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Abstract: The Golden Ratio can be considered as the first member of a family which can 
generate a set of generalized Fibonacci sequences. Here we consider some related problems in 
terms of the Binet form of these sequences, {Fn(a)}, where the sequence of ordinary Fibonacci 
numbers can be expressed as {Fn(5)} in this notation. A generalized Binet equation can predict 
all the elements of the Golden Ratio family of sequences. Identities analogous to those of the 
ordinary Fibonacci sequence are developed as extensions of work by Filipponi, Monzingo and 
Whitford in The Fibonacci Quarterly, by Horadam and Subba Rao in the Bulletin of the 
Calcutta Mathematical Society, within the framework of Sloane’s Online Encyclopedia of 
Interger Sequences. 
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1 Introduction 

It can be shown that the Golden Ratio [10] may be considered as the first member of a family 
which can generate a set of generalized Fibonacci sequences [8]. Here we relate the ideas there to 
the work of Filipponi [2], Monzingo [12] and Whitford [24] to consider some related problems 
with their common thread being the Binet form of these sequences, {Fn(a)}, where the sequence 
of ordinary Fibonacci numbers can be expressed as {Fn(5)} in this notation. Thus, for instance 

 a
n

n

aF
aF ϕ→

− )(
)(

1

 (1.1) 

in which  



36 

 
2

1 a
a

+
=ϕ  (1.2) 

and the generalized Binet formula in this notation is 
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which is well-known for the Fibonacci numbers as 
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Hence, elements of the sequences in the family should be similarly predicted. We note in 
passing that the Binet formula for the Fibonacci numbers is usually attributed to Jacques Philippe 
Marie Binet (1786–1856), but it was previously known to such famous mathematicians as 
Abraham de Moivre (1667–1754), Daniel Bernoulli (1700–1782), and Leonhard Euler (1707–
1783): “like many results in Mathematics, it is often not the original discoverer who gets the 
glory of having their name attached to the result, but someone later!” [6]. 

2 Differences of squares 

When n in Equation (1.3) is a power of 2 we can start to develop identities analogous to those 
of the Fibonacci sequence.  For example, 

 ( )( )nnnnnn yxyxyx +−=− 22  (2.1) 

can become 
 )()()(2 aLaFaF nnn =  (2.2) 

in which )(aLn is the corresponding generalized Lucas sequence.  Both types of sequence 
satisfy the second order recurrence relation 

 ,2),()()( 211 >+= −− naurauau nnn  (2.3) 

where 1r  is in Class 441 Z∈ (a modular ring) [9] (Table 1). We shall use this then with 
r1 = [(a – 1)/4] as an integer in the recurrence relations which follow 

 
Row 
ri ↓ 

Class 
i  → 40  41  42  43  Comments 

0 0 1 2 3 irN i += 4  
1 4 5 6 7 even 40 , 42  
2 8 9 10 11 ( )∈nn NN 2, 40  
3 12 13 14 15 odd 41 , 43 ;

2nN ∈ 41  

Table 1. Classes and rows for Z4 
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We can continue the process in (2.1) to get 
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and so on. For instance, when n = 4, this can be reduced to  

 ( )( )( )( )yxyxyxyxyx −+++=− 224488  

with x + y =1 and x – y = a , and when n = 8, this can be reduced to 

 ( )( )( )( )( )yxyxyxyxyxyx −++++=− 2244881616  

or 

 )()()()( 24816 aLaLaLaF = , 

which can be readily confirmed when a = 5.  More generally, 
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can be expressed as 
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which, when a = 5 and n = 7, ,13)5(7 =F and .318)5()5( 56 −=− FL  

Equation (2.5) can be factorised further 
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This in turn can be re-written as 
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for instance, 

 .1)5()5()5()5( 2467 −+−= LLLF  

3 Extensions of Whitford’s results 

Direct calculations of 
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yield the patterns set out in Table 2. Each n yields an infinity of ‘golden ratios’: 
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n Ln(a) Ln(5) Ln(13) Ln(17) 

2 ( )1
2
1

1 +a  3 7 9 

4 ( )16
2
1 2

3 ++ aa  7 31 49 

6 ( )11515
2
1 23

5 +++ aaa  18 154 297 

8 ( )1287028
2
1 234

7 ++++ aaaa  47 799 1889 

n Fn(a) Fn(5) Fn(13) Fn(17) 

3 ( )3
2
1

2 +a  2 4 5 

5 ( )510
2
1 2

4 ++ aa  5 19 29 

7 ( )73521
2
1 23

6 +++ aaa  13 97 181 

9 ( )98412636
2
1 234

8 ++++ aaaa  34 508 1165 

Table 2. Various Golden Ratio Sequences 

That is, for example, as in (2.7): 

 ( )98412636
2
1 234

8 +++++ aaaa  

so that 

 ),5(34)5( 99 Fu == ),13(508)13( 99 Fu ==  ),17(1165)17( 99 Fu ==  

in which the sequences satisfy the second order recurrence relation (2.3) in the form 
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with unity as the initial terms as in Whitford [24]. Some of the properties of particular forms of 
these sequences have been developed in [8]. Thus Simson’s identity becomes 
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which had previously been proved by Lucas [11]. The work of Filipponi and Monzingo 
extended that of Whitford.  In turn we can extend it further by considering the recurrence 
relation 

 ( ) ,2),(4)()( 21 >−+= −− navnaavav nnn  (3.3) 

which with unit initial conditions again generates the sequence 
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 { } { },,...83041248,20912016,278,114,1,1)( 22 +−+−−−≡ aaaaaaavn  

 { } { },,...193,27,11,1,1)0( −−≡nv  

 { } { },,...15,5,5,1,1)4( −≡nv  

 { } { },,...30,9,13,9,1,1)5( −≡nv  

which invite a separate study particularly in relation to negative signs and intersections [16].  
Instead we shall briefly consider Whitford’s table of sequences which we have slightly 
extended (Table 3). 

 

a 4
1−a

 )(1 aF  )(2 aF  )(3 aF )(4 aF )(5 aF )(6 aF )(7 aF )(8 aF  )(9 aF  )(10 aF

1 0 1 1 1 1 1 1 1 1 1 1 
5 1 1 1 2 3 5 8 13 21 34 55 
9 2 1 1 3 5 11 21 43 85 171 341 
13 3 1 1 4 7 19 40 97 217 508 1159 
17 4 1 1 5 9 29 65 181 441 1165 2929 
21 5 1 1 6 11 41 96 301 781 2286 6191 
25 6 1 1 7 13 55 133 463 1261 4039 11605

Table 3. Whitford’s table of Generalized Fibonacci numbers – extended 

We note that Table 3 is Sloane’s A083856 with many individual rows and columns also 
listed there, as is the sequence of forward diagonals {1, 2, 3, 5, 9, 17, 34, 71, ...} [A110113] 
and the first backward diagonals {1, 3, 7, 29, 99, 463, ...} [A171180]. 

We choose now to consider finite difference operators, ji.Δ , [14] acting on the sequences 

within these rows and columns (i, j) for various values of a and n (the position of an element 
within each sequence {Fn(a)}). We define sequence row difference operators )(, aFjjaΔ , sequen-

ce column difference operators )(, aFkkiΔ , and sequence vector difference operators )(, aFkkaΔ

[20], respectively by 

 )1()()(, −−=Δ aFaFaF jjjja  (3.4) 

and 

 )()()( 1, iFiFiF kkkki −−=Δ  (3.5) 

and 

 )1()()( 1, −−=Δ − aFaFaF kkkka  (3.6) 

We can then apply these operators to the rows, columns and forward and backward 
diagonals of the elements of Table 3 to find a variety of inter-related sequences, some 
expected, some unexpected, as we see in Tables 4, 5 and 6. 
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)(, aFkkiΔ

 
)(2 aF  )(3 aF  )(4 aF  )(5 aF  )(6 aF  )(7 aF  )(8 aF  )(9 aF  )(10 aF  

a = 1 0 0 0 0 0 0 0 0 0 

5 0 1 1 2 3 5 8 13 21 

9 0 2 2 6 10 22 42 86 170 

13 0 3 3 12 21 57 120 291 651 

17 0 4 4 20 36 116 260 724 1764 

21 0 5 5 30 55 205 480 1505 3905 

25 0 6 6 42 78 330 798 2778 7566 

Table 4. First column differences, )(, aFkkiΔ , from Table 3 

)(2
, aFkkiΔ

 
)(3 aF  )(4 aF  )(5 aF  )(6 aF  )(7 aF  )(8 aF  )(9 aF  )(10 aF  

a = 1 0 0 0 0 0 0 0 0 

5 1 0 1 1 2 3 5 8 

9 2 0 4 4 12 20 44 84 

13 3 0 9 9 36 63 171 360 

17 4 0 16 16 80 144 464 1040 

21 5 0 25 25 150 275 1025 2400 

25 6 0 36 36 252 468 1980 4788 

Table 5. Second column differences, ( ))(,, aFkkiki ΔΔ , from Table 4 

If we take the second five rows associated with the last six columns of Table 5 we get the 
patterns displayed in Table 6 in which the obvious common factor (the squares) in the fourth 
column of Table 5 has been taken out of each of the rows.  

 
a 4

1−a
 

Common
factor 

)(3 aF  )(4 aF  )(5 aF  )(6 aF  )(7 aF  )(8 aF  
OEIS 

number 

5 1 1 1 1 2 3 5 8 A000045 

9 2 4 1 1 3 5 11 21 A001045 

13 3 9 1 1 4 7 19 40 A006130 

17 4 16 1 1 5 9 29 65 A006131 

21 5 25 1 1 6 11 41 96 A015440 

25 6 36 1 1 7 13 55 133 A015441 

Table 6. Row patterns of second differences from Table 5 
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4 Concluding comments 

Further related investigations can include 
• establishing a general form for Fn(a) as a polynomial in a as in Table 2; 
• determining intersections of the generalized sequences in Table 4 [3, 16, 22, 23]; 
• exploring identities analogous to those of the ordinary Fibonacci and Lucas numbers 

[4, 6]; 
• using simple factorials to calculate generalized Pascal–Fibonacci numbers and Pascal-

type triangles [1, 5, 7, 13]; 
• extending the ideas to third order recursive sequences [4, 16, 17, 18, 19]; 
• finding the missing patterns inherent in Table 4 where some of the sequences do not 

appear in the OEIS [21]); 
• developing generating functions and polynomials for these generalizations [14, 15]. 
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