login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A057002
Numbers n such that n^1024 + 1 is prime (a generalized Fermat prime).
35
1, 824, 1476, 1632, 2462, 2484, 2520, 3064, 3402, 3820, 4026, 6640, 7026, 7158, 9070, 12202, 12548, 12994, 13042, 15358, 17646, 17670, 18336, 19564, 20624, 22500, 24126, 26132, 26188, 26240, 29074, 29658, 30778, 31126, 32244, 33044, 34016
OFFSET
1,2
COMMENTS
This sequence is infinite under Bunyakovsky's conjecture. - Charles R Greathouse IV, Apr 26 2012
LINKS
T. D. Noe, Table of n, a(n) for n = 1..1000 (from Yves Gallot)
Eric Weisstein's World of Mathematics, Generalized Fermat Number
MATHEMATICA
Do[ k = 1; While[ PowerMod[ n, 1024, 2*k*1024 + 1 ] != 2*k*1024 && k < 2*10^6, k++ ]; If[ k == 2*10^6 && PrimeQ[ n^1024 + 1 ], Print[ n ] ], {n, 2, 13954, 2} ]
Do[If[PrimeQ[n^1024 + 1], Print[n], ## &[]], {n, 1, 100}] (* Includes first term and runs faster, Daniel Jolly, Nov 04 2014 *)
PROG
(PARI) isA057002(n) = isprime(n^1024+1) \\ Michael B. Porter, Apr 03 2010
CROSSREFS
Other sequences of numbers n such that n^(2^k)+1 is prime for fixed k: A005574, A000068, A006314, A006313, A006315, A006316, A056994, A056995, A057465, A088361, A088362, A226528, A226529, A226530, A251597, A253854, A244150, A243959, A321323.
Cf. A006093.
Sequence in context: A252539 A033531 A088360 * A247922 A283201 A283731
KEYWORD
nonn
AUTHOR
Robert G. Wilson v, Sep 09 2000
EXTENSIONS
More terms from Jeppe Stig Nielsen, Sep 27 2003
Edited at the suggestion of T. D. Noe by N. J. A. Sloane, May 14 2008
STATUS
approved