login

Year-end appeal: Please make a donation to the OEIS Foundation to support ongoing development and maintenance of the OEIS. We are now in our 61st year, we have over 378,000 sequences, and we’ve reached 11,000 citations (which often say “discovered thanks to the OEIS”).

A144618
Denominators of an asymptotic series for the factorial function (Stirling's formula with half-shift).
6
1, 24, 1152, 414720, 39813120, 6688604160, 4815794995200, 115579079884800, 22191183337881600, 263631258054033408000, 88580102706155225088000, 27636992044320430227456000, 39797268543821419527536640000
OFFSET
0,2
COMMENTS
From Peter Luschny, Feb 24 2011 (Start):
G_n = A182935(n)/A144618(n). These rational numbers provide the coefficients for an asymptotic expansion of the factorial function.
The relationship between these coefficients and the Bernoulli numbers are due to De Moivre, 1730 (see Laurie). (End)
Also denominators of polynomials mentioned in A144617.
Also denominators of polynomials mentioned in A144622.
FORMULA
z! ~ sqrt(2 Pi) (z+1/2)^(z+1/2) e^(-z-1/2) Sum_{n>=0} G_n / (z+1/2)^n.
- Peter Luschny, Feb 24 2011
EXAMPLE
G_0 = 1, G_1 = -1/24, G_2 = 1/1152, G_3 = 1003/414720.
MAPLE
G := proc(n) option remember; local j, R;
R := seq(2*j, j=1..iquo(n+1, 2));
`if`(n=0, 1, add(bernoulli(j, 1/2)*G(n-j+1)/(n*j), j=R)) end:
A144618 := n -> denom(G(n)); seq(A144618(i), i=0..12);
# Peter Luschny, Feb 24 2011
MATHEMATICA
a[0] = 1; a[n_] := a[n] = Sum[ BernoulliB[j, 1/2]*a[n-j+1]/(n*j), {j, 2, n+1, 2}]; Table[a[n] // Denominator, {n, 0, 12}] (* Jean-François Alcover, Jul 26 2013, after Maple *)
CROSSREFS
KEYWORD
nonn,frac
AUTHOR
N. J. A. Sloane, Jan 15 2009, based on email from Chris Kormanyos (ckormanyos(AT)yahoo.com)
EXTENSIONS
Added more terms up to polynomial number u_12, v_12 for the denominators of u_k, v_k. Christopher Kormanyos (ckormanyos(AT)yahoo.com), Jan 31 2009
Typo in definition corrected Aug 05 2010 by N. J. A. Sloane
A-number in definition corrected - R. J. Mathar, Aug 05 2010
Edited and new definition by Peter Luschny, Feb 24 2011
STATUS
approved