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Abstract

Long used as a framework for abstract modelling of genetic
regulatory networks, the Random Boolean Network model
possesses interesting robustness-related behaviour. We intro-
duce coherency, a new measure of robustness based on a sys-
tem’s state space, and defined as the probability of switching
between attraction basins due to perturbation. We show that
this measure has both upper and random-case bounds, and
that these bounds are based on the size of individual attractor
basins within the system. A mechanism for calculating these
bounds is introduced, and the bounds are then used to define
structural coherency, a measure of robustness attributable to
system structure. Using these measures, we show that the
decrease in coherency that occurs in the Random Boolean
Network as its connectivity increases is related to a loss of
structure in the system’s state space.

Introduction
Since the introduction of the Random Boolean Network
(RBN) model as a framework for modelling genetic reg-
ulatory networks (Kauffman, 1969), the robustness of the
model has been an area of considerable research (Kauffman
et al., 2003; Luque and Solé, 1998). This interest is due
in part to the importance of understanding how robustness
emerges in regulatory systems, and in part to the general
applicability of the RBN model as a basis for understand-
ing the dynamics of complex systems with epistatic interac-
tions. Studies of the spontaneous emergence of robustness
in the model have led to a greater understanding of the way
in which robustness can be maintained in complex systems,
as well as a better comprehension of what it means for a
system to be stable.

Informally, robustness can be thought of as a system’s
ability to function normally under external perturbations.
The investigation of robustness in RBNs generally focuses
on the dependence between robustness and network connec-
tivity. This focus sources from the discovery that the ro-
bustness of a RBN undergoes a phase transition around an
average network connectivity of two (K = 2) (Kauffman,
1969). Later supported by theoretically based approaches
(Derrida and Pomeau, 1986), this property demonstrates that

robustness in large networks of interacting elements—such
as genetic regulatory networks—can result from simple pa-
rameterisation, rather than being a property which must be
designed or evolved. In addition, the connectivities at which
RBNs display interesting and robust behaviour closely par-
allel the connectivities found in real-world genetic regula-
tory systems (Kauffman, 1969; Aldana, 2003).

A mix of theoretical (Derrida and Pomeau, 1986; Der-
rida and Flyvbjerg, 1987) and simulation-based (Kauffman,
1969; Aldana, 2003; Bastolla and Parisi, 1997) approaches
have previously been used to understand the behaviour of
robustness in RBNs. The most common technique used
in theoretical analysis of discrete dynamic systems such as
RBNs is the annealed approximation model (Derrida and
Pomeau, 1986) which provides an analytically tractable ap-
proximation of RBN behaviour. This framework provides a
useful theoretical prediction of the behaviour of infinite en-
sembles of networks under certain restrictive assumptions.
However, this approach cannot be used to investigate single
instantiations of the RBN model, or functional models of
real-world systems. In contrast to the theoretical approach,
simulation-based approaches are based upon the collection
of metrics from multiple individual systems (Bastolla and
Parisi, 1997; Aldana, 2003; Wuensche, 1998). As such,
these approaches can be used to investigate robustness of in-
dividual networks in order to provide information about the
range of behaviours observed under different circumstances,
rather than just behavioural averages. So far, however, both
theoretical and simulation-based approaches have generally
focused on characterising the properties associated with ro-
bustness in the system (such as the areas of parameter space
in which robustness is generally found), without focusing on
understanding what system-level properties bring about the
occurrence of robustness or lack thereof.

In this study, we define a new robustness metric we call
coherency, which is based on the full enumeration of a sys-
tem’s state space. We use a combination of simulation-based
and theoretical approaches to identify the relationship be-
tween the size of a system’s basins of attraction and system
coherency, as part of understanding the way in which robust-
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ness arises in the RBN model. In addition, the formulation
of coherency as a measurable property of individual systems
means that coherency may be useful in characterising ro-
bustness in existing models of real-world systems.

Random Boolean Networks and state spaces
A RBN consists of N nodes or elements, each of which
has exactly K incoming connections from other network
nodes, and an average of K outgoing connections to other
nodes in the network. Each node n in the network has a
Boolean value σn which changes over time depending on
a random Boolean function fn of the inputs to the node
(i.e., σn(t + 1) = fn(σn1(t), . . . ,σ nK (t)), where σni in-
dicates the ith input to node n). The Boolean function as-
sociated with an individual node is independently randomly
generated for each node, and stays constant over the lifetime
of a system.

RBNs are discrete dynamic systems: discrete because
each node in a system has a discrete value; and dynamic
because the value of individual nodes changes over time.
Boolean-valued nodes imply that the system has a finite
number of states (2N ). In addition, the unchanging (or
quenched) nature of the random Boolean functions f1 . . . fN

means that the model is also deterministic.
One way of conceptualising the dynamics of a system is

through the system’s state space. State space consists of
the set of all possible states of the system, and the set of
state transitions (system dynamics) defined by the collective
action of the random Boolean functions f1 . . . fN . Graphi-
cally, states in the system can be represented as nodes in a
graph, with edges between nodes representing state transi-
tions (see Figure 1). In a RBN, this state space will have
points or limit-cycles (here referred to collectively as attrac-
tors) consisting of one or more nodes which define the dy-
namic behaviour of the system in the time limit; any system
running indefinitely must end up in an attractor. The length
of an attractor is the number of nodes in the attractor’s cy-
cle. In addition, associated with each attractor is a set of
states which lead to that attractor, termed the basin of at-
traction. The size of a basin of attraction is the number of
states in the basin; alternatively, size can be expressed as
basin weight, being the proportion of state space occupied
by the basin’s states. For example, Figure 1 shows a RBN
state space (N = 8, K = 6) with three attractors of length
3, 7 and 19 and three corresponding basins of attraction with
size 20 (weight 20

256 ), 94 (weight 94
256 ) and 142 (weight 142

256 ).
Attractors and basins of attraction are important concepts

in defining the robustness of individual RBNs, as they rep-
resent the deterministic dynamics of a system leading to its
steady state.

Defining coherency
There are two commonly used approaches to measuring ro-
bustness in RBNs: annealed-approximation methods; and

Figure 1: An example RBN state space graph with N = 8
and K = 6 containing three attractor basins. Nodes in the
graph represent states of the network, with directed edges
representing the state transitions determined by the Boolean
functions of the network.

simulation-based perturbation methods. The annealed ap-
proximation framework, which is applied in the context of a
statistical ensemble of systems, uses a theoretical method
to determine the probability of state perturbations propa-
gating through a system (Derrida and Pomeau, 1986). In
this framework, robustness is defined as the probability that
a perturbation to the activation of a node will, over time,
spread to affect other nodes in the network. A stable net-
work is one in which a perturbation to the state of the net-
work at time t will likely result in the same network state at
time t+∆t (i.e., the perturbation dies out). If the states of the
perturbed and unperturbed network differ at time t+∆t, then
the network is considered unstable (i.e., the perturbation has
spread). The second method for measuring robustness is a
simulation-based random-sampling approach that is best de-
scribed as ‘perturb and iterate’. In this approach, robustness
is defined as the probability of a single-element perturbation
to a system state s resulting in a system state s′ that is in the
same basin of attraction as the original state (Aldana, 2003;
Geard et al., 2005; Reil, 1999). These two measurements of
robustness are closely related, both defining robustness as a
lack of change of network expression in the time limit. How-
ever, both of these measurements have different shortcom-
ings. The annealed approximation approach cannot be used
to describe individual RBNs, meaning that it is not useful
for analysing models of specific real-world systems. In con-
trast, the ‘perturb and iterate’ approach is based on random
sampling, which only provides an incomplete—and possibly
inaccurate—picture of a system’s robustness.

In this study, we define a measure closely related to the
above approaches, which we term coherency, based on the
full-enumeration of a system (i.e., generating every possible
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system state and identifying each state’s successor). The co-
herency of a system is defined to be the probability that a
single-element perturbation to any state of the system does
not change the basin of attraction of the state. As a codi-
fication of robustness, coherency characterises a system as
robust if a small perturbation to the system state is unlikely
to affect the long-term behaviour of the system.

Coherency can be most simply defined in terms of an in-
dividual state. For a state s with neighbouring states nh
(where neighbouring states are states that differ by only a
single element; i.e., states having a Hamming distance to s
of one), the coherency of that state ψs is the percentage of
states nh that are in the same basin of attraction as s. This
definition can be readily extended to arbitrary collections of
states, the most interesting of which are whole systems, and
attractor basins.

For a system S we define the system coherency ψS ,

ψS =
1
|S|

∑

s∈S

ψs , (1)

where s ∈ S are individual states of the system, and ψs are
coherencies of individual states. As the coherency of any
group of states is the average of the coherency of each indi-
vidual state, we can also formulate the coherency of a system
as the average of the coherencies of its basins of attraction,
weighted by the size of each basin,

ψS =
∑

b∈B

ψb
|b|
2N

, (2)

where B is the set of attractor basins of the system, and
|b|/2N is the weight of an individual basin.

The computational complexity of measuring coherency is
prohibitive, being O(N2N ) in both time and space, but is
nevertheless feasible for small systems (N ≤ 25); even at
such a restricted system size, this measure is applicable to
both abstract systems such as RBNs and interesting mod-
els of real-world systems (e.g., Albert and Othmer, 2003;
Li et al., 2004; Mendoza and Alvarez-Buylla, 1998). In ex-
change for this computational complexity, coherency avoids
the drawbacks associated with existing robustness measures
for RBN systems: unlike the annealed approximation ap-
proach, coherency measures specific individual systems; and
unlike the ‘perturb and iterate’ approach, it tests all possi-
ble single-element perturbations for all system states. In ad-
dition, the definition of coherency is general in that it can
be applied to any collection of states simply by considering
only a subset of system states. In other words, coherency,
as defined here, is a comprehensive measurement of the ro-
bustness of an individual system or parts of the system.

Basin coherency, basin size and network
connectivity

In order to understand this new measure of robustness, and
to see what information it may provide, the standard RBN
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Figure 2: Coherency vs. connectivity for whole state spaces
and individual basins of attraction in RBN systems (N =16;
error bars show standard error). System coherency (ψS) and
basin coherency (ψ̄B) both fall as connectivity increases,
with basin coherency falling more rapidly.

model was simulated (N = 16, K = 1, 2, 3, 4, 8, 16; 1000
trials). For each trial, the system coherency ψS and the av-
erage of individual basin coherencies ψ̄B = 1

|B|
∑

b∈B ψb

were recorded and averaged over each parameter combina-
tion.

The coherency of whole systems is seen to decrease as
connectivity increases (see Figure 2), which agrees with ac-
cepted knowledge about the robustness of RBNs (Aldana,
2003). However, this result does not provide any insights
as to the mechanisms causing coherency in systems with
low connectivity, or those underlying the loss of coherency
in higher-connectivity systems. For these insights we must
consider the coherency of sub-structures of the system’s
state space: attractor basins. The average coherency of
basins of attraction in a system is also seen to decrease as
K increases (see Figure 2), but this decrease is far more
rapid than the corresponding decrease in the overall system
coherency. These results can be explained in terms of the
relationship expressed by (2), by observing that it is the in-
teraction between coherency and weight of individual basins
of attraction that is crucial in determining system coherency.
Given this relationship, the difference between the decrease
in basin coherency and system coherency suggests that not
every basin of attraction contributes equally to overall sys-
tem coherency.

In order to understand the transition between stable and
chaotic regimes in the RBN model, as characterised by a
changing system coherency, we need to understand the re-
lationship between coherency and size of attractor basins
within a state space. This relationship may be characterised
by comparing the size of each basin of attraction with the
basin’s coherency, and observing how these values change
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with respect to the connectivity of the system, K. The re-
lationship between coherency and basin size does exhibit
a change as the value of K increases, from an apparently
logarithmic relationship to a linear one (see Figure 3). Just
as one notable characteristic of the data is the variance of
this relationship with K, another pertinent characteristic is
the apparent restrictions on the upper and lower values of
basin coherency with respect to basin weight. Making use
of known properties of the RBN model, we can investigate
the observed upper and lower bounds on the relationship be-
tween coherency and basin size.

Random-case bounds on coherency
In the RBN model, it is expected that the lower bound on
the observed coherency will occur when the system is most
highly disordered1, a condition that occurs at maximum net-
work connectivity. This lower bound on the observed rela-
tionship between coherency and basin size, referred to here
as the random-case bound, is a probabilistic bound that de-
scribes system behaviour over a statistical ensemble of sys-
tems. The random-case bound occurs as K → N , and is
a linear relationship between the weight and the coherency
of the attractor basin. It has been shown that for N → ∞,
K → N , RBNs correspond to the random map model (Der-
rida and Flyvbjerg, 1987). In this model, the system dy-
namics implement a random mapping between states in the
system. That is, given a state s, the system’s dynamics de-
fine a transition that will deterministically move the system
to a new state, s′; in the random map model, the target state,
s′, is randomly assigned for all such transitions. It follows
that since there is no correlation between a state and its suc-
cessor, there is also no correlation between the states in an
attractor basin, since the basin is defined by these transi-
tions. If there is no correlation between states in a basin
of attraction, then the expected coherency—the probability
of the result of a single-point perturbation belonging to the
same basin of attraction—is proportional to the weight of
the basin of attraction. After accounting for the fact that a
perturbation cannot result in the original state, we have,

ψrand(b) =
|b|− 1
2N − 1

. (3)

As the coherency of each individual state in a basin can be
seen as a Bernoulli trial, basin coherencies from complete-
enumeration simulations will be binomially distributed with,

p =
|b|− 1
2N − 1

,

n = N |b| .

1While there is an actual lower bound on coherency defined by
a parity function, this bound does not correspond to any known
parameterisation of the RBN model.
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Figure 3: Basin weight vs. basin coherency for N =12 and
K = 2, 4, 12. The three connectivity levels demonstrate a
clear separation. At low K, the data describes a curve that
is significantly above the identity line, with the relationship
tending toward linear as K increases.

As the K → N limit is the least stable point in the param-
eter space of a RBN (Bastolla and Parisi, 1997), (3) can be
taken as a random-case probabilistic bound of the coherency
of any RBN system, and a description of the lowest size-
coherency pairs that are likely to be observed.

Upper bound on coherency
Determining the upper bound on the coherency of a basin of
attraction is not readily amenable to an analytic solution. A
simulation-based approach was therefore undertaken to in-
vestigate the way in which formation of highly stable basins
of attraction occurred in RBN systems. Since K = 1 is the
most stable point in the RBN model (Flyvbjerg and Kjær,
1988), an investigation of the structure of attractor basins in
these systems was undertaken.

The structure of the state spaces investigated was analysed
using schemata to represent the states present in a basin of
attraction. The state of a Boolean network model can be rep-
resented by a vector of Boolean elements (e.g., [ 1 0 0 1 0 ]
would be a state in an N = 5 system); using a ternary
representation—a schema—with elements ‘0’, ‘1’ and a
wild-card, ‘!’, makes it possible to represent many states
in a compact fashion (Bagley and Glass, 1996). It was dis-
covered that representing basins of attraction in this man-
ner provided insights into the formation of highly coherent
basins of attraction in low K systems.

Highly coherent basins of attraction in these systems
could generally be described by a very simple schema. For
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example, a basin that covered exactly half of the state space
of a five-element system could be described by a schema
such as [!! 0!! ]. That is, the basin would be formed by
making membership of the basin contingent on the value of a
single element in the system. Similarly, a basin covering one
quarter of the state space would be contingent on the value of
two elements, and so on. In cases where a basin was of a size
that could not be described by a single schema, basins were
generally found to be composed of simple, non-overlapping
schemata whose sizes formed a minimum binary partition of
the basin size. For example, a basin of size 715 would likely
be composed of six non-overlapping basins with sizes 512,
128, 64, 8, 2 and 1.

Given these observations, we conjecture that the upper
bound on the robustness of a basin of attraction exists when
the basin is composed of a set of non-overlapping schemata,
I , with sizes corresponding to a minimum binary partition of
the basin size. In other words, the set I satisfies the equation,

|b| =
∑

i∈I

|i| , (4)

and is the smallest set to do so. The constraints placed upon
this set (i.e., that each number in the set is unique, that each
number is a power of two, and that the schemata are non-
overlapping) mean that it is possible to calculate an optimal
coherency from I alone (see appendix). The maximum co-
herency of a basin ψmax is given by,

ψmax(I, N) =
∑

i∈I

|i|
N |b|



log2|i| +
∑

j∈(I\i)

1
&|i| ÷ |j|'



 ,

(5)
where I is the set of schema sizes described above, and N
is the size of the network. The sum over I \ i represents
the coherency between the schema with size i and the other
schemata in I . Since I is determined solely from the basin
size, and is unique for any given value thereof, our conjec-
tured upper bound (referred to below simply as the upper
bound) can be calculated from the size of the network, N ,
and the size of the basin, |b|.

The conjectured upper and random-case bounds outline
the area in which relationships between coherency and basin
size are expected to fall within the gamut of RBN sys-
tems (see Figure 4). Like the random-case bound described
above, this upper bound is not a theoretical limit describing
the maximum possible coherency of a basin of attraction of
the given size, but rather a bound on the expected coherency,
based upon an analysis of observed system behaviour. Nev-
ertheless, numerical simulations indicate that this bound is a
useful approximation (see following section).

An interesting property of the upper bound is its change
with respect to N . The coherency of a basin of attraction b
of size |b| can be approximated by,

log2|b|
N

. (6)
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Figure 4: The conjectured upper (solid) and random-case
(dashed) bounds on the expected coherency of a basin of
attraction for an N =12 system.

As N increases, the maximum possible coherency for a
given basin weight (%age size) increases. In other words,
a basin that occupies 20% of an N = 50 state space has a
higher maximum coherency than a basin occupying 20% of
an N = 10 state space (see Figure 5). This increase is most
notable for relatively small basin sizes.

Testing bounds
The upper and random-case bounds developed above (see
Figure 4) appear to provide useful and accurate bounds on
the observable coherencies of basins of attraction (see Fig-
ure 6). As a simple measure of the accuracy of the pre-
dictions, we can investigate the frequency with which the
bounds are violated (see Table 1). In all simulations, the up-
per bound described a hard upper limit on the relationship
between coherency and basin size. While attractor basins
with coherency-size pairs below the random-case bound
were found, this is to be expected as described above.

Attributing robustness to structure
The upper and random-case bounds on expected coherency
relate basin robustness to basin structure; unstructured
basins have notably lower robustness than structured basins,
given equality of size. However, since we can determine the
maximum and random-case robustness for any given basin
size, we can also quantify the degree to which an attrac-
tor basin’s robustness depends on its structure rather than
its size. By comparing the actual coherency of a basin to the
maximum and random-case coherency, we can express basin
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Figure 5: The change in the maximum possible coherency of
a basin of attraction of a given normalised size with respect
to N . As N increases, the coherency of an absolute basin
size remains the same, but the coherency of the relative basin
size increases. As N becomes large, even basins that are
very small relative to the state space may be highly coherent.

robustness as a proportion of the difference between size-
dependent and maximum robustness. This measure, which
we term structural coherency, can be expressed as ψstruct,

ψstruct(b) =
ψ(b)− ψrand(b)

ψmax(b)− ψrand(b)
. (7)

Structural coherency has no meaningful interpretation for
basin sizes with the same maximum and random-case co-
herencies: 1, 2N − 1, and 2N .

Measuring the structural coherency of RBNs with vary-
ing connectivity, we obtain a clear striated pattern showing
structural coherency progressing from 100% to 0% as K in-
creases from 1 to N (see Figure 7). In contrast to normal

K Lower Within Higher

1 0.0% 100.0% 0.0%
2 0.0% 100.0% 0.0%
4 0.6% 99.4% 0.0%
8 10.5% 89.5% 0.0%

12 43.6% 56.4% 0.0%

Table 1: Percentage of attractors that were below, within or
above the bounds (N =12; K =1, 2, 4, 8, 12; 50 trials). The
frequency of overstepping the random-case bound is consis-
tent with the probabilistic nature of that bound.
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Figure 6: Observed coherencies for RBN systems (N =12;
K = 1, 2, 4, 8, 12; 50 trials). The various observations
fall largely within the shaded area, which represents the
expected boundaries; due to the probabilistic nature of the
random-case bound, some data points are found below the
expected boundary.

coherency, structural coherency seems to be approximately
constant over basin size, while still varying as expected over
K. This measurement shows that even in small basins of at-
traction, the basin structure within low K systems results in
attractor basins with high relative degrees of coherency.

Conclusions
Robustness or lack thereof in individual RBNs can be anal-
ysed in order to better understand when and how robustness
arises. We have demonstrated a combination of simulation-
based and simple theoretical techniques to provide informa-
tion about the relationship between the robustness of a sys-
tem and the size of individual attractor basins within that
system.

It was suggested that basins of attraction in a system have
both upper and random-case bounds on their coherency that
depend only on the size of the basin of attraction and the
size of the system as a whole. In isolating the maximum and
random-case coherency values for a particular system, the
concept of structural coherency was established to describe
the proportion of basin robustness attributable to the struc-
tured organisation of a state space. These measures may sub-
sequently be used in order to try and identify causal relation-
ships between robustness and other system properties, such
as network architecture or environmental influences (Willad-
sen and Wiles, 2007).
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Figure 7: Observed structural coherencies vs. basin size
(N = 16; K = 1, 2, 4, 8, 16; best-fit lines indicated). Struc-
tural coherency appears to be approximately constant over
basin size, but varying over K.

The network connectivity of the RBN model, K, was
shown to affect the coherency of a system by changing
both the size and coherency of basins of attraction. The
relationship between basin coherency and basin size for
basins of attraction in K = 1 and K = N systems demon-
strated strong agreement with the upper and random-case
bounds respectively. The structural coherency of attractor
basins was shown to be indirectly proportional to the net-
work connectivity, demonstrating that chaotic (high con-
nectivity) networks have low robustness because their state
space becomes disorganised. A notable difference in the re-
sults provided by coherency and other robustness measures
(e.g., Kauffman, 1969; Derrida and Pomeau, 1986) is that
the coherency results show no special phase-transition be-
haviour at K =2.

From these results, we believe that it is possible to under-
stand how, why and under what conditions robustness occurs
in discrete dynamic systems such as Random Boolean Net-
works, and in discrete dynamic models of real world sys-
tems. While the methods presented here do not scale well
(i.e., O(N2N )), several pre-existing interesting, small-scale
models of real-world biological systems (e.g., Albert and
Othmer, 2003; Li et al., 2004; Mendoza and Alvarez-Buylla,
1998) are amenable to such analysis (Willadsen and Wiles,
2007). Understanding such model systems may eventually
help in the analysis of robustness in real-world systems, such
as developmental robustness and homeostasis in genetic reg-
ulatory networks.
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Appendix: Calculating conjectured upper
bound coherency

We have conjectured that the upper bound on basin robustness is
characterised by a basin being composed of a set of schemata I ,
such that the schemata i ∈ I are non-overlapping, and have sizes
that correspond to a minimum binary partition of the basin size.
Here we calculate the relationship between basin size and basin
coherency under these conditions.

Each schema comprising a basin of attraction makes a coherency
contribution proportional to the size of the schema, in the same way
that basins of attraction make coherency contributions to a system.
The coherency of a single schema is equal to the probability of
a perturbation resulting in a state that is in the schema, coh(i, i),
added to the probability of a perturbation resulting in a state that is
outside the schema, but is in another schema in the same basin of
attraction coh(i, I \ i). Therefore,

ψmax(I) =
X

i∈I

|i|
|b|

“
coh(i, i) + coh(i, I \ i)

”
. (8)

The coherency of the schema i with itself is simply the size of
the schema, normalised with respect to the system size. Denoting
the self-coherency as coh(i, i),

coh(i, i) =
log2|i|

N
, (9)

where |i| is the schema size, being 2x where x is the number of
wild-card elements in i.

The coherency of the schema i with all other schemata in the
basin is the sum of the coherency of schema i with each individual
schema j ∈ I \ i. Denoting this coherency as coh(i, I \ i), we
have,

coh(i, I \ i) =
X

j∈(I\i)

coh(i, j) . (10)

Determining coherency between two individual schemata can be
accomplished by some simple logic. Given that the conditions for
maximum coherency state that the collection of schemata is min-
imal, and that schemata are non-overlapping, we can divide the
coherency calculation into two disjoint conditions: |i| > |j| and
|i| < |j|. When |i| > |j|, the probability that a perturbation of i
will lead to j is dependent on the relative sizes of i and j. The total
number of possible perturbations from schema i is N |i|, and the
number of target states is |j|, implying coh(i, j) = |j|

N|i| . When
|i| < |j|, we rely upon the hierarchical nature of the schemata;
membership of each schema is determined solely by the value of a
single element. Therefore, changing from a smaller schema, i, into
a larger schema, j, implies perturbing the single appropriate ele-
ment in a system of N elements, thus coh(i, j) = 1

N . Combined,
we can write,

coh(i, j) =

 1
N if |i| < |j|
|j|

N|i| if |i| > |j| , (11)

or alternatively,

coh(i, j) =
1

N"|i| ÷ |j|# . (12)

Combining (8) and (12) yields an equation for the maximum ex-
pected coherency of a system with N network nodes, and attractor
basin sizes I ,

ψmax(I, N) =
X

i∈I

|i|
N |b|

0

@log2|i| +
X

j∈(I\i)

1
"|i| ÷ |j|#

1

A .

(13)
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