login
A002352
Numerators of convergents to cube root of 2.
(Formerly M3260 N1316)
4
1, 4, 5, 29, 34, 63, 286, 349, 635, 5429, 6064, 90325, 96389, 1054215, 2204819, 3259034, 15240955, 186150494, 387541943, 1348776323, 3085094589, 4433870912, 16386707325, 69980700212, 86367407537, 156348107749, 399063623035, 5743238830239, 17628780113752
OFFSET
0,2
REFERENCES
D. H. Lehmer, Guide to Tables in the Theory of Numbers. Bulletin No. 105, National Research Council, Washington, DC, 1941, p. 67.
P. Seeling, Verwandlung der irrationalen Groesse ... in einen Kettenbruch, Archiv. Math. Phys., 46 (1866), 80-120.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Bombieri and A. J. van der Poorten, Continued fractions of algebraic numbers, In: Bosma W., van der Poorten A. (eds) Computational Algebra and Number Theory. Mathematics and Its Applications, vol 325.
E. B. Burger, Diophantine Olympics and World Champions: Polynomials and Primes Down Under, Amer. Math. Monthly, 107 (Nov. 2000), 822-829.
FORMULA
From Robert Israel, Oct 08 2017: (Start)
c(n) = floor((-1)^n*3*a(n)^2/(q(n)*(a(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
a(n+1) = c(n)*a(n) + a(n-1),
q(n+1) = c(n)*q(n) + q(n-1), with a(0) = 1, c(0) = 1, q(0) = 0, a(1) = 1, q(1) = 1. (End)
MAPLE
Digits := 60: E := 2^(1/3); convert(evalf(E), confrac, 50, 'cvgts'): cvgts;
# Alternate:
N:= 100: # to get a(1) to a(N)
c[0] := 1: a[0] := 1: q[0] := 0: a[1] := 1: q[1] := 1:
for n from 1 to N do
c[n] := floor((-1)^n*3*a[n]^2/(q[n]*(a[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
a[n+1] := c[n]*a[n] + a[n-1];
q[n+1] := c[n]*q[n] + q[n-1];
od: seq(a[i], i=1..N); # Robert Israel, Oct 08 2017
MATHEMATICA
Convergents[CubeRoot[2], 30]//Numerator (* Harvey P. Dale, May 30 2023 *)
CROSSREFS
Cf. A002351 (denominators), A002945.
Sequence in context: A271602 A298827 A092659 * A042647 A266075 A041273
KEYWORD
nonn,frac
EXTENSIONS
Offset changed by Andrew Howroyd, Jul 04 2024
STATUS
approved