state.
The associated vector vl contains the indexes of all missing values appearing before the first
(leftmost) valid state in a sequence. Hence vl = (1, 2, 3) for s1 and s6, vl = (∅) for s2, s4
and s5 and vl = (1) for s3. Settings for handling missing values in this part of the sequence
are defined with the left option.

� The second part of the sequence begins with the first (leftmost) valid state and ends with
the last (rightmost) valid state. The associated vector vg contains the indexes of all missing
values appearing in this part of the sequence. Hence vg = (3, 4) in s4, vg = (2, 7) in s5 and
vg = (∅) in s1, s2, s3 and s6. Settings for handling missing values in this part of the sequence
are defined with the gaps argument.

� The third part of the sequence is made of the missing values appearing after the last (right-
most) valid state (element). The associated vector vr contains the indexes of all missing
values appearing in this part of the sequence. Hence vr = (11, 12, 13) for s2, s4, s5 and s6,
vr = (12, 13) for s3 and vr = (∅) for s1. Settings for handling missing values in this part of
the sequence are defined with the right option.

When defining a sequence object, the user can specify the way he wants to handle the elements
indexed by each of these three vectors. The options for each part are set with the arguments left,
gaps and right. Each of them accepts the following values

� "DEL" for deleting the NA’s, meaning that they do not belong to the sequence. Missing values
become thus void. When necessary for maintaining the row length, a special character (“%”
by default) will be inserted on the right of the sequence for each such deleted missing value.

� NA, nothing is done and the each missing value is left as an explicit missing element. For
the output, missing values are coded with a special character (“*” by default) that is more
convenient than NA for displaying the sequences.

Default values are left=NA, gaps=NA and right="DEL", We demonstrate how the different options
work on our example data. First, we leave the default settings unchanged. With those settings, all
missing values encountered after the last valid state4 in a sequence are considered as void elements,
i.e. the sequence is considered as ending after the last valid state5.

R> ex1.A <- seqdef(ex1, 1:13)

R> ex1.A

4‘last’ means the rightmost.
5The code used in the input data for missing values can be set with the missing option. The default is NA, the

usual way of representing missing values in R.

6.5 Truncations, gaps and missing values 59

Sequence

s1 *-*-*-A-A-A-A-A-A-A-A-A-A

s2 D-D-D-B-B-B-B-B-B-B

s3 *-D-D-D-D-D-D-D-D-D-D

s4 A-A-*-*-B-B-B-B-D-D

s5 A-*-A-A-A-A-*-A-A-A

s6 *-*-*-C-C-C-C-C-C-C

By printing the sequence object in its internal matrix representation, we see that all the end trailing
positions are occupied by “%”, the default TraMineR character code for void elements.

R> print(ex1.A, ext = TRUE)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

s1 * * * A A A A A A A A A A

s2 D D D B B B B B B B % % %

s3 * D D D D D D D D D D % %

s4 A A * * B B B B D D % % %

s5 A * A A A A * A A A % % %

s6 * * * C C C C C C C % % %

Void elements are for instance not taken into account when computing the length of the sequences.

R> seqlength(ex1.A)

Length

s1 13

s2 10

s3 11

s4 10

s5 10

s6 10

Nonetheless, the computed length is not 10 for all sequences. The left part of sequences s1 and
s3 which do not begin in the first column of the matrix, has been considered as part of them. To
remedy to this problem, we could use the left="DEL" option. With this option, all missing values
at the beginning of a sequence are considered as void elements and the sequence is shifted to the
left so that it begins with its first valid status.

R> ex1.B <- seqdef(ex1, left = "DEL")

R> ex1.B

Sequence

s1 A-A-A-A-A-A-A-A-A-A

s2 D-D-D-B-B-B-B-B-B-B

s3 D-D-D-D-D-D-D-D-D-D

s4 A-A-*-*-B-B-B-B-D-D

s5 A-*-A-A-A-A-*-A-A-A

s6 C-C-C-C-C-C-C

To preserve the number of elements of the rows in the matrix, void elements are added at the end
(right side) of the sequence.

R> print(ex1.B, ext = TRUE)

60 Ch. 6 Creating state sequence objects

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

s1 A A A A A A A A A A % % %

s2 D D D B B B B B B B % % %

s3 D D D D D D D D D D % % %

s4 A A * * B B B B D D % % %

s5 A * A A A A * A A A % % %

s6 C C C C C C C % % % % % %

Now the lengths of all sequences appears to be 10, except for s6. This is due to the fact that s6
begins with missing values that are indeed part of the sequence, which have been deleted. We can
see that it is not possible to disentangle in that case the ”void” and the ”real” missing values at the
begining of a sequence.

R> seqlength(ex1.B)

Length

s1 10

s2 10

s3 10

s4 10

s5 10

s6 7

The same options are available for the gaps in a sequence, as previously defined. In the next
example we ask to delete also the missing values encountered in the center part of the sequence.
Sequences have been reduced to their valid statuses only.

R> ex1.C <- seqdef(ex1, left = "DEL", gaps = "DEL")

R> ex1.C

Sequence

s1 A-A-A-A-A-A-A-A-A-A

s2 D-D-D-B-B-B-B-B-B-B

s3 D-D-D-D-D-D-D-D-D-D

s4 A-A-B-B-B-B-D-D

s5 A-A-A-A-A-A-A-A

s6 C-C-C-C-C-C-C

R> seqlength(ex1.C)

Length

s1 10

s2 10

s3 10

s4 8

s5 8

s6 7

Now we set all options to NA and all missing values are considered as part of the sequences

R> ex1.D <- seqdef(ex1, left = NA, gaps = NA, right = NA)

R> ex1.D

6.5 Truncations, gaps and missing values 61

Sequence

s1 *-*-*-A-A-A-A-A-A-A-A-A-A

s2 D-D-D-B-B-B-B-B-B-B-*-*-*

s3 *-D-D-D-D-D-D-D-D-D-D-*-*

s4 A-A-*-*-B-B-B-B-D-D-*-*-*

s5 A-*-A-A-A-A-*-A-A-A-*-*-*

s6 *-*-*-C-C-C-C-C-C-C-*-*-*

R> seqlength(ex1.D)

Length

s1 13

s2 13

s3 13

s4 13

s5 13

s6 13

Here is the SPS representation of the previous example

R> print(ex1.D, format = "SPS")

Sequence

[1] (*,3)-(A,10)

[2] (D,3)-(B,7)-(*,3)

[3] (*,1)-(D,10)-(*,2)

[4] (A,2)-(*,2)-(B,4)-(D,2)-(*,3)

[5] (A,1)-(*,1)-(A,4)-(*,1)-(A,3)-(*,3)

[6] (*,3)-(C,7)-(*,3)

Chapter 7

Describing and visualizing state
sequences

Results shown in this chapter are obtained with:
TraMineR version 1.8
R version 2.9.2 (2009-08-24)-platform: i486-pc-linux-gnu.

This chapter presents the main TraMineR tools for describing and visualizing sequences. We
first briefly explain in Section 7.1 the general plotting philosophy adopted in TraMineR. Section 7.2
presents then tools for describing and visualizing set properties of the sequences from an aggregated
standpoint and Section 7.3 focuses on the characterization of individual sequence properties and
their summary.

7.1 General principle of TraMineR sequence plots

TraMineR provides three basic plotting functions for visualizing sequence characteristics: seqd-
plot() for plotting the state distribution at each time point, seqfplot() for plotting the frequen-
cies of the most frequent sequences and seqiplot() for plotting all or a selection of individual
sequences.

7.1.1 Color palette representing the states

The before-mentioned plot functions have in common to use a specific color for each state. The
choice of the colors is done by selecting a color palette. Indeed, for facilitating readability it is
important to use the same color palette for all plots based on a same alphabet. The philosophy
retained in TraMineR is therefore to attach the alphabet and the color palette as attributes of the
sequence object (see Section 6.2) and letting the plotting functions retrieve these attributes when
generating the plots. The same is true also for the labels of the time axis ticks and the labels of
the states.

7.1.2 Plotting the legend separately

To be understandable, a plot must be accompanied by the legend of the used state colors. By default
each sequence plot produces therefore the legend on the top of the graphic using the attributes of
the plotted sequence object.

In some cases, especially when you generate multiple plots, for instance a state distribution plot
and an sequence frequency plot, it may be preferable to generate plots without legends and produce

62

7.2 Describing and visualizing sequence data sets 63

the legend only once separately. For doing so, TraMineR provides the seqlegend() function that
generates the legend has a separate graphic, and a withlegend=FALSE option for the seqdplot(),
seqfplot and seqiplot() functions.

For example, the following code generates three plots and a legend side by side as shown in
Figure 7.1.

R> par(mfrow = c(2, 2))

R> seqiplot(biofam.seq, title = "Index plot (first 10 sequences)",

+ withlegend = FALSE)

R> seqdplot(biofam.seq, title = "State distribution plot", withlegend = FALSE)

R> seqfplot(biofam.seq, title = "Sequence frequency plot", withlegend = FALSE,

+ pbarw = TRUE)

R> seqlegend(biofam.seq)

Index plot (first 10 sequences)

10
 s

eq
. (

n=
20

00
)

a15 a17 a19 a21 a23 a25 a27 a29

1
2

3
4

5
6

7
8

9
10

State distribution plot

F
re

q.
 (

n=
20

00
)

a15 a17 a19 a21 a23 a25 a27 a29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Sequence frequency plot

C
um

. %
 fr

eq
. (

n=
20

00
)

a15 a17 a19 a21 a23 a25 a27 a29

0%

20.6% Parent
Left
Married
Left+Marr
Child
Left+Child
Left+Marr+Child
Divorced

Figure 7.1: Legend plotted as an additional graphic

7.2 Describing and visualizing sequence data sets

In this section we present functions for visualizing and describing sequences at the aggregate level.

64 Ch. 7 Describing and visualizing state sequences

7.2.1 List of states present in sequence data

A first result we may want is just the list of states present in the data set. This is obtained with
the alphabet() function when the list of states has not been explicitly specified by the user.1 The
alphabet() function returns the list of the possible states for a sequence object. In the following
example, we see that the alphabet for the actcal.seq sequence object contains 4 distinct states: A,
B, C and D (see Table 3.1 page 21 for their description).

R> data(actcal)

R> actcal.lab <- c("> 37 hours", "19-36 hours", "1-18 hours", "no work")

R> actcal.seq <- seqdef(actcal, 13:24, labels = actcal.lab)

R> alphabet(actcal.seq)

[1] "A" "B" "C" "D"

To get the list of all distinct states appearing in a data set containing sequences not converted
into a sequence object, use the seqstatl() function. You tell seqstatl() which variables define
the sequence data by providing with the var argument either their names or their column index
numbers. For specifying the columns by their names, you have to group them into a vector with
the c() function. By default, the seqstatl() function expects a STS formatted data set as input.
If the sequences in your data are in another format, you should specify it with the format option.
In the following example, we retrieve the alphabet for the two sequences of the sp.ex12 data set.

R> sp.ex1 <- rbind("(000,12)-(0W0,9)-(0WU,5)-(1WU,2)", "(000,12)-(0W0,14)-(1WU,2)")

R> sp.ex1

[,1]

[1,] "(000,12)-(0W0,9)-(0WU,5)-(1WU,2)"

[2,] "(000,12)-(0W0,14)-(1WU,2)"

R> seqstatl(sp.ex1, format = "SPS")

[1] "000" "0W0" "0WU" "1WU"

7.2.2 State distribution

State distribution plot The seqdplot() function plots a graphic showing the state distribution
at each time point (the columns of the sequence object). The state distribution itself is obtained
with the seqstatd() command described below. In the next example we plot the state distribution
for the mvad data set. We first define a mvad.labels vector of state labels to be used for the legend
of the colors used in the plot. This vector has six elements since there are six different states in
the alphabet. The xtstep option sets the step between displayed tick-marks and labels on the
x-axis of state sequence plots. This parameter is retrieved from the sequence object by the plotting
functions but can be overriden by the user.

R> data(mvad)

R> mvad.labels <- c("employment", "further education", "higher education",

+ "joblessness", "school", "training")

R> mvad.seq <- seqdef(mvad, 15:86, labels = mvad.labels, xtstep = 6)

The plot is produced with the following command

R> seqdplot(mvad.seq, border = NA)

7.2 Describing and visualizing sequence data sets 65

F
re

q.
 (

n=
71

2)

Jul.93 Jul.94 Jul.95 Jul.96 Jul.97 Jul.98

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

employment
further education

higher education
joblessness

school
training

Figure 7.2: Distribution of the statuses by age in the mvad data set

The resulting graphic is shown in Figure 7.2. The proportion of individuals who are employed
increases to become the most frequent state at the end of the follow-up.

The state distribution plot for the actcal data, obtained with the command below, shows a
different pattern (Figure 7.3). The distribution of the work statuses looks very stable over time.

R> seqdplot(actcal.seq)

State distribution table Beside plotting the distribution of the states at each time point, you
may want to get the figures of the distribution. The seqstatd() function returns the table of
the state distributions together with the number of valid states and an entropy measure for each
time unit. The state distributions are those visualized by the seqdplot()function. The following
example shows the family formation state distribution from age 15 to 30 in the (biofam data set
(see Table 3.3 page 22 for the description of the states). The first argument to the seqstatd()
function is the previously created biofam.seq sequence object.

R> seqstatd(biofam.seq)

[State frequencies]

a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25

0 0.986 0.948 0.9235 0.8810 0.8155 0.706 0.5955 0.5000 0.4165 0.3410 0.255

1 0.014 0.052 0.0750 0.1080 0.1520 0.226 0.2795 0.2950 0.2945 0.2830 0.261

2 0.000 0.000 0.0005 0.0030 0.0070 0.016 0.0280 0.0385 0.0495 0.0610 0.073

3 0.000 0.000 0.0005 0.0025 0.0130 0.022 0.0460 0.0790 0.1130 0.1505 0.185

1in that case, some states in the alphabet may not appear in the data. See Sec. 6 for more information on this
topic

2this data set is created by binding two character strings with the rbind() function

66 Ch. 7 Describing and visualizing state sequences

F
re

q.
 (

n=
20

00
)

jan00 mar00 may00 jul00 sep00 nov00

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

> 37 hours
19−36 hours

1−18 hours
no work

Figure 7.3: Distribution of the work statuses by month in the actcal data set (data from the Swiss
Household Panel)

4 0.000 0.000 0.0000 0.0005 0.0000 0.000 0.0000 0.0005 0.0010 0.0000 0.001

5 0.000 0.000 0.0000 0.0000 0.0015 0.003 0.0035 0.0045 0.0055 0.0060 0.006

6 0.000 0.000 0.0005 0.0050 0.0110 0.027 0.0470 0.0805 0.1175 0.1520 0.207

7 0.000 0.000 0.0000 0.0000 0.0000 0.000 0.0005 0.0020 0.0025 0.0065 0.012

a26 a27 a28 a29 a30

0 0.201 0.158 0.1275 0.0980 0.0770

1 0.231 0.203 0.1735 0.1580 0.1390

2 0.081 0.085 0.0910 0.0965 0.1035

3 0.203 0.215 0.2050 0.1980 0.1880

4 0.001 0.001 0.0015 0.0015 0.0015

5 0.007 0.011 0.0125 0.0120 0.0115

6 0.260 0.305 0.3615 0.4030 0.4415

7 0.017 0.022 0.0275 0.0330 0.0380

[Valid states]

a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29

N 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000 2000

a30

N 2000

[Entropy index]

a15 a16 a17 a18 a19 a20 a21 a22 a23 a24 a25 a26 a27 a28 a29

H 0.035 0.098 0.13 0.2 0.29 0.41 0.52 0.61 0.68 0.74 0.78 0.8 0.8 0.79 0.77

a30

H 0.75

In addition to the state distribution at each time point, the seqstatd() function provides also
for each time point the number of valid states and the Shannon entropy of the observed state

7.2 Describing and visualizing sequence data sets 67

distribution. Letting pi denote the proportion of cases in state i at the considered time point, the
entropy is

h(p1, . . . , ps) = −
s∑

i=1

pi log(pi)

where s is the size of the alphabet. The log is here the natural (base e) logarithm. The entropy
is 0 when all cases are in the same state and is maximal when the same proportion of cases
are in each state. The entropy can be seen as a measure of the diversity of states observed at the
considered time point. Billari (2001) and Fussell (2005) considered for instance such entropy values
for studying early life trajectories, the latter author applying the concept on aggregated virtual
trajectories derived from transversal data.

Let us look at our example above. At age 15, 99% of the respondents had not leaved parental
home (state 0), hence the entropy is very low (0.035). The entropy of the state distribution rises
with age and reaches its maximum at age 27. At this age, 16% percent of the respondents had not
leaved parental home, 20% had leaved parental home but were not married and had no children
(state 1), 1% had one or more children without being married, and 30% had one or more children
and were married (state 6).

We can also plot the reported entropy measures. For that we use the seqHtplot() function.
By the way, we illustrate also how we can save the graphic in a pdf file so that it can for instance
be inserted into this manual. To do this, we open a pdf file with the pdf() function, create the
graphic with the plot command and close the pdf file with the dev.off() function. The result
is shown in figure 7.4. Of course, if you want to run this program on your system, you should
adapt the path to the ‘pdf’ file to your convenience. Users who prefer to save their graphics in the
postscript format can use postscript() instead of pdf(). There are likewise png(), jpeg(), ...
functions.

R> sd <- seqstatd(biofam.seq)

R> pdf(file = "Graphiques/fg_biofam-entropy.pdf", width = 8, height = 8,

+ pointsize = 14)

R> seqHtplot(biofam.seq)

R> dev.off()

7.2.3 Sequence frequencies

Sequence frequency plot The seqfplot() function plots the most frequent sequences. Each
sequence is plotted as a horizontal bar split in as many colorized cells as there are states in the
sequence. The sequences are ordered by decreasing frequency from bottom up and the bar widths
are set proportional to the sequence frequency (use pbarw=FALSE to disable this feature). By
default, the 10 most frequent sequences are plotted. However, you can select the number of most
frequent sequences to plot with the tlim option. The next command plots for instance the 5 most
frequent sequences of the actcal.seq sequence object. The resulting plot is shown in Figure 7.5.
The labels appearing in the plot’s legend are those attached to the object page 53. Notice that the
legend is plotted on the right using the withlegend="right" option. The frequency plot for the
biofam.seq sequence object is obtained with the following commands and shown in Figure 7.6.
The most frequent sequence, living with parents without being in a partnership or having children
from age 15 to 30, is shared by less than 8% of the cases. This does not mean that the most
frequent case is to live with both parents until age 30. But, because the timing of the events of
family formation spreads over many years, its variability is high and the probability of having many
individuals with exactly the same calendar, i.e. changing to the same statuses at the same age, is
low.

Sequence frequency table Instead of the plot, you may want numerical details (counts and
percentage) about the most frequent sequences. The seqtab() function returns a frequency table

68 Ch. 7 Describing and visualizing state sequences

E
nt

ro
py

 in
de

x
(n

=
20

00
)

a15 a17 a19 a21 a23 a25 a27 a29

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 7.4: Entropy of state distribution by age - biofam data set

of the distinct sequences in the data set. Since the number of distinct sequences can be very high,
only the first 10 sequences tlim=1:10 in the list are displayed by default. One can override the
default value of tlim to select any sequence or group of sequences in the frequency table. The
following example shows the frequency table for the actcal.seq sequence object created from
actcal the data set about the activity calendar (the meaning of the states A, B, C, D is given
in Table 3.1 on page 21). The most frequent sequence (38%) in the data set is full time paid-
job during all the period (January to December 2000) and appears 757 times. The second most
frequent sequence (25%) is no-paid job during all the period and appears 508 times. Note that the
sequences are displayed in the more readable SPS format.

C
um

. %
 fr

eq
. (

n=
20

00
)

jan00 mar00 may00 jul00 sep00 nov00

0%

82.2%

> 37 hours
19−36 hours
1−18 hours
no work

Figure 7.5: Plot of the 10 most frequent sequences in the actcal data set

7.2 Describing and visualizing sequence data sets 69

R> seqtab(actcal.seq)

Freq Percent

A/12 757 37.85

D/12 508 25.40

B/12 250 12.50

C/12 115 5.75

C/9-D/3 15 0.75

A/10-B/2 12 0.60

B/10-C/2 8 0.40

B/11-A/1 8 0.40

D/11-C/1 8 0.40

D/9-C/3 8 0.40

We can ask for the sequence frequency table for months July (7) to September (9) only

R> seqtab(actcal.seq[, 7:9])

Freq Percent

A/3 813 40.65

D/3 581 29.05

B/3 308 15.40

C/3 174 8.70

D/2-C/1 15 0.75

C/2-D/1 11 0.55

A/1-D/2 9 0.45

D/1-C/2 9 0.45

A/2-D/1 8 0.40

D/1-A/2 8 0.40

C
um

. %
 fr

eq
. (

n=
20

00
)

a15 a17 a19 a21 a23 a25 a27 a29

0%

20.6%

Parent
Left
Married
Left+Marr
Child
Left+Child
Left+Marr+Child
Divorced

Figure 7.6: Plot of the 10 most frequent sequences in the biofam data set (bar widths proportional
to the sequence frequencies)

70 Ch. 7 Describing and visualizing state sequences

7.2.4 Transition rates

The seqtrate() function computes the transition rates between states or events. The outcome
is a matrix where each rows gives a transition distribution from associated originating state (or
event) in t to the states in t+ 1 (the figures sum to one in each row).

In the following example, the transition rate matrix for the actcal (activity calendar) data set
is computed. Transition rates from one state to the same state (diagonal elements) have values
close to 1, meaning that a person in a given state at time t has a great probability to remain in the
same state at time t+ 1. The ‘instability’ is a bit higher for the state C (part-time paid job from
1 to 18 hours a week), since the probability of staying in that state is 0.94, while the ‘instability’
of state A is the lowest with a probability of staying in that state of 0.99.

R> tr <- seqtrate(actcal.seq)

R> round(tr, 2)

[-> A] [-> B] [-> C] [-> D]

[A ->] 0.99 0.01 0.00 0.01

[B ->] 0.01 0.97 0.01 0.01

[C ->] 0.01 0.01 0.93 0.05

[D ->] 0.01 0.01 0.01 0.97

Notice that the matrix is not symmetrical. The transition rate between states A and B is 0.005
(0.5%), while the transition rate from B to A is 0.01 (1%). As claimed above, the sum of the
transition rates from one state to all other states (including the transition rate between the state
and itself) should equal 1. But we don’t trust anybody and we want to check it. We therefore
apply the rowSums() function, which returns the sum of the rows, to the tr object containing the
transition rates

R> rowSums(tr)

[A ->] [B ->] [C ->] [D ->]

1 1 1 1

Of course there is a shorter way that leads to the same result

R> rowSums(seqtrate(actcal.seq))

[A ->] [B ->] [C ->] [D ->]

1 1 1 1

7.2.5 Mean time spent in each state

We may be interested in the mean time spent in each state. TraMineR provides a special function
called seqmtplot() to visualize the mean time values. In the next example, we use this function
together with the group option to visualize the mean times for each sex separately (Figure 7.7). As
for the other plotting functions, the colors for representing the states are automatically retrieved
from the sequence object.

R> seqmtplot(actcal.seq, group = actcal$sex, title = "Mean time")

7.3 Describing and visualizing individual sequences 71

A B C D

Mean time − man

M
ea

n
tim

e
(n

=
88

4)

0
2

5
7

10
12

A B C D

Mean time − woman

M
ea

n
tim

e
(n

=
11

16
)

0
2

5
7

10
12

> 37 hours
19−36 hours

1−18 hours
no work

Figure 7.7: Mean time spent in each state, actcal data.

7.3 Describing and visualizing individual sequences

7.3.1 Visualizing individual sequences

The seqiplot() function renders individual sequences with stacked bars depicting the statuses
over time in the same manner as seqfplot(). The difference is that seqiplot() does neither
select nor rank the sequences according to their frequencies. The interest of such plots, known
as index-plots, has for instance been stressed by Scherer (2001), Brzinsky-Fay et al. (2006) and
Gauthier (2007).

In TraMineR you can select the indexes of the sequences to be plotted with the tlim option,
which takes 1:10 as default value, i.e. the 10 first rows of the sequence object. Several other options
are available to fine tune the graphic. You find their description in the reference manual or in on-
line help of the function, which you get by typing ?seqiplot or help(seqiplot). In the first
example below, the 10 first sequences in the actcal.seq sequence object are plotted (Figure 7.8).
The legend uses the labels attached to the actcal.seq object and the color palette is the one set
by default. In the next example, we plot all sequences in the previously defined mvad.seq sequence
object separately for the values of the gcse5eq 3 variable using the group option. The border=NA
option specifies that the borders of the bars are not plotted and the space=0 option that the bars
representing individual sequences are plotted without space between them, yielding a more clean
graphic when a large number of sequences are plotted.

The group option can be useful to distinguish patterns depending on a covariate value. Here
the right sequences correspond to young people who gained higher qualifications by the end of
compulsory education, and whose large proportion will continue school up to higher education.
We observe that the color corresponding to higher education is much more frequent in the right
plot, while the colors corresponding to training and employment are much more frequent in the
left plot.

3binary dummy indicating qualifications gained by the end of compulsory education, yes=5+GCSEs at grades
A-C, or equivalent

72 Ch. 7 Describing and visualizing state sequences

10
 s

eq
. (

n=
20

00
)

jan00 mar00 may00 jul00 sep00 nov00

1
2

3
4

5
6

7
8

9
10

> 37 hours
19−36 hours

1−18 hours
no work

Figure 7.8: Plot of the 10 first sequences of the actcal data set

This plot of individual sequences complements the “averaged” representation provided by the
state distribution plot by rendering the diversity of the sequences. However, such index plots for
thousands of sequences result in very heavy graphic files if they are stored in PDF or POSTSCRIPT
format. To reduce the size, we suggest that you save in that case the figures in png format by
using png() instead of postscript() or pdf(). Figure 7.9 was produced as a PNG plot with the
following commands:

R> png(file = "Graphiques/mvad-seqiplot-all.png", width = 1600,

+ height = 1200, pointsize = 50)

R> seqiplot(mvad.seq, group = mvad$gcse5eq, tlim = 0, border = NA,

+ space = 0)

R> dev.off()

This results in a degradation of the graphic’s quality but permitted, however, to reduce the size of
this manual in pdf format by about 5MB.

7.3.2 Finding sequences with a given subsequence

The seqpm() function counts the number of sequences that contain a given subsequence and collects
their row index numbers. The function returns a list with two elements. The first element, MTab,
is just a table with the number of occurrences of the given subsequence in the data. Note that
only one occurrence is counted per sequence, even when the sub-sequence appears more than one
time in the sequence. The second element of the list, MIndex, gives the row index numbers of
the sequences containing the subsequence. These index numbers may be useful for accessing the
concerned sequences (example below). Since it is easier to search a pattern in a character string,
the function first translates the sequence data in this format when using the seqconc function with
the TRUE option.

In the following example, we search for the pattern ‘DAAD’ (see Table 3.1 page 21 for the
meaning of the states) into the activity calendar sequence data object.

R> seqpm(actcal.seq, "DAAD")

7.3 Describing and visualizing individual sequences 73

Figure 7.9: Plot of all sequences of the mvad data set, grouped according to the gcse5eq variable

$MTab

pattern nbocc

1 DAAD 4

$MIndex

[1] 964 967 1197 1797

Four sequences contain the pattern. If we want to look at the sequences containing the ‘DAAD’
subsequence, we use the ‘$MIndex’ element of the list returned by the seqpm() function. We first
store the result of the function in an object named daad and then access the sequences containing
the pattern using daad$MIndex as row index for the actcal.seq sequence object (since we want
all the columns we leave the column index empty).

R> daad <- seqpm(actcal.seq, "DAAD")

R> actcal.seq[daad$MIndex,]

Sequence

3660 D-A-A-D-D-D-D-D-D-A-A-A

6829 D-D-A-A-D-D-A-A-A-A-A-A

6040 D-D-B-B-C-D-D-A-A-D-C-C

5489 D-D-D-D-A-A-D-A-B-B-D-D

Chapter 8

Sequence characteristics and
associated measures

Results shown in this chapter are obtained with:
TraMineR version 1.8
R version 2.9.2 (2009-08-24)-platform: i486-pc-linux-gnu.

This chapter focuses on the characterization of individual sequence properties and their sum-
mary.

8.1 Basic sequence characteristics

8.1.1 Sequence length

The seqlength() function returns the length of the sequences in a sequence object.

R> data(famform)

R> famform.seq <- seqdef(famform)

R> famform.seq

Sequence

[1] S-U

[2] S-U-M

[3] S-U-M-MC

[4] S-U-M-MC-SC

[5] U-M-MC

R> seqlength(famform.seq)

Length

[1] 2

[2] 3

[3] 4

[4] 5

[5] 3

74

8.2 Distinct states and durations 75

8.2 Distinct states and durations

A sequence can be considered as an ordered list of the distinct states that an individual has
passed through and their associated durations. This is the way the state-permanence SPS format
represents sequences as shown here for the first rows of the actcal.seq object 1

R> print(head(actcal.seq), "SPS")

Sequence

[1] (B,12)

[2] (D,4)-(A,7)-(D,1)

[3] (B,12)

[4] (C,9)-(B,3)

[5] (A,12)

[6] (D,1)-(B,11)

The seqdss() and seqdur() functions are provided to extract distinct states and durations from
sequences. Such separated information is required for example for computing sequence turbulence
as will be explained below in Section 8.5.1 on page 85. In the following example we extract this
separated information from the first six sequences of the actcal.seq object. Distinct sequences
are obtained with

R> seqdss(head(actcal.seq))

Sequence

2848 B

1230 D-A-D

2468 B

654 C-B

6946 A

1872 D-B

and durations with

R> seqdur(head(actcal.seq))

DUR1 DUR2 DUR3

2848 12 NA NA

1230 4 7 1

2468 12 NA NA

654 9 3 NA

6946 12 NA NA

1872 1 11 NA

Note that durations are stored in a matrix with a number of columns equal to the maximum
sequence length encountered. This is because in a sequence of length 12 for instance, there can be
at most 12 possible distinct states.

1head(actcal.seq) is equivalent to actcal.seq[1:6,]

76 Ch. 8 Sequence characteristics and associated measures

8.3 Summarizing the DSS

8.3.1 Number of subsequences

The idea of subsequence is an extension of the notion of substring and is described in detail for
instance in Elzinga (2008). While a substring of a sequence is necessarily constituted of adjacent
symbols, this requirement is relaxed with the notion of subsequence. Thus if x = abac, λ (the
empty string), u = b, v = bac and w = bc belong to the set of subsequences of x, while only λ,
u = b and v = bac are substrings of x.

The seqsubsn function returns the number of subsequences contained in a sequence.

R> seqsubsn(head(actcal.seq))

Subseq.

2848 2

1230 7

2468 2

654 4

6946 2

1872 4

8.3.2 Number of transitions

Computing the length of a sequence’s DSS yields immediately the number of transitions contained
in the sequence. This is illustrated below with the mvad data set. We first have a look at the first
10 sequences

R> print(head(mvad.seq), format = "SPS")

Sequence

[1] (TR,2)-(EM,4)-(TR,2)-(EM,64)

[2] (JL,2)-(FE,36)-(HE,34)

[3] (JL,2)-(TR,24)-(FE,34)-(EM,10)-(JL,2)

[4] (TR,49)-(EM,14)-(JL,9)

[5] (JL,2)-(FE,25)-(HE,45)

[6] (JL,3)-(TR,33)-(EM,36)

Next we extract the DSS for each sequence and then compute its length

R> mvad.dss <- seqdss(mvad.seq)

R> head(mvad.dss)

Sequence

1 TR-EM-TR-EM

2 JL-FE-HE

3 JL-TR-FE-EM-JL

4 TR-EM-JL

5 JL-FE-HE

6 JL-TR-EM

R> seqlength(head(mvad.dss))

8.4 Summarizing state durations 77

Length

1 4

2 3

3 5

4 3

5 3

6 3

We can see that substracting 1 to the DSS length gives the number of transition in the sequence.

8.4 Summarizing state durations

8.4.1 Variance of the state durations

8.4.2 Cumulated state durations

The seqistatd() function returns for each sequence the time spent in the different states.

R> seqistatd(actcal.seq[1:6,])

A B C D

2848 0 12 0 0

1230 7 0 0 5

2468 0 12 0 0

654 0 3 9 0

6946 12 0 0 0

1872 0 11 0 1

We may be interested in the mean time spent in each state. These mean times can be computed by
means of the apply() function, with which we can “apply” the mean() function to each column of
the matrix outputted by seqistatd(). In the following example, we first store the outcome of the
seqistatd() function in statd, and then compute the mean value by columns (2nd dimension)
with the apply function.

R> statd <- seqistatd(actcal.seq)

R> apply(statd, 2, mean)

A B C D

5.0275 1.9745 1.1780 3.8200

TraMineR provides a special function to visualize the mean time values, described in Chapter 7.

8.4.3 Within sequence entropy

In order to measure the diversity of the states in a given sequence, TraMineR offers two functions:
The first one measures the entropy of the sequence and the second one, which is discussed later in
Section 8.5.1, is the Turbulence.

TraMineR provides the function seqient() that returns the Shannon entropy of each sequence
in the data. The entropy of a sequence is computed using the formula

h(π1, . . . , πs) = −
s∑

i=1

πi log πi

where s is the size of the alphabet and πi the proportion of occurrences of the ith state in the
considered sequence. The log is here the natural (base e) logarithm. The entropy can be interpreted

78 Ch. 8 Sequence characteristics and associated measures

as the ‘uncertainty’ of predicting the states in a given sequence. If all states in the sequence are
the same, the entropy is equal to 0. The maximum entropy for a sequence of length 12 with an
alphabet of 4 states is 1.386294 and is attained when each of the four states appears 3 times.

The seqient() function returns a vector containing the entropy for each sequence of the pro-
vided sequence object. By default, sequient() normalizes the entropy by dividing the value of
h(π1, . . . , πs) by the entropy of the alphabet. The latter is indeed an upper bound of the entropy
that corresponds to the maximal possible entropy when the sequence length is a multiple of the
alphabet size. The normalized entropy has a maximal value of 1. Unstandardized entropies can
be obtained with the norm=F option.

In the example below, the normalized entropies for the 10 first sequences of the actcal.seq
object are computed and the results are stored in an object named actcal.ient. As expected, the
entropy for the first sequence is 0, since it belongs to an individual who worked full-time during
all the period. The entropy is higher for sequence number 2, which describes an individual who
changed many times his activity status

R> actcal.ient <- seqient(actcal.seq)

R> head(actcal.ient)

Entropy

2848 0.0000000

1230 0.4899344

2468 0.0000000

654 0.4056391

6946 0.0000000

1872 0.2069084

Note that this entropy measure does not account for the ordering of the states in the sequence. To
demonstrate this, we construct a small data set containing three sequences with the same states
ordered differently. We first construct a vector for each sequence, combine the obtained vectors
into a matrix with the rbind() function and eventually convert the matrix into a sequence object.

R> s1 <- c("A", "A", "A", "B", "B", "B", "C", "C", "C", "D", "D", "D")

R> s2 <- c("A", "D", "A", "B", "C", "B", "C", "B", "C", "D", "A", "D")

R> s3 <- c("A", "B", "A", "B", "A", "B", "C", "D", "C", "D", "C", "D")

R> ex1 <- rbind(s1, s2, s3)

R> ex1

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10] [,11] [,12]

s1 "A" "A" "A" "B" "B" "B" "C" "C" "C" "D" "D" "D"

s2 "A" "D" "A" "B" "C" "B" "C" "B" "C" "D" "A" "D"

s3 "A" "B" "A" "B" "A" "B" "C" "D" "C" "D" "C" "D"

R> ex1 <- seqdef(ex1)

Now that the sequence object is created we display its content.

R> ex1

Sequence

s1 A-A-A-B-B-B-C-C-C-D-D-D

s2 A-D-A-B-C-B-C-B-C-D-A-D

s3 A-B-A-B-A-B-C-D-C-D-C-D

We check with the seqistatd() that the three sequences in the ex1 object contain the same
number of A,B,C and D states.

8.4 Summarizing state durations 79

R> seqistatd(ex1)

A B C D

s1 3 3 3 3

s2 3 3 3 3

s3 3 3 3 3

Now we are ready to verify that the entropy is the same for all sequences. As shown by the results of
the seqient() function, our claim is true. The normalized entropy equals the maximum theoretical
entropy, i.e. the entropy of a sequence with all states equally frequent. Unlike the entropy, Elzinga
(2006)’s turbulence measure, which you may also get with TraMineR (see Section 8.5.1), is sensitive
to the state ordering.

R> seqient(ex1)

Entropy

s1 1

s2 1

s3 1

The non normalized entropy is obtained with the norm=FALSE option

R> seqient(ex1, norm = FALSE)

Entropy

s1 1.386294

s2 1.386294

s3 1.386294

Now we are very impatient to plot an histogram of the within entropy of the sequences in the actcal
data set. We thus plot the actcal.ient object using the hist() function

R> hist(actcal.ient, col = "cyan", main = NULL, xlab = "Entropy")

The histogram can be seen in Figure 8.1. By the way, we produce some summary statistics using the
summary() function and learn that the mean and the maximum normalized entropy are respectively
0.07484 and 0.97957.

R> summary(actcal.ient)

Entropy

Min. :0.00000

1st Qu.:0.00000

Median :0.00000

Mean :0.07484

3rd Qu.:0.00000

Max. :0.97957

Now we would like to know what the maximum value of the within sequence entropy is and look
at the sequence(s) reaching this maximum value. The max() function returns the maximum of the
actcal.ient vector of within sequence entropies.

R> max(actcal.ient)

[1] 0.979574

80 Ch. 8 Sequence characteristics and associated measures

Entropy

F
re

qu
en

cy

0.0 0.2 0.4 0.6 0.8 1.0

0
50

0
10

00
15

00

Figure 8.1: Within sequence entropies - actcal data set

The which() function is used to locate the row index number(s) of the sequences that reach this
maximum entropy. It is here the row number 1836

R> index <- which(actcal.ient == max(actcal.ient))

R> index

[1] 1836

R> actcal.seq[index,]

Sequence

5587 A-B-B-C-D-D-D-D-C-C-A-A

The same result can be obtained more simply but also more mysteriously with a single command.
Below we display the rows of the actcal data frame which contain more information than the sole
sequences of the actcal.seq object, and we can see that this is a woman aged 37, having two
children aged 14 and 10.

R> actcal[actcal.ient == max(actcal.ient),]

idhous00 age00 educat00 civsta00 nbadul00 nbkid00 aoldki00 ayouki00

5587 116151 37 apprenticeship married 2 2 14 10

region00 com2.00 sex

5587 Lake Geneva (VD, VS, GE) Industrial and tertiary sector communes woman

birthy jan00 feb00 mar00 apr00 may00 jun00 jul00 aug00 sep00 oct00 nov00

5587 1963 A B B C D D D D C C A

dec00

5587 A

8.4 Summarizing state durations 81

The distribution of the within sequence entropies looks quite different for the biofam data set as
shown in Figure 8.2 obtained with the following commands

R> biofam.ient <- seqient(biofam.seq)

R> hist(biofam.ient, main = NULL, col = "cyan", xlab = "Entropy")

Entropy

F
re

qu
en

cy

0.0 0.2 0.4 0.6

0
10

0
20

0
30

0
40

0

Figure 8.2: Within sequence entropies - biofam data set

We would like to compare the values of the entropies conditioned on the value of a covariate.
In order to do this, we first add a column with the sequence entropies to the biofam data frame.

R> biofam <- data.frame(biofam, seqient(biofam.seq))

We can check that the biofam data frame contains one more variable called Entropy and summarize
the distribution of the Entropy variable.

R> names(biofam)

[1] "idhous" "sex" "birthyr" "nat_1_02" "plingu02" "p02r01"

[7] "p02r04" "cspfaj" "cspmoj" "a15" "a16" "a17"

[13] "a18" "a19" "a20" "a21" "a22" "a23"

[19] "a24" "a25" "a26" "a27" "a28" "a29"

[25] "a30" "wp00tbgp" "wp00tbgs" "Entropy"

R> summary(biofam$Entropy)

Min. 1st Qu. Median Mean 3rd Qu. Max.

0.0000 0.2987 0.3333 0.3548 0.4729 0.7028

82 Ch. 8 Sequence characteristics and associated measures

Let us have a look at the sequences near the minimum, median and maximum entropy. For that,
we draw sets of sequences having an entropy lower or equal to the 1st percentile, an entropy near
the median, and an entropy greater than the 99th percentile. We first store the percentiles in the
ient.quant vector for later usage.

R> ient.quant <- quantile(biofam$Entropy, c(0, 0.1, 0.45, 0.55,

+ 0.9, 1))

R> ient.quant

0% 10% 45% 55% 90% 100%

0.0000000 0.1124300 0.3295665 0.3738803 0.5565789 0.7028195

Now we can create a categorical variable from the quantiles with the cut() function. The in-
clude.lowest is used to include the values equal to the lowest value of the cutting points, i.e an
entropy equal to 0

R> ient.group <- cut(biofam$Entropy, ient.quant, labels = c("Min",

+ "q10-45", "Median", "q55-90", "Max"), include.lowest = T)

R> table(ient.group)

ient.group

Min q10-45 Median q55-90 Max

223 741 176 664 196

The ient.group factor has 5 levels corresponding to the five intervals defined by the quantiles. But
we are mostly interested in only three of the intervals. A way to select them is to redefine the
factor with three levels only (all other values of the factor are converted to NA)

R> ient.group <- factor(ient.group, levels = c("Min", "Median",

+ "Max"))

R> table(ient.group)

ient.group

Min Median Max

223 176 196

Finally, we plot the three sets of sequences separately using the group option. Recall that the
seqiplot() function plots by default only the 10 first sequences, but this is enough. The result
is shown in Figure 8.3. It confirms that the more there are different states in the sequence, the
higher the entropy.

R> seqfplot(biofam.seq, group = ient.group, pbarw = TRUE)

We may want to plot the distribution of the entropy by birth cohorts. It does not make sense
to use the individual birth years as there are too many different values. Thus, we want to first
group the birth years into ten year classes. To do this, we first look at the distribution of the birth
years using the summary() function. Then, by means of the cut() function, we add the new ageg
cohort variable to the biofam data set. The cut() function takes three arguments: The name of
the variable from which to create classes of values, the bins for creating the classes, and optionally
labels of the classes. The include.lowest=TRUE option tells the function that the lowest value
(1909) should be included in the first group.

R> summary(biofam$birthyr)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1909 1935 1944 1943 1951 1957

8.4 Summarizing state durations 83

Min
C

um
. %

 fr
eq

. (
n=

22
3)

a15 a18 a21 a24 a27 a30

0%

100%

Median

C
um

. %
 fr

eq
. (

n=
17

6)

a15 a18 a21 a24 a27 a30

0%

73.3%

Max

C
um

. %
 fr

eq
. (

n=
19

6)

a15 a18 a21 a24 a27 a30

0%

23.5%
Parent
Left
Married
Left+Marr
Child
Left+Child
Left+Marr+Child
Divorced

Figure 8.3: Low, median and high sequence entropies - biofam data set

R> biofam <- data.frame(biofam, ageg = cut(biofam$birthy, c(1909,

+ 1918, 1928, 1938, 1948, 1958), label = c("1909-18", "1919-28",

+ "1929-38", "1939-48", "1949-58"), include.lowest = TRUE))

R> table(biofam$ageg)

1909-18 1919-28 1929-38 1939-48 1949-58

35 194 449 620 702

Now we are ready to plot the entropy by ten year age cohorts. We choose the boxplot() command.
The result is shown in Figure 8.4. The Entropy ∼ ageg part of the command is a formula syntax
widely used in R. Here it means ‘plot the entropy by age group’.

R> boxplot(Entropy ~ ageg, data = biofam, xlab = "Birth cohort",

+ ylab = "Sequences entropy", col = "cyan")

The mean and median entropy are rising in the more recent birth cohorts. Figure (8.4), obtained
with the following commands, shows that the entropy is also sligthly higher in the women family
formation history when compared to that of the men.

R> boxplot(Entropy ~ sex, data = biofam, xlab = "Sex", ylab = "Sequences entropy",

+ col = "cyan")

84 Ch. 8 Sequence characteristics and associated measures

●

●

●●●●●●●●●●●●●●●●●●●●●●●

●

●●●●●●●●●●● ●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●●

1909−18 1919−28 1929−38 1939−48 1949−58

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Birth cohort

S
eq

ue
nc

es
 e

nt
ro

py

Figure 8.4: Boxplot of the within sequence entropies by birth cohort - biofam data set

●●●

man woman

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Sex

S
eq

ue
nc

es
 e

nt
ro

py

Figure 8.5: Boxplot of the within sequence entropies by sex - biofam data set

8.5 Composite measures of sequences complexity 85

8.5 Composite measures of sequences complexity

8.5.1 Sequence turbulence

Sequence turbulence is a measure proposed by Elzinga (Elzinga and Liefbroer, 2007; Elzinga, 2006).
It is based on the number φ(x) of distinct subsequences that can be extracted from the distinct
state sequence and the variance of the consecutive times ti spent in the distinct states. For a
sequence x, the formula is

T (x) = log2

(
φ(x)

s2t,max(x) + 1
s2t (x) + 1

)
where s2t is the variance of the state-duration for the x sequence and s2t,max is the maximum value
that this variance can take given the total duration of the sequence. This maximum is computed
as follows

st,max = (n− 1)(1− t̄)2

where t̄ is the mean consecutive time spent in the distinct states, i.e. the sequence duration divided
by the number of distinct states in the sequence and n is the length of the distinct state sequence.
Elzinga’s definition of the turbulence is based on the ‘sequence-permanence’ SPS data representa-
tion of sequences and the number of distinct subsequences considered is that of the distinct state
sequences, i.e. the sequence obtained by considering only one of several same consecutive states.
In the example below, the x sequence comes from the actcal data set and contains 12 elements
corresponding to the successive work statuses from January to December 2000. The same sequence
formatted in the ‘distinct-successive-state’ (DSS) format exhibits only 3 elements, as shown by the
output of the seqdss() function.

R> data(actcal)

R> actcal.seq <- seqdef(actcal, 13:24)

R> actcal.seq[2,]

Sequence

1230 D-D-D-D-A-A-A-A-A-A-A-D

R> seqdss(actcal.seq[2,])

Sequence

1230 D-A-D

We can compute the number of distinct subsequences with the seqsubsn() function. With the
DSS=FALSE option, the returned result is 76. With the default DSS=TRUE option, the computation
is made on the sequence of distinct successive states only (‘D-A-D’) returning 7 as the number of
distinct subsequences.

R> seqsubsn(actcal.seq[2,], DSS = FALSE)

Subseq.

1230 76

R> seqsubsn(actcal.seq[2,], DSS = TRUE)

Subseq.

1230 7

86 Ch. 8 Sequence characteristics and associated measures

The seqST() function returns Elzinga’s turbulence measure for each sequence of the provided
sequence object. We begin with a small example taken from Aassve et al. (2007). The original
sequences are defined in SPS format by couples of two character strings2. Hence we give the
informat=’SPS’ option to the seqdef() function for creating the sequence object.

R> sp.ex1

[,1]

[1,] "(000,12)-(0W0,9)-(0WU,5)-(1WU,2)"

[2,] "(000,12)-(0W0,14)-(1WU,2)"

R> sp.ex1 <- seqdef(sp.ex1, informat = "SPS")

Now sp.ex1 is a sequence object. Its content is displayed below in STS format.

R> print(sp.ex1, ext = TRUE)

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13] [14] [15] [16] [17]

[1] 000 000 000 000 000 000 000 000 000 000 000 000 0W0 0W0 0W0 0W0 0W0

[2] 000 000 000 000 000 000 000 000 000 000 000 000 0W0 0W0 0W0 0W0 0W0

[18] [19] [20] [21] [22] [23] [24] [25] [26] [27] [28]

[1] 0W0 0W0 0W0 0W0 0WU 0WU 0WU 0WU 0WU 1WU 1WU

[2] 0W0 0W0 0W0 0W0 0W0 0W0 0W0 0W0 0W0 1WU 1WU

We use the seqST() function to compute the turbulence

R> seqST(sp.ex1)

Turbulence

[1] 6.813988

[2] 5.292438

Let us now compute the turbulence of the sequences in the biofam data set. As for the entropy, we
add a new Turbulence variable with the values of the turbulences to the data frame. Note how
this time pass the output of the seqdef() function ‘on the fly’ to the seqST() function.

R> biofam <- data.frame(biofam, seqST(biofam.seq))

To get a first idea of the turbulence distribution we summarize the created variable with the
summary() function. The mean turbulence is 4.8, with a minimum of 1 and a maximum of 8.807.

R> summary(biofam$Turbulence)

Min. 1st Qu. Median Mean 3rd Qu. Max.

1.000 3.691 5.064 4.800 6.222 8.807

We get an histogram for the turbulence of the sequences with the command below, yielding Fig-
ure 8.6. Let us mention that the user who does not like the ‘cyan’ color used in the graphic can
indeed use any other color from the list returned by the colors() function.

R> hist(biofam$Turbulence, main = "Sequence turbulences - biofam data set",

+ col = "cyan", xlab = "Turbulence")

The distribution of the turbulences resembles that of the entropy (see Figure 8.2 on page 81). With
the following command we look for the most turbulent sequence.

2see 7.2.1 for the syntax used to create the sp.ex1 data set

8.5 Composite measures of sequences complexity 87

Sequence turbulences − biofam data set

Turbulence

F
re

qu
en

cy

2 4 6 8

0
10

0
20

0
30

0

Figure 8.6: Histogram of the sequence turbulences - biofam data set

R> max.turb <- max(biofam$Turbulence)

R> biofam.tmax <- subset(biofam, Turbulence == max.turb)

R> head(biofam.tmax)

idhous sex birthyr nat_1_02 plingu02 p02r01

1098 61871 woman 1953 Switzerland german Protestant or Reformed Church

p02r04 cspfaj cspmoj a15 a16 a17 a18 a19 a20 a21

1098 a few times a year other self-employed <NA> 0 0 0 0 1 1 1

a22 a23 a24 a25 a26 a27 a28 a29 a30 wp00tbgp wp00tbgs Entropy ageg

1098 1 3 3 3 3 6 6 6 6 846.5408 0.7512915 0.6666667 1949-58

Turbulence

1098 8.807355

Note the use of the subset() function in the previous command instead of the equivalent command

R> biofam[biofam$Turbulence == max.turb,]

The sequence with maximum turbulence is not the same as that with maximum entropy (c.f.
Section 8.4.3). It contains four subsequences of equal length. This is best shown using the SPS
format.

R> max.seq <- which(biofam$Turbulence == max.turb)

R> print(biofam.seq[max.seq,], format = "SPS")

Sequence

[1] (0,4)-(1,4)-(3,4)-(6,4)

Nonetheless, the correlation between entropy and turbulence measures is reasonably high, whether
we consider the Pearson correlation3 or the Spearman rank correlation.

3The ‘pearson’ method is the default for the cor() function, hence it is not necessary to specify it as an option

88 Ch. 8 Sequence characteristics and associated measures

R> cor(biofam$Turbulence, biofam$Entropy)

[1] 0.8078864

R> cor(biofam$Turbulence, biofam$Entropy, method = "spearman")

[1] 0.731871

Figure 8.7 is obtained with the following command and shows the relationship between the two
measures.

R> plot(biofam$Turbulence, biofam$Entropy, main = "Turbulence vs. Entropy",

+ xlab = "Turbulence", ylab = "Entropy")

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●●●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●●●
●●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●

●●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●●●

●

●

●

●

●
●

●

●

●●

●

●

●●
●

●

●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

2 4 6 8

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

Turbulence vs. Entropy

Turbulence

E
nt

ro
py

Figure 8.7: Correlation between within sequence turbulence and entropy - biofam data set

As previously done with the entropy, we would like to have a look at some sequences having low,
medium and high turbulence. This is achieved by first storing the values for the 10, 45, 55 and 90
percentiles

R> turb.quant <- quantile(biofam$Turbulence, c(0, 0.1, 0.45, 0.55,

+ 0.9, 1))

R> turb.quant

0% 10% 45% 55% 90% 100%

1.000000 2.000000 4.697325 5.321928 6.915230 8.807355

and creating a categorical variable using the percentile values

8.5 Composite measures of sequences complexity 89

R> turb.group <- cut(biofam$Turbulence, turb.quant, labels = c("Min",

+ "q10-45", "Median", "q55-90", "Max"), include.lowest = T)

R> table(turb.group)

turb.group

Min q10-45 Median q55-90 Max

223 684 369 542 182

and keeping only the first, third and fith levels of the variable

R> turb.group <- factor(turb.group, levels = c("Min", "Median",

+ "Max"))

R> table(turb.group)

turb.group

Min Median Max

223 369 182

and next by plotting the frequency plots for each of the three intervals. The plot is shown in figure
8.8

R> seqfplot(biofam.seq, group = turb.group, pbarw = TRUE)

90 Ch. 8 Sequence characteristics and associated measures

Min

C
um

. %
 fr

eq
. (

n=
22

3)

a15 a18 a21 a24 a27 a30

0%

100%

Median

C
um

. %
 fr

eq
. (

n=
36

9)

a15 a18 a21 a24 a27 a30

0%

61%

Max

C
um

. %
 fr

eq
. (

n=
18

2)

a15 a18 a21 a24 a27 a30

0%

60.4%
Parent
Left
Married
Left+Marr
Child
Left+Child
Left+Marr+Child
Divorced

Figure 8.8: Low, median and high sequence turbulences - biofam data set

Chapter 9

Measuring similarities and
distances between sequences

Results shown in this chapter are obtained with:
TraMineR version 1.8
R version 2.9.2 (2009-08-24)-platform: i486-pc-linux-gnu.

This chapter presents the measures of similarity and distance between sequences available in
the TraMineR package. The seqdist() function is the main tool provided by the TraMineR package
to compute distances between sequences. It can compute the distance matrix, i.e. the distances
between all pairs of sequences in the data set, or the distance to a reference sequence, for example
to the most frequent sequence. The following metrics are available with seqdist:

� the Longest Common Prefix (LCP)

� the Longest Common Subsequence (LCS)

� the Optimal Matching distances (OM)

These metrics and the use of the seqdist() are described in the following sections.

9.1 Number of matching positions

The number of matching positions is a simple similarity measure. We get it for a given couple
of sequences with the function seqmpos() as illustrated below with the famform data included in
TraMineR.

R> data(famform)

R> famform.seq <- seqdef(famform)

R> famform.seq

Sequence

[1] S-U

[2] S-U-M

[3] S-U-M-MC

[4] S-U-M-MC-SC

[5] U-M-MC

R> seqmpos(famform.seq[1,], famform.seq[2,])

91

92 Ch. 9 Measuring similarities and distances between sequences

[1] 2

R> seqmpos(famform.seq[2,], famform.seq[4,])

[1] 3

9.2 Longest Common Prefix (LCP) distances

One of the measures of similarity/distance between sequences proposed by Elzinga (2008) is based
on the length of the longest common prefix (LLCP).

9.2.1 LCP based metric

The prefix of a sequence of characters (states) is defined as follow 1 . Let x be a sequence of length
n. The kth prefix of x is defined as xk = x1...xk, where 0 ≤ k ≤ n. If x = abac we have x3 = aba
and x4 = x = abac. The length of a sequence x is written |x| and we have |x| = 4, |x3| = 3 and
|x4| = 4. Hence xk is a k-long prefix of x. The empty string λ, of length |λ| = 0 is a prefix of any
sequence and thus x0 = λ for any x.

The LCP based metric uses the length of the longest common prefix of two sequences. Let
P(x, y) be the set of all common nonempty prefixes of a pair of sequence (x, y)

P(x, y) = {u 6= λ : x|u| = u = y|u|}

Since the prefix of any length is unique, the length AP(x, y) of the longest common prefix of x and
y corresponds to the size |P(x, y)| of this set.

The seqLLCP() function returns the value of this measure for a given couple of sequences. Let
us take an example with the famform data set. We use therefore the famform.seq sequence object
created in the previous section and compute the LLCP for some of the sequences

R> famform.seq

Sequence

[1] S-U

[2] S-U-M

[3] S-U-M-MC

[4] S-U-M-MC-SC

[5] U-M-MC

R> seqLLCP(famform.seq[1,], famform.seq[2,])

[1] 2

R> seqLLCP(famform.seq[3,], famform.seq[4,])

[1] 4

R> seqLLCP(famform.seq[3,], famform.seq[5,])

1see Elzinga (2008) for a more complete explanation.

9.2 Longest Common Prefix (LCP) distances 93

[1] 0

The LLCP for sequences 1 and 2 is S-U, hence its length is 2. It is S-U-M-MC for sequences 3 and
4, yielding a LLCP of 4. The LLCP is 0 for sequences 3 and 5.

Elzinga proposes as first measure of distance between sequences x and y

dP(x, y) = |x|+ |y| − 2AP(x, y)

where AP(x, y) is the LLCP between sequences x and y.

9.2.2 Computing LCP distances

The LCP distances can be computed with the seqdist() function by specifying the method=’LCP’
option. The following example reproduces the results shown in the lower triangle of Table 4 in
Elzinga (2008):

R> seqdist(famform.seq, method = "LCP")

[,1] [,2] [,3] [,4] [,5]

[1,] 0 1 2 3 5

[2,] 1 0 1 2 6

[3,] 2 1 0 1 7

[4,] 3 2 1 0 8

[5,] 5 6 7 8 0

Elzinga suggests also a normalized LCP-metric that is insensitive to the length of the sequences,
namely

DP(x, y) = 1− SP(x, y)

with

SP(x, y) =
AP(x, y)√
| x | · | y |

This normalized metric is obtained with the option norm=TRUE

R> seqdist(famform.seq, method = "LCP", norm = TRUE)

[,1] [,2] [,3] [,4] [,5]

[1,] 0.0000000 0.1835034 0.2928932 0.3675445 1

[2,] 0.1835034 0.0000000 0.1339746 0.2254033 1

[3,] 0.2928932 0.1339746 0.0000000 0.1055728 1

[4,] 0.3675445 0.2254033 0.1055728 0.0000000 1

[5,] 1.0000000 1.0000000 1.0000000 1.0000000 0

Those who prefer similarity measures can easily get them by taking the complement to one of the
normalized distance values.

SP(x, y) = 1−DP(x, y)

R> 1 - seqdist(famform.seq, method = "LCP", norm = TRUE)

[,1] [,2] [,3] [,4] [,5]

[1,] 1.0000000 0.8164966 0.7071068 0.6324555 0

[2,] 0.8164966 1.0000000 0.8660254 0.7745967 0

[3,] 0.7071068 0.8660254 1.0000000 0.8944272 0

[4,] 0.6324555 0.7745967 0.8944272 1.0000000 0

[5,] 0.0000000 0.0000000 0.0000000 0.0000000 1

One can check that these values are equal to those in the upper triangle of Table 4 in Elzinga
(2008).

94 Ch. 9 Measuring similarities and distances between sequences

9.3 Longest Common Subsequence (LCS) distances

The Longest Common Subsequence, LCS, based distance is another one of the metrics considered
by Elzinga (2008) that is available through the seqdist() function. The notion of subsequence is
described in section 8.3.1.

9.3.1 LCS based metric

Let S(x, y) be the nonempty2 set of subsequences of sequences x and y. The proposed LCS metric
is based on the length of the longest element of S. Let us take the example in Elzinga (2008),
consisting of 3 family formation histories with the meaning of the states being the same as in the
famform data set (see subsection 3.2.4).

R> LCS.ex

Sequence

[1] S-U-S-M-S-U

[2] U-S-SC-MC

[3] S-U-M-S-SC-UC-MC

For convenience we derive from LCS.ex 3 distinct sequence objects x, y and z containing each one
sequence.

R> x <- LCS.ex[1,]

R> y <- LCS.ex[2,]

R> z <- LCS.ex[3,]

The length of the longest common subsequence of the first pair of histories (x, y) can be computed
with the seqLLCS() function.

R> seqLLCS(x, y)

[1] 2

The longest common subsequence is indeed U-S. Now we compute the longest common subsequence
of the pair (x, z)

R> seqLLCS(x, z)

[1] 4

The longest common subsequence of (x, z) is S-U-M-S. It appears in x as x1x2x4x5 and in z as
z1z2z3z4. Now if we define the attribute

AL(x, y) = max{|u| : u ∈ S(x, y)}

where |u| is the length of the longest common subsequence for the pair of sequences (x, y), a LCS
distance can be defined as

dL(x, y) = |x|+ |y| − 2AL(x, y)

and a similarity as

sL(x, y) =
AL(x, y)√
|x|.|y|

2Since λ, the empty string, is a substring (subsequence) of any sequence, we have |S(x, y)| ≥ 1

9.3 Longest Common Subsequence (LCS) distances 95

9.3.2 Computing LCS distances

LCS based distances can be computed with the seqdist() function using the method=LCS option.
In the following example the results for the three sequences are those shown in the lower triangle
of Table 7 in Elzinga (2008)

R> seqdist(LCS.ex, method = "LCS")

[,1] [,2] [,3]

[1,] 0 6 5

[2,] 6 0 3

[3,] 5 3 0

In the next example, we compute the LCS distances 3 for the biofam.seq sequence object previously
created from the biofam data frame

R> biofam.lcs <- seqdist(biofam.seq, method = "LCS")

and print the distance matrix for the first 10 sequences

R> biofam.lcs[1:10, 1:10]

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0 20 10 22 16 14 14 14 4 20

[2,] 20 0 12 10 8 30 30 14 22 6

[3,] 10 12 0 12 6 18 18 4 12 16

[4,] 22 10 12 0 6 22 22 12 22 14

[5,] 16 8 6 6 0 22 22 8 16 10

[6,] 14 30 18 22 22 0 14 20 10 32

[7,] 14 30 18 22 22 14 0 20 14 32

[8,] 14 14 4 12 8 20 20 0 16 18

[9,] 4 22 12 22 16 10 14 16 0 22

[10,] 20 6 16 14 10 32 32 18 22 0

9.3.3 LCS distances with internal gaps

To compute LCS distances between sequences containing gaps (see section 6.5), one can use the
with.miss=TRUE option. In that case, missing states are considered as an additional valid state.
Let us illustrate this with the following example sequence object

R> ex2.seq

Sequence

s1 A-B-C-D

s2 A-B-*-C-D

s3 A-B-*-C-D-A

Computing LCS distances with the with.miss=TRUE option yields the following result

R> seqdist(ex2.seq, method = "LCS", with.miss = TRUE)

[,1] [,2] [,3]

[1,] 0 1 2

[2,] 1 0 1

[3,] 2 1 0

3Recall that you can get normalized distances with the norm=TRUE option.

96 Ch. 9 Measuring similarities and distances between sequences

According to the formula above, the LCS distance between s2 and s3 is

dL(s2, s3) = |s2|+ |s3| − 2AL(s2, s3)
= 5 + 6− 2 ∗ 5

with AL(s2, s3), the longest common subsequence of (s2, s3) being of length 5, i.e the length of
A-B-*-C-D.

9.4 Optimal matching (OM) distances

Optimal matching generates edit distances that are the minimal cost, in terms of insertions, dele-
tions and substitutions, for transforming one sequence into another. This edit distance has first
been proposed by Levenshtein (1966) and has been popularized in the social sciences by Abbott
(Abbott and Forrest, 1986; Abbott, 2001). The algorithm implemented in TraMineR is that of
Needleman and Wunsch (1970).

The seqdist() function with method="OM" generates the optimal matching distances. In that
case additional required arguments are:

� an insertion/deletion (indel) cost

� a substitution-cost matrix, giving the cost for substituting each state/event with another.

9.4.1 The insertion/deletion cost

The indel cost is a single value specified by the user. Its default value is 1.

9.4.2 The substitution-cost matrix

The substitution-cost matrix is a squared matrix of dimension ns× ns, where ns is the number of
distinct states in the data (the alphabet). The element (i, j) in the matrix is the cost of substituting
state i with state j. Several methods exist to generate the substitution-cost matrix:

� Assigning a constant value, in which case all substitution costs are set equal to this constant
(method="CONSTANT" option). The default constant value is 2.

� Using the transition rates between states observed in the sequence data (method="TRATE"
option).

The transition rate between state i and state j is the probability of observing state j at time t+ 1
given that the state i has been observed at time t. For i 6= j, the substitution cost is equal to

2− p(i | j)− p(j | i)

where p(i | j) is the transition rate between state i and state j. The transition rates can be obtained
by the function seqtrate().

The seqsubm() function returns a substitution-cost matrix generated with one of the above
two methods. With the method="CONSTANT" option you provide the constant as cval argument
while this argument is ignored with the method="TRATE" option. An example with a constant sub-
stitution cost is given on page 99. In the example below, the substitution-cost matrix is generated
using the transition rates in the data.

R> couts <- seqsubm(biofam.seq, method = "TRATE")

R> round(couts, 2)

9.4 Optimal matching (OM) distances 97

0-> 1-> 2-> 3-> 4-> 5-> 6-> 7->

0-> 0.00 1.95 1.98 1.97 2.00 2.00 1.99 2.00

1-> 1.95 0.00 2.00 1.92 2.00 2.00 1.98 2.00

2-> 1.98 2.00 0.00 1.99 1.88 2.00 1.99 1.99

3-> 1.97 1.92 1.99 0.00 2.00 2.00 1.80 1.99

4-> 2.00 2.00 1.88 2.00 0.00 1.94 2.00 2.00

5-> 2.00 2.00 2.00 2.00 1.94 0.00 1.88 2.00

6-> 1.99 1.98 1.99 1.80 2.00 1.88 0.00 1.99

7-> 2.00 2.00 1.99 1.99 2.00 2.00 1.99 0.00

The alphabet is composed of 8 distinct states, so the substitution-cost matrix has dimension 8× 8.
We can check with the range() function that the minimum cost is 0, for a substitution of one state
by itself, and the maximum is 2, meaning that the transition never occurs in the data set.

R> range(couts)

[1] 0 2

9.4.3 Generating optimal matching distances

Optimal matching distances are generated with the seqdist() function by specifying the ‘method="OM"’
option, an insertion/deletion cost and a substitution cost matrix. We begin with a simple example
to understand OM distances.

R> ex3.seq

Sequence

[1] A-B-C-D

[2] A-B-B-D

[3] A-B-C-D-D

[4] A-B-C-D

We generate a substitution cost matrix with constant value of 2

R> ccost <- seqsubm(ex3.seq, method = "CONSTANT", cval = 2)

R> ccost

A-> B-> C-> D->

A-> 0 2 2 2

B-> 2 0 2 2

C-> 2 2 0 2

D-> 2 2 2 0

and compute the distances using the matrix and the default indel cost of 1

R> ex3.OM <- seqdist(ex3.seq, method = "OM", sm = ccost)

R> ex3.OM

[,1] [,2] [,3] [,4]

[1,] 0 2 1 0

[2,] 2 0 3 2

[3,] 1 3 0 1

[4,] 0 2 1 0

98 Ch. 9 Measuring similarities and distances between sequences

The generated distance matrix contains the minimal editing costs for transforming the sequences
into each other. This matrix is symmetrical, the minimal cost of transforming sequence x into
sequence y being the same as the one of transforming sequence y into sequence x

� Since a single substitution of the third state is necessary to transform sequence 1 into sequence
2 (and vice versa), the OM distance between them is 2

R> ex3.OM[1, 2]

[1] 2

� One deletion (insertion) allow to turn sequence 4 into sequence 3 (and vice versa), hence the
OM distance is 1

R> ex3.OM[4, 3]

[1] 1

� The cheapest way of turning sequence 2 into sequence 3 (or sequence 3 into sequence 2)
involves two operations, one insertion/deletion and one substitution, yielding a cost of 3
(1+2)

R> ex3.OM[2, 3]

[1] 3

� Since sequences 1 and 4 are identical, no edit is needed and the OM distance is 0

R> ex3.OM[1, 4]

[1] 0

In the next example, we use the substitution cost matrix previously computed for the biofam.seq
sequence object using the seqsubm() command

R> biofam.om <- seqdist(biofam.seq, method = "OM", indel = 3, sm = couts)

The computer needed 0.13 minutes, i.e. 8 seconds to create the distance matrix of size 2000×2000.
The necessary size to store the matrix is roughly 30 Mb4.

R> object.size(biofam.om)/1024^2

30.5176849365234 bytes

Here is the extract of the distance matrix for the 10 first sequences in the data set. We use the
round() function to get a more readable output

R> round(biofam.om[1:10, 1:10], 1)

[,1] [,2] [,3] [,4] [,5] [,6] [,7] [,8] [,9] [,10]

[1,] 0.0 21.3 11.6 21.6 15.6 13.9 13.9 15.1 4.0 19.3

[2,] 21.3 0.0 15.4 17.6 11.7 29.4 29.5 13.3 21.3 7.7

[3,] 11.6 15.4 0.0 11.7 5.8 17.7 17.8 5.7 11.6 21.4

[4,] 21.6 17.6 11.7 0.0 5.9 21.4 21.8 11.6 21.6 23.6

[5,] 15.6 11.7 5.8 5.9 0.0 21.5 21.7 7.6 15.6 17.6

[6,] 13.9 29.4 17.7 21.4 21.5 0.0 13.9 19.6 9.9 31.4

[7,] 13.9 29.5 17.8 21.8 21.7 13.9 0.0 19.8 13.9 31.4

[8,] 15.1 13.3 5.7 11.6 7.6 19.6 19.8 0.0 15.1 21.0

[9,] 4.0 21.3 11.6 21.6 15.6 9.9 13.9 15.1 0.0 21.5

[10,] 19.3 7.7 21.4 23.6 17.6 31.4 31.4 21.0 21.5 0.0

4The result of the object.size() function is in bytes, it is translated into megabytes by dividing it by 10242

9.4 Optimal matching (OM) distances 99

9.4.4 LCS distance as a special case of OM distance

The LCS distance is equal to the Optimal Matching distance computed with an indel cost of 1 and
a constant substitution cost of 2. Let us verify it with the ex3.seq sequence used previously.

R> ex3.seq

Sequence

[1] A-B-C-D

[2] A-B-B-D

[3] A-B-C-D-D

[4] A-B-C-D

Optimal matching distances were produced with a constant substitution cost of 2 (the default
value) and an indel cost of 1 and stored in the ex3.OM matrix

R> ex3.OM

[,1] [,2] [,3] [,4]

[1,] 0 2 1 0

[2,] 2 0 3 2

[3,] 1 3 0 1

[4,] 0 2 1 0

Now we produce the LCS distance matrix

R> ex3.LCS <- seqdist(ex3.seq, method = "LCS")

R> ex3.LCS

[,1] [,2] [,3] [,4]

[1,] 0 2 1 0

[2,] 2 0 3 2

[3,] 1 3 0 1

[4,] 0 2 1 0

We can see that these LCS distances are the same as the OM ones. However, since we may not rely
on human brain to compare the two matrices, we look for a way of checking this more rigorously.
This is done with the all.equal() function

R> all.equal(ex3.OM, ex3.LCS)

[1] TRUE

9.4.5 Optimal matching with internal gaps

If missing values (internal gaps) are present in the sequences (see 6.5), one can nevertheless compute
distances by setting the with.miss to TRUE. In that case, the substitution cost matrix must contain
one additional entry for the ’missing state’. Let us use the following example data set

R> ex1

[1] [2] [3] [4] [5] [6] [7] [8] [9] [10] [11] [12] [13]

s1 <NA> <NA> <NA> A A A A A A A A A A

s2 D D D B B B B B B B <NA> <NA> <NA>

s3 <NA> D D D D D D D D D D <NA> <NA>

s4 A A <NA> <NA> B B B B D D <NA> <NA> <NA>

s5 A <NA> A A A A <NA> A A A <NA> <NA> <NA>

s6 <NA> <NA> <NA> C C C C C C C <NA> <NA> <NA>

100 Ch. 9 Measuring similarities and distances between sequences

We define a sequence object with default options for handling missing values, that is, missing values
appearing after the last valid state of a sequence are considered as void elements, and other missing
values as unknown states (see section 6.5)

R> ex2.seq

Sequence

s1 A-B-C-D

s2 A-B-*-C-D

s3 A-B-*-C-D-A

Now we compute a substitution cost matrix containing an entry for unknown states (the default
substitution cost for unknown states is 2, the same as the default substitution cost for the other
states) ...

R> subm <- seqsubm(ex2.seq, method = "CONSTANT", with.miss = TRUE)

R> subm

A-> B-> C-> D-> *->

A-> 0 2 2 2 2

B-> 2 0 2 2 2

C-> 2 2 0 2 2

D-> 2 2 2 0 2

*-> 2 2 2 2 0

... and compute the OM distances with the with.miss=TRUE option

R> seqdist(ex2.seq, method = "OM", sm = subm, with.miss = TRUE)

[,1] [,2] [,3]

[1,] 0 1 2

[2,] 1 0 1

[3,] 2 1 0

One should be careful when computing distances between sequences containing unknown states.
In the next example, we define a sequence object with two sequences s3 and s4 containing only
missing values ...

R> s1 <- c(1, 1, 1, 1, 2, 2, 2, 2, 3, 3, 3, 3)

R> s2 <- rep(NA, 12)

R> ms <- rbind(s1, s1, s2, s2)

R> ms.seq <- seqdef(ms, left = NA, gaps = NA, right = NA)

R> ms.seq

Sequence

s1 1-1-1-1-2-2-2-2-3-3-3-3

s1 1-1-1-1-2-2-2-2-3-3-3-3

s2 *-*-*-*-*-*-*-*-*-*-*-*

s2 *-*-*-*-*-*-*-*-*-*-*-*

... and compute the OM distances

R> subm <- seqsubm(ms.seq, method = "CONSTANT", with.miss = TRUE)

R> seqdist(ms.seq, method = "OM", sm = subm, with.miss = TRUE)

9.5 Clustering distance matrices 101

[,1] [,2] [,3] [,4]

[1,] 0 0 24 24

[2,] 0 0 24 24

[3,] 24 24 0 0

[4,] 24 24 0 0

We can see that the distance between s3 and s4 is 0, hence they are considered as identical, as are
s1 and s2.

9.5 Clustering distance matrices

A distance matrix does not say much by itself, and once it has been computed, a clustering method
is usually applied to aggregate the sequences into a reduced number of groups. In the next example
the agnes() function provided by the cluster library is called to create clusters from the previously
computed optimal matching distance matrix (see 9.4.3). The chosen method for clustering is the
Ward method.

R> library(cluster)

R> clusterward <- agnes(biofam.om, diss = TRUE, method = "ward")

Next we plot the dendrogram (Fig. 9.1)

R> plot(clusterward, which.plots = 2)

1 39 28
4

76
7

80
5

91
9

99
5

12
59

12
77

13
51

13
53

13
79

13
81

14
03

17
76

19
07

19
54 29

2
32

9
42

2
69

3
84

9
93

1
96

2
10

89
11

17
13

94
16

22
17

82
19

86 41 19
6

39
2

62
7

63
6

71
5

72
4

78
2

86
1

86
2

11
24

11
93

12
89

13
20

14
19

14
33

15
41

15
99

17
83

18
04

18
46

19
51 93

3
15

63
16

86 21 10
0

29
5

68
3

82
3

88
4

10
21

11
07

11
29

11
72

13
47

13
70

14
04

14
16

16
83

18
49

18
86

19
33 93 17

7
27

6
29

4
37

4
54

2
58

8
11

48
14

40
15

68
17

87
18

81 13
3

46
9

74
0

87
5

91
3

93
9

10
51

11
88

13
19

13
52

14
84

16
36

17
37

18
43

19
75 88

7
13

86
12

99
11

27
12

37
15

16
17

02 11
3

68
9

90
2

17
60 18

2
26

5
29

0
38

3
48

5
51

1
61

5
62

0
68

0
79

7
83

8
10

57
10

61
12

20
12

22
12

79
14

12
15

42
16

57
16

82
17

72
18

02 28
0

56
5

35
3

72
5

13
89

15
39

17
59

17
75

19
19

19
22 12

6
32

8
66

2
77

0
10

70
13

08
13

72
16

10
18

01
18

93
19

83 31
9

46
0

14
39

18
51

19
12

11
6

83
1

29
3

18
65 33

1
14

31
19

77
19

62
25

6
38

4
51

8
12

66
14

37
16

53
16

46
17

61
17

63 23
10

87 12
5

46
1

10
23

11
02

13
93

16
31

19
08 6

1
47

9
68

7
43

8
99

3
16

35
17

47 12
7

11
71

11
08

14
57 19

5
12

64
13

03
13

61
16

04
16

97 64
1

10
60 93

2
52 44

2
90

0
18

82
19

56
10

32
13

26
15

97
16

12
18

47 12
9

11
16

14
13 15

1
11

20
20

7
98

1
62

5
63

0
13

40 5
6

17
24

99
4

13
85

12
17

19
84 52

4
10

04
19

29 59
4

34
8

14
09

18
14 13 68
5

18
28 13

7
91

1
12

96
14

79
19

17 97 16
4

14
7

47
0

71
8 51 88

12
49 23

0
17

26
18

35 16
5

18
17

19
96 24

0
85

9
16

18 65
8

12
34

18
97 20 36

14
28

18
39 17

1
73

0
90

1
12

97
16

26
13

2
66

3
15

75
11

00
10

31
19

81 26
1

33
6

16
54

15
54

19
35

10
66

15
10 14 25 11
7

37
0

45
7

70
3

75
0

94
3

10
85

13
66

14
66

15
33

15
67

17
44

17
89

18
06

18
48

19
37

20
00 30 10

2
12

0
39

4
41

7
50

3
72

8
77

7
80

0
11

10
11

70
12

13
13

68
18

36 43
10

58 16
7

34
1

22 45
6

64
0

10
82

17
19

15
59

16
01 75 28

7
42

3
42

8
50

8
59

8
12

76
14

71
15

08
18

00
19

36 21
0

57
3

84
3

11
53

12
16

16
93

17
48

13
07

19
18

17
8

47
1

11
84

14
51

18
22

18
74 66

7
74

1
70

0
97

2
78

7
74

7
26 42

9
53

0
57

0
59

5
62

4
10

44
16

59
18

92 27
9

44
1

55
8

73
3

81
5

11
25

13
16

13
63

15
24

15
80

17
65

10
03

16
67

17
05 69

7
82

7
85

2
15

87 82
4

88
5

15
70

15
98 53 62 70 13
8

14
4

33
3

33
5

36
0

47
2

49
0

54
4

58
6

65
0

89
3

90
6

11
66

11
80

12
54

15
51

16
56

17
09

17
12

17
34

17
46

18
34

19
11 61

2
16

3
27

0
42

0
54

1
55

5
65

4
70

4
86

5
93

7
98

5
10

80
11

85
12

08
12

32
13

87
14

63
19

60 85
3

13
73

14
00 75
4

19
76

80
1

94
2

18
09 2

4
27

12
51

18
45 16
6

59
1

95
3

12
98

18
8

13
48

16
80

16
75

19
9

90
4

19
57 77

6
57 68

8
85

0
88

3
32

1
61

7
15

81
16

66 17
5 6 12 17 18 28 42 44 49 55 59 81 14

1
14

3
14

5
14

6
17

3
18

9
21

3
23

6
23

8
24

6
24

9
26

2
26

4
33

8
34

0
34

7
35

4
38

1
39

1
39

3
39

5
40

6
43

0
43

9
44

8
48

0
48

7
49

7
52

1
53

8
54

5
58

4
58

7
59

3
60

4
62

8
66

4
67

0
69

2
71

9
75

2
75

9
78

6
78

8
79

0
80

8
81

0
81

8
83

5
84

6
87

7
94

6
94

8
95

5
96

3
96

8
10

49
10

59
10

63
10

65
10

97
11

38
11

41
11

46
11

54
11

78
11

82
11

92
12

00
12

05
12

09
12

10
12

14
12

23
12

70
12

88
13

06
13

21
13

54
13

71
13

82
13

84
13

95
14

06
14

41
14

49
14

62
14

68
14

69
14

75
14

78
14

88
14

94
15

11
15

29
15

30
15

66
15

71
15

78
15

92
16

06
16

14
16

28
16

47
16

65
17

15
17

21
17

22
17

28
17

36
17

39
17

40
17

57
17

85
17

96
17

97
17

98
18

07
18

08
18

31
18

38
18

58
18

67
18

68
18

71
18

76
18

77
18

85
18

87
18

88
18

89
18

99
19

01
19

10
19

15
19

32
19

45
19

50
19

59
19

68
19

69
19

91
19

98 34 22
8

29
9

40
1

49
8

65
6

77
3

90
3

97
0

10
07

10
46

10
86

11
33

11
79

12
45

16
33 60 12

8
13

0
15

2
23

5
31

2
38

9
49

4
53

4
53

7
62

1
96

5
10

24
10

35
12

31
14

58
14

59
15

73
16

07
17

52
14

74
16

09
16

76
16

87
15

06
19

94 19 12
4

14
9

15
4

36
8

62
6

70
1

74
9

81
4

10
84

11
14

15
32

16
17 15

7
24

1
25

0
30

0
45

3
49

2
69

9
10

19
10

76
10

83
12

27
12

94
13

18
15

18
17

95
18

33 54
8

60
1

12
46

18
98 66

9
10

62 88
2

16
42

18
13 65 22
6

23
9

69
1

86
4

11
35

18
70 58

1
76

3
92

5
97

1
10

25
10

41
11

89
12

25
13

24
13

35
13

36
14

35
15

23
15

53
16

13
16

84
17

54
17

73
17

74
18

59 19
0

52
5

59
7

16
23

12
67

79
6

11
52 96

7
80

7
19

64
19

04
43

4
69

4
12

53 43
6

10
16

12
40

19
67

11
49

13
43

15
19

18
95 30

1
55

0
95

9
11

98
15

44
19

02 32
5

43
2

57
1

13
77

15
90

18
44 32

4
53

6
55

3
69

6
71

3
96

9
10

88
10

96
12

83
14

38
19

93 44
0

17
53

13
27

10
6

16
8

23
3

47
7

53
1

73
2

88
1

10
56

12
61

14
80

16
25

19
78 26

9
45

9
52

0
75

1
79

4
91

5
93

6
99

7
10

93
11

23
12

91
17

50
19

24
19

95 18
5

25
5

29
6

31
3

41
3

47
3

74
5

77
9

92
2

13
11

16
41

16
69

17
27

17
32

17
49

17
66

18
62 26

0
53

5
80

9
85

4
12

26
12

87
13

44
13

76
14

34
17

16
17

31
18

10
18

72 9 67 94 16
0

17
2

33
7

39
9

55
9

57
4

62
2

10
13

11
03

11
68

13
31

13
32

13
37

13
65

15
93

17
10 63 14

2
64

4
73

9
10

02
16

70
17

77
17

88 66
5

94
1

19
72 40 12
2

87
1

12
50

12
80

12
86

13
33

15
79

16
38

16
85

12
11

18
52 66 11
0

32
3

76
5

11
22

11
43

11
83

12
12

12
19

12
92

13
78 11

4
40

7
41

1
48

2
72

0
82

1
85

6
10

69
11

47
14

43
14

83
14

85
16

48
16

03
17

45 37 64 21
1

28
3

63
7

72
6

91
2

10
11

11
63

13
01 23

2
16

20
16

34
19

49 72 35
5

70
9

14
24

15
61

16
27

19
53 42

1
23

1
53

2
61

3
83

7
13

50
15

02
15

15 37
6

12
07

13
74

15
91

17
81

19
66

19
28

24
5

28
9

31
4

59
9

10
09

10
79

13
04

14
70

16
78

17
78

17
94 11

9
87

9
11

56
13

62
19

00 89
7

13
98

17
56 48 63

8
88

6
28

5
16

94 10
7

14
45

19
7

13
30

17
06 98
4

10
75

31
8

76
6

11
51 56

1
88

8
11

99 60
0

63
9

69
0

72
7

74
8

11
75 81

9
11

97
15

21
18

60 73 10
5

18
7

38
7

39
8

60
5

61
4

95
8

12
01

12
03

12
41

12
48

13
09

13
59

14
02

14
11

14
47

16
44

16
90

17
62

19
41 11

8
39

6
41

9
46

4
87

8
91

7
98

9
10

81
11

58
11

74
13

28
13

55
17

11 47
4

14
99

19
87 48

4
11

87 76 83 22
1

29
7

87
4

95
6

10
00

14
93

15
28

19
06 27

2
39

7
40

0
40

5
44

9
47

5
47

6
92

3
10

17
10

33
10

36
10

53
12

24
12

73
13

49
14

32
15

04
15

72
16

29
18

30
19

13 21
6

36
2

12
39 25

3
18

90 50
5

35
2

11
44 46

3
14

10
68

4
16

64
19

58 92
7

65
7

10
68

11
64 7 80 96 13
1

20
3

30
8

47
8

51
0

51
2

57
7

64
5

74
2

94
7

12
29

14
21

14
98

15
09

17
58

17
86

18
03

19
09

19
80

19
20 89 90 15
0

32
2

37
2

38
6

38
8

45
2

50
9

64
7

66
8

76
1

87
6

89
5

92
1

95
7

10
37

10
38

11
45

11
73

13
02

13
39

13
60

16
72

17
20

17
80

18
12

19
30

19
38

19
61 13

4
36

5
51

5
74

6
75

8
76

4
89

4
91

0
92

0
11

05
11

13
13

67
13

90
14

90
17

04
17

64
17

90
19

74
17

42
19

4
31

1
33

2
36

7
40

2
49

1
51

7
60

8
71

4
84

1
91

8
10

05
10

78
13

34
15

22
15

50
16

81
18

20
18

29
19

03 99
8

71 10
8

11
2

20
1

29
8

50
0

58
0

63
5

77
2

12
71

12
81

14
18

14
73

15
84

16
08

16
11

16
51

16
60

17
79

18
11

12
60

18
0

20
2

25
8

34
2

52
9

78
3

81
3

88
0

97
5

10
92

15
31

15
60

17
01

17
55

10
45

63
4

11
19

13
92

18
40 77

4
11

30
12

74
14

20
19

99
16

32 15 94
4

15
36

18
91

13
56

17
30

18
24

15
8

81
7

15
64 67

4
12

30
14

8
15

40
19

55
64

8
65

1
65

2
97

6
15

00
19

05
16

49 91
54

7
10

94
43

7
94

5
13

15
15

58
16

39 99
0

11
69

10
08

10
18 1

6
72

3
98

60
9

11
59

17
68

24
4

10
52 70

5
83

9
13

46 11 19
2

21
4

25
4

25
7

40
3

46
6

50
2

51
4

55
4

60
3

75
5

93
4

10
91

12
04

14
29

18
32

19
70

19
88 26

6
11

62 35 14
0

18
6

22
5

30
3

38
5

58
2

65
9

67
1

74
3

74
4

79
1

82
0

99
9

14
05

14
54

15
47

15
94

18
61

19
16 31

6
24

3
76

9
12

65 95 52
2

85
7

15
85

15
95

17
18

10
27

11
60 13

9
41

8
44

4
50

6
57

2
84

8
92

9
12

47
14

48
16

91
18

27
18

37
18

94 16
1

14
82

17
99

18
64 52

8
10

48
11

21
18

21 22
3

32
7

48
1

56
7

66
6

70
2

70
7

71
2

71
7

75
7

85
1

89
6

11
06

11
26

11
32

11
34

13
69

14
72

14
91

15
74

15
86

16
98

16
99

18
23

19
25

19
40

19
85 29

1
87

3
60

7
18

56 33 78 22
4

68
1

72
9

78
5

89
2

92
4

94
9

10
43

11
11

14
81

15
56

10
73

11
09

15
20

16
9

16
37 83

2
18

4
35

0
41

2
41

5
66

0
86

9
10

15
10

54
12

18
12

68
12

95
17

33 58
18

69 6
8

10
1

98
7

64
9

16
02 17

6
43

1
19

43 77
17

03 75
3

14
01 24

2
14

22
18

18 30
9

11
77

12
55 72

2
12

1
25

9
49

6
49

9
56

9
11

01
13

96
13

99
15

05
18

42 34
9

37
3

10
95

16
50

15
69 46

54
3

10
20

14
97

11
61

11
76 30

2
15

12 56
6

27
7

45
4

15
96

77
8

15
45 96

6
27

8
84

0
10

50
10

67
13

64 98
6

10
22

15
83

10
77

18
57

13
10

14
17 10

3
16

45
18

79 22
2

77
5

12
69

19
14 50

1
19

34
12

35
20

6
14

30
16

55 92
6

15
34

18
75 13

5
14

08 56
0

73
5

93
5

24
8

96
0

19
8

21
5

43
3

58
9

62
3

79
9

83
0

85
5

10
12

19
44 69

5
12

02
16

21
17

41 22
0

64
3

98
8 2

40
8

79
5

19
52

15
49

18
19

11
96

18
96 59

2
81

2
18

78
19

48
19

90
63

1
84

4
84

7
37

5
15

57
17

29
12

82 97
8

11
31

13
38

14
27 27

5
10

98
15

37 55
2

18
80 95

1
10

13
42 34

6
14

44
19

23
13

41
16

89
17

71 97
4

12
56 55
7

14
55 52

3
56

3
13

00
16

73 59
6

78
1 63

3
50 44

7
64

2
86

6
17

14 92 31
7

10
90

11
39

13
88 20

9
16

77 48
8

11
81

17
51

36
4

81
1

50
7

12
33

14
46 13

6
98

3
15

35
14

92
19

97 17
4

15
25

35
9

17
92 38

0
15

76 67
2

19
46 3

33
9

11
67

11
95

14
50 11

1
16

43 51
6

12
3

17
08

22
9

36
1

40
4

65
5

12
93 37

8
12

44 56
4

13
12

15
38

11
55

12
06 74 97
3

17
13

18
63 34

3
16

62 62
9

15
03 79 82

6
18

15 61
9

14
89

18
53 31

5
71

0
42

6
51

3
15

43 32
14

65 15
9

11
50 27

4
41

0
48

3
55

6
89

9
11

18 49
3

54
0

67
8

67
7

14
56 10

9
11

42
19

47 98
2

19
63 20

8
52

6
12

90
61

6
12

42
18

05 47 82
2

96
4

16
2

60
6

72
1

35
1

53
9

83
4

10
30

14
25

17
25

61
1

79
8

10
72

17
70 73

4
15

14
11

04
11

65 54 48
6 87

53
3

80
6

26
8

17
93

30
4

15
07 76

2
12

28
12

75 5 67
9

12
57 25

2
90

7 29 42
5

45
8

58
3

13
05

14
07

16
79

16
58

90
8

18
50

16
24

17
43

18
84

17
91

20
0

56
8

17
84 21

7
64

6
37

9
70

8
13

97 89
8

20
5

48
9

50
4

76
0

95
4

37
1

63
2

93
0

17
17 36

6
10

29
14

60 42
4

89
0

86
0

18
25 95

2 8
75

6
68

6
96

1
10

55 19
1

12
38

14
96

17
00

18
26 27

1
15

62
10

01
16

68
13

58
15

82 26
3

15
27

30
6

18
41 65

3
12

84 98
0

11
91

17
07 3

8
84 57

9
44

5
16

15
13

91
16

95
14

76 69 21
2

30
7

44
6

88
9

93
8

13
23

14
42 11

5
14

53 22
7

10
10 4 85 15

5
18

3
24

7
33

0
54

6
59

0
61

8
80

3
80

4
83

3
91

4
94

0
99

1
99

6
10

34
10

40
10

64
11

12
11

15
11

57
12

15
12

78
13

22
13

83
14

64
14

77
14

87
14

95
15

17
15

88
16

19
16

63
16

88
17

69
19

21
19

79
19

82
19

92 25
1

71
6

10
39

18
73 45

5
18

66
18

83 66
1

73
1

70
6

13
45

13
57

14
23 31 82 99 19
3

23
7

28
8

31
0

35
6

37
7

38
2

46
2

46
7

51
9

56
2

57
5

67
3

71
1

73
6

73
8

77
1

78
0

79
3

82
9

83
6

86
8

90
9

91
6

10
14

10
28

11
37

11
86

11
94

12
62

12
85

13
75

14
26

15
01

15
13

15
77

16
40

16
61

17
38

18
54

19
42

19
89 40

9
57

8
76

8
45

1
19

65
16

52
21

8
28

1
28

6
33

4
49

5
61

0
67

6
78

4
79

2
85

8
90

5
92

8
97

9
10

26
10

71
12

72
14

14
14

86
15

89
16

00
16

16
16

92
17

67
19

26
19

71 69
8

81
6

10
42

11
90

19
27 45 10

4
17

9
32

0
32

6
34

4
78

9
82

5
87

0
95

0
12

21
12

52
13

17
16

30 34
5

41
4

41
6

57
6

68
2

86
7

99
2

11
36

11
40

12
58

14
52

15
52

16
05

19
31 86 15

3
17

0
23

4
26

7
30

5
46

5
52

7
55

1
58

5
73

7
86

3
10

06
12

43
14

15
14

67
15

26
16

71
16

74
16

96
18

16
19

39 28
2

97
7

43
5

46
8

84
5

13
14

13
80 15

6
54

9
80

2
11

28
12

36 67
5

13
13

35
8

36
9

15
65 45

0
15

55 18
1

20
4

21
9

27
3

35
7

36
3

42
7

82
8

84
2

89
1

10
47

10
74

10
99

12
63

13
29

14
36

15
48

19
73 39

0
13

25
44

3
60

2
87

2
14

61
15

46
17

23
17

35
18

55

0
10

0
20

0
30

0
40

0

Dendrogram of agnes(x = biofam.om, diss = TRUE, method = "ward")

Agglomerative Coefficient = 1
biofam.om

H
ei

gh
t

Figure 9.1: Hierarchical sequence clustering from the OM distances, Ward method

The cluster membership for each sequence is then retrieved. A three clusters solution is chosen
here.

R> cluster3 <- cutree(clusterward, k = 3)

R> cluster3 <- factor(cluster3, labels = c("Type 1", "Type 2", "Type 3"))

R> table(cluster3)

102 Ch. 9 Measuring similarities and distances between sequences

cluster3

Type 1 Type 2 Type 3

472 502 1026

The cluster3 object is a vector containing the cluster id number for each sequence. We use it to
plot graphics helping to identify the typical longitudinal patterns that characterize the clusters.
We begin with a frequency plot for each cluster (Fig. 9.2).

R> seqfplot(biofam.seq, group = cluster3, pbarw = T)

Type 1

C
um

. %
 fr

eq
. (

n=
47

2)

a15 a18 a21 a24 a27 a30

0%

38.8%

Type 2

C
um

. %
 fr

eq
. (

n=
50

2)

a15 a18 a21 a24 a27 a30

0%

40%

Type 3

C
um

. %
 fr

eq
. (

n=
10

26
)

a15 a18 a21 a24 a27 a30

0%

34.6%
Parent
Left
Married
Left+Marr
Child
Left+Child
Left+Marr+Child
Divorced

Figure 9.2: Sequence frequencies, by cluster - biofam data set

Another help to characterize the patterns within each cluster is to plot the mean times spent
in each state

R> seqmtplot(biofam.seq, group = cluster3)

9.5 Clustering distance matrices 103

0 1 2 3 4 5 6 7

Type 1

M
ea

n
tim

e
(n

=
47

2)

0
3

6
10

13
16

0 1 2 3 4 5 6 7

Type 2

M
ea

n
tim

e
(n

=
50

2)

0
3

6
10

13
16

0 1 2 3 4 5 6 7

Type 3

M
ea

n
tim

e
(n

=
10

26
)

0
3

6
10

13
16

Parent
Left
Married
Left+Marr
Child
Left+Child
Left+Marr+Child
Divorced

Figure 9.3: Mean time in each state, by cluster - biofam data set

Chapter 10

Analysing event sequences

Results shown in this chapter are obtained with:
TraMineR version 1.8
R version 2.9.2 (2009-08-24)-platform: i486-pc-linux-gnu.

The previous chapters dealt essentially with sequences of states. Here, the focus is on sequences
of transitions or events. TraMineR offers specific tools for such kind of data that permit, among
others, to mine frequent event subsequences (Studer et al., 2008; Agrawal and Srikant, 1995; Zaki,
2001). The TraMineR functions intended for sequences of events start with the “seqe” prefix, which
stands for SEQuence of Events.

The concept of event sequence and its formalization were introduced by Agrawal and Srikant
(1995) who were mainly interested in frequent buying sequences. We retain here the notation of
Zaki (2001) but introduce a new terminology that we think is more appropriate for social sciences.
In this chapter, the term “sequence” refers to a sequence of events rather than of states.

Hence, a sequence is considered to be an ordered list of transitions, each transition being charac-
terized by the set of distinct events that must occur for the transition to take place (an event cannot
appear more than once in a same transition). For instance, in the sequence (Leaving Home, Couple)→
(Marriage)→ (First child), “Leaving Home”, “Couple”, “Marriage”, “First child” are events whereas
(Leaving Home, Couple) is the transition, defined here by two events, between the state “Has not
left home and no partner” to the state “Has left home and has a partner”. The distinction between
transition and event permits to account for the simultaneity of some events.

In this chapter, we are interested in finding frequent subsequences in our event sequence data
set. We propose also tools for identifying among frequent subsequences those that discriminate the
most between predefined groups such as between men and women for instance. A subsequence of
x is an event sequence that is formed by a subset of the events of sequence x and that respects the
order of the events in x. For instance, (Leaving Home, Couple) → (First child) is a subsequence
of (Leaving Home, Couple)→ (Marriage)→ (First child) since the order of transitions and events
are respected.

A subsequence is said frequent if it occurs in more than a given minimum number of sequences.
This minimum required number of sequences to which the subsequence must belong is called
minimum support. It should be set by the user. A subsequence is said to be maximal if it is not
included in any other frequent subsequence.

In addition to the support requirement, TraMineR permits also to control the search of frequent
subsequences with time constraints. For instance, we can specify a window size (the maximal time
span during which a subsequence should occur) as well as maximum gaps (the maximum time
between two transitions). Minimum and maximum ages can also be specified to study a particular
period of the life course, such as the transition to adulthood for instance.

104

10.1 Creating event sequences 105

10.1 Creating event sequences

Let us introduce event sequence analysis with a small example. In order to perform an event
sequence analysis, we first create an event sequence object with seqecreate(). This function
accepts several formats.

Internally, TraMineR uses the TSE format, see Section 5.2.2 for more information. Thus, the
natural way to define an event sequence object is from data in TSE form. The actcal.tse data set
contains the information about the activity calendar in this format. In this case, we can use the
following code to create an event sequence.

R> data(actcal.tse)

R> actcal.seqe <- seqecreate(id = actcal.tse$id, timestamp = actcal.tse$time,

+ event = actcal.tse$event)

We can also create an event sequence object from a state sequence object. To illustrate, assume
we are interested in analysing frequent transitions occurring in the family life (biofam data set).
We first create the state sequence object:

R> data(biofam)

R> bfstates <- c("Parent", "Left", "Married", "Left+Marr", "Child",

+ "Left+Child", "Left+Marr+Child", "Divorced")

R> biofam.seq <- seqdef(biofam, 10:25, states = bfstates, labels = bfstates)

and convert it into an event sequence object:

R> bf.seqe <- seqecreate(biofam.seq)

By default, seqecreate() creates a distinct (from-state > to-state) event for each found transition.
This behavior can be modified through the tevent argument. When set to state a single to-state
event (start event of the spell in the given state), is assigned to each transition (see below).

R> bf.seqestate <- seqecreate(biofam.seq, tevent = "state")

With the tevent="period" option, a pair of events (end-state event, start-state event) is assigned
to each transition.

R> bf.seqeperiod <- seqecreate(biofam.seq, tevent = "period")

You can also provide a custom transition matrix specifying the set of events that define each
transition, that is the set of events that are supposed to occur when a transition is observed.
It may be useful to use one of the transition matrices automatically produced by the seqetm()
function as starting point for designing a custom matrix.

To illustrate how resulting event sequences look out, we display the first event sequence from
the event sequence objects created respectively with the “transition” (default), “state” and “period”
method:

R> bf.seqe[1]

[1] (Parent)-9.00-(Parent>Left+Marr)-1.00-(Left+Marr>Left+Marr+Child)-6.00

R> bf.seqestate[1]

[1] (Parent)-9.00-(Left+Marr)-1.00-(Left+Marr+Child)-6.00

R> bf.seqeperiod[1]

106 Ch. 10 Analysing event sequences

[1] (Parent)-9.00-(endParent,Left+Marr)-1.00-(endLeft+Marr,Left+Marr+Child)-6.00

Event sequences are represented using the following form:

(e1,e2,...)-elapsedtime-(e2,...)-endtime

Where elapsedtime is the the time elapsed between two consecutive sets of events, (e1,e2,...)
is a transition, that is a non empty list of simultaneous events and endtime is the time elapsed
between the last transition and the end of observation. The string representing the first sequence
(transition method) means that the trajectory described starts at time 0 with the “Parent” event
(meaning that at the first observed age, the concerned person is living with her/his parents), which
is followed nine years later by the event “Parent>LeftMarr” (leaving home and marrying) and one
year later “LeftMarr>LeftMarrChild” (first child), which occurs 6 years before the end of the 16
years of observation.

10.2 Searching for frequent event subsequences

The function seqefsub() searches for frequent event subsequences. It takes at least two arguments:
A event sequence object and a minimum support expressed in number of sequences (minSupport)
or as a percentage by using the pMinSupport argument.

R> fsubseq <- seqefsub(bf.seqe, minSupport = 100)

R> fsubseq[1:5]

Subsequence Support Count

1 (Parent) 0.9860 1972

2 (Parent)-(Parent>Left) 0.4340 868

3 (Parent>Left) 0.4340 868

4 (Left+Marr>Left+Marr+Child) 0.2860 572

5 (Parent)-(Left+Marr>Left+Marr+Child) 0.2825 565

Computed on 2000 event sequences

Constraint Value

countMethod One by sequence

The function seqefsub() returns an object of type “subseqelist”. This object can be printed,
plotted and indexed to select specific subsequences. In our example, we printed only the first 5
subsequences.

Notice that the subsequences look as event sequences except that they do not hold time in-
formation. Hence, the sequence “(Parent)-(Parent>Left)” means staying with parents and then
leaving home.

10.2.1 Plotting the results

The results of the seqefsub() function can be plotted with the plot() function. The graphic
exhibits the frequency of each selected subsequence. The following example generates the plot
shown in Figure 10.1.

R> plot(fsubseq[1:15], col = "cyan")

10.3 Time constraints 107

0.
0

0.
2

0.
4

0.
6

0.
8

(P
ar

en
t)

(P
ar

en
t)

−
(P

ar
en

t>
Le

ft)

(P
ar

en
t>

Le
ft)

(L
ef

t+
M

ar
r>

Le
ft+

M
ar

r+
C

hi
ld

)

(P
ar

en
t)

−
(L

ef
t+

M
ar

r>
Le

ft+
M

ar
r+

C
hi

ld
)

(P
ar

en
t)

−
(P

ar
en

t>
Le

ft+
M

ar
r)

(P
ar

en
t>

Le
ft+

M
ar

r)

(L
ef

t>
Le

ft+
M

ar
r)

(P
ar

en
t)

−
(L

ef
t>

Le
ft+

M
ar

r)

(P
ar

en
t)

−
(P

ar
en

t>
Le

ft)
−

(L
ef

t>
Le

ft+
M

ar
r)

(P
ar

en
t>

Le
ft)

−
(L

ef
t>

Le
ft+

M
ar

r)

(P
ar

en
t)

−
(P

ar
en

t>
Le

ft+
M

ar
r)

−
(L

ef
t+

M
ar

r>
Le

ft+
M

ar
r+

C
hi

ld
)

(P
ar

en
t>

Le
ft+

M
ar

r)
−

(L
ef

t+
M

ar
r>

Le
ft+

M
ar

r+
C

hi
ld

)

(L
ef

t>
Le

ft+
M

ar
r)

−
(L

ef
t+

M
ar

r>
Le

ft+
M

ar
r+

C
hi

ld
)

(P
ar

en
t)

−
(L

ef
t>

Le
ft+

M
ar

r)
−

(L
ef

t+
M

ar
r>

Le
ft+

M
ar

r+
C

hi
ld

)

Figure 10.1: Frequencies of 15 most frequent event subsequences

10.3 Time constraints

The functions seqefsub() (that searches frequent subsequences) and several others (see below)
accept time constraints through the constraint parameter. This constraint parameter should be
the result of the seqeconstraint() function, which has the following parameters:

maxGap: The maximum time gap between two transitions.

windowSize: The maximum window size, that is the maximum time taken by a subsequence.

ageMin: Minimum age at beginning of subsequences.

ageMax: Maximum age at beginning of subsequences.

ageMaxEnd: Maximum age at end of subsequences.

Each of these parameters is ignored when set equal to −1, which is their default value. The
following examples show how to set time constraints. First, we search for subsequences enclosed
in a five year interval with no more than two years between two transitions:

R> time.constraint <- seqeconstraint(maxGap = 2, windowSize = 5)

R> fsubseq <- seqefsub(bf.seqe, pMinSupport = 0.01, constraint = time.constraint)

R> fsubseq[1:4]

108 Ch. 10 Analysing event sequences

Subsequence Support Count

1 (Parent) 0.986 1972

2 (Parent>Left) 0.434 868

3 (Left+Marr>Left+Marr+Child) 0.286 572

4 (Parent>Left+Marr) 0.253 506

Computed on 2000 event sequences

Constraint Value

maxGap 2

windowSize 5

countMethod One by sequence

The ageMin, ageMax and ageMaxEnd are relative values. In our case sequences start at 15 years
old. Thus, if we want to search among subsequences beginning between ages 15 and 20, we should
set ageMin to 0 (i.e. 15− 15) and ageMax to 5 (i.e. 20− 15).

R> time.constraint <- seqeconstraint(ageMin = 0, ageMax = 5)

R> fsubseq <- seqefsub(bf.seqe, pMinSupport = 0.01, constraint = time.constraint)

R> fsubseq[1:4]

Subsequence Support Count

1 (Parent) 0.9860 1972

2 (Parent)-(Parent>Left) 0.4340 868

3 (Parent)-(Left+Marr>Left+Marr+Child) 0.2825 565

4 (Parent)-(Parent>Left+Marr) 0.2530 506

Computed on 2000 event sequences

Constraint Value

ageMin 0

ageMax 5

countMethod One by sequence

If in addition we are interested only in subsequences that end before 20 years old, we set ageMaxEnd
to 20.

R> time.constraint <- seqeconstraint(ageMin = 0, ageMax = 5,

+ ageMaxEnd = 5)

R> fsubseq <- seqefsub(bf.seqe, pMinSupport = 0.01, constraint = time.constraint)

R> fsubseq[1:4]

Subsequence Support Count

1 (Parent) 0.9860 1972

2 (Parent)-(Parent>Left) 0.2205 441

3 (Parent>Left) 0.2205 441

4 (Parent)-(Parent>Left+Marr) 0.0250 50

Computed on 2000 event sequences

Constraint Value

ageMin 0

ageMax 5

ageMaxEnd 5

countMethod One by sequence

10.4 Identifying discriminant event subsequences 109

10.4 Identifying discriminant event subsequences

The function seqecmpgroup() identifies subsequences that discriminate significantly a group using
the chi-square test. The subsequences are then ordered by decreasing discriminant power. The
function takes at least the first two of the following arguments:

subseq: A “subseqelist” object containing the subsequences considered for discriminating the
groups.

group: The variable that defines the groups.

method (optional): By default “chisq”; can be set to “bonferroni” to apply a Bonferroni correc-
tion to the p-value.

Function seqecmpgroup() returns a specific ‘subseqelist’ object that can be indexed, printed
and plotted as any subsequence list. As an example, we look after the subsequences that discrimi-
nate the most birth cohorts. We first compute the list of frequent subsequences and create a cohort
factor that distinguishes births before and after 1945. We then look for the most discriminating
subsequences.

R> fsubseq <- seqefsub(bf.seqe, pMinSupport = 0.01)

R> cohort <- factor(biofam$birthyr > 1945, labels = c("<=1945",

+ ">1945"))

R> discrcohort <- seqecmpgroup(fsubseq, group = cohort, method = "bonferroni")

R> discrcohort[1:5]

Subsequence Support p.value statistic index

1 (Parent)-(Parent>Left) 0.434 0.000000e+00 119.52974 2

2 (Parent>Left) 0.434 0.000000e+00 119.52974 3

3 (Parent)-(Parent>Married) 0.122 2.957312e-08 37.81393 20

4 (Parent>Married) 0.122 2.957312e-08 37.81393 21

5 (Left>Left+Marr) 0.234 4.036235e-07 32.72402 8

Freq.<=1945 Freq.>1945 Resid.<=1945 Resid.>1945

1 0.3215941 0.56568947 -5.604735 6.066469

2 0.3215941 0.56568947 -5.604735 6.066469

3 0.1640408 0.07274701 3.953680 -4.279396

4 0.1640408 0.07274701 3.953680 -4.279396

5 0.1835032 0.29315961 -3.428990 3.711480

Computed on 2000 event sequences

Constraint Value

countMethod One by sequence

10.4.1 Plotting the results

The results of the previous analysis can then be plotted (Figure 10.2) with the plot() function.
In the resulting plot, the color of each bar is defined by the associated Pearson residual of the
Chi-square test. For residuals ≤ −2 (dark red), the subsequence is significantly less frequent than
expected under independence, while for residuals greater than 2 (dark blue), the subsequence is
significantly more frequent.

R> plot(discrcohort[1:5])

110 Ch. 10 Analysing event sequences

<=1945
0.

0
0.

1
0.

2
0.

3
0.

4
0.

5

(P
ar

en
t)

−
(P

ar
en

t>
Le

ft)

(P
ar

en
t>

Le
ft)

(P
ar

en
t)

−
(P

ar
en

t>
M

ar
rie

d)

(P
ar

en
t>

M
ar

rie
d)

(L
ef

t>
Le

ft+
M

ar
r)

>1945

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

(P
ar

en
t)

−
(P

ar
en

t>
Le

ft)

(P
ar

en
t>

Le
ft)

(P
ar

en
t)

−
(P

ar
en

t>
M

ar
rie

d)

(P
ar

en
t>

M
ar

rie
d)

(L
ef

t>
Le

ft+
M

ar
r)

Pearson residuals

Negative 0.01 Negative 0.05 neutral Positive 0.05 Positive 0.01

Figure 10.2: Five most discriminating event subsequences between those born before and after
1945.

10.5 More advanced topics and utilities

10.5.1 Looking after specific subsequences

We may want to search only for specific subsequences. For instance, we may be interested in
individuals that experienced the following subsequences :

� (Parent) → (Left) → (LeftMarr): People leaving home, staying alone and getting married
after that.

� (Parent) → (LeftMarr): People leaving home and getting married after that. This is a
subsequence of the previous one.

The seqefsub() function can determine the frequency of specific subsequences. In order to do
that, the subsequences must be encoded in the text format used for displaying the subsequences
(see above). The previous subsequences would thus be encoded as follows:

R> mysubseqstr <- character(2)

R> mysubseqstr[1] <- "(Parent)-(Left)-(Left+Marr)"

R> mysubseqstr[2] <- "(Parent)-(Left+Marr)"

10.5 More advanced topics and utilities 111

and here is how we get the frequency of these subsequences

R> mysubseq <- seqefsub(bf.seqestate, strsubseq = mysubseqstr)

R> print(mysubseq)

Subsequence Support Count

1 (Parent)-(Left+Marr) 0.4870 974

2 (Parent)-(Left)-(Left+Marr) 0.2275 455

Computed on 2000 event sequences

Constraint Value

countMethod One by sequence

The result can be used as an argument of functions such as seqecmpgroup().

10.5.2 Counting the number of occurrence in each event sequence

We now use the preceding outcome to compute with the seqeapplysub() function the number
of occurrences of each subsequence. The seqeapplysub() function takes three arguments: a list
of subsequences (which includes the reference to the event sequences they were extracted from),
a method and optionally a list of constraints. The method specifies the information we want.
Possibilities are count (default), age, the age at first occurrence of a subsequence and presence
which returns a matrix with ones indicating the presence of the subsequence and zero otherwise.

In the example below we count for each sequence how many time it contains each subsequence.
The result is a matrix with rows corresponding to the sequences, columns to the specified subse-
quences and cell values equal to the requested counts.

R> msubcount <- seqeapplysub(mysubseq, method = "count")

R> msubcount[1:3,]

(Parent)-(Left+Marr)

(Parent)-9.00-(Left+Marr)-1.00-(Left+Marr+Child)-6.00 1

(Parent)-1.00-(Left)-10.00-(Left+Marr)-1.00-(Left+Marr+Child)-4.00 1

(Parent)-7.00-(Left)-5.00-(Left+Marr)-1.00-(Left+Marr+Child)-3.00 1

(Parent)-(Left)-(Left+Marr)

(Parent)-9.00-(Left+Marr)-1.00-(Left+Marr+Child)-6.00 0

(Parent)-1.00-(Left)-10.00-(Left+Marr)-1.00-(Left+Marr+Child)-4.00 1

(Parent)-7.00-(Left)-5.00-(Left+Marr)-1.00-(Left+Marr+Child)-3.00 1

10.5.3 Selecting event subsequences

The function seqecontain() permits to select a set of event (sub)sequences containing spe-
cific events. It checks whether a given subsequence contains given events. For instance, we
may want to select frequent subsequences containing one of the events “Parent>Married” or
“Parent>Left+Marr”. The function returns a logical vector with TRUE/FALSE answer for each
subsequence.

R> condition <- seqecontain(fsubseq, eventList = c("Parent>Married",

+ "Parent>Left+Marr"))

R> fsubseq[condition]

112 Ch. 10 Analysing event sequences

Subsequence Support Count

1 (Parent)-(Parent>Left+Marr) 0.2530 506

2 (Parent>Left+Marr) 0.2530 506

3 (Parent)-(Parent>Left+Marr)-(Left+Marr>Left+Marr+Child) 0.1495 299

4 (Parent>Left+Marr)-(Left+Marr>Left+Marr+Child) 0.1495 299

5 (Parent)-(Parent>Married) 0.1220 244

6 (Parent>Married) 0.1220 244

7 (Parent)-(Parent>Left+Marr)-(Left+Marr>Divorced) 0.0105 21

8 (Parent>Left+Marr)-(Left+Marr>Divorced) 0.0105 21

Computed on 2000 event sequences

Constraint Value

countMethod One by sequence

To restrict the search to a subset of events, we may add the option exclude=TRUE. In this case, the
function returns FALSE for any sequence that contains an event not specified in the eventList
argument.

10.5.4 Duration of event sequences

It may be useful to set and retrieve the time span covered by an event sequence. We get the
time span of an event sequence with the seqelength() function. There are two ways to set the
duration. We can define an end-of-sequence event in which case the time span is the time until
this event occurs. The end-of-sequence event is specified in seqecreate() with the endEvent
option. Alternatively, we can set the total sequence duration explicitly with the seqesetlength()
function.

R> bf.seqe[1:3]

[1] (Parent)-9.00-(Parent>Left+Marr)-1.00-(Left+Marr>Left+Marr+Child)-6.00

[2] (Parent)-1.00-(Parent>Left)-10.00-(Left>Left+Marr)-1.00-(Left+Marr>Left+Marr+Child)-4.00

[3] (Parent)-7.00-(Parent>Left)-5.00-(Left>Left+Marr)-1.00-(Left+Marr>Left+Marr+Child)-3.00

R> seqelength(bf.seqe[1:3])

[1] 16 16 16

R> sl <- numeric()

R> sl[1:2000] <- 14

R> seqesetlength(bf.seqe, sl)

R> seqelength(bf.seqe[1:3])

[1] 14 14 14

R> bf.seqe[1:3]

[1] (Parent)-9.00-(Parent>Left+Marr)-1.00-(Left+Marr>Left+Marr+Child)-4.00

[2] (Parent)-1.00-(Parent>Left)-10.00-(Left>Left+Marr)-1.00-(Left+Marr>Left+Marr+Child)-2.00

[3] (Parent)-7.00-(Parent>Left)-5.00-(Left>Left+Marr)-1.00-(Left+Marr>Left+Marr+Child)-1.00

Appendix A

Installing and using R

This appendix gives a short introduction to R. It explains where and how R can be obtained
and describes its basic principles and operations. More detailed information can be found on the
Comprehensive R-project Archive Network (CRAN) http://www.r-project.org. You may for
instance download one the following introduction manual in pdf format http://cran.r-project.
org/doc/manuals/R-intro.pdf. We also strongly recommend the introduction to R by Paradis
(2005) available at http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf.

A.1 Obtaining and installing R

R is a free integrated suite of software facilities for data manipulation, calculation and graphical
display. It is available in precompiled binary form for Linux, MacOS X and Windows, and more
generally in source form that can be compiled under many other operating systems. You can
download R from the CRAN http://cran.r-project.org/ (select a mirror close to you) where
you find also installation instructions.

A.2 R basics

Starting R. Although there exist menu driven graphical user interfaces for R, R is originally a
‘command line’ environment. When starting R, you get a command line prompt (showed in a R
console under Windows) at which you can enter commands.

If you are using Linux, just launch a terminal and enter ‘R’ at the command prompt. In Figure
A.1 shows the screen display and command prompt as it appears after launching R in a Linux
console. Here, the greeting message is in French because the authors of this manual run a French
version of R.

To quit R, enter the command q(). You will be prompted for saving your workspace. Answer
‘y’ if you want to save all your data and objects. Your workspace will then be restored the next
time you use R.

Writing and saving R program files. The best way of using R is to write command files. R
command files usually have a ‘.R’ extension. You can add comments in your program files. Starting
with a double hashmark (’##’), everything to the end of the line is a comment. Under MacOS X
and Windows, the R environment comes with a command editor that you can use to write, save
and execute your programs. Under Linux, you have to resort to a separate editor such as gedit
to write and save your programs. You may then copy/paste programs into the R console to run
them or alternatively use the source() command.

113

http://www.r-project.org
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/manuals/R-intro.pdf
http://cran.r-project.org/doc/contrib/Paradis-rdebuts_en.pdf
http://cran.r-project.org/

114 Appendix A Installing and using R

R version 2.7.0 (2008-04-22)

Copyright (C) 2008 The R Foundation for Statistical Computing

ISBN 3-900051-07-0

R is free software and comes with ABSOLUTELY NO WARRANTY.

You are welcome to redistribute it under certain conditions.

Type 'license()' or 'licence()' for distribution details.

Natural language support but running in an English locale

R is a collaborative project with many contributors.

Type 'contributors()' for more information and

'citation()' on how to cite R or R packages in publications.

Type 'demo()' for some demos, 'help()' for on-line help, or

'help.start()' for an HTML browser interface to help.

Type 'q()' to quit R.

>

Figure A.1: R starting welcome message and command prompt

Objects and functions Functions in R take one or more arguments.

Getting help Within R, you can get help about a function with the help(function name)
command, including for all the functions provided by the TraMineR package. Try for instance the
following

> help(seqdist)

A.3 Data manipulation in R

A.3.1 Creating and printing objects

The operator ‘<-’ is used to assign a value to an R object and entering solely the name of the
object prints its value (on the output screen). In the next example, we first create (or replace) the
object ‘x’ by assigning it the value 2 and then display its content

> x <- 2

> x

[1] 2

When printing the ‘x’ object, the output contains ‘[1]’ in front of the values of x indicating that
the line begins with the first element of the object. In this case, it hasn’t much interest because
x has only one element. It may be useful, however, for objects containing more than one element,
such as vectors, matrices or data frames that we describe hereafter.

A.3.2 Vectors

In R, vectors are very important. Even objects containing one single value are vectors

> z <- 4

> is.vector(z)

[1] TRUE

A.3 Data manipulation in R 115

Creating vectors with cbind(). The widely used c() (or cbind()) function combines its
arguments into a vector. In the following example we use this function to create a vector with the
previously created ‘x’ and ‘z’ objects

> c(x,z)

[1] 2 4

Filling vectors with number sequences. It is often useful to generate a vector of consecutive
numbers. This is easily done by using the sequence generating operator as shown in the following
example.

> seq <- 1:50

> seq

[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25

[26] 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50

The content of the seq vector is printed in two lines, and the ‘[26]’ appearing in front of the
second line indicates that the first element of this second line is 26th element the vector (here the
value of the 26th element is 26).

A.3.3 Data frames, matrices and lists

In R, several object types are available apart from vectors. The object types we will have to deal
with most of the time are data frames, matrices and lists. We briefly describe those objects and
some hints for manipulating them.

Data frames. Since we haven’t yet introduced sequential data, we consider for illustrating pur-
poses the classical iris data set that is distributed with R. We first load it into memory with the
data() command and display its content by typing its name

> data(iris)

> iris

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

.

.

.

141 6.7 3.1 5.6 2.4 virginica

142 6.9 3.1 5.1 2.3 virginica

143 5.8 2.7 5.1 1.9 virginica

144 6.8 3.2 5.9 2.3 virginica

145 6.7 3.3 5.7 2.5 virginica

146 6.7 3.0 5.2 2.3 virginica

147 6.3 2.5 5.0 1.9 virginica

148 6.5 3.0 5.2 2.0 virginica

149 6.2 3.4 5.4 2.3 virginica

150 5.9 3.0 5.1 1.8 virginica

116 Appendix A Installing and using R

This data set contains measurements about 150 iris flowers from 3 species, as we learn it by
issuing the help(iris) command

> help(iris)

which produces in a separate window

iris package:datasets R Documentation

Edgar Anderson's Iris Data

Description:

This famous (Fisher's or Anderson's) iris data set gives the

measurements in centimeters of the variables sepal length and

width and petal length and width, respectively, for 50 flowers

from each of 3 species of iris. The species are _Iris setosa_,

versicolor, and _virginica_.

...

The summary() function returns basic statistics for all the variables in the data set

> summary(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width

Min. :4.300 Min. :2.000 Min. :1.000 Min. :0.100

1st Qu.:5.100 1st Qu.:2.800 1st Qu.:1.600 1st Qu.:0.300

Median :5.800 Median :3.000 Median :4.350 Median :1.300

Mean :5.843 Mean :3.057 Mean :3.758 Mean :1.199

3rd Qu.:6.400 3rd Qu.:3.300 3rd Qu.:5.100 3rd Qu.:1.800

Max. :7.900 Max. :4.400 Max. :6.900 Max. :2.500

Species

setosa :50

versicolor:50

virginica :50

In R data frames, columns (variables) can be of mixed types. In the iris data set, the variables
Sepal.Length, Sepal.Width, Petal.Length and Petal.Width are all numerical. The summary()
function computes distribution indicators for them. On the other hand, ‘Species’ is a categorical
variable. In R this variable type is called a factor, and the values a factor may take are called
levels. The Species factor has three levels

> levels(iris$Species)

[1] "setosa" "versicolor" "virginica"

Matrices. Matrices are multidimensional objects like data frames, however, they do not allow
mixing data types. For example, if we try to transform the iris data frame into a matrix, all the
elements, including numbers, will be converted to character strings, since one column of the data
is of the character type. The function as.matrix() is used to convert the iris data frame into a
matrix. There are a lot of similar functions in R for converting from one object type to another

> as.matrix(iris)

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

[1,] "5.1" "3.5" "1.4" "0.2" "setosa"

[2,] "4.9" "3.0" "1.4" "0.2" "setosa"

[3,] "4.7" "3.2" "1.3" "0.2" "setosa"

[4,] "4.6" "3.1" "1.5" "0.2" "setosa"

[5,] "5.0" "3.6" "1.4" "0.2" "setosa"

[6,] "5.4" "3.9" "1.7" "0.4" "setosa"

[7,] "4.6" "3.4" "1.4" "0.3" "setosa"

A.3 Data manipulation in R 117

[8,] "5.0" "3.4" "1.5" "0.2" "setosa"

[9,] "4.4" "2.9" "1.4" "0.2" "setosa"

[10,] "4.9" "3.1" "1.5" "0.1" "setosa"

...

Lists. A list is an object consisting of an ordered collection of objects. It is created with the
list() command. The list below contains for instance three components.

> list.ex <- list(name="Alice", age=40, children.at=c(22,24,25))

> list.ex

$name

[1] "Alice"

$age

[1] 40

$children.at

[1] 22 24 25

We access a component by issuing for instance list.ex$children.at or, since we want here the
3rd component list.ex[[3]].

A.3.4 Accessing and extracting data

Row and column names. Data frames and matrices have rows and column names (lists have
elements names). The rownames() and colnames() functions can be used to access, modify or
print these labels. The column names are correspond to what is known variable names in other
statistical packages like Stata, SPSS or SAS.

> colnames(iris)

[1] "Sepal.Length" "Sepal.Width" "Petal.Length" "Petal.Width" "Species"

Row names are names assigned to the rows of the data object.

> rownames(iris)

[1] "1" "2" "3" "4" "5" "6" "7" "8" "9" "10" "11" "12"

[13] "13" "14" "15" "16" "17" "18" "19" "20" "21" "22" "23" "24"

.

.

.

[133] "133" "134" "135" "136" "137" "138" "139" "140" "141" "142" "143" "144"

[145] "145" "146" "147" "148" "149" "150"

Default row names are the row numbers, as illustrated above for the iris data set. Any character
string can be used as row name. With the paste() command that concatenates its arguments into
a character string, we may for instance create a vector of 150 names composed with the (French)
string “fleur d’iris n.” and a number from 1 to 150, and assign this vector as row names

> row.names(iris) <- paste("fleur d'iris n.",1:150)

> iris

Sepal.Length Sepal.Width Petal.Length Petal.Width

fleur d'iris n. 1 5.1 3.5 1.4 0.2

fleur d'iris n. 2 4.9 3.0 1.4 0.2

fleur d'iris n. 3 4.7 3.2 1.3 0.2

fleur d'iris n. 4 4.6 3.1 1.5 0.2

fleur d'iris n. 5 5.0 3.6 1.4 0.2

fleur d'iris n. 6 5.4 3.9 1.7 0.4

118 Appendix A Installing and using R

fleur d'iris n. 7 4.6 3.4 1.4 0.3

fleur d'iris n. 8 5.0 3.4 1.5 0.2

fleur d'iris n. 9 4.4 2.9 1.4 0.2

fleur d'iris n. 10 4.9 3.1 1.5 0.1

...

Indexing rows and columns. Elements of an R data frame or matrix is accessed by specifying
the row and/or column index. One solution is to give the row and column numbers as indexes.
The following command accesses the sepal length (first column) of the first iris flower (first row)
from the iris data set

> iris[1,1]

[1] 5.1

Alternatively, we may use the row and column names. The following example is equivalent to the
previous command

> iris[1,"Sepal.Length"]

[1] 5.1

It is also possible to use previously created row names

> iris["fleur d'iris n. 1","Sepal.Length"]

[1] 5.1

In R, there are almost as many ways of doing a same thing as there are stars in the universe.
An additional possibility is for instance to extract the first column with the $ operator and to
specify the first element of the resulting vector

> iris$Sepal.Length[1]

[1] 5.1

For accessing more than one element, we can use the number sequence generating mechanism.
For example, we display the first 10 rows of the iris data set by issuing the following command
in which the missing second argument means that all columns should be selected.

> iris[1:10,]

Sepal.Length Sepal.Width Petal.Length Petal.Width Species

1 5.1 3.5 1.4 0.2 setosa

2 4.9 3.0 1.4 0.2 setosa

3 4.7 3.2 1.3 0.2 setosa

4 4.6 3.1 1.5 0.2 setosa

5 5.0 3.6 1.4 0.2 setosa

6 5.4 3.9 1.7 0.4 setosa

7 4.6 3.4 1.4 0.3 setosa

8 5.0 3.4 1.5 0.2 setosa

9 4.4 2.9 1.4 0.2 setosa

10 4.9 3.1 1.5 0.1 setosa

A.4 R libraries

When launching R, you have access to a set of basic functions. You may access additional and
more sophisticated functions by explicitly loading add-on packages with the library() function.
Some of these add-on packages (libraries) may be installed by default on your system, which is for
example the case of the foreign library for importing data sets stored in various formats such as
Stata, SAS or SPSS. In this case, you just have to issue

> library(foreign)

A.5 Some other useful functions 119

to access the functions provided by the package.
In order to use add-on packages (like TraMineR) that are not installed, you need indeed to first

install them on your system. A large number of official and contributed add-on packages are avail-
able on the CRAN http://cran.r-project.org/src/contrib/PACKAGES.html. For installing
any of these packages, you can just issue an install.packages() command

> install.packages("package_name")

within an R console and choose a mirror close to you in the menu.
For installing other packages that are not distributed through the CRAN (like TraMineR for

the moment), you have to get the package source or binary file and install it manually as described
in Chapter 3. Once the package is installed, you will be able to access its functions after issuing
the suited library() command, e.g.

> library(TraMineR)

A.5 Some other useful functions

A.5.1 The apply function

The apply function permits to apply a function to every row (or every column) of a matrix or data
frame. This is a very useful function.

In the example below we create a 3 × 4 table by combining the three rows of length 4. We
then compute the mean value of each column (the 2nd dimension) and then of each row (the 1st
dimension).

> mat <- rbind(c(1,3,5,4),c(2,3,1,5),c(2,6,3,1))

> mat

[,1] [,2] [,3] [,4]

[1,] 1 3 5 4

[2,] 2 3 1 5

[3,] 2 6 3 1

> apply(mat,2,mean)

[1] 1.666667 4.000000 3.000000 3.333333

> apply(mat,1,mean)

[1] 3.25 2.75 3.00

A.5.2 The table function

For factor variables, i.e. categorical variables, the table() command gives the count of each of
its value. As seen before, the $ operator followed by the column name permits to extract the
corresponding column from a data frame or matrix. In the next example we tabulate the Species
variable with the table() function

> table(iris$Species)

setosa versicolor virginica

50 50 50

A.6 Creating and saving graphics

The pdf() and ps() commands open a ‘.pdf’ or ‘.postscript’ file that will contain all the graphics
plotted with plots commands (eg. plot(). The dev.off() must be used to close the file. The
next example shows how to store an histogram of 1000 random generated numbers drawn from the
normal distribution in the myplot.pdf file.

> pdf(file="**location**/myplot.pdf")

> hist(rnorm(1000))

> dev.off()

http://cran.r-project.org/src/contrib/PACKAGES.html

120 Appendix A Installing and using R

There are a lot fine tuning parameters that can be used to set the output page size, font sizes,
etc. Check the available options with ?pdf or ?ps. Note that there are similarly png(), jpeg(),
tiff() and some other functions for producing graphics in other formats.

A.7 Performance and memory usage

In R, objects are stored in memory. The size and number of objects you can handle is limited by
the memory size. If you don’t further need an object, you can free memory by deleting it with the
command rm(objectname). For example, a sequence data containing 4318 rows of 16 states needs
0.52 Mb (541kb).

Appendix B

Information about TraMineR
content

Below we show the content of the information window obtained with library(help=TraMineR).
This information indicates among others the version number of the installed TraMineR package
and the list of available functions and data sets. Indeed, since further versions of TraMineR will
most probably offer new features we strongly recommend that you check the updated information
window on your system after installing a new version.

Description:

Package: TraMineR

Version: 1.4

Date: 2009-08-06

Title: Sequences and trajectories mining for social

scientists

Author: Alexis Gabadinho <alexis.gabadinho@unige.ch>,

Matthias Studer <matthias.studer@unige.ch>, Nicolas

S. Muller <nicolas.muller@unige.ch>, Gilbert

Ritschard <gilbert.ritschard@unige.ch>.

Maintainer: Alexis Gabadinho <alexis.gabadinho@unige.ch>

Depends: R (>= 2.7.1), RColorBrewer, boot

Suggests: cluster

Description: This package is a toolbox for sequence

manipulation, description, rendering and more

generally sequence data mining in the field of

social sciences. Though it is primarily intended

for analyzing state or event sequences that

describe life courses such as family formation

histories or professional careers its features

apply indeed also to many other kinds of

categorical sequence data. It accepts as input many

different sequence representations and provides

tools for translating sequences from one format to

another. It offers several statistical functions

for describing and rendering sequences, for

computing distances between sequences with

different metrics among which optimal matching, the

longest common prefix and the longest common

subsequence, and simple functions for extracting

the most frequent subsequences and identifying the

121

122 Appendix B Information about TraMineR content

most discriminating ones among them. A user's guide

can be found on TraMineR's web page.

License: GPL (>= 2)

URL: http://mephisto.unige.ch/traminer

Packaged: 2009-08-06 10:21:30 UTC; hornik

Repository: CRAN

Date/Publication: 2009-08-06 10:54:02

Built: R 2.9.1; i386-pc-mingw32; 2009-08-06 19:40:20 UTC;

windows

Index:

TraMineR.checkupdates Check for updates

actcal Example data set: Activity calendar from the

Swiss Household Panel

actcal.tse Example data set: Activity calendar from the

Swiss Household Panel (time stamped event

format)

alphabet Get or set the alphabet of a sequence object

biofam Example data set: Family life states from the

Swiss Household Panel biographical survey

cpal Get or set the color palette of a sequence

object

dissassoc Analysis of discrepancy based on dissimilarity

measure

disscenter Compute distance to the center of a group

dissmfac Multi-factor ANOVA from a dissimilarity matrix

disstree Dissimilarity Tree

disstree2dot Graphical representation of a dissimilarity

tree

disstreeleaf Terminal node appartenance

dissvar Dissimilarity based discrepancy

ex1 Example data set with missing values and

weights

famform Example data set: sequences of family formation

mvad Example data set: Transition from school to

work

plot.stslist Plot method for state sequence objects

plot.stslist.freq Plot method for sequence frequency tables

plot.stslist.meant Plot method for objects produced by the

seqmeant function

plot.stslist.modst Plot method for modal state sequences

plot.stslist.rep Plot method for representative sequence sets

plot.stslist.statd Plot method for objects produced by the

seqstatd function

plot.subseqelist Plot frequencies of subsequences

plot.subseqelistchisq Plotting discriminant subsequences

read.tda.mdist Read a distance matrix produced by TDA.

seqLLCP Compute the length of the longest common prefix

of two sequences

seqLLCS Compute the length of the longest common

subsequence of two sequences

seqST Sequences turbulence

seqcomp Compare two sequences

seqconc Concatenate vectors of states or events into a

character string

123

seqdecomp Convert a character string into a vector of

states or events

seqdef Create a state sequence object

seqdiff Decompose the difference between groups of

sequences

seqdim Returns the dimension of a set of sequences

seqdist Distances between sequences

seqdistmc Multichannel distances between sequences

seqdss Extract distinct states sequence from a

sequence object

seqdur Extracts states durations from a sequence

object.

seqeapplysub Checking if event sequences contain given

subsequences

seqecmpgroup Identifying discriminating subsequences

seqeconstraint Setting time constraint

seqecontain Check if sequence contains events

seqecreate Create event sequence objects.

seqefsub Searching for frequent subsequences

seqeid Retrieve id of an event sequence object.

seqelength Length of event sequences

seqetm Create a transition-definition matrix

seqfind Find the occurrences of sequence(s) x in the

set of sequences y

seqformat Translation between sequence formats

seqfpos Search for the first occurrence of a given

element in a sequence

seqgen Random sequences generation

seqient Within sequences entropy

seqistatd States frequency for each individual sequence

seqlegend Plot a legend for the states in a sequence

object

seqlength Sequence length

seqlogp Computing the logarithm of sequences

probabilities

seqmeant Mean durations in each state

seqmodst Sequence of modal states

seqmpos Number of matching positions between two

sequences.

seqnum Translate a sequence object's alphabet into

numerical alphabet, ranging 0-(nbstates-1).

seqplot Plot functions for state sequence objects

seqpm Find patterns in sequences

seqrep Extracting sets of representative sequences

seqsep Adds separators to sequences stored as

character string

seqstatd Sequence of transversal state distributions and

their entropies

seqstatf State frequencies in the all sequence data set

seqstatl List of distinct states or events (alphabet) in

a sequence data set.

seqsubm Create a substitution-cost matrix

seqsubsn Number of distinct subsequences in a sequence.

seqtab Frequency table of the sequences

seqtrate Compute transition rates between states

seqtree2dot Graphical representation of a dissimilarity

124 Appendix B Information about TraMineR content

tree

Bibliography

Aassve, A., F. Billari, and R. Piccarreta (2007). Strings of adulthood: A sequence analysis of young
british women’s work-family trajectories. European Journal of Population 23 (3), 369–388.

Abbott (2001). Time Matters. On Theory and Methods. Chicago: Chicago Press.

Abbott, A. and J. Forrest (1986). Optimal matching methods for historical sequences. Journal of
Interdisciplinary History 16, 471–494.

Agrawal, R. and R. Srikant (1995). Mining sequential patterns. In P. S. Yu and A. L. P. Chen (Eds.),
Proceedings of the International Conference on Data Engeneering (ICDE), Taipei, Taiwan, pp.
487–499. IEEE Computer Society.

Billari, F. C. (2001). The analysis of early life courses: complex descriptions of the transition to
adulthood. Journal of Population Research 18 (2), 119(24)–.

Brzinsky-Fay, C., U. Kohler, and M. Luniak (2006). Sequence analysis with Stata. The Stata
Journal 6 (4), 435–460.

Elzinga, C. and A. Liefbroer (2007). De-standardization of family-life trajectories of young adults:
A cross-national comparison using sequence analysis. European Journal of Population/Revue
européenne de Démographie 23 (3), 225–250.

Elzinga, C. H. (2006). Turbulence in categorical time series. Mathematical Population Studies (sub-
mitted).

Elzinga, C. H. (2007). CHESA 2.1 User Manual. Amsterdam: Vrije Universiteit.

Elzinga, C. H. (2008). Sequence analysis: Metric representations of categorical time series. Socio-
logical Methods and Research. forthcoming.

Fussell, E. (2005). Measuring the early adult life course in Mexico: An application of the entropy
index. In R. Macmillan (Ed.), The Structure of the Life Course: Standardized? Individualized?
Differentiated?, Advances in Life Course Research, Vol. 9, pp. 91–122. Amsterdam: Elsevier.

Gauthier, J.-A. (2007). Empirical categorizations of social trajectories: A sequential view on the life
course. thèse, Université de Lausanne, Faculté des sciences sociales et politique (SSP), Lausanne.

Giele, J. and G. Elder (Eds.) (1998). Methods of Life Course Research. Qualitative and Quantitative
Approaches. CA, Sage: Thousand Oaks.

Haubold, B. and T. Wiehe (2006). Introduction to computational biology An evolutionary approach.
Birkhäuser Verlag.

Levenshtein, V. (1966). Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10, 707–710.

125

126 BIBLIOGRAPHY

McVicar, D. and M. Anyadike-Danes (2002). Predicting successful and unsuccessful transitions
from school to work by using sequence methods. Journal of the Royal Statistical Society. Series
A (Statistics in Society) 165 (2), 317–334.

Müller, N. S., M. Studer, and G. Ritschard (2007). Classification de parcours de vie à l’aide de
l’optimal matching. In XIVe Rencontre de la Société francophone de classification (SFC 2007),
Paris, 5 - 7 septembre 2007, pp. 157–160.

Needleman, S. and C. Wunsch (1970). A general method applicable to the search for similarities
in the amino acid sequence of two proteins. Journal of Molecular Biology 48, 443–453.

Notredame, C., P. Bucher, J.-A. Gauthier, and E. D. Widmer (2006). T-COFFEE/SALTT: User
guide and reference manual. Technical report, CNRS Marseille and PAVIE University of Lau-
sanne. (available at http://www.tcoffee.org/saltt/).

Paradis, E. (2005). R pour les débutants. F-34095 Montpellier: Institut des Sciences de l’Evolution
Université Montpellier II.

Rohwer, G. and U. Pötter (2002). TDA user’s manual. Software, Ruhr-Universität Bochum,
Fakultät für Sozialwissenschaften, Bochum.

Scherer, S. (2001). Early career patterns: A comparison of Great Britain and West Germany.
European Sociological Review 17 (2), 119–144.

Studer, M., A. Gabadinho, N. S. Müller, and G. Ritschard (2008). Approches de type n-grammes
pour l’analyse de parcours de vie familiaux. Revue des nouvelles technologies de l’information
RNTI E-11, II, 511–522.

Zaki, M. J. (2001). SPADE: An efficient algorithm for mining frequent sequences. Machine Learn-
ing 42 (1/2), 31–60.

Index

<-, 113

actcal, 20, 21, 26, 28, 46, 47, 52, 80
actcal.ient, 79
actcal.seq, 52, 55
actcal.tse, 104
agnes(), 100
all.equal(), 98
alphabet, 26, 32
alphabet, 52
alphabet(), 64
apply, 118
apply(), 77
as.integer(), 42
as.matrix(), 115

begin, 43
biofam, 20, 22, 24, 101, 102
biofam.seq, 97
border=NA, 71
boxplot(), 83
bp, 40

c(), 46, 114
cbind(), 114
cluster, 12, 100
cluster3, 101
colnames(), 116
color palette, 53
colors(), 53, 86
compressed=TRUE, 44
convert.factors = FALSE, 35
cor(), 87
cpal, 53, 55
cut(), 82

data(), 20, 114
demo(), 9
dev.off(), 67, 118
distance

LCP, 91
LCS, 92
OM, 95

duration

in distinct state, 74
of an event sequence, 111

end, 43
entropy

at each time point, 66
within sequences, 77

event subsequences
discriminant, 107
frequent, 103, 105
plotting frequencies, 105

ex3.OM, 98
ex3.seq, 98
exclude=TRUE, 110
extended=TRUE, 54

factor, 115
famform, 23, 56, 93
fill, 47
foreign, 34, 117
format, 64
format, SPS option, 54
from, 42

gaps, 58
group, 71, 72, 82

head(), 35
header=FALSE, 47
help about a library, 18
help() command, 113
hist(), 79

id, 43
ient.group, 82
include.lowest, 82
informat, 47, 48, 85
install.packages(), 118
install.packages(TraMineR), 11
iris, 114, 115

La.seq, 51
label, 55
labels, 49, 53

127

128 INDEX

left, 58
legend, plotting separately, 62
library(), 18, 117, 118
library(help=TraMineR), 120
list(), 116
log, 66, 77

max(), 79
mean(), 77
method=LCS, 94
missing, 58
MVAD, 23
mvad, 11, 21, 76
myplot.pdf, 118

NA, 60
na.strings, 47
names, 55
names(), 46
NEWS, 19
norm=FALSE, 79

object.size(), 97
ontology of sequence data formats, 27

par(mfrow=c(2,2), 11
paste(), 116
pbarw=TRUE, 68
pdf(), 67, 118
plot

all individual sequences, 70
legend, 62
selected sequences, 70
sequence frequency, 67
state distribution, 64

plot(), 118
postscript(), 67
print, 48, 54
print(), 54
ps(), 118

q(), 112

range(), 96
rbind, 48
read.csv, 36
read.delim, 36
read.dta(), 34, 35
read.fwf, 36
read.spss(), 34, 35
read.table, 36
right, 58
rm(objectname), 119

round(), 97
rownames(), 116
rowSums(), 70

sep, 39
seqconc(), 38
seqdecomp(), 38
seqdef, 48
seqdef(), 19, 37, 38, 46, 47, 50, 85, 86
seqdist(), 90, 92, 94, 96
seqdplot(), 64, 66
seqdss(), 75, 85
seqdur(), 75
seqeapplysub(), 110
seqecmpgroup(), 107
seqeconstraint(), 105
seqecontain(), 110
seqecreate(), 19, 103
seqefsub(), 105
seqelength(), 111
seqesetlength(), 111
seqetm(), 40, 41, 104
seqfcheck(), 37
seqformat(), 37–39, 42
seqfplot(), 67
seqHtplot(), 67
seqient(), 77, 79
seqiplot(), 70, 82
seqistatd(), 77, 78
seqlegend(), 62
seqlength(), 74
seqLLCP(), 91
seqLLCS(), 93
seqmpos(), 90
seqmtplot(), 70
seqpm(), 72
seqST(), 85, 86
seqstatd(), 66
seqstatl, 53
seqstatl(), 53, 64
seqsubm(), 95, 97
seqsubsn, 75
seqsubsn(), 85
seqtab(), 69
seqtrate(), 69, 95
sequence

definition, 10
formats, 28
object, 46
of events, 14, 103
of transitions, 14, 103

SHP, 20

INDEX 129

shp0 bvla user.dta, 35
source(), 112
sp.ex1, 85
space=0, 71
SPS.in, 47
start, 53, 55
state distribution, 64
state labels, attaching, 53
states, 49, 51
states=1:12, 51
status, 43
subsequence

definition, 33
LCS, 92

subsequences
of events, 105

subset(), 87
summary(), 53, 79, 82, 86, 115
support

minimum, 103

table(), 118
tevent, 104
time reference, 27
tlim, 69, 70
to, 44
to.data.frame, 35
tr, 70
transition, 103
transition rates, 69
TRUE, 98
turbulence, 83

update.packages(), 19

var, 43, 46, 47

which(), 79
with.miss, 94, 98, 99
withlegend=, 62, 68

	Introduction
	Aims and features of the TraMineR package

	A short example to begin with
	State sequence analysis
	Event sequence analysis

	The TraMineR package
	Loading, using and getting help
	Data sets included in the TraMineR package
	The actcal data set
	The biofam data set
	The mvad data set
	Other data sets borrowed from the literature

	Performance and memory usage

	Definition and representation of longitudinal data formats
	Ontology
	States and events
	Single or multichannel
	Time reference: Internal and external clocks
	One or several rows per individual
	Ontology

	Longitudinal data representations
	The `states-sequence' (STS) format
	The `state-permanence-sequence' (SPS) format
	The vertical `time-stamped-event' (TSE) format
	The spell (SPELL) format
	The `person-period' format
	The `shifted-replicated-sequence' format (SRS)

	Definition and properties of categorical sequences
	Categorical sequences
	Time axis
	Subsequences

	Importing and handling longitudinal data with TraMineR
	Importing data sets into R
	Reading data from other statistical packages
	Reading data from text files
	Data storage in R
	Compressed and extended format

	Converting between formats
	Converting between compressed and extended formats
	The seqformat function

	Creating state sequence objects
	Creating a state sequence object
	Creating a sequence object from SPS-formatted data
	Creating a sequence object from SPELL-formatted data

	Attributes of sequence objects
	State codes
	Alphabet
	Color palette
	State labels
	Starting time

	Summarizing sequence objects
	Indexing and printing sequence objects
	Truncations, gaps and missing values
	Introduction
	Handling the different kinds of missing values

	Describing and visualizing state sequences
	General principle of TraMineR sequence plots
	Color palette representing the states
	Plotting the legend separately

	Describing and visualizing sequence data sets
	List of states present in sequence data
	State distribution
	Sequence frequencies
	Transition rates
	Mean time spent in each state

	Describing and visualizing individual sequences
	Visualizing individual sequences
	Finding sequences with a given subsequence

	Sequence characteristics and associated measures
	Basic sequence characteristics
	Sequence length

	Distinct states and durations
	Summarizing the DSS
	Number of subsequences
	Number of transitions

	Summarizing state durations
	Variance of the state durations
	Cumulated state durations
	Within sequence entropy

	Composite measures of sequences complexity
	Sequence turbulence

	Measuring similarities and distances between sequences
	Number of matching positions
	Longest Common Prefix (LCP) distances
	LCP based metric
	Computing LCP distances

	Longest Common Subsequence (LCS) distances
	LCS based metric
	Computing LCS distances
	LCS distances with internal gaps

	Optimal matching (OM) distances
	The insertion/deletion cost
	The substitution-cost matrix
	 Generating optimal matching distances
	LCS distance as a special case of OM distance
	Optimal matching with internal gaps

	Clustering distance matrices

	Analysing event sequences
	Creating event sequences
	Searching for frequent event subsequences
	Plotting the results

	Time constraints
	Identifying discriminant event subsequences
	Plotting the results

	More advanced topics and utilities
	Looking after specific subsequences
	Counting the number of occurrence in each event sequence
	Selecting event subsequences
	Duration of event sequences

	Installing and using R
	Obtaining and installing R
	R basics
	Data manipulation in R
	Creating and printing objects
	Vectors
	Data frames, matrices and lists
	Accessing and extracting data

	R libraries
	Some other useful functions
	The apply function
	The table function

	Creating and saving graphics
	Performance and memory usage

	Information about TraMineR content
	Bibliography

